<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>ALL TO MBIO</td>
</tr>
</tbody>
</table>
Hole BA4A-1Z Section 3, Top of Section 1.12 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description
- **SEQUENCE**: 1a
- **ROCK NAME**: Dunite
- **CONTACT**: Continuous
- **TEXTURE**: IGNEOUS
- **SUMMARY**: Highly oxidized, fractured serpentinitized dunite crosscut by carbonate-filled veins and pyroxenitic dyke
- **ALTERATION**: Serpentinized
- **VEINS**: Black, white, and green veins
- **STRUCTURE**: Brittle-dominated by surface-related deformation
- **Veins** relatively shallow dipping carbonate veins occur, serpentine vein damage
- **Crystal plasticity**
SEQUENCE: I
UNIT/SUBUNIT: 2a
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS
Summary: highly oxidized, fractured, serpentinized dunite crosscut by carbonate-filled veins and pyroxenitic dyke
ALTERATION:
Serpentinized
VEINS:
Black, white, and green veins
STRUCTURE:
Brittle-dominated by surface-related deformation
Veins: some relatively shallow dipping carbonate veins occur, serpentine veins steeper
Crystal plastic-Fabric intensity

Hole BA4A-1Z Section 4, Top of Section 2.08 (m CCD)
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W (SI x 10^-5)</th>
<th>MSP (SI x 10^-5)</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Unit/subunit</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Discrete fracture/vein density (per meter)</th>
<th>Discrete vein crosscutting</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle fracture</th>
<th>Crystal plastic</th>
<th>Vents</th>
<th>Structures</th>
<th>Alteration halos</th>
<th>Vein density (per meter)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.09</td>
<td>0</td>
<td></td>
<td>0-10</td>
<td></td>
<td>0-45</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Stained image</td>
<td>Magnetic susceptibility</td>
<td>Primary mineralogy (%)</td>
<td>Degree of deformation</td>
<td>Fracture/ Vein density (per meter)</td>
<td>Alteration intensity</td>
<td>Dip</td>
<td>Magnatic contact</td>
<td>Brittle</td>
<td>Crystal plastic</td>
<td>Veins</td>
<td>Structures</td>
<td>Alteration halos</td>
<td>Vein density (per meter)</td>
<td>Core length (cm)</td>
<td>Stained image</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>-----------------</td>
<td>---------</td>
<td>----------------</td>
<td>-------</td>
<td>------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.70</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2.80</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2.90</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>3.20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>3.30</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>3.40</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>3.50</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>3.60</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Hole BA4A-2Z Section 1, Top of Section 2.70 (m CCD)

SEQUENCE: Ia
- **ROCK NAME:** Dunite
- **CONTACT:** Continuous

PRIMARY MINERALOGY:
- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Spinel
- Sulfide

GRAIN SIZE:
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- 1.0
- 1.1
- 1.2
- 1.3
- 1.4
- 1.5

TEXTURE:
- Igneous
- Highly oxidized, fractured serpentinized dunite crosscut by carbonate-filled veins and pyroxenitic dyke

ALTERATION:
- Serpentinized

VEINS:
- Black veins
- White veins
- Green veins

STRUCTURE:
- Brittle: Dominated by surface-related deformation
- Veins: Some relatively shallow dipping carbonate veins occur, serpentine veins steeper
- Crystal plastic:
- Discrete brittle features:

FABRIC INTENSITY:
- 0
- 1
- 2
- 3
- 4
- 5

MINERALOGY:
- Sulfide
- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine

ALTERATION HALOS:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

DISCRETE BRITTLE FEATURES:
- Vein crosscutting

DEGREE OF DEFORMATION:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

DESCRIPTION:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

ISOTROPIC:
- Weak
- Moderate
- Strong

FINE GRAINED (0.2–1 mm):
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

GLASSY:
- Cryptocrystalline (<0.1 mm)
- Microcrystalline (0.1–0.2 mm)

Magmatic contact:
- Brittle
- Crystal plastic
- Veins

Hole BA4A-2Z Section 2, Top of Section 3.60 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle Vein</th>
<th>Crystal plastic</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.60</td>
<td>0</td>
<td>Dunite</td>
<td>Minor fracturing</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3.70</td>
<td>10</td>
<td></td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3.80</td>
<td>20</td>
<td></td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3.90</td>
<td>30</td>
<td></td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4.00</td>
<td>40</td>
<td></td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4.10</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4.20</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4.30</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4.40</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Description

- **SEQUENCE**: I
- **UNIT/SUBUNIT**: 2c
- **ROCK NAME**: Dunite
- **CONTACT**: Continuous
- **TEXTURE**: IGNEOUS
- **SUMMARY**: oxidized, serpentinized dunite strongly fractured, rubble, cross cut by carbonate veins and pyroxenitic dikes
- **ALTERATION**: serpentinized
- **VEINS**: white veins, black veins
- **STRUCTURE**: Brittle - Dominated by surface related deformation, Veins - some relatively shallow dipping carbonate veins occur, serpentine veins also present, Crystal plastic:

Magnetic susceptibility

- **MSCL-W** (SI x 10^-5)
- **MSP**
- **GRA** (g/cm³)

Grain size

- **Granitoid**
- **Orthopyroxene**
- **Olivine**
- **Spinel**
- **Sulfide**

Fracture/ Vein density (per meter)

- **Discrete brittle features**
- **Fabric intensity**
- **Layering**
- **Foliation**

Discrete brittle features

- **Granitic contact**
- **Dip**
- **Fault zone**
- **Fracture/ Vein density (per meter)**
- **Hole BA4A-2Z Section 2, Top of Section 3.60 (m CCD)**

Table Content

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Magnetic susceptibility</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle Vein</th>
<th>Crystal plastic</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.60</td>
<td>0</td>
<td>10^{-5}</td>
<td>Dunite</td>
<td>Minor fracturing</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3.70</td>
<td>10</td>
<td></td>
<td></td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3.80</td>
<td>20</td>
<td></td>
<td></td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3.90</td>
<td>30</td>
<td></td>
<td></td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4.00</td>
<td>40</td>
<td></td>
<td></td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4.10</td>
<td>50</td>
<td></td>
<td></td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4.20</td>
<td>60</td>
<td></td>
<td></td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4.30</td>
<td>70</td>
<td></td>
<td></td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4.40</td>
<td>80</td>
<td></td>
<td></td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Description

- **SEQUENCE**: I
- **UNIT/SUBUNIT**: 2c
- **ROCK NAME**: Dunite
- **CONTACT**: Continuous
- **TEXTURE**: IGNEOUS
- **SUMMARY**: oxidized, serpentinized dunite strongly fractured, rubble, cross cut by carbonate veins and pyroxenitic dikes
- **ALTERATION**: serpentinized
- **VEINS**: white veins, black veins
- **STRUCTURE**: Brittle - Dominated by surface related deformation, Veins - some relatively shallow dipping carbonate veins occur, serpentine veins also present, Crystal plastic:

Magnetic susceptibility

- **MSCL-W** (SI x 10^-5)
- **MSP**
- **GRA** (g/cm³)

Grain size

- **Granitoid**
- **Orthopyroxene**
- **Olivine**
- **Spinel**
- **Sulfide**

Fracture/ Vein density (per meter)

- **Discrete brittle features**
- **Fabric intensity**
- **Layering**
- **Foliation**

Discrete brittle features

- **Granitic contact**
- **Dip**
- **Fault zone**
- **Fracture/ Vein density (per meter)**
- **Hole BA4A-2Z Section 2, Top of Section 3.60 (m CCD)**
SEQUENCE: 2c
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: oxidized, serpentinized dunite strongly fractured, rubble, cross cut by carbonate veins and pyroxenitic dikes
ALTERATION: serpentinized
VEINS: white veins, black veins
STRUCTURE: Brittle- Dominated by surface related deformation
Veins- some relatively shallow dipping carbonate veins occur, serpentine veins steeper
Crystal plastic-

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>VMS</th>
<th>Magnetite contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Vems</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.48</td>
<td>0</td>
<td></td>
<td>CT image</td>
<td></td>
<td>Sulfide</td>
<td>Olivine Plagioclase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description:
SEQUENCE: 1
UNIT/SUBUNIT: 2c
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: oxidized, serpentinized dunite strongly fractured, rubble, cross cut by carbonate veins and pyroxenitic dikes
ALTERATION: serpentinized
VEINS: white veins, black veins
STRUCTURE: Brittle- Dominated by surface related deformation
Veins- some relatively shallow dipping carbonate veins occur, serpentine veins steeper
Crystal plastic-
SEQUENCE: I
UNIT/SUBUNIT: 2d
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: oxidized, serpentinized dunite weakly fractured, rubble, cross cut by carbonate veins and pyroxenitic dikes
ALTERATION: fully serpentinized dunite with cross-cutting fractures filled with carbonate, weakly fractured and intact
VEINS: black veins, green veins, and white veins
STRUCTURE: Brittle- Dominated by surface related deformation and hydrothermal breccias
Veins- some relatively shallow dipping carbonate veins occur, serpentine veins steeper
Crystal plastic- Fabric intensity
Vein density (per meter)
Grain size
Hole BA4A-3Z Section 1, Top of Section 4.90 (m CCD)
Depth (m CCD)
Core length (cm)
Shipboard samples
Scanned image
CT image
Magnetic susceptibility
MSCL-W
MSP (SI 10^-5)
MSCL-A
Primary mineralogy
Lithology
Vein crosscutting
Fault zones
Apparent offset
Structures
Alteration halos
Vein crosscutting
Vein
Detailed Alteration
Intensity
Occurrence
Vein crosscutting
Vein density (per meter)
Grain size
Sequence I

Unit/Subunit: 2e
Rock Name: Dunite
Contact: Continuous
Texture: Igneous
Summary: Serpentinized and oxidized dunite
Alteration: Serpentinized and highly oxidized
Veins: few white and black veins
Structure: Brittle - Dominated by surface related deformation

Sequence I
Unit/Subunit: 2f
Rock Name: Dunite
Contact: Colour
Texture: Igneous
Summary: Serpentinized and highly oxidized dunite with white large crosscutting veins at 22.5, 28 and 33.5 cm depths
Alteration: Serpentinized and oxidized
Veins: large white veins and few fine black veins
Structure: Brittle - Dominated by surface related deformation and hydrothermal breccias

Sequence I
Unit/Subunit: 3a
Rock Name: Dunite
Contact: Colour
Texture: Igneous
Summary: Serpentinized and oxidized dunite
Alteration: Serpentinized and highly oxidized
Veins: large white crosscutting veins and few fine black, white veins
Structure: Brittle - Dominated by surface related deformation and hydrothermal breccias

Veins: some relatively shallow dipping carbonate veins occur, serpentine veins steeper

Crystal Plastic

Fabric Intensity

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Vein Density

<table>
<thead>
<tr>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Grain Size

<table>
<thead>
<tr>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Core Length (cm)

<table>
<thead>
<tr>
<th>63</th>
<th>64</th>
<th>65</th>
<th>66</th>
<th>67</th>
<th>68</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
</tbody>
</table>

Magnetic Susceptibility

<table>
<thead>
<tr>
<th>6.33</th>
<th>6.23</th>
<th>6.13</th>
<th>6.03</th>
<th>5.93</th>
<th>5.83</th>
<th>5.73</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Lithology

- Primary mineralogy: Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Spinel, Sulfide
- Fabric intensity: Magnetic, Layering, Foliation
- Degree of deformation: Discrete brittle features, Fracture/ Vein density (per meter), Alteration intensity
- Degree of alteration: Fresh (<3%), Slight (3–10%), Moderate (11–30%), Substantial (31–60%), Extensive (61–90%), Complete (≥90%)
- Degree of deformation: Undeformed, Minor fracturing, Moderate fracturing, GS reduction and rotation, Well-developed cataclasis, Ultracataclastite
- Protogranular, Porphyroclastic, Strongly foliated, Protomylonite, Mylonite, Ultramylonite
- Isotropic, Weak, Moderate, Strong
- Fine grained (0.2–1 mm), Medium grained (1–5 mm), Coarse grained (5–30 mm), Pegmatitic (>30 mm)
- Glassy, Cryptocrystalline (<0.1 mm), Microcrystalline (0.1–0.2 mm)

Magnetic contact

- Brittle
- Crystal plastic

Veins

- Contact: Colour
- Texture: Igneous
- Summary: Serpentinized and highly oxidized dunite with white large crosscutting veins at 22.5, 28 and 33.5 cm depths
- Alteration: Serpentinized and oxidized
- Veins: large white veins and few fine black, white veins
- Structure: Brittle - Dominated by surface related deformation and hydrothermal breccias
- Veins: some relatively shallow dipping carbonate veins occur, serpentine veins steeper

Fabric Intensity

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Vein Density

<table>
<thead>
<tr>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Grain Size

<table>
<thead>
<tr>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Core Length (cm)

<table>
<thead>
<tr>
<th>63</th>
<th>64</th>
<th>65</th>
<th>66</th>
<th>67</th>
<th>68</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
</tbody>
</table>

Magnetic Susceptibility

<table>
<thead>
<tr>
<th>6.33</th>
<th>6.23</th>
<th>6.13</th>
<th>6.03</th>
<th>5.93</th>
<th>5.83</th>
<th>5.73</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Lithology

- Primary mineralogy: Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Spinel, Sulfide
- Fabric intensity: Magnetic, Layering, Foliation
- Degree of deformation: Discrete brittle features, Fracture/ Vein density (per meter), Alteration intensity
- Degree of alteration: Fresh (<3%), Slight (3–10%), Moderate (11–30%), Substantial (31–60%), Extensive (61–90%), Complete (≥90%)
- Degree of deformation: Undeformed, Minor fracturing, Moderate fracturing, GS reduction and rotation, Well-developed cataclasis, Ultracataclastite
- Protogranular, Porphyroclastic, Strongly foliated, Protomylonite, Mylonite, Ultramylonite
- Isotropic, Weak, Moderate, Strong
- Fine grained (0.2–1 mm), Medium grained (1–5 mm), Coarse grained (5–30 mm), Pegmatitic (>30 mm)
- Glassy, Cryptocrystalline (<0.1 mm), Microcrystalline (0.1–0.2 mm)

Magnetic contact

- Brittle
- Crystal plastic

Veins

- Contact: Colour
- Texture: Igneous
- Summary: Serpentinized and highly oxidized dunite with white large crosscutting veins at 22.5, 28 and 33.5 cm depths
- Alteration: Serpentinized and oxidized
- Veins: large white veins and few fine black, white veins
- Structure: Brittle - Dominated by surface related deformation and hydrothermal breccias
- Veins: some relatively shallow dipping carbonate veins occur, serpentine veins steeper

Fabric Intensity

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Vein Density

<table>
<thead>
<tr>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Grain Size

<table>
<thead>
<tr>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Core Length (cm)

<table>
<thead>
<tr>
<th>63</th>
<th>64</th>
<th>65</th>
<th>66</th>
<th>67</th>
<th>68</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Lithology</td>
<td>Magmatic contact</td>
<td>Dip</td>
<td>Alteration intensity</td>
<td>Vein density (per meter)</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>-----</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>6.35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.45</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.55</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.65</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.75</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.85</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.95</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.05</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.15</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.25</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

- **SEQUENCE:** 3a
- **UNIT/SUBUNIT:** 3a
- **ROCK NAME:** Dunite
- **CONTACT:** continuous
- **TEXTURE:**
 - IGNEOUS SUMMARY: Serpentinized and oxidized dunite
 - ALTERATION: Serpentinized and highly oxidized
 - VEINS: Large white crosscutting veins and fine black, white veins
 - STRUCTURE: Brittle-dominated by surface-related deformation and hydrothermal breccias
 - Veins: some relatively shallow-dipping carbonate veins occur, serpentine veins deeper

Lithology

- Magnetite
- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole

Grain size

- Fabric intensity
- Discrete brittle features

Degree of deformation

- Fracture/vein density (per meter)

Alteration intensity

- vein density (per meter)
Hole BA4A-4Z Section 3, Top of Section 7.29 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>PRIMARY 미스유설성</th>
<th>Primer mineraology</th>
<th>Liethology</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.30</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7.40</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7.50</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7.60</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>7.70</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>7.80</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>7.90</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>8.10</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>8.20</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **SEQUENCE:** 1
- **ROCK NAME:** Dunite
- **CONTACT:** Continuous

TEXTURE:
- Igneous
- Summary: Serpentinized and oxidized dunite
- Alteration: Serpentinized and highly oxidized

VEINS:
- Large white crosscutting veins and few fine black, white veins

STRUCTURE:
- Brittle: Dominated by surface related deformation and hydrothermal breccias

SEQUENCE: 1

ROCK NAME: Gabbro

CONTACT: Intrusive

TEXTURE:
- Granular

IGNEOUS SUMMARY:
- Highly altered gabbro

ALTERATION:
- Few white veins

VEINS:
- Brittle: Dominated by surface related deformation and hydrothermal breccias

SEQUENCE: 1

ROCK NAME: Harzburgite

CONTACT: Colour

TEXTURE:
- Igneous
- Summary: Serpentinized and oxidized harzburgite

ALTERATION:
- Serpentinized and highly oxidized harzburgite

VEINS:
- Large white vein and few fine white veins

STRUCTURE:
- Brittle: Dominated by surface related deformation and hydrothermal breccias

Fabric intensity

<table>
<thead>
<tr>
<th>GRA (SI $\times 10^{-5}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

Vein density (per meter)

<table>
<thead>
<tr>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 per 10 cm</td>
</tr>
<tr>
<td>3-5 per 10 cm</td>
</tr>
<tr>
<td>15-20 per 10 cm</td>
</tr>
<tr>
<td>5-15 per 10 cm</td>
</tr>
<tr>
<td>>20 per 10 cm</td>
</tr>
</tbody>
</table>

Degree of deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Lithology

<table>
<thead>
<tr>
<th>Primary mineraology</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olivine</td>
<td>100</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>75</td>
</tr>
<tr>
<td>Amphibole</td>
<td>50</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>25</td>
</tr>
<tr>
<td>Orthopyroxene</td>
<td>0</td>
</tr>
<tr>
<td>Spinel</td>
<td>90</td>
</tr>
<tr>
<td>Sulfide</td>
<td>45</td>
</tr>
<tr>
<td>Fracture/Vein density (per meter)</td>
<td></td>
</tr>
<tr>
<td>1 per 10 cm</td>
<td></td>
</tr>
<tr>
<td>3-5 per 10 cm</td>
<td></td>
</tr>
<tr>
<td>15-20 per 10 cm</td>
<td></td>
</tr>
<tr>
<td>5-15 per 10 cm</td>
<td></td>
</tr>
<tr>
<td>>20 per 10 cm</td>
<td></td>
</tr>
</tbody>
</table>

Alteration halos

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Discrete brittle features

- Fault zones
- Vein crosscutting
Hole BA4A-5Z Section 2, Top of Section 9.67 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>GRA (SI x 10^-5)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle Crystal plastic</th>
<th>Structures</th>
<th>Vein density (per meter)</th>
<th>Alteration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.69</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9.70</td>
<td></td>
</tr>
<tr>
<td>9.79</td>
<td></td>
</tr>
<tr>
<td>9.99</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE 1:
- **ROCK NAME:** Harzburgite
- **CONTACT:** Continuous
- **TEXTURE:** Granular
- **IGNEOUS SUMMARY:** Serpentinized and oxidized harzburgite
- **ALTERATION:** Serpentinized and oxidized
- **VEINS:** Few fine white veins
- **STRUCTURE:** Brittle

Crystal plastic: Pyroxene grains are rounded and slightly elongated.

SEQUENCE 1:
- **ROCK NAME:** Harzburgite
- **CONTACT:** Grain
- **TEXTURE:** Granular
- **IGNEOUS SUMMARY:** Serpentinized and oxidized harzburgite
- **ALTERATION:** Serpentinized and oxidized
- **VEINS:** Few fine white veins
- **STRUCTURE:** Brittle

Crystal plastic: Pyroxene grains are rounded and slightly elongated.
Hole BA4A-5Z Section 3, Top of Section 10.29 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W (SI x 10^-5)</th>
<th>MSP (g/cm²)</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Unit/subunit</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dips</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **SEQUENCE:** 1
- **ROCK NAME:** Harzburgite
- **CONTACT:** Continuous
- **TEXTURE:** Granular
- **ALTERATION:** Serpentinized and oxidized
- **VEINS:** Few fine white veins
- **STRUCTURE:** Brittle
- **Vein crosscutting:**
 - **Degree of deformation:** Brittle
 - **Magnetic contact:** Brittle
 - **Crystal plastic:**
- **Vein density:** Few fine white veins

SEQUENCE: 1
- **UNIT/SUBUNIT:** 4e
- **ROCK NAME:** Harzburgite
- **CONTACT:** Colour
- **TEXTURE:** Granular
- **ALTERATION:** Serpentinized and highly oxidized
- **VEINS:** Few green and black veins
- **STRUCTURE:** Brittle
 - **Vein crosscutting:**
 - **Degree of deformation:** Highly altered and strongly foliated fault zone
 - **Magnetic contact:** Brittle
 - **Crystal plastic:**
- **Vein density:** Few green and black veins

Crystal plastic - Pyroxene grains are rounded and slightly elongated.
Hole BA4A-5Z Section 4, Top of Section 10.90 (m CCD)
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Vein density (per meter)</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Shipboard samples</td>
<td>Stained image</td>
<td>CT image</td>
<td>Magnetic susceptibility</td>
<td>Primary mineralogy (%)</td>
<td>Grain size</td>
<td>Degree of deformation</td>
<td>Fracture/ Vein density (per meter)</td>
<td>Alteration intensity</td>
<td>Vein density (per meter)</td>
<td>Alteration intensity</td>
<td>Vein density (per meter)</td>
<td>Dip</td>
<td>Magnetic contact</td>
<td>Brittle</td>
<td>Crystal plastic</td>
<td>Veins</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td>0.2</td>
<td>100</td>
<td>Brittle</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td>3</td>
<td>60</td>
<td>0.2</td>
<td>100</td>
<td>Brittle</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td></td>
<td></td>
<td>5</td>
<td>80</td>
<td>0.2</td>
<td>100</td>
<td>Brittle</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td></td>
<td></td>
<td>7</td>
<td>100</td>
<td>0.2</td>
<td>100</td>
<td>Brittle</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td></td>
<td></td>
<td>9</td>
<td>120</td>
<td>0.2</td>
<td>100</td>
<td>Brittle</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td></td>
<td></td>
<td>11</td>
<td>140</td>
<td>0.2</td>
<td>100</td>
<td>Brittle</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>10</td>
<td></td>
<td></td>
<td>13</td>
<td>160</td>
<td>0.2</td>
<td>100</td>
<td>Brittle</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td></td>
<td></td>
<td>15</td>
<td>180</td>
<td>0.2</td>
<td>100</td>
<td>Brittle</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>10</td>
<td></td>
<td></td>
<td>17</td>
<td>200</td>
<td>0.2</td>
<td>100</td>
<td>Brittle</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sequence: I
Unit/Subunit: 5a
Rock Name: Dunite

- **Contact:** continuous
- **Texture:** Igneous
- **Summary:** Serpentinised and partially oxidised dunite
- **Alteration:** Massive serpentine alteration
 - Veins: Cut by en-echelon grey/green/yellow veins. Yellow veins grade to black in less oxidised parts
- **Structure:** Brittle-
- **Veins:**
 - Crosscut by white and black veins, plus waxy grey/white composite veins

Sequence: I
Unit/Subunit: 5a
Rock Name: Gabbro

- **Contact:** intrusive
- **Texture:** Granular
- **Igneous Summary:** Coarse gabbroic vein
- **Alteration:** Altered with grain shapes retained
 - Veins: Cross-cut by white and black veins, plus waxy grey/white composite veins
- **Structure:** Brittle-
 - Veins:

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W</th>
<th>MSP (SI x 10^-5)</th>
<th>GRA (g/cm³)</th>
<th>Primary mineralogy (%)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.53</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-6Z Section 3, Top of Section 13.23 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Magnetic susceptibility</th>
<th>Contact</th>
<th>Alteration intensity</th>
<th>Original mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration halos</th>
<th>Magmatic contact Brittle</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13.35</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>13.45</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>13.55</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>13.65</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>13.75</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>13.85</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>13.95</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>14.05</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

- **SEQUENCE:** 1a
- **ROCK NAME:** Dunite
- **CONTACT:** continuous
- **TEXTURE:** IGNEOUS
- **SUMMARY:** serpentinised and partially oxidised dunite
- **ALTERATION:** massive serpentine alteration
- **VEINS:** cut by en echelon grey/green/yellow veins. Yellow veins grade to black in less oxidised part
- **STRUCTURE:** Brittle
- **Veins:** Crystal plastic

Table:
- **GRA (g/cm³):** 2.68, 2.48, 2.28, 2.08
- **Vein density:** 0 per 10 cm, 1–5 per 10 cm, >20 per 10 cm, 5–15 per 10 cm, 15–20 per 10 cm
- **Discrete brittle features:** 0–10, 10–30, 30–50, 50–70, 70–90, >100
- **Degree of deformation:** Undeformed, Minor fracturing, Moderate fracturing, GS reduction and rotation, Well-developed cataclasis, Ultracataclastite
- **Lithology:** Fresh (<3%), Slight (3–10%), Moderate (11–30%), Substantial (31–60%), Extensive (61–90%), Complete (≥90%)
- **Vein crosscutting alteration intensity:** 0–10, 10–30, 30–50, 50–70, 70–90, >100
- **Degree of deformation:** Undeformed, Minor fracturing, Moderate fracturing, GS reduction and rotation, Well-developed cataclasis, Ultracataclastite

Legend:
- **Fault zones:** Structures
- **Apparent offset:**
- **Alteration halos:**
- **Magnetic contact Brittle:**
- **Crystal plastic:**
- **Veins:**
Hole BA4A-6Z Section 4, Top of Section 14.06 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W</th>
<th>MSP</th>
<th>GRA (g/cm²)</th>
<th>Primary mineralogy</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dimp</th>
<th>Contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Apparent offset</th>
<th>Alteration halos</th>
<th>Vein density (per meter)</th>
<th>Vein crosscutting</th>
</tr>
</thead>
</table>
SEQUENCE: I
UNIT/SUBUNIT: 5c
ROCK NAME: Dunite
CONTACT: continuous
TEXTURE:
IGNEOUS
SUMMARY: Serpentinised dunite cut by a few magmatic gabbroic dykes
ALTERATION: highly serpentinised, with alternating sections of brown (more oxidised) and black (less oxidised)
VEINS: irregular thin black, white and green veins with thicker waxy veins associated with the magmatic veins in places
STRUCTURES: Brittle-fracture faulting

Depth (m CCD) | Core length (cm) | Sampled image | Magnetic susceptibility | Primary mineralogy | Grain size | Degree of deformation | Fracture/ Vein density (per meter) | Vein density (per meter) | Alteration intensity | Dip | Magnatic contact | Brittle Crystal plastic | Voids | CT image | Structures | Apparent offset | Description
14.70 | 0 | | | | | | | | | | | | | | | | | SEQUENCE: I; Sc
ROCK NAME: Dunite
CONTACT: continuous
TEXTURE:
IGNEOUS
SUMMARY: Serpentinised dunite cut by a few magmatic gabbroic dykes
ALTERATION: highly serpentinised, with alternating sections of brown (more oxidised) and black (less oxidised)
VEINS: irregular thin black, white and green veins with thicker waxy veins associated with the magmatic veins in places
STRUCTURES: Brittle-fracture faulting

Hole BA4A-7Z Section 1, Top of Section 14.70 (m CCD)
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Magnetic susceptibility (SI × 10^-5)</th>
<th>GRA (g/cm³)</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.69</td>
<td>0</td>
<td>Dunite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15.69</td>
<td>10</td>
<td>Dunite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15.69</td>
<td>20</td>
<td>Dunite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15.69</td>
<td>30</td>
<td>Dunite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15.69</td>
<td>40</td>
<td>Dunite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15.69</td>
<td>50</td>
<td>Dunite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15.69</td>
<td>60</td>
<td>Dunite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15.69</td>
<td>70</td>
<td>Dunite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15.69</td>
<td>80</td>
<td>Dunite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15.69</td>
<td>90</td>
<td>Dunite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15.69</td>
<td>100</td>
<td>Dunite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Hole BA4A-7Z Section 2, Top of Section 15.67 (m CCD)
Hole BA4A-7Z Section 4, Top of Section 17.44 (m CCD)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Vein Density (per meter)</th>
<th>Fabric Intensity</th>
<th>Vein Crosscutting</th>
<th>Alteration Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5d</td>
<td>Dunite</td>
<td>Continuous</td>
<td>Igneous</td>
<td>Highly fractured dunite with anastamosing network of black veins, 10 mm probably magmatic vein at top, highly altered, with patches of variably oxidised areas adjacent to veins and dyke.</td>
<td>Highly altered</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5e</td>
<td>Harzburgite</td>
<td>Modal</td>
<td>Granular</td>
<td>Highly fractured dunite with anastamosing network of black veins, former thin dykes, highly altered, are present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5e</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>Granular</td>
<td>Serpentinised olivine gabbro</td>
<td>Highly altered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fabric Intensity

<table>
<thead>
<tr>
<th>GRA (g/cm³)</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
</tr>
</thead>
<tbody>
<tr>
<td>5d</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vein Crosscutting

<table>
<thead>
<tr>
<th>Vein density (per meter)</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>5d</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5e</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Veins

- Black veins and brown veins with a white halo
- Fibrous and layered veins

Structure

- Brittle
- Veins
- Crystal plastic

Notes

- Pores in rocks are rounded and slightly elongated.
- Multiple generations, cross cutting, including fibrous and layered veins.
- Brittle structures.
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/subunit</th>
<th>Rock name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous summary</th>
<th>Alteration</th>
<th>Vein</th>
<th>Fracture/vein density (per meter)</th>
<th>Degree of deformation</th>
<th>Discrete brittle features</th>
<th>Alteration intensity</th>
<th>Fabric intensity</th>
<th>Vein density (per meter)</th>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>5e</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Brittle-Veins-Crystal plastic</td>
<td>Highly fractured dunite with anastomosing network of black veins, former thin dykes, highly altered, are present</td>
<td>Patches of variably oxidised areas adjacent to veins and dykes</td>
<td>Irregular thin green and black veins</td>
<td>3</td>
<td>Protomylonite</td>
<td>0–10</td>
<td>10–30</td>
<td>30–50</td>
<td>50–70</td>
<td>70–90</td>
<td>>90</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>5f</td>
<td>Dunite</td>
<td>Modal</td>
<td>Brittle-Veins-Crystal plastic</td>
<td>Serpentinized dunite cut by two gabbroic dykes</td>
<td>Patches of variably oxidised areas adjacent to veins and dykes</td>
<td>Irregular thin black veins and few white veins</td>
<td>3</td>
<td>Protomylonite</td>
<td>0–10</td>
<td>10–30</td>
<td>30–50</td>
<td>50–70</td>
<td>70–90</td>
<td>>90</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>5f</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>Granular</td>
<td>Serpentinized ol-gabbro</td>
<td>Highly altered</td>
<td>Irregular thin green and black veins</td>
<td>3</td>
<td>Protomylonite</td>
<td>0–10</td>
<td>10–30</td>
<td>30–50</td>
<td>50–70</td>
<td>70–90</td>
<td>>90</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-8Z Section 2, Top of Section 18.24 (m CCD)

- **DESCRIPTION**: Serpentinized dunite cut by two gabbroic dykes
- **TEXTURE**: Igneous
- **ALTERATION**: Patches of variably oxidized areas adjacent to veins and dykes
- **VEINS**: Irregular network of thin black veins and few white veins
- **STRUCTURE**: Brittle
- **Alteration intensity**: 0–10 = Fresh (<3%); 10–30 = Slight (3–10%); 30–50 = Moderate (11–30%); 50–70 = Substantial (31–60%); 70–90 = Extensive (61–90%); ≥90 = Complete (>90%)

- **Primary mineralogy**:
 - Olivine
 - Plagioclase
 - Clinopyroxene
 - Orthopyroxene
 - Amphibole

- **Degree of deformation**:
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
 - GS reduction and rotation
 - Well-developed cataclasis
 - Ultracataclastite

- **Lithology**:
 - Protogranular
 - Porphyroclastic
 - Strongly foliated
 - Protomylonite
 - Mylonite
 - Ultramylonite

- **Fabric intensity**

- **Vein density (per meter)**

- **Alteration halos**

- **Contact**:
 - Continuous

- **Magnetic contact**

- **Dip**

- **Magmatic layering**

- **Foliation**

- **Vein crosscutting**

- **Fracture/vein density (per meter)**

- **Vein density (per meter)**

- **Magnetic susceptibility**

- **Depth (m CCD)**

- **Core length (cm)**

- **CT image**

- **Shipboard samples**

- **Scanned image**
SEQUENCE: I

UNIT/SUBUNIT: 5f

ROCK NAME: Dunite

CONTACT: continuous

TEXTURE: IGNEOUS

SUMMARY: Serpentinized dunite cut by two gabbroic dykes

ALTERATION: patches of variably oxidised areas adjacent to veins and dykes

VEINS: Irregular network of thin black veins and few white veins

STRUCTURE: Brittle-Crystal plastic

SEQUENCE: I

UNIT/SUBUNIT: 6a

ROCK NAME: Harzburgite

CONTACT: modal

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised harzburgites, cut by ol-gabbro and pyroxenite dykes

ALTERATION: highly serpentinized, areas of higher oxidation up to 90mm with sharp boundaries to less oxidized serpentinized harzburgite

VEINS: Irregular network of thin black and white veins with higher vein intensity next to overprinted magmatic dykes

STRUCTURE: Brittle-Crystal plastic

Pyroxene grains are rounded and slightly elongated.

SEQUENCE: I

UNIT/SUBUNIT: 6a

ROCK NAME: olivine gabbro

CONTACT: intrusive

TEXTURE: Granular

IGNEOUS SUMMARY: altered ol-gabbroic dyke

ALTERATION: highly altered

VEINS: irregular thin white veins

STRUCTURE: Brittle-Crystal plastic

SEQUENCE: I

UNIT/SUBUNIT: 6a

ROCK NAME: clinopyroxenite

CONTACT: intrusive

TEXTURE: Granular

IGNEOUS SUMMARY: altered clinopyroxenitic dyke

ALTERATION: highly altered

VEINS: network of irregular thin white veins

STRUCTURE: Brittle-Crystal plastic

Magnetic susceptibility

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.09</td>
<td></td>
<td></td>
<td>19.19</td>
<td></td>
<td></td>
<td>19.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.19</td>
<td></td>
<td></td>
<td>19.29</td>
<td></td>
<td></td>
<td>19.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.29</td>
<td></td>
<td></td>
<td>19.39</td>
<td></td>
<td></td>
<td>19.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.39</td>
<td></td>
<td></td>
<td>19.49</td>
<td></td>
<td></td>
<td>19.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.49</td>
<td></td>
<td></td>
<td>19.59</td>
<td></td>
<td></td>
<td>19.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.59</td>
<td></td>
<td></td>
<td>19.69</td>
<td></td>
<td></td>
<td>19.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.69</td>
<td></td>
<td></td>
<td>19.79</td>
<td></td>
<td></td>
<td>19.89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hole BA44-8Z Section 3, Top of Section 19.05 (m CCD)
Hole BA4A-8Z Section 4, Top of Section 19.89 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.90</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sequence: I

Unit/Subunit: 6a

Rock Name: Harzburgite

Contact: continuous

Texture: Granular

Igneous Summary: Serpentinised harzburgites, cut by ol-gabbro and pyroxenite dykes

Alteration: Highly serpentinised, areas of higher oxidation up to 90% with sharp boundaries to less oxidized serpentinized harzburgite

Veins: Irregular network of thin black and white veins with higher vein intensity next to overprinted magmatic dykes

Structure: Brittle

Vein crosscutting: Crystal plastic

Alteration intensity:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Vein density: (per meter)
- 0
- 1 per 10 cm
- 3–5 per 10 cm
- >20 per 10 cm
- 5–15 per 10 cm
- 15–20 per 10 cm

Material:
- Sulfide
- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine

Grain size:
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Fabric intensity:
- Isotropic
- Weak
- Moderate
- Strong

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Protomylonite

Mylonite

Ultramylonite

Porphyroclastic

Protogranular

Strongly foliated

Mylonite

Ultramylonite

Isotropic

Weak

Moderate

Strong

Fine grained (0.2–1 mm)

Medium grained (1–5 mm)

Coarse grained (5–30 mm)

Pegmatitic (>30 mm)

Glassy

Cryptocrystalline (<0.1 mm)

Microcrystalline (0.1–0.2 mm)

GRA (g/cm³):
- 2.65
- 2.4
- 2.15
- 1.9

Magnetic contact: Brittle

Brittle contact: Crystal plastic

Veins: Discrete brittle features

Structures:
- Fault zones
- Vein crosscutting
- Vein thickness
- Vein density

Vein crosscutting:
- Brittle
- Magmatic
- Contact

Magmatic contact:

Brittle: Crystal plastic

Crystal plastic: Pyroxene grains are rounded and slightly elongated.

Magnetic susceptibility:
- MSCL-W MSP
- (SI 10⁻⁵)

GRA (g/cm³):
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

Fabric intensity:
- 0
- 1
- 2
- 3
- 4
- 5

Degree of deformation:
- 0
- 1
- 2
- 3
- 4
- 5

Alteration intensity:
- 0
- 1
- 2
- 3
- 4
- 5

Sequence: I

Unit/Subunit: 6a

Rock Name: Harzburgite

Contact: continuous

Texture: Granular

Igneous Summary: Serpentinised harzburgites, cut by ol-gabbro and pyroxenite dykes

Alteration: Highly serpentinised, areas of higher oxidation up to 90% with sharp boundaries to less oxidized serpentinized harzburgite

Veins: Irregular network of thin black and white veins with higher vein intensity next to overprinted magmatic dykes

Structure: Brittle

Vein crosscutting: Crystal plastic

Alteration intensity:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Vein density: (per meter)
- 0
- 1 per 10 cm
- 3–5 per 10 cm
- >20 per 10 cm
- 5–15 per 10 cm
- 15–20 per 10 cm

Material:
- Sulfide
- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine

Grain size:
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Fabric intensity:
- Isotropic
- Weak
- Moderate
- Strong

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Protomylonite

Mylonite

Ultramylonite

Porphyroclastic

Protogranular

Strongly foliated

Mylonite

Ultramylonite

Isotropic

Weak

Moderate

Strong

Fine grained (0.2–1 mm)

Medium grained (1–5 mm)

Coarse grained (5–30 mm)

Pegmatitic (>30 mm)

Glassy

Cryptocrystalline (<0.1 mm)

Microcrystalline (0.1–0.2 mm)

GRA (g/cm³):
- 2.65
- 2.4
- 2.15
- 1.9

Magnetic contact: Brittle

Brittle contact: Crystal plastic

Veins: Discrete brittle features

Structures:
- Fault zones
- Vein crosscutting
- Vein thickness
- Vein density

Vein crosscutting:
- Brittle
- Magmatic
- Contact

Magmatic contact:

Brittle: Crystal plastic

Crystal plastic: Pyroxene grains are rounded and slightly elongated.
Hole BA4A-9Z Section 1, Top of Section 20.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm³)</th>
<th>Core length/Shipboard samples</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Alteration intensity</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alt-Enhalo</th>
<th>Structures</th>
<th>Dip</th>
<th>Vein</th>
<th>Crystal plastic</th>
<th>Voids</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.70</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE 1: 6a
- **UNIT/SUBUNIT**: 6a
- **ROCK NAME**: Harzburgite
- **CONTACT**: Continuous
- **TEXTURE**: Granular
- **IGNEOUS SUMMARY**: Serpentinised harzburgites, cut by ol-gabbro and pyroxenite dykes
- **ALTERATION**: Highly serpentinised, areas of higher oxidation up to 90mm with sharp boundaries to less oxidized serpentinized harzburgite
- **VEINS**: Irregular network of thin black and white veins with higher vein intensity next to overprinted magmatic dykes
- **STRUCTURE**: Brittle- Anastamosing shear veins and fractures
 - Crystal plastic- Pyroxene grains are rounded and slightly elongated

SEQUENCE 1: 6a
- **UNIT/SUBUNIT**: 6a
- **ROCK NAME**: Clinopyroxenite
- **CONTACT**: Intrusive
- **TEXTURE**: Granular
- **IGNEOUS SUMMARY**: Altered pyroxenite dyke
- **ALTERATION**: Patchy alteration including a waxy green patch
- **VEINS**: Cut by dense array of white and grey veins
- **STRUCTURE**: Brittle- Anisotropy, minor veins and fractures

SEQUENCE 1: 6a
- **UNIT/SUBUNIT**: 6a
- **ROCK NAME**: Olivine gabbro
- **CONTACT**: Intrusive
- **TEXTURE**: Granular
- **IGNEOUS SUMMARY**: Altered olivine gabbro
- **ALTERATION**: Highly altered and oxidised, with bastite
- **VEINS**: Cut by dense array of white and grey veins
- **STRUCTURE**: Brittle- Brittle shear zone near upper contact of dike

Table of Fabric Intensity

<table>
<thead>
<tr>
<th>Grade</th>
<th>Fabric intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Table of Vein Density

<table>
<thead>
<tr>
<th>Density</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

The image includes a detailed geological cross-section with various geological features and annotations related to the rock types and textures described in the text.
Rock Name: Harzburgite
- **Sequence**: I
- **Unit/Subunit**: 6a
- **Contact**: Continuous
- **Texture**: Granular
- **Igneous Summary**: Serpentinised harzburgites, cut by olivine-gabbro and pyroxenite dykes
- **Alteration**: Highly serpentinised, areas of higher oxidation up to 90% with sharp boundaries to less oxidized serpentinized harzburgite
- **Veins**: Irregular network of thin black and white veins with higher vein intensity next to overprinted magmatic dykes
- **Structure**: Brittle-Veins-Crystal plastic

Rock Name: Dunite
- **Sequence**: I
- **Unit/Subunit**: 7a
- **Rock Name**: Dunite
- **Contact**: Continuous
- **Texture**: Granular
- **Igneous Summary**: Brown and black dunites, more and less oxidised, spinel large in places, cut by thin gabbroic veins
- **Alteration**: Serpentinised dunite
- **Veins**: White, grey, waxy grey, pink/white, brown, green and composite white/black and green/white veins
- **Structure**: Brittle-Veins-Crystal plastic

Magnetic Susceptibility: MSCL-W MSP (SI x 10^-5)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.56</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.66</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.76</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.86</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.96</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.06</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary Mineralogy

- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Sulfide

Degree of Deformation

- Fracture/ Vein density (per meter)
- Sequence: I
- Unit/Subunit: 6a
- **Alteration intensity**
- Discrete brittle features

Vein density (per meter)

- Sequence: I
- Unit/Subunit: 7a

Depth (m CCD)

- 21.56
- 21.66
- 21.76
- 21.86
- 21.96
- 22.06

Core length (cm)

- 0
- 10
- 20
- 30
- 40
- 50
- 60

CT Image

- Hole BA4A-9Z Section 2, Top of Section 21.56 (m CCD)

Shipboard samples

- Magnetic
- MSCL-W
- MSP

Lithology

- MSCL-W
- MSP

Description

- Sequence: I
- Unit/Subunit: 6a
- Rock Name: Harzburgite
- Contact: Continuous
- Texture: Granular
- Igneous Summary: Serpentinised harzburgites, cut by olivine-gabbro and pyroxenite dykes
- Alteration: Highly serpentinised, areas of higher oxidation up to 90% with sharp boundaries to less oxidized serpentinized harzburgite
- Veins: Irregular network of thin black and white veins with higher vein intensity next to overprinted magmatic dykes
- Structure: Brittle-Veins-Crystal plastic

- Sequence: I
- Unit/Subunit: 7a
- Rock Name: Dunite
- Contact: Continuous
- Texture: Granular
- Igneous Summary: Brown and black dunites, more and less oxidised, spinel large in places, cut by thin gabbroic veins
- Alteration: Serpentinised dunite
- Veins: White, grey, waxy grey, pink/white, brown, green and composite white/black and green/white veins
- Structure: Brittle-Veins-Crystal plastic
SEQUENCE: I
UNIT/SUBUNIT: 7a
ROCK NAME: dunite
CONTACT: continuous
TEXTURE: granular
IGNEOUS SUMMARY: brown and black dunites, more and less oxidised, spinel large in places, cut by thin gabbroic veins
ALTERATION: serpentinised dunite
VEINS: white, grey, waxy grey, pink/white, brown, green and composite
STRUCTURE: Brittle- Narrow cataclastic vein
Hole BA4A-9Z Section 4, Top of Section 23.05 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnitic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.00</td>
<td></td>
</tr>
</tbody>
</table>

Lithology:

- **Dunite:** brown and black dunites, more and less oxidised, spinel large in places, cut by thin gabbroic veins.
- **Gabbro:** Altered gabbro, hosting a network of mm-thick pink-white veins.

Texture:

- **Igneous:**
 - Dunite: brown and black dunites, more and less oxidised, spinel large in places.
 - Gabbro: Altered gabbro, hosting a network of mm-thick pink-white veins.

Structure:

- Brittle:
 - Veins:
 - Width: 5-15 mm
 - Orientation: parallel with foliation
 - Crystal plastic:
 - Alteration halo:
 - Width: 5-15 mm
 - Orientation: parallel with veins

CT Image:

- Sequence: 1
- Unit/subunit: 7a
- Rock name: dunite/gabbro
- Contact: continuous

Veins:

- White, grey, waxy grey, pink/white, brown, green and composite white/black ad green/white veins.

Description:

- Magnetic contact: Brittle
- Crystal plastic: Veins

Diagram:

- Sequence 1: 7a
- Unit/subunit: 7a
- Rock name: dunite
- Contact: continuous
- Fabric intensity:
 - 5
- Grain size:
 - 6
- Vein density:
 - 3-5 per 10 cm
- Alteration intensity:
 - Fresh (<3%)
- Brittle:
 - Magmatic contact
 - Dip
 - Structures
 - Alteration halos
 - Veins
 - Crystal plastic
 - Brittle

Table:

- Sequence 1: 7a
- Unit/subunit: 7a
- Rock name: dunite
- Contact: continuous
- Fabric intensity:
 - 5
- Grain size:
 - 6
- Vein density:
 - 3-5 per 10 cm
- Alteration intensity:
 - Fresh (<3%)
- Brittle:
 - Magmatic contact
 - Dip
 - Structures
 - Alteration halos
 - Veins
 - Crystal plastic
 - Brittle

Diagram:

- Sequence 1: 7a
- Unit/subunit: 7a
- Rock name: dunite
- Contact: continuous
- Fabric intensity:
 - 5
- Grain size:
 - 6
- Vein density:
 - 3-5 per 10 cm
- Alteration intensity:
 - Fresh (<3%)
- Brittle:
 - Magmatic contact
 - Dip
 - Structures
 - Alteration halos
 - Veins
 - Crystal plastic
 - Brittle

Table:

- Sequence 1: 7a
- Unit/subunit: 7a
- Rock name: dunite
- Contact: continuous
- Fabrict intensity:
 - 5
- Grain size:
 - 6
- Vein density:
 - 3-5 per 10 cm
- Alteration intensity:
 - Fresh (<3%)
- Brittle:
 - Magmatic contact
 - Dip
 - Structures
 - Alteration halos
 - Veins
 - Crystal plastic
 - Brittle
<table>
<thead>
<tr>
<th>Sequence</th>
<th>UNIT/SUBUNIT</th>
<th>ROCK NAME</th>
<th>CONTACT</th>
<th>TEXTURE</th>
<th>IGNEOUS SUMMARY</th>
<th>ALTERATION</th>
<th>VEINS</th>
<th>STRUCTURE</th>
<th>Alteration halos</th>
<th>Vein density</th>
<th>Vein fractures</th>
<th>Brittle contact</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>7a</td>
<td>dunite</td>
<td>continuous</td>
<td></td>
<td>brown and black dunites, more and less oxidised, spinel large in places, cut by thin gabbroic veins</td>
<td>serpentinised dunite</td>
<td>white, grey, waxy grey, pink/white, brown, green and composite veins</td>
<td>Brittle- Veins- Crystal plastic-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>7b</td>
<td>dunite</td>
<td>continuous</td>
<td></td>
<td>brown dunites, with black intervals, cut by medium-grained gabbroic veins</td>
<td>serpentinised dunite</td>
<td>cut by multiple types of serpentine veins</td>
<td>Brittle- Cataclastic fault zone- Crystal plastic-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fabric intensity

- 5
- 4
- 3
- 2
- 1
- 0

Vein density (per meter)

- 6
- 5
- 4
- 3
- 2
- 1
- 0

Grain size (per meter)

- 6
- 5
- 4
- 3
- 2
- 1
- 0

Hole BA4A-10Z Section 1, Top of Section 23.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.70</td>
<td>0</td>
<td>dunite</td>
<td>100</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>23.80</td>
<td>10</td>
<td>dunite</td>
<td>100</td>
<td>Minor fracturing</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>23.90</td>
<td>20</td>
<td>dunite</td>
<td>100</td>
<td>Moderate fracturing</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.00</td>
<td>30</td>
<td>dunite</td>
<td>100</td>
<td>GS reduction and rotation</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.10</td>
<td>40</td>
<td>dunite</td>
<td>100</td>
<td>Well-developed cataclasis</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.20</td>
<td>50</td>
<td>dunite</td>
<td>100</td>
<td>Ultracataclastite</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.30</td>
<td>60</td>
<td>dunite</td>
<td>100</td>
<td>Protogranular</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.40</td>
<td>70</td>
<td>dunite</td>
<td>100</td>
<td>Porphyroclastic</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.50</td>
<td>80</td>
<td>dunite</td>
<td>100</td>
<td>Strongly foliated</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.60</td>
<td>90</td>
<td>dunite</td>
<td>100</td>
<td>Protomylonite</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.70</td>
<td>100</td>
<td>dunite</td>
<td>100</td>
<td>Mylonite</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.80</td>
<td>110</td>
<td>dunite</td>
<td>100</td>
<td>Ultramylonite</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.90</td>
<td>120</td>
<td>dunite</td>
<td>100</td>
<td>Isotropic</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.10</td>
<td>130</td>
<td>dunite</td>
<td>100</td>
<td>Weak</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.20</td>
<td>140</td>
<td>dunite</td>
<td>100</td>
<td>Moderate</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.30</td>
<td>150</td>
<td>dunite</td>
<td>100</td>
<td>Strong</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.40</td>
<td>160</td>
<td>dunite</td>
<td>100</td>
<td>Fine grained (0.2–1 mm)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.50</td>
<td>170</td>
<td>dunite</td>
<td>100</td>
<td>Medium grained (1–5 mm)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.60</td>
<td>180</td>
<td>dunite</td>
<td>100</td>
<td>Coarse grained (5–30 mm)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.70</td>
<td>190</td>
<td>dunite</td>
<td>100</td>
<td>Pegmatitic (>30 mm)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.80</td>
<td>200</td>
<td>dunite</td>
<td>100</td>
<td>Glassy</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.90</td>
<td>210</td>
<td>dunite</td>
<td>100</td>
<td>Cryptocrystalline (<0.1 mm)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24.10</td>
<td>220</td>
<td>dunite</td>
<td>100</td>
<td>Microcrystalline (0.1–0.2 mm)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Lithology

- Primary mineralogy (%): Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Amphibole, Spinel, Sulfide
- Degree of deformation: Undeformed, Minor fracturing, Moderate fracturing, GS reduction and rotation, Well-developed cataclasis, Ultracataclastite, Protogranular, Porphyroclastic, Strongly foliated, Protomylonite, Mylonite, Ultramylonite, Isotropic, Weak, Moderate, Strong
- Fracture/ Vein density (per meter): 0–10, 10–30, 30–50, 50–70, 70–90, >90
- Alteration intensity: Fresh (<3%), Slight (3–10%), Moderate (11–30%), Substantial (31–60%), Extensive (61–90%), Complete (>90%)
- Dip: MAGNIFICENT contact, Brittle, Crystal plastic, Vein

Sequence: 1

UNIT/SUBUNIT: 7a

ROCK NAME: dunite

CONTACT: continuous

TEXTURE: IGNEOUS SUMMARY: brown and black dunites, more and less oxidised, spinel large in places, cut by thin gabbroic veins

ALTERATION: serpentinised dunite

VEINS: white, grey, waxy grey, pink/white, brown, green and composite veins

STRUCTURE: Brittle- Veins- Crystal plastic-
Hole BA44A-10Z Section 2, Top of Section 24.59 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>CT image</th>
<th>Magnetic susceptibility MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm³)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact Brilli</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.61</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>dunite</td>
<td>olivine</td>
<td>fine</td>
<td>discreet brittle features</td>
<td>low</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.71</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>gabbro</td>
<td>plagioclase</td>
<td>medium</td>
<td>discreet brittle features</td>
<td>low</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.81</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>gabbro</td>
<td>clinopyroxene</td>
<td>coarse</td>
<td>discreet brittle features</td>
<td>low</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.91</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>gabbro</td>
<td>orthopyroxene</td>
<td>coarse</td>
<td>discreet brittle features</td>
<td>low</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.01</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>gabbro</td>
<td>amphibole</td>
<td>coarse</td>
<td>discreet brittle features</td>
<td>low</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.11</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>gabbro</td>
<td>spinel</td>
<td>coarse</td>
<td>discreet brittle features</td>
<td>low</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.21</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>gabbro</td>
<td>plagioclase</td>
<td>coarse</td>
<td>discreet brittle features</td>
<td>low</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.31</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>gabbro</td>
<td>orthopyroxene</td>
<td>coarse</td>
<td>discreet brittle features</td>
<td>low</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description
- **SEQUENCE:** I 7b
- **ROCK NAME:** dunite, gabbro
- **CONTACT:** continuous, intrusive
- **TEXTURE:** igneous, granular
- **IGNEOUS SUMMARY:** brown dunites, with black intervals, cut by medium-coarse grained gabbroic veins
- **ALTERATION:** serpentinised dunite
- **VEINS:** cut by multiple types of serpentine veins
- **STRUCTURE:** Brittle, conjugate vein sets

Magnetic contact Brilli

Brittle

Crystal plastic

Veins

- Dunite veins
- Gabbroic veins
- Serpentine veins

Vein density (per meter)
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm

Grain size

- Fine (0.2–1 mm)
- Medium (1–5 mm)
- Coarse (5–30 mm)
- Pegmatitic (>30 mm)

Fabric intensity

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- Strong deformation
- Well-developed cataclasis
- Ultracataclastite

Discrete brittle features

- Fault zones
- Veins

Alteration intensity

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Alteration halos

- Magnetic contact halos
- Brittle halos
- Crystal plastic halos

Magmatic contact

- Brittle
- Crystal plastic
Sequence: I, Unit/Subunit: 7c

Rock Name: Dunite

Contact: Continuous

Texture:

Igneous Summary: Black dunitic unit cut by gabbroic veins in from fine-grained and nebulous to coarse-grained.

Alteration: Highly serpentinized

Veins: Irregular thin black, gray, and green

Structure: Brittle-Veins - conjugate vein sets

Sequence: I, Unit/Subunit: 7c

Rock Name: Gabbro

Contact: Intrusive

Texture: Granular

Igneous Summary: Altered gabbroic dike

Alteration: Highly altered

Veins: Irregular bluish white veins

Structure: Brittle-Veins

Sequence: I, Unit/Subunit: 7c

Rock Name: Olivine gabbro

Contact: Intrusive

Texture: Granular

Igneous Summary: Altered ol-gabbroic dike

Alteration: Highly altered

Veins: Irregular bluish white veins

Structure: Brittle-Crystal Plastic

Sequence: I, Unit/Subunit: 7d

Rock Name: Dunite

Contact: Colour

Texture:

Igneous Summary: Serpentinized dunite cut by rare gabbroic dikes and one 30 cm thick less oxidized zone

Alteration: Highly serpentinized and locally oxidized associated with veins

Veins: Irregular thin black, white, and gray veins

Structure: Brittle-Veins - conjugate vein sets

Data Table

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-8 W-MSP (SI x 10^5)</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Magnetic contact</th>
<th>Brittle Fracture</th>
<th>Crystal Plastic</th>
<th>Veins</th>
<th>Vein density (per meter)</th>
<th>Apparent Offset</th>
<th>Magnetic fabric intensity</th>
<th>Fabric intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.69</td>
<td></td>
</tr>
<tr>
<td>27.79</td>
<td></td>
</tr>
<tr>
<td>27.89</td>
<td></td>
</tr>
<tr>
<td>27.99</td>
<td></td>
</tr>
<tr>
<td>28.09</td>
<td></td>
</tr>
<tr>
<td>28.19</td>
<td></td>
</tr>
<tr>
<td>28.29</td>
<td></td>
</tr>
<tr>
<td>28.39</td>
<td></td>
</tr>
<tr>
<td>28.49</td>
<td></td>
</tr>
<tr>
<td>28.59</td>
<td></td>
</tr>
<tr>
<td>28.69</td>
<td></td>
</tr>
<tr>
<td>28.79</td>
<td></td>
</tr>
<tr>
<td>28.89</td>
<td></td>
</tr>
<tr>
<td>28.99</td>
<td></td>
</tr>
<tr>
<td>29.09</td>
<td></td>
</tr>
<tr>
<td>29.19</td>
<td></td>
</tr>
<tr>
<td>29.29</td>
<td></td>
</tr>
<tr>
<td>29.39</td>
<td></td>
</tr>
<tr>
<td>29.49</td>
<td></td>
</tr>
<tr>
<td>29.59</td>
<td></td>
</tr>
<tr>
<td>29.69</td>
<td></td>
</tr>
<tr>
<td>29.79</td>
<td></td>
</tr>
<tr>
<td>29.89</td>
<td></td>
</tr>
<tr>
<td>29.99</td>
<td></td>
</tr>
</tbody>
</table>

Additional Data

- **Magnetic susceptibility (SI x 10^-5):**
 - 1000
 - 100
 - 10
 - 1
 - 0

- **Vein density (per meter):**
 - 15-20 per 10 cm
 - 5-15 per 10 cm
 - 3-5 per 10 cm
 - 0-1 per 10 cm

- **Degree of deformation:**
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
 - GS reduction and rotation
 - Well-developed cataclasis
 - Ultracataclastite

- **Lithology:**
 - Protogranular
 - Porphyroclastic
 - Strongly foliated
 - Protomylonite
 - Mylonite
 - Ultramylonite

- **Magnetic fabric intensity:**
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10

- **Fabric intensity:**
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100
Hole BA4A-11Z Section 3, Top of Section 28.35 (m CCD)

| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | Magnetic susceptibility | MSCL-W (SI x 10^-5) | MSP | GRA (g/cm³) | Primary mineralogy | Lithology | Degree of deformation | Fabric intensity | Discrete brittle features | Fracture/ Vein density (per meter) | Vein density (per meter) | Alteration intensity | Dip | Magnatic contact | Brittle | Crystal plastic | Veins |
|---------------|-----------------|-------------------|---------------|------------------------|---------------------|-----|--------------|---------------------|-----------|---------------------|------------------|--------------------------|--------------------------|--------------------------|-----------------|----------------|---------|---------------|-------|
| 28.37 | | | | | | | | | | | | | | | | | | | |
| 28.37 | | | | | | | | | | | | | | | | | | | |

DESCRIPTION: Serpentinized dunite cut by rare gabbroic dikes and one 30cm thick less oxidized zone. Highly serpentinized and locally oxidized associated with veins. Irregular thin black, white, and gray veins.

TEXTURE: Brittle Veins; conjugate vein sets. **Veins:** Irregular network of greenish-white serpentine veins.

CONTACT: Continuous. **ROCK NAME:** Dunite. **SEQUENCE:** I. **UNIT/SUBUNIT:** 7d.
Hole BA4A-12Z Section 1, Top of Section 29.70 (m CCD)

Primary mineralogy (%)
- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Sulfide

Grain size (mm)
- Size
- 1.5
- 1
- 0.5
- 0.25
- 0.125
- 0.0625
- 0.03125
- 0.015625

Degree of deformation
- Fracture/ Vein density (per meter)

Alteration intensity
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Vein density (per meter)
- 0–1
- 1–3
- 3–5
- >5

Magnetic contact
- Brittle
- Crystal plastic
- Voils

Structures
- Fault zones
- Veins

TEXTURE:
- Igneous: serpentinized dunite, few pyroxenitic dykes, weakly fractured, heavily altered halo

ALTERATION:
- Serpentinized

VEINS:
- Green, white, and mineralized brownish veins

Vein crosscutting
- Alteration halos

DISCRETE BRITTLE FEATURES
- Fault zones

TEXTURAL INTERPRETATION:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

DISCOLORATION:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- Strong fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Dip:
- 0
- 45
- 90

CORE LENGTH (cm):
- 1000
- 100
- 10
- 1

MSCL-W
- Magnetic susceptibility (SI x 10^-5)

GRA (g/cm³):
- 2.5
- 2
- 1.5
- 1
- 0.5
- 0.25
- 0.125
- 0.0625

Core length (cm):
- 100
- 30
- 10
- 4

CONTACT:
- Intrusive
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.41</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>31.51</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>31.61</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>31.71</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31.81</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>31.91</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Hole BA4A-12Z Section 3, Top of Section 31.38 (m CCD)
Hole BA44-12Z Section 4, Top of Section 31.96 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI X 10^-5)</th>
<th>GRA (g/cm³)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Phenocryst</th>
<th>Groundmass</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle Crystalline Contact</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.00</td>
<td>10</td>
<td>10</td>
<td>0.10</td>
<td>0.8</td>
<td>0.10</td>
<td>0.00</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>75</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sequences:

1a:
- **ROCK NAME:** Dunite
- **TEXTURE:** Continuous
- **PRIMARY MINERALOGY:** Serpentinized dunite, few pyroxenitic dykes, weakly fractured, heavily altered halo
- **ALTERATION:** Serpentinized
- **VEINS:** Green, white, and mineralized brownish veins
- **STRUCTURE:** Brittle-Veins: conjugate vein sets

1b:
- **ROCK NAME:** Dunite
- **TEXTURE:** Highly serpentinized dunite, crosscut by veins, moderately fractured with some fractures filled by serpentine. Oxidized zones. Small, strongly fractured rubble zone
- **ALTERATION:** Serpentinized
- **VEINS:** Green, white, black, and mineralized brownish veins.
- **STRUCTURE:** Brittle-Veins: conjugate vein sets

Core properties:
- **Fabric intensity:** 5
- **Vein density:** 3
- **Grain size:** 4
- **Magnetic susceptibility:** MSCL-W MSP (SI X 10^-5)
- **Magnetic contact:** Brittle
- **Degree of deformation:** 0

Lithology:
- **Primary mineralogy:**
 - **Olivine**
 - **Plagioclase**
 - **Clinopyroxene**
 - **Orthopyroxene**
 - **Spinel**
 - **Amphibole**
- **Degree of deformation:**
 - **Fault zones:**
 - **Apparent offset:**
 - **Alteration halos:**
 - **Alteration:**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (≥90%)
- **Degree of deformation:**
 - **Vein crosscutting:**
 - **Alteration intensity:**
Hole BA4A-13Z Section 1, Top of Section 32.70 (m CCD)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Highly serpentinized dunite, crosscut by veins, moderately fractured with some fractures filled by serpentine. Oxidized zones. Small, strongly fractured rubble zone.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fracture/ Vein density (per meter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alteration intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Structural features</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Lithology</td>
<td>Unit/subunit</td>
<td>Fabric intensity</td>
<td>Degree of deformation</td>
<td>Alteration intensity</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>33.30</td>
<td>0</td>
<td>Dunite</td>
<td>Continuous</td>
<td>0</td>
<td>Undeformed</td>
<td>Complete</td>
</tr>
<tr>
<td>33.40</td>
<td>1</td>
<td>Dunite</td>
<td>Continuous</td>
<td>1</td>
<td>Minor fracturing</td>
<td>0–10</td>
</tr>
<tr>
<td>33.50</td>
<td>2</td>
<td>Dunite</td>
<td>Continuous</td>
<td>2</td>
<td>Moderate fracturing</td>
<td>10–30</td>
</tr>
<tr>
<td>33.60</td>
<td>3</td>
<td>Dunite</td>
<td>Continuous</td>
<td>3</td>
<td>Substantial</td>
<td>30–50</td>
</tr>
<tr>
<td>33.70</td>
<td>4</td>
<td>Dunite</td>
<td>Continuous</td>
<td>4</td>
<td>Extensive</td>
<td>50–70</td>
</tr>
<tr>
<td>33.80</td>
<td>5</td>
<td>Dunite</td>
<td>Continuous</td>
<td>5</td>
<td>Complete</td>
<td>>90</td>
</tr>
<tr>
<td>33.90</td>
<td>6</td>
<td>Dunite</td>
<td>Continuous</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.00</td>
<td>7</td>
<td>Dunite</td>
<td>Continuous</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.10</td>
<td>8</td>
<td>Dunite</td>
<td>Continuous</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION:
- **ROCK NAME:** Dunite
- **CONTACT:** Continuous
- **TEXTURE:** Igneous
- **SUMMARY:** Highly serpentinized dunite, crosscut by veins, moderately fractured with some fractures filled by serpentine. Oxidized zones. Small, strongly fractured rubble zone.
- **ALTERATION:** Serpentinized
- **VEINS:** Green, white, black, and mineralized brownish veins. Vein width is maximum 5 mm.
- **STRUCTURE:** Brittle: Multiple shear veins.
SEQUENCE: I

UNIT/SUBUNIT: 10b

ROCK NAME: Dunite

CONTACT: Continuous

TEXTURE:

IGNEOUS SUMMARY: Highly serpentinized dunite, crosscut by veins, moderately fractured with some fractures filled by serpentine. Oxidized zones. Small, strongly fractured rubble zone

ALTERATION: Serpentinized

VEINS: Green, white, black, and mineralized brownish veins. Vein width is maximum 5 mm.

STRUCTURE: Brittle-

Veins: Conjugate vein sets

Crystal plastic:

Fabric intensity

1. Strongly foliated
2. Porphyroclastic
3. Strongly foliated
4. Protomylonite
5. Mylonite
6. Ultramylonite

Degree of deformation

1. Undeformed
2. Minor fracturing
3. Moderate fracturing
4. GS reduction and rotation
5. Well-developed cataclasis
6. Ultracataclastite

Discrete brittle features

1. 0–10
2. 10–30
3. 30–50
4. 50–70
5. 70–90
6. >100

Fracture/ Vein density (per meter)

1. 0–10
2. 10–30
3. 30–50
4. 50–70
5. 70–90
6. >100

Alteration intensity

1. Fresh (<3%)
2. Slight (3–10%)
3. Moderate (11–30%)
4. Substantial (31–60%)
5. Extensive (61–90%)
6. Complete (>90%)

Vein density (per meter)

1. 0–10
2. 10–30
3. 30–50
4. 50–70
5. 70–90
6. >100

Alteration halos

1. 0–10
2. 10–30
3. 30–50
4. 50–70
5. 70–90
6. >100

Description

Hole BA4A-13Z Section 3, Top of Section 34.19 (m CCD)
RE-DRILLED INTERVAL

Hole BA4A-15M Section 2, Top of Section 30.28 (m CCD)

SEQUENCE: I
UNIT/SUBUNIT: 11c
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: serpentinized dunite with pegmatic dyke bordered by a 15 mm halo
ALTERATION: serpentinized
VEINS: brown and white veins
STRUCTURE: Brittle-
Vein density (per meter)
Vein crosscutting
Fracture/ Vein density (per meter)
Alteration intensity
Degree of deformation
Fracture/ Vein density (per meter)
Vein density (per meter)
Alteration intensity
Dip
Magnetic contact
Brittle
Crystal plastic
Veins

Depth (m CCD)
Core length (cm)
Shipboard samples
Sagged image
CT image
Magnetic susceptibility
MSCL-W
MSP
(8l x 10^-5)
GRA
(cm^3/g)
Primary mineralogy
Olivine
Plagioclase
Clinopyroxene
Orthopyroxene
Amphibole
Spinel
Sulfide
Unrecovered
Lithology
Magmatic
Layering
Foliation
Discrete brittle features
Fault zones
Structure:
Vein crosscutting
Alteration halos
Alteration intensity
Direction of deformation
Degree of deformation
Fabric intensity
Discrete brittle features
Vein density (per meter)
Vein density (per meter)
Vein crosscutting
Fracture/ Vein density (per meter)
Vein density (per meter)
Alteration intensity
Dip
Magnetic contact
Brittle
Crystal plastic
Veins

Hole BA4A-15M Section 2, Top of Section 30.28 (m CCD)
RE-DRILLED INTERVAL

Hole BA4A-15M Section 3, Top of Section 31.26 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Scanned image</th>
<th>Magnetic susceptibility (MSCL-W) (SI x 10^-5)</th>
<th>GRA (g/cm²)</th>
<th>Primary mineralogy</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip Magnatic contact Brittle Crystal plastic Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.26</td>
<td></td>
</tr>
</tbody>
</table>

Description
- **SEQUENCE**: 11d
- **ROCK NAME**: Dunite
- **CONTACT**: Continuous

IGNEOUS SUMMARY: Strongly serpentinized fractured dunite, with oxidized zone

ALTERATION: Serpentinized

VEINS: White veins and black veins

STRUCTURE: Brittle-Veins-Crystal plastic-Veins

SEQUENCE: 11d

UNIT/SUBUNIT: 11d

ROCK NAME: Dunite

CONTACT: Continuous

TEXTURE: Brittle-Veins-Crystal plastic-Veins

IGNEOUS SUMMARY: Strongly serpentinized fractured dunite, with oxidized zone

ALTERATION: Serpentinized

VEINS: White veins and black veins

STRUCTURE: Brittle-Veins-Crystal plastic-Veins

SEQUENCE: 12a

UNIT/SUBUNIT: 12a

ROCK NAME: Dunite

CONTACT: Tectonic

TEXTURE: Brittle-Veins-Crystal plastic-Veins

IGNEOUS SUMMARY: Serpentinized dunite with moderate fractures and rubble

ALTERATION: Serpentinized

VEINS: White and green veins with white microveins

STRUCTURE: Brittle-Veins-Crystal plastic-Veins

VEIN CROSSCUTTING: No significant vein crosscutting

ALTERATION INTENSITY: Moderate (11–30%)

DISCRETE BRITTLE FEATURES: Tested for ultramylonite, protomylonite, and ultracataclastite

DISCRETE BRITTLE FEATURES: Interpreted for brittle features

FABRIC INTENSITY: Low (1–10%)

FABRIC INTENSITY: Interpreted for fabric intensity

TEXTURE: Protogranular, Porphyroclastic, Strongly foliated

TEXTURE: Interpreted for texture

GRA (g/cm³): 2.6

GRA (g/cm³): Interpreted for gravity

Vein density: 5 per 10 cm

Vein density: Interpreted for vein density

Alteration: Fresh (<3%), Slight (3–10%), Moderate (11–30%), Substantial (31–60%), Extensive (61–90%), Complete (>90%)

Alteration: Interpreted for alteration

Degree of deformation: Undeformed, Minor fracturing, Moderate fracturing, GS reduction and rotation, Well-developed cataclasis, Ultracataclastite

Degree of deformation: Interpreted for degree of deformation

Magmatic Layering: Protogranular, Porphyroclastic, Strongly foliated

Magmatic Layering: Interpreted for magmatic layering

Foliation: Protogranular, Porphyroclastic, Strongly foliated

Foliation: Interpreted for foliation

Fault zones: Discrete brittle features

Fault zones: Interpreted for fault zones

Alteration halos: Discrete brittle features

Alteration halos: Interpreted for alteration halos

Magnetic susceptibility: MSCL-W, MSP

Magnetic susceptibility: Interpreted for magnetic susceptibility

CT image: Sulfide, Amphibole, Spinel, Orthopyroxene, Clinopyroxene, Plagioclase, Olivine

CT image: Interpreted for CT image

Structure: Brittle-Veins-Crystal plastic-Veins

Structure: Interpreted for structure

Vein density: 5 per 10 cm

Vein density: Interpreted for vein density

Hole BA4A-15M Section 3, Top of Section 31.26 (m CCD)

Description: Magnetic contact Brittle Crystal plastic Veins
SEQUENCE: I
UNIT/SUBUNIT: 12a
ROCK NAME: Dunite

CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: serpentinized dunite with moderate fractures and rubble
ALTERATION: serpentinized
VEINS: white and green veins with white microveins
STRUCTURE: Brittle-

<table>
<thead>
<tr>
<th>Fabric intensity</th>
<th>Vein density (per meter)</th>
<th>Grain size</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Hole BAA-15M Section 4, Top of Section 32.11 (m CCD)
Depth (m CCD):
Core length (cm):
Shipboard samples:
Scanned image:
CT image:

Magnetic susceptibility
MSCL-W:

Lithology:
Primary mineralogy:

<table>
<thead>
<tr>
<th>%</th>
<th>Main minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Biotite, Chl, Plag</td>
</tr>
<tr>
<td>75</td>
<td>Biotite, Plag, Spn</td>
</tr>
<tr>
<td>50</td>
<td>Biotite, Plag, Spn, Clp</td>
</tr>
<tr>
<td>25</td>
<td>Biotite, Plag, Spn, Clp, Gr</td>
</tr>
<tr>
<td>0</td>
<td>Biotite, Plag, Spn, Clp, Gr, Sph</td>
</tr>
</tbody>
</table>

Degree of deformation:

<table>
<thead>
<tr>
<th>Fault zones</th>
<th>Apparent offset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Altersation:

<table>
<thead>
<tr>
<th>Intensity</th>
<th>Fresh (<5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stiff (0–10%)</td>
</tr>
<tr>
<td>2</td>
<td>Moderate (11–30%)</td>
</tr>
<tr>
<td>3</td>
<td>Substantial (31–60%)</td>
</tr>
<tr>
<td>4</td>
<td>Extensive (61–90%)</td>
</tr>
<tr>
<td>5</td>
<td>Complete (>90%)</td>
</tr>
</tbody>
</table>

Fracture/ Vein density (per meter):

<table>
<thead>
<tr>
<th>Density</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 per 10 cm</td>
<td>>10 per 10 cm</td>
<td>10–30</td>
<td>>20 per 10 cm</td>
<td>30–50</td>
<td>>20 per 10 cm</td>
<td>50–70</td>
<td>>20 per 10 cm</td>
<td>70–90</td>
</tr>
</tbody>
</table>

RE-DRILLED INTERVAL

Core BA4A-15M Section 4, Top of Section 32.11 (m CCD)
Core length (cm):
Shipboard samples:
Scanned image:
CT image:

Magnetic susceptibility
MSCL-W:

Lithology:
Primary mineralogy:

<table>
<thead>
<tr>
<th>%</th>
<th>Main minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Biotite, Chl, Plag</td>
</tr>
<tr>
<td>75</td>
<td>Biotite, Plag, Spn</td>
</tr>
<tr>
<td>50</td>
<td>Biotite, Plag, Spn, Clp</td>
</tr>
<tr>
<td>25</td>
<td>Biotite, Plag, Spn, Clp, Gr</td>
</tr>
<tr>
<td>0</td>
<td>Biotite, Plag, Spn, Clp, Gr, Sph</td>
</tr>
</tbody>
</table>

Degree of deformation:

<table>
<thead>
<tr>
<th>Fault zones</th>
<th>Apparent offset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Altersation:

<table>
<thead>
<tr>
<th>Intensity</th>
<th>Fresh (<5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stiff (0–10%)</td>
</tr>
<tr>
<td>2</td>
<td>Moderate (11–30%)</td>
</tr>
<tr>
<td>3</td>
<td>Substantial (31–60%)</td>
</tr>
<tr>
<td>4</td>
<td>Extensive (61–90%)</td>
</tr>
<tr>
<td>5</td>
<td>Complete (>90%)</td>
</tr>
</tbody>
</table>

Fracture/ Vein density (per meter):

<table>
<thead>
<tr>
<th>Density</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 per 10 cm</td>
<td>>10 per 10 cm</td>
<td>10–30</td>
<td>>20 per 10 cm</td>
<td>30–50</td>
<td>>20 per 10 cm</td>
<td>50–70</td>
<td>>20 per 10 cm</td>
<td>70–90</td>
</tr>
</tbody>
</table>
SEQUENCE: I
UNIT/SUBUNIT: 12b
ROCK NAME: Wehrlite
CONTACT: Tectonic
TEXTURE: Granular
IGNEOUS SUMMARY: altered wehrlite with rubble zone and increasing amount of cpx down core
ALTERATION: serpentinized
VEINS: green veins and thin white veins
STRUCTURE: Brittle-
Veins-
Crystal plastic-

SEQUENCE: I
UNIT/SUBUNIT: 12c
ROCK NAME: Dunite
CONTACT: Tectonic
TEXTURE: Igneous Summary: highly serpentinized dunite, weakly fractured
ALTERATION: serpentinized
VEINS: green veins, black veins
STRUCTURE: Brittle-
Veins-
Crystal plastic-
Sequence I: 12c
- **Rock Name:** Dunite
- **Contact:** Continuous
- **Texture:**
- **Igneous Summary:** Highly serpentinized dunite, weakly fractured
- **Alteration:** Serpentinized
- **Veins:** Green veins, black veins
- **Structure:** Brittle

Sequence I: 12d
- **Rock Name:** Dunite
- **Contact:** Colour
- **Texture:**
- **Igneous Summary:** Oxidized serpentinized dunite with olivine gabbro dykes
- **Alteration:** Serpentinized
- **Veins:** Black and green veins
- **Structure:** Brittle

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>GRA (g/cm²)</th>
<th>Primary mineralogy</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>33.10</td>
<td></td>
</tr>
<tr>
<td>33.30</td>
<td></td>
</tr>
<tr>
<td>33.50</td>
<td></td>
</tr>
<tr>
<td>33.70</td>
<td></td>
</tr>
<tr>
<td>33.90</td>
<td></td>
</tr>
</tbody>
</table>
SEQUENCE 1: 34.80
UNIT/SUBUNIT: 12e
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: Highly fractured serpentinized dunite with slickenlines developed in fractures some fractures after highly altered cross cutting pyroxenitic dykes
ALTERATION: Serpentinized
VEINS: Black and green veins
STRUCTURE: Brittle, Vein, Crystal plastic

SEQUENCE 1: 34.90
UNIT/SUBUNIT: 12f
ROCK NAME: Dunite
CONTACT: Tectonic
TEXTURE:
IGNEOUS SUMMARY: Serpentinized dunite crosscut by pyroxenitic dykes with minor harzburgite zone and oxidized zones
ALTERATION: Serpentinized
VEINS: Black and green veins
STRUCTURE: Brittle, Vein, Crystal plastic

Fabric Intensity

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>34.80</th>
<th>34.90</th>
<th>35.00</th>
<th>35.10</th>
<th>35.20</th>
<th>35.30</th>
<th>35.40</th>
<th>35.50</th>
<th>35.60</th>
<th>35.70</th>
<th>35.80</th>
<th>35.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core length (cm)</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Samples</td>
<td>CT image</td>
<td>Magnetic susceptibility</td>
<td>GRA (g/cm³)</td>
<td>Primary mineralogy</td>
<td>Grain size</td>
<td>Degree of deformation</td>
<td>Fracture/ Vein density (per meter)</td>
<td>Alteration</td>
<td>Density (per meter)</td>
<td>Degree of deformation</td>
<td>Discrete brittle features</td>
<td>Veins</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sequence</td>
<td>Unit/Subunit</td>
<td>Rock Name</td>
<td>Contact</td>
<td>Texture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12f</td>
<td>Dunite</td>
<td>Continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Igneous Summary: Serpentinized dunite crosscut by pyroxenitic dykes with minor harzburgite zone and oxidized zones.

Alteration: Serpentinized

Veins: Black and green veins

Structure: Brittle-

<table>
<thead>
<tr>
<th>Fabric intensity</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>Fresh (<3%)</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Slight (3–10%)</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Moderate (11–30%)</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Substantial (31–60%)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Extensive (61–90%)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Complete (≥90%)</td>
</tr>
</tbody>
</table>

Density (g/cm³):

| GRA (g/cm³) | 2.74 | 2.69 | 2.64 |

CT image:

- **Magnetic contact**
- **Brittle**
- **Crystal plastic**
- **Biotite**
- **Veins**
- **Fault zones**
- **Structures**
 - **Apparent offset**
 - **Alteration halos**

Degree of deformation:

- **Discrete brittle features**
 - 5
 - 4
 - 3
 - 2
 - 1
 - 0

- **Vein crosscutting alteration intensity**
 - 100
 - 80
 - 60
 - 40
 - 20
 - 0

- **Description:**
 - Fault zones
 - Structures

Contact types:

- Magmatic
- Layering
- Foliation

Mineralogy:

- **Primary mineralogy (%):**
 - 100
 - 75
 - 50
 - 25
 - 0

- **Secondary mineralogy:**
 - Sulfide
 - Amphibole
 - Spinel
 - Orthopyroxene
 - Clinopyroxene
 - Plagioclase
 - Olivine

- **Textural parameters:**
 - 90
 - 45
 - 0

- **Magmatic layering:**
 - Protogranular
 - Porphyroclastic
 - Strongly foliated

- **Protomylonite**
- **Mylonite**
- **Ultramylonite**

- **Granulite:**
 - Isotropic
 - Weak
 - Moderate
 - Strong

- **Grain size:**
 - Fine grained (0.2–1 mm)
 - Medium grained (1–5 mm)
 - Coarse grained (5–30 mm)
 - Pegmatitic (>30 mm)

- **Orientation:**
 - Dip
 - Uniaxial
 - Biaxial

Core length (cm):

- 0
- 10
- 20
- 30
- 40
- 50
- 60

Shipboard samples:

- Hole BA4A-18Z Section 1, Top of Section 35.70 (m CCD)
Hole BA4A-18Z Section 2, Top of Section 36.40 (m CCD)

Sequence

Unit/Subunit: 12g

Rock Name: Dunite

Contact: Continuous

Textured:
- **Igneous Summary:** Serpentinized dunite crosscut by few gabbroic dykes
- **Alteration:** Serpentinized
- **Veins:** Network of black veins, some white and green

Structure

Vein/Structures:
- Brittle
- Conjugate vein sets
- Crystal plastic

Fabric Intensity

- **Vein density (per meter):** 0
- **Grain size:** 5

Degree of Deformation

- **Fracture/ Vein:**
 - Count
 - Extent
 - Intensity
- **Vein crosscutting:**
 - Count
 - Extent

Lithology

Primary mineralogy (%):
- Olivine
- Plagioclase
- Chlorite
- Amphibole
- Spinel
- Sulfide

Degree of deformation:
- **Discrete brittle features:**
 - Count
 - Extent

Magnetic Susceptibility

MSCL-W MSP (SI x 10⁻⁵):
- 1.932

Contact

GRA (g/cm³):
- 2.12

Density

GRA (g/cm³):
- 2.52

Description

- **Fault zones:**
 - Clipboard
 - CT image

Sequencing:

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magneto contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.40</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>36.50</td>
<td></td>
</tr>
<tr>
<td>36.60</td>
<td></td>
</tr>
<tr>
<td>36.70</td>
<td></td>
</tr>
<tr>
<td>36.80</td>
<td></td>
</tr>
<tr>
<td>36.90</td>
<td></td>
</tr>
<tr>
<td>37.00</td>
<td></td>
</tr>
<tr>
<td>37.10</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-18Z Section 3, Top of Section 37.17 (m CCD)

| Depth (m CCD) | Core length (cm) | Lithology | Primary mineralogy (%) | Degree of deformation | Alteration intensity | Dip | Magnetic contact | Brittle Crystal plastic | Vein density (per meter) | Alteration | Vein crosscutting |
|--------------|------------------|-----------|-------------------------|-----------------------|---------------------|-----|-----------------|--------------------------|------------------------|-------------|----------------|}
37.21	0										
37.31	10										
37.41	20										
37.51	30										
37.61	40										
37.71	50										
37.81	60										

Description

SEQ: 1
UNIT/SUBUNIT: 12g
ROCK NAME: Dunite
CONTACT: continuous
TEXTURE: IGNEOUS
SUMMARY: Serpentinized dunite crosscut by few gabbroic dykes
ALTERATION: serpentinized
VEINS: Network of black veins, some white and green
STRUCTURE: Brittle- Shear veins

SEQ: 2
UNIT/SUBUNIT: 12g
ROCK NAME: Gabbro
CONTACT: Intrusive
TEXTURE: Granular
SUMMARY: Highly altered gabbro
ALTERATION: completely altered
VEINS: green vein
STRUCTURE: Brittle- Narrow shear zone along lower contact of dike

Fabric parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>12g</td>
</tr>
<tr>
<td>Unit/Subunit</td>
<td>12g</td>
</tr>
<tr>
<td>Rock Name</td>
<td>Dunite</td>
</tr>
<tr>
<td>Contact</td>
<td>Continuous</td>
</tr>
<tr>
<td>Texture</td>
<td>Igneous</td>
</tr>
<tr>
<td>Summary</td>
<td>Serpentinized</td>
</tr>
<tr>
<td>Alteration</td>
<td>Serpentinized</td>
</tr>
<tr>
<td>Veins</td>
<td>Network of black veins, some white and green</td>
</tr>
<tr>
<td>Structure</td>
<td>Brittle-Shear veins</td>
</tr>
</tbody>
</table>

Magnetic parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>12g</td>
</tr>
<tr>
<td>Unit/Subunit</td>
<td>12g</td>
</tr>
<tr>
<td>Rock Name</td>
<td>Gabbro</td>
</tr>
<tr>
<td>Contact</td>
<td>Intrusive</td>
</tr>
<tr>
<td>Texture</td>
<td>Granular</td>
</tr>
<tr>
<td>Summary</td>
<td>Highly altered gabbro</td>
</tr>
<tr>
<td>Alteration</td>
<td>Completely altered</td>
</tr>
<tr>
<td>Veins</td>
<td>Green vein</td>
</tr>
<tr>
<td>Structure</td>
<td>Brittle-Narrow shear zone along lower contact of dike</td>
</tr>
</tbody>
</table>

Vein density

<table>
<thead>
<tr>
<th>Vein density (per meter)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grain size

<table>
<thead>
<tr>
<th>Grain size</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>12g</td>
</tr>
<tr>
<td>Unit/Subunit</td>
<td>12g</td>
</tr>
<tr>
<td>Rock Name</td>
<td>Dunite</td>
</tr>
<tr>
<td>Contact</td>
<td>Continuous</td>
</tr>
<tr>
<td>Texture</td>
<td>Igneous</td>
</tr>
<tr>
<td>Summary</td>
<td>Serpentinized</td>
</tr>
<tr>
<td>Alteration</td>
<td>Serpentinized</td>
</tr>
<tr>
<td>Veins</td>
<td>Network of black veins, some white and green</td>
</tr>
<tr>
<td>Structure</td>
<td>Brittle-Shear veins</td>
</tr>
</tbody>
</table>

Fabric parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>12g</td>
</tr>
<tr>
<td>Unit/Subunit</td>
<td>12g</td>
</tr>
<tr>
<td>Rock Name</td>
<td>Gabbro</td>
</tr>
<tr>
<td>Contact</td>
<td>Intrusive</td>
</tr>
<tr>
<td>Texture</td>
<td>Granular</td>
</tr>
<tr>
<td>Summary</td>
<td>Highly altered gabbro</td>
</tr>
<tr>
<td>Alteration</td>
<td>Completely altered</td>
</tr>
<tr>
<td>Veins</td>
<td>Green vein</td>
</tr>
<tr>
<td>Structure</td>
<td>Brittle-Narrow shear zone along lower contact of dike</td>
</tr>
</tbody>
</table>

Vein density

<table>
<thead>
<tr>
<th>Vein density (per meter)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-18Z Section 4, Top of Section 37.85 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard scans</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip Magnetic contact</th>
<th>Brittle Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.85</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>95</td>
<td>Dunite</td>
<td>Olivine 90, Plagioclase 5, Amphibole 5, Sulfide 0</td>
<td>Coarse</td>
<td>Undeformed</td>
<td>0.0</td>
<td>Fresh (>3%)</td>
<td>0-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.90</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
<td>95</td>
<td>Gabbro</td>
<td>Olivine 45, Amphibole 35, Spinel 10, Orthopyroxene 5</td>
<td>Fine</td>
<td>Minor fracturing</td>
<td>1.0</td>
<td>Slight (3–10%)</td>
<td>0-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.00</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
<td>95</td>
<td>Olivine gabbro</td>
<td>Olivine 90, Amphibole 3, Plagioclase 2, Clinopyroxene 2</td>
<td>Coarse</td>
<td>GS reduction and rotation</td>
<td>3.0</td>
<td>Moderate (11–30%)</td>
<td>0-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.15</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.8</td>
<td>95</td>
<td>Gabbro</td>
<td>Olivine 45, Amphibole 35, Spinel 10, Orthopyroxene 5</td>
<td>Fine</td>
<td>Well-developed cataclasis</td>
<td>5.0</td>
<td>Substantial (31–60%)</td>
<td>0-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.25</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.7</td>
<td>95</td>
<td>Olivine gabbro</td>
<td>Olivine 90, Amphibole 3, Plagioclase 2, Clinopyroxene 2</td>
<td>Coarse</td>
<td>Ultracataclastite</td>
<td>7.0</td>
<td>Extensive (61–90%)</td>
<td>0-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description
- **SEQUENCE 1:** 12g
- **ROCK NAME:** Dunite
- **CONTACT:** continuous
- **TEXTURE:** Granular
- **LITHOFACIES SUMMARY:** Serpentinized dunite crosscut by few gabbroic dykes
- **ALTERATION:** serpentinized
- **VEINS:** Network of black veins, some white and green
- **STRUCTURE:** Brittle Narrow fault zone
- **Degree of deformation:** Undeformed
- **Magnetic contact:** Brittle
- **Brittle Crystal plastic:** Veins
- **Veins:** Gabbro
- **Alteration:** Fresh (>3%)
- **Magnetic susceptibility:** MSCL-W
- **MSP (SI 10^-5):**
- **GRA (g/cm²):** 2.1
- **Sequence:** 95
- **Lithology:** Dunite
- **Primary mineralogy:** Olivine 90, Plagioclase 5, Amphibole 5, Sulfide 0
- **Grain size:** Coarse
- **Degree of deformation:** Undeformed
- **Fracture/ Vein density (per meter):** 0.0
- **Alteration intensity:** Fresh (>3%)
- **Dip Magnetic contact:** Brittle
- **Brittle Crystal plastic:** Veins
- **Veins:** Gabbro
- **Alteration:** Fresh (>3%)
- **Magnetic susceptibility:** MSCL-W
- **MSP (SI 10^-5):**
- **GRA (g/cm²):** 2.6
- **Sequence:** 95
- **Lithology:** Gabbro
- **Primary mineralogy:** Olivine 45, Amphibole 35, Spinel 10, Orthopyroxene 5
- **Grain size:** Fine
- **Degree of deformation:** Minor fracturing
- **Fracture/ Vein density (per meter):** 1.0
- **Alteration intensity:** Slight (3–10%)
- **Dip Magnetic contact:** Brittle
- **Brittle Crystal plastic:** Veins
- **Veins:** Gabbro
- **Alteration:** Fresh (>3%)
- **Magnetic susceptibility:** MSCL-W
- **MSP (SI 10^-5):**
- **GRA (g/cm²):** 2.8
- **Sequence:** 95
- **Lithology:** Olivine gabbro
- **Primary mineralogy:** Olivine 90, Amphibole 3, Plagioclase 2, Clinopyroxene 2
- **Grain size:** Coarse
- **Degree of deformation:** GS reduction and rotation
- **Fracture/ Vein density (per meter):** 3.0
- **Alteration intensity:** Moderate (11–30%)
- **Dip Magnetic contact:** Brittle
- **Brittle Crystal plastic:** Veins
- **Veins:** Gabbro
- **Alteration:** Moderate (11–30%)
- **Magnetic susceptibility:** MSCL-W
- **MSP (SI 10^-5):**
- **GRA (g/cm²):** 2.7
- **Sequence:** 95
- **Lithology:** Gabbro
- **Primary mineralogy:** Olivine 45, Amphibole 35, Spinel 10, Orthopyroxene 5
- **Grain size:** Fine
- **Degree of deformation:** Well-developed cataclasis
- **Fracture/ Vein density (per meter):** 5.0
- **Alteration intensity:** Substantial (31–60%)
- **Dip Magnetic contact:** Brittle
- **Brittle Crystal plastic:** Veins
- **Veins:** Gabbro
- **Alteration:** Substantial (31–60%)
- **Magnetic susceptibility:** MSCL-W
- **MSP (SI 10^-5):**
- **GRA (g/cm²):** 2.1
- **Sequence:** 95
- **Lithology:** Dunite
- **Primary mineralogy:** Olivine 90, Plagioclase 5, Amphibole 5, Sulfide 0
- **Grain size:** Coarse
- **Degree of deformation:** Undeformed
- **Fracture/ Vein density (per meter):** 0.0
- **Alteration intensity:** Fresh (>3%)
- **Dip Magnetic contact:** Brittle
- **Brittle Crystal plastic:** Veins
- **Veins:** Gabbro
- **Alteration:** Fresh (>3%)
- **Magnetic susceptibility:** MSCL-W
- **MSP (SI 10^-5):**
- **GRA (g/cm²):** 2.6
- **Sequence:** 95
- **Lithology:** Gabbro
- **Primary mineralogy:** Olivine 45, Amphibole 35, Spinel 10, Orthopyroxene 5
- **Grain size:** Fine
- **Degree of deformation:** Minor fracturing
- **Fracture/ Vein density (per meter):** 1.0
- **Alteration intensity:** Slight (3–10%)
- **Dip Magnetic contact:** Brittle
- **Brittle Crystal plastic:** Veins
- **Veins:** Gabbro
- **Alteration:** Slight (3–10%)
- **Magnetic susceptibility:** MSCL-W
- **MSP (SI 10^-5):**
- **GRA (g/cm²):** 2.8
- **Sequence:** 95
- **Lithology:** Olivine gabbro
- **Primary mineralogy:** Olivine 90, Amphibole 3, Plagioclase 2, Clinopyroxene 2
- **Grain size:** Coarse
- **Degree of deformation:** GS reduction and rotation
- **Fracture/ Vein density (per meter):** 3.0
- **Alteration intensity:** Moderate (11–30%)
- **Dip Magnetic contact:** Brittle
- **Brittle Crystal plastic:** Veins
- **Veins:** Gabbro
- **Alteration:** Moderate (11–30%)
- **Magnetic susceptibility:** MSCL-W
- **MSP (SI 10^-5):**
- **GRA (g/cm²):** 2.7
- **Sequence:** 95
- **Lithology:** Dunite
- **Primary mineralogy:** Olivine 90, Plagioclase 5, Amphibole 5, Sulfide 0
- **Grain size:** Coarse
- **Degree of deformation:** Undeformed
- **Fracture/ Vein density (per meter):** 0.0
- **Alteration intensity:** Fresh (>3%)
- **Dip Magnetic contact:** Brittle
- **Brittle Crystal plastic:** Veins
- **Veins:** Gabbro
- **Alteration:** Fresh (>3%)
- **Magnetic susceptibility:** MSCL-W
- **MSP (SI 10^-5):**
- **GRA (g/cm²):** 2.1
- **Sequence:** 95
- **Lithology:** Gabbro
- **Primary mineralogy:** Olivine 45, Amphibole 35, Spinel 10, Orthopyroxene 5
- **Grain size:** Fine
- **Degree of deformation:** Minor fracturing
- **Fracture/ Vein density (per meter):** 1.0
- **Alteration intensity:** Slight (3–10%)
- **Dip Magnetic contact:** Brittle
- **Brittle Crystal plastic:** Veins
- **Veins:** Gabbro
- **Alteration:** Slight (3–10%)
- **Magnetic susceptibility:** MSCL-W
- **MSP (SI 10^-5):**
- **GRA (g/cm²):** 2.6
- **Sequence:** 95
- **Lithology:** Olivine gabbro
- **Primary mineralogy:** Olivine 90, Amphibole 3, Plagioclase 2, Clinopyroxene 2
- **Grain size:** Coarse
- **Degree of deformation:** GS reduction and rotation
- **Fracture/ Vein density (per meter):** 3.0
- **Alteration intensity:** Moderate (11–30%)
- **Dip Magnetic contact:** Brittle
- **Brittle Crystal plastic:** Veins
- **Veins:** Gabbro
- **Alteration:** Moderate (11–30%)
SEQUENCE: 12f
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: serpentinized dunite with a small patch of Opx ALTERATION: serpentinized
VEINS: large green vein, a network of milimetric green veins and few fine white veins
STRUCTURE: Brittle-Veins- conjugate vein sets
Crystal plastic-Fabric intensity
Fracture/ Vein density (per meter)
Alteration intensity
Dip Magnetic contact Brittle Crystal plastic Veins
Description

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm²)</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.73</td>
<td></td>
</tr>
<tr>
<td>38.83</td>
<td></td>
</tr>
<tr>
<td>38.93</td>
<td></td>
</tr>
<tr>
<td>39.03</td>
<td></td>
</tr>
<tr>
<td>39.13</td>
<td></td>
</tr>
<tr>
<td>39.23</td>
<td></td>
</tr>
</tbody>
</table>

TEXTUAL CONTENT:

- **SEQUENCE:** 12f
- **ROCK NAME:** Dunite
- **CONTACT:** Continuous
- **TEXTURE:**
- **IGNEOUS SUMMARY:** Serpentinized dunite with a small patch of Opx
- **ALTERATION:** Serpentinized
- **VEINS:** Large green vein, a network of milimetric green veins and few fine white veins
- **STRUCTURE:**Brittle
- **Crystal Plastic:** Fabric intensity
- **Fracture/ Vein Density (per meter):**
- **Alteration Intensity:**
- **Dip Magnetic Contact:**
- **Brittle:** Crystal plastic
- **Veins:**

GRAPHICAL CONTENT:

- **Diagram:** A detailed diagram showing the distribution of various rock types and mineralogical features, including layers, veins, and foliations.
- **Data:** Various measurements and annotations related to the rock's properties and conditions.

NOTES:

- **Seismic Properties:**
 - **GRA:** 2.56, 2.46, 2.36 (g/cm²)
 - **Loneliness:** 2.61, 2.46 (g/cm²)

- **Mineralogy:**
 - Olivine, Plagioclase
 - Amphibole, Spinel, Sulfide

- **Grain Size:**
 - 0.2–1 mm, 1–5 mm, 5–30 mm, >30 mm

- **Fabric Intensity:**
 - Pervasive, Moderate, Weak

- **Degree of Deformation:**
 - Undeformed, Minor Fracturing, GS Reduction and Rotation

- **Alteration Intensity:**
 - Fresh (<3%), Slight (3–10%), Moderate (11–30%), Substantial (31–60%), Extensive (61–90%), Complete (≥90%)

- **Crystal Plastic Fabric Intensity:**
 - 100, 80, 60, 40, 20, 0

- **Discrete Brittle Features:**
 - 5, 4, 3, 2, 1, 0

- **Vein Crosscutting Alteration Intensity:**
 - 0–10, 10–30, 30–50, 50–70, 70–90, 90–100

- **Degree of Vein Density (per meter):**
 - 0, 1 per 10 cm, 3–5 per 10 cm, >20 per 10 cm, 5–15 per 10 cm, 15–20 per 10 cm
Hole BA4A-19Z Section 2, Top of Section 39.31 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>CT image</th>
<th>MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm^2)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.33</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>39.43</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>39.53</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>39.63</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>39.73</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>39.83</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Lithology:
- Primary mineralogy:
 - Olivine
 - Plagioclase
 - Amphibole
 - Orthopyroxene
 - Clinopyroxene
 - Sulfide
- Fabric intensity:
 - Foliation
 - Foliation (fine)
 - Foliation (medium)
 - Foliation (coarse)
- Degree of deformation:
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
 - GS reduction and rotation
 - Well-developed cataclasis
 - Ultracataclastite
 - Protogranular
 - Porphyroclastic
 - Strongly foliated
 - Protomylonite
 - Mylonite
 - Ultramylonite
- Magmatic layering:
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
- Vein crosscutting:
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
- Alteration intensity:
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (≥90%)
- Dip:
 - Magnetic contact
 - Brittle
 - Crystal plastic
 - Veins

Description:
- Fault zones
- Structures
- Apparent offset
- Alteration halos
- Magnetic susceptibility
- MSCL-W MSP (SI x 10^-5)
- GRA (g/cm^2)
- Core length (cm)
- Depth (m CCD)
Hole BA4A-19Z Section 4, Top of Section 40.84 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size (µm)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.85</td>
<td></td>
<td>Dunite</td>
<td>Serpentinized dunite</td>
<td></td>
<td>Brittle</td>
<td></td>
</tr>
<tr>
<td>40.95</td>
<td></td>
<td>Gabbro</td>
<td>Highly altered olivine gabbro</td>
<td></td>
<td>Brittle</td>
<td></td>
</tr>
</tbody>
</table>

Core descriptions
- **SEQUENCE:** 1
- **ROCK NAME:** Dunite
- **CONTACT:** Modal
- **TEXTURE:** Igneous summary: serpentinized dunite
- **ALTERATION:** Serpentinized
- **VEINS:** Dense network of fine white veins
- **STRUCTURE:** Brittle

Core descriptions
- **SEQUENCE:** 1
- **ROCK NAME:** Gabbro
- **CONTACT:** Intrusive
- **TEXTURE:** Granular
- **IGNEOUS SUMMARY:** Highly altered olivine-bearing micro gabbro
- **ALTERATION:** Highly altered
- **VEINS:** Few green and white veins
- **STRUCTURE:** Brittle

Fabric intensity
- Ranges from 0 to 100

Vein density
- Per meter

Grain size
- Ranges from 0 to 100

Hole BA4A-19Z Section 4, Top of Section 40.84 (m CCD)

- **Description**
 - Brittle
 - Crystal plastic
 - Veins
 - Sulfide
 - Amphibole
 - Spinel
 - Orthopyroxene
 - Clinopyroxene
 - Plagioclase
 - Olivine

Magmatic contact
- Magnetic susceptibility (MSCL-W MSP (SI 10^-5))
 - Ranges from 0 to 100

Alteration intensity
- Ranges from 0 to 100

Magmatic Layering
- Ranges from 0 to 100

Foliation
- Ranges from 0 to 100

Discrete brittle features
- Ranges from 0 to 100

Fracture/ Vein density
- Per meter

Degree of deformation
- Brittle, Magmatic contact, Dip, Vein crosscutting

Structures
- Apparent offset

Alteration halos
- Alteration intensity

Fault zones
- Structures

Angles
- Ranges from 0 to 90

Core length (cm)
- Depth (m CCD)
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

- **Sequencing**: I, 13b
- **Rock Name**: Dunite
- **Contact**: Continuous
- **Igneous Summary**: Serpentinized dunite
- **Alteration**: Serpentinized
- **Veins**: Dense network of fine white veins
- **Structure**: Brittle

Surface

- **Sequencing**: I, 13b
- **Unit/Subunit**: 13b
- **Rock Name**: Gabbro
- **Contact**: Intrusive
- **Texture**: Granular
- **Igneous Summary**: Highly altered gabbro
- **Alteration**: Highly altered
- **Veins**: Few green and white veins
- **Structure**: Brittle

Alteration Intensity

- **Fresh (<3%)**
- **Slight (3–10%)**
- **Moderate (11–30%)**
- **Substantial (31–60%)**
- **Extensive (61–90%)**
- **Complete (≥90%)**

Degree of Deformation

- **Undeformed**
- **Minor fracturing**
- **Moderate fracturing**
- **GS Reduction and Rotation**
- **Well-developed Cataclasis**
- **Ultracataclastite**

Lithology

- **Olivine**
- **Plagioclase**
- **Clinoptyroxene**
- **Orthopyroxene**
- **Amphibole**
- **Sulphide**

Fabric Intensity

- **0**
- **1**
- **2**
- **3**
- **4**
- **5**

Magnetic Susceptibility (SI 10^-5)

- **0**
- **1**
- **10**
- **100**
- **1000**

Core length (cm)

- **10**
- **20**
- **30**
- **40**
- **50**
- **60**

GRA (g/cm^3)

- **1.00**
- **1.50**
- **2.00**

Magnetic contact

- **Brittle**
- **Crystal plastic**

Veins

- **0**
- **1**
- **2**
- **3**
- **4**
- **5**
- **6**
- **7**

Discrete brittle features

- **0**
- **1**
- **2**
- **3**
- **4**
- **5**

Vein Crosscutting Alteration Halos

- **0**
- **1**
- **2**
- **3**
- **4**
- **5**

CT Image

- **Sulfide**
- **Amphibole**
- **Spinel**
- **Orthopyroxene**
- **Clinopyroxene**
- **Plagioclase**
- **Olivine**

Fault zones

- **0**
- **1**
- **2**
- **3**
- **4**
- **5**

Structures

- **0**
- **1**
- **2**
- **3**
- **4**
- **5**

Apparent Offset

- **0**
- **1**
- **2**
- **3**
- **4**
- **5**

Alteration Halos

- **Complete (≥90%)**
- **Extensive (61–90%)**
- **Substantial (31–60%)**
- **Moderate (11–30%)**
- **Slight (3–10%)**
- **Fresh (<3%)**

Fresh (<3%)

- **Slight (3–10%)**
- **Moderate (11–30%)**
- **Substantial (31–60%)**
- **Extensive (61–90%)**
- **Complete (≥90%)**
Hole BA4A-20Z Section 2, Top of Section 42.48 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Voids</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.49</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>42.49</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>42.49</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>42.49</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>42.49</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>42.49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>42.49</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>42.49</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Description
- **foam**: Foamed column
- **CT image**: Computed tomography image
- **Magnetic susceptibility**: MSCL-W (SI x 10^-5)
- **Primary mineralogy**: Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Amphibole, Sulfide
- **Grain size**: μm
- **Degree of deformation**: Discrete brittle features
- **Fracture/ Vein density (per meter)**: per 10 cm
- **Alteration intensity**: Fresh (<3%), Slight (3–10%), Moderate (11–30%), Substantial (31–60%), Extensive (61–90%), Complete (>90%)
- **Dip**: Magnetic contact
- **Brittle**: Crystal plastic
- **Voids**: Typically voids

Lithology Notes:
- **Rock Name**: gabbro
- **Contact**: Continuous
- **Texture**: Granular
- **Igneous Summary**: altered gabbro
- **Alteration**: highly altered
- **Veins**: few milimetric green veins
- **Structure**: Brittle-Veins-Crystal plastic
Hole BA4A-20Z Section 3, Top of Section 43.23 (m CCD)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Lithology</th>
<th>Primary mineralogy</th>
<th>Degree of deformation</th>
<th>Discrete brittle features</th>
<th>Alteration intensity</th>
<th>Vein density (per meter)</th>
<th>Fabric intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Voids</th>
<th>Structures</th>
<th>Vein crosscutting</th>
<th>Alteration halos</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>13b</td>
<td>Dunite</td>
<td>Olivine, Plagioclase, Clinopyroxene</td>
<td>Brittle</td>
<td>Veins</td>
<td>100</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Discrete brittle features</td>
<td>Brittle, Veins</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>13c</td>
<td>Gabbro</td>
<td>Orthopyroxene, Amphibole, Spinel</td>
<td>Brittle</td>
<td>Veins</td>
<td>100</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Brittle, Veins</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harzburgite</td>
<td>Olivine, Plagioclase, Clinopyroxene</td>
<td>Brittle</td>
<td>Veins</td>
<td>100</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Brittle, Veins</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alteration
- Serpentinized
- Highly altered

Veins
- Dense network of fine white veins
- Few green veins

Structure
- Brittle-splayed cataclastic zone offsetting dike
- Conjugate vein sets
- Crystal plastic

Magnetic susceptibility
- MSCL-W MSP
- GRA (g/cm³)

Core length (cm)
- Holes BA4A-20Z

Depth (m CCD)
- Hole BA4A-20Z Section 3, Top of Section 43.23 (m CCD)

Description
- Fabric intensity
- Vein density (per meter)
- Degree of deformation
- Alteration intensity
- Dip
SEQUENCE: I
UNIT/SUBUNIT: 13c
ROCK NAME: Harzburgite
CONTACT: Continuous
TEXTURE: Granular
IGNEOUS SUMMARY: serpentinized harzburgite with few cross cutting small dikes, dunite patches
ALTERATION: serpentinized
VEINS: network of black veins, few black, green veins
STRUCTURE: Brittle-
Veins-
Crystal plastic-
Pyroxene grains are rounded and slightly elongated.

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility (SI × 10^-5)</th>
<th>GRA (g/cm³)</th>
<th>Magnetic susceptibility MSCL-W</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.03</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALTERATION SUMMARY: serpentinization

VEINS: network of black veins, few black, green veins

STRUCTURE: Brittle-
Veins-
Crystal plastic-

Veins: Crystal-plastic: Pyroxene grains are rounded and slightly elongated.
SEQUENCE: 13c

UNIT/SUBUNIT: 13c

ROCK NAME: Harzburgite

CONTACT: Modal

TEXTURE:

IGNEOUS SUMMARY: serpentinized harzburgite with few cross cutting small dikes, dunite patches

ALTERATION: serpentinized

VEINS: network of black veins, few black, green veins

STRUCTURE: Brittle

Veins

Crystal plastic - Pyroxene grains are rounded and slightly elongated.
Hole BA4A-21Z Section 2, Top of Section 45.20 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shiptboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Vein density (per meter)</th>
<th>Alteration halos</th>
<th>Fault zone</th>
<th>Structures</th>
<th>Veins</th>
<th>Magnetic contact</th>
<th>Brittle contact</th>
<th>Dip</th>
<th>Fabric intensity</th>
<th>Vein crosscutting</th>
<th>Abnormal holes</th>
<th>Vein crosscutting</th>
<th>Degree of deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.20</td>
<td></td>
</tr>
<tr>
<td>45.30</td>
<td></td>
</tr>
<tr>
<td>45.40</td>
<td></td>
</tr>
<tr>
<td>45.50</td>
<td></td>
</tr>
<tr>
<td>45.60</td>
<td></td>
</tr>
<tr>
<td>45.70</td>
<td></td>
</tr>
<tr>
<td>45.80</td>
<td></td>
</tr>
<tr>
<td>45.90</td>
<td></td>
</tr>
<tr>
<td>46.00</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **SEQUENCE I**: 13c
- **ROCK NAME**: Harzburgite
- **CONTACT**: Continuous

IGNEOUS SUMMARY: Serpentinized harzburgite with few cross cutting small dikes, dunite patches

ALTERATION: Serpentinized

- **VEINS**: Network of black veins, few black, green veins

- **TEXTURE**: Brittle - Veins - Crystal plastic - Pyroxene grains are rounded and slightly elongated.

Notes

- **Veins**: Cryotectonic - Pyroxene grains are rounded and slightly elongated.
SEQUENCE: I
UNIT/SUBUNIT: 13f
ROCK NAME: Harzburgite
CONTACT: Continuous
TEXTURE: IGNEOUS SUMMARY: serpentinized harzburgite crosscut by gabbroic dike
ALTERATION: serpentinized
VEINS: black, green, white veins
STRUCTURE: Brittle

SEQUENCE: I
UNIT/SUBUNIT: 13g
ROCK NAME: Dunite
CONTACT: Modal
TEXTURE: IGNEOUS SUMMARY: serpentinized dunite
ALTERATION: serpentinized
VEINS: few black veins
STRUCTURE: Brittle

SEQUENCE: I
UNIT/SUBUNIT: 13h
ROCK NAME: Harzburgite
CONTACT: Modal
TEXTURE: Granular
IGNEOUS SUMMARY: serpentinized harzburgite crosscutted by thin pyroxenitic dikes
ALTERATION: serpentinized
VEINS: few black veins
STRUCTURE: Brittle
Crystal plastic- Porphyroclastic fabric
Sequence: I

Unit/Subunit: 13h
Rock Name: Harzburgite
Contact: Continuous
Texture: Granular
Igneous Summary: Serpentinized harzburgite crosscutted by thin pyroxenitic dikes
Alteration: Serpentinized
Veins: Few black veins
Structure: Brittle-
Crystal Plastic: Pyroxene grains are rounded and slightly elongated.

Sequence: I

Unit/Subunit: 14a
Rock Name: Harzburgite
Contact: Intrusive
Texture: Granular
Igneous Summary: Serpentinized harzburgite crosscutted by gabbroic dikes
Alteration: Serpentinized
Veins:
Structure: Brittle-
Crystal Plastic: Pyroxene grains are rounded and slightly elongated.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Crystal Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>13h</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>Serpentinized harzburgite crosscutted by thin pyroxenitic dikes</td>
<td>Serpentinized</td>
<td>Few black veins</td>
<td>Brittle-</td>
<td>Pyroxene grains are rounded and slightly elongated.</td>
</tr>
<tr>
<td>I</td>
<td>14a</td>
<td>Harzburgite</td>
<td>Intrusive</td>
<td>Granular</td>
<td>Serpentinized harzburgite crosscutted by gabbroic dikes</td>
<td>Serpentinized</td>
<td></td>
<td>Brittle-</td>
<td>Pyroxene grains are rounded and slightly elongated.</td>
</tr>
</tbody>
</table>

Fabric intensity

- 5
- 4
- 3
- 2
- 1
- 0

Vein density (per meter)

- 6
- 5
- 4
- 3
- 2
- 1
- 0

Grain size

- 6
- 5
- 4
- 3
- 2
- 1
- 0

Hole BA4A-22Z Section 1, Top of Section 47.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (% of area)</th>
<th>Magnetic susceptibility (SI x 10^-5)</th>
<th>GRA (g/cm³)</th>
<th>Degree of deformation</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

- **Fault zones:** Discrete brittle features
- **Alteration halos:**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (>90%)

Structures

- **Discrete brittle features:**
 - Vein crosscutting

Alteration

- **Intensity:**
 - 100
 - 80
 - 60
 - 40
 - 20
 - 0

Contacts

- **Magnetic contact:** Brittle
- **Brittle:**
 -
- **Crystal plastic:**
 -
- **Vugs:**
 -

Veins

- **Description:**
 - Crystal plastic: Pyroxene grains are rounded and slightly elongated.
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Degree of deformation</th>
<th>Fabric intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>14a</td>
<td>14a</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>Serpentinized harzburgite crosscutted by gabbroic dikes</td>
<td>Serpentinized</td>
<td>White veins</td>
<td>Brittle-Veins-Crystal plastic-Pyroxene grains are rounded and slightly elongated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14b</td>
<td>14b</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>Granular</td>
<td>Olivine gabbro dike crosscut by green veins</td>
<td></td>
<td></td>
<td>Brittle-Veins-Crystal plastic-Pyroxene grains are rounded and slightly elongated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14c</td>
<td>14c</td>
<td>Harzburgite</td>
<td>Intrusive</td>
<td>Granular</td>
<td>Serpentinized harzburgite</td>
<td>Serpentinized</td>
<td>Black, green, thin white veins</td>
<td>Brittle-Veins-Crystal plastic-Pyroxene grains are rounded and slightly elongated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Shipboard samples</td>
<td>Stained image</td>
<td>Magnetic susceptibility</td>
<td>Primary mineralogy (%)</td>
<td>Grain size</td>
<td>Degree of deformation</td>
<td>Fracture/ Vein density (per meter)</td>
<td>Alteration intensity</td>
<td>Dip Magnatic contact</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>49.21</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: 1c
ROCK NAME: Harzburgite
CONTACT: Continuous
TEXTURE: Granular
IGNEOUS SUMMARY: serpentinized harzburgite
ALTERATION: serpentinized
VEINS: black, green thin white veins
STRUCTURE: Brittle-

SEQUENCE: 1d
ROCK NAME: Olivine gabbro
CONTACT: intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: olivine gabbro dike crosscut by green veins
ALTERATION:
VEINS: green, white veins
STRUCTURE: Brittle-

SEQUENCE: 1e
ROCK NAME: Dunite
CONTACT: Intrusive
TEXTURE:
IGNEOUS SUMMARY: serpentinized dunite
ALTERATION: serpentinized
VEINS: thin white veins
STRUCTURE: Brittle-

FACTOR INTENSITY

Vein density (per meter)

Grain size

Magnetic susceptibility

CT image

Description
Hole BA44A-22Z Section 4, Top of Section 49.86 (m CCD)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Vein Density (per meter)</th>
<th>Fracture/ Vein Density (per meter)</th>
<th>Degree of Deformation</th>
<th>Alteration Intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>14a</td>
<td>Dunite</td>
<td>Continuous</td>
<td>Igneous</td>
<td>Serpentinized dunite</td>
<td>Serpentinized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>14f</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>Granular</td>
<td>Offset olivine gabbro dike</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>14g</td>
<td>Harzburgite</td>
<td>Intrusive</td>
<td>Granular</td>
<td>Serpentinized harzburgite crosscut by offset gabbroic dikes</td>
<td>Prehnitized, Serpentinized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core length (cm)</th>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Depth (m CCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49.90</td>
<td>0</td>
<td>49.90</td>
</tr>
<tr>
<td>10</td>
<td>49.80</td>
<td>10</td>
<td>49.80</td>
</tr>
<tr>
<td>20</td>
<td>49.70</td>
<td>20</td>
<td>49.70</td>
</tr>
<tr>
<td>30</td>
<td>49.60</td>
<td>30</td>
<td>49.60</td>
</tr>
<tr>
<td>40</td>
<td>49.50</td>
<td>40</td>
<td>49.50</td>
</tr>
<tr>
<td>50</td>
<td>49.40</td>
<td>50</td>
<td>49.40</td>
</tr>
<tr>
<td>60</td>
<td>49.30</td>
<td>60</td>
<td>49.30</td>
</tr>
<tr>
<td>70</td>
<td>49.20</td>
<td>70</td>
<td>49.20</td>
</tr>
<tr>
<td>80</td>
<td>49.10</td>
<td>80</td>
<td>49.10</td>
</tr>
<tr>
<td>90</td>
<td>49.00</td>
<td>90</td>
<td>49.00</td>
</tr>
</tbody>
</table>

Magnetic susceptibility (SI x 10^-5)

Lithology

Primary mineralogy (%)
- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene

Grain size
- Spinel
- Sulfide

Degree of deformation
- Magmatic
- Brittle
- Veins
- Crystal plastic

Alteration intensity
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Vein density (per meter)
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Fabric intensity

Fracture/ Vein density (per meter)
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Fracture/ Vein density (per meter)
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Discrete brittle features
- Veins
- Crystal plastic

Structures
- Fault zones
- Veins
- Brittle
- Magmatic contact

Degree of deformation
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Effect of deformation
- Protogranular
- Porphyroclastic
- StrONGLY foliated
- Protomylonite
- Mylonite
- Ultramylonite

Isotropic
- Weak
- Moderate
- Strong

Grain size
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)
- Glassy
- Cryptocrystalline (<0.1 mm)
- Microcrystalline (0.1–0.2 mm)

Vein density (per meter)
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Alteration
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Texture
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Mineralogy
- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine

Alteration
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Vein density (per meter)
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100
Hole BA4A-23Z Section 2, Top of Section 51.47 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Unit/subunit</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.49</td>
<td></td>
</tr>
<tr>
<td>51.48</td>
<td></td>
</tr>
<tr>
<td>51.47</td>
<td></td>
</tr>
<tr>
<td>51.46</td>
<td></td>
</tr>
<tr>
<td>51.45</td>
<td></td>
</tr>
<tr>
<td>51.44</td>
<td></td>
</tr>
<tr>
<td>51.43</td>
<td></td>
</tr>
<tr>
<td>51.42</td>
<td></td>
</tr>
<tr>
<td>51.41</td>
<td></td>
</tr>
<tr>
<td>51.40</td>
<td></td>
</tr>
<tr>
<td>51.39</td>
<td></td>
</tr>
<tr>
<td>51.38</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **SEQUENCE 1**: UNITSUBUNIT 14: ROCK NAME: Olivine gabbro CONTACT: Continuous TEXTURE: Granular KINEMATIC SUMMARY: olivine gabbro dike AlterATION: Veins: white veins, black veins STRUCTURE: Brittle Network of fault surfaces

- **SEQUENCE 1**: UNITSUBUNIT 14: ROCK NAME: Olivine gabbro CONTACT: Continuous TEXTURE: Granular KINEMATIC SUMMARY: olivine gabbro dike AlterATION: Veins: grey veins, white veins STRUCTURE: Brittle Network of fault surfaces

- **SEQUENCE 1**: UNITSUBUNIT 14: ROCK NAME: Olivine gabbro CONTACT: Continuous TEXTURE: Granular KINEMATIC SUMMARY: olivine gabbro dike AlterATION: Veins: grey veins, white veins STRUCTURE: Brittle Network of fault surfaces

- **SEQUENCE 1**: UNITSUBUNIT 14: ROCK NAME: Olivine gabbro CONTACT: Continuous TEXTURE: Granular KINEMATIC SUMMARY: olivine gabbro dike AlterATION: Veins: grey veins, white veins STRUCTURE: Brittle Network of fault surfaces

Magnetic contact Brittle Crystal plastic Voids

- Fabric intensity: 0–10
- Vein intensity: 0–10
- Dip: 0° - 90°

Table Contents

- **Depth (m CCD)**
- **Core length (cm)**
- **Shipboard samples**
- **Stained image**
- **CT image**
- **Magnetic susceptibility**
- **MSCL-W MSP**
- **GRA (g/cm²)**
- **Sequence**
- **Lithology**
- **Unit/subunit**
- **Primary mineralogy (%)**
- **Degree of deformation**
- **Fracture/ Vein density (per meter)**
- **Alteration**
- **Dip**

Legend

- **Veins**: grey veins, white veins
- **STRUCTURE**: Brittle Network of fault surfaces
- **Crystal plastic**: Pores/eve grains are rounded and slightly elongated.
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Vein density (per meter)</th>
<th>Alteration halos</th>
<th>Magnetic susceptibility (MSCL-W)</th>
<th>Alteration halos</th>
<th>Structure</th>
<th>Alteration halos</th>
<th>Degree of deformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.25</td>
<td>0</td>
<td>Sequence: I</td>
<td>Olivine</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.025 x 10⁻⁵</td>
<td>0.025 x 10⁻⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unit/subunit: 14k</td>
<td>Plagioclase</td>
<td>Slight (3–10%)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.025 x 10⁻⁵</td>
<td>0.025 x 10⁻⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>Moderate (11–30%)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.025 x 10⁻⁵</td>
<td>0.025 x 10⁻⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfide</td>
<td>Substantial (31–60%)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.025 x 10⁻⁵</td>
<td>0.025 x 10⁻⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glassy</td>
<td>Extensive (61–90%)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.025 x 10⁻⁵</td>
<td>0.025 x 10⁻⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glassy</td>
<td>Complete (≥ 90%)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.025 x 10⁻⁵</td>
<td>0.025 x 10⁻⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glassy</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.025 x 10⁻⁵</td>
<td>0.025 x 10⁻⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glassy</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.025 x 10⁻⁵</td>
<td>0.025 x 10⁻⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: I

ROCK NAME: Harzburgite

CONTACT: Tectonic

KIGLICOS SUMMARY: fractured, serpentinized harzburgite cross cut by olivine gabbro dikes

ALTERATION: serpentinized

VEINS: white veins, black veins

STRUCTURE: Brittle-

Veins-

Crystal plastic-

SEQUENCE: I

UNIT/SUBUNIT: 14k

ROCK NAME: Olivine gabbro

CONTACT: Intrusive

TEXTURE: Granular

IGNEOUS SUMMARY: olivine gabbro dike

ALTERATION: serpentinized

VEINS: white veins, grey veins, black veins

STRUCTURE: Brittle-

Veins-

Crystal plastic-

SEQUENCE: I

UNIT/SUBUNIT: 14k

ROCK NAME: Olivine gabbro

CONTACT: Intrusive

TEXTURE: Granular

IGNEOUS SUMMARY: gabbroic dike

ALTERATION: fully serpentinized

VEINS: white veins, grey veins, black veins

STRUCTURE: Brittle-

Veins-

Crystal plastic-

SEQUENCE: I

UNIT/SUBUNIT: 15a

ROCK NAME: Dunite

CONTACT: Intrusive

TEXTURE: Protogranular peridotite fabric

IGNEOUS SUMMARY: fully serpentinized dunite crosscut by gabbroic dikes

ALTERATION: fully serpentinized

VEINS: white veins

STRUCTURE: Brittle-

Veins-

Crystal plastic-

SEQUENCE: I

UNIT/SUBUNIT: 15a

ROCK NAME: Dunite

CONTACT: Intrusive

TEXTURE: Protogranular peridotite fabric

IGNEOUS SUMMARY: fully serpentinized dunite crosscut by gabbroic dikes

ALTERATION: fully serpentinized

VEINS: white veins

STRUCTURE: Brittle-

Veins-

Crystal plastic-

SEQUENCE: I

UNIT/SUBUNIT: 15a

ROCK NAME: Dunite

CONTACT: Intrusive

TEXTURE: Protogranular peridotite fabric

IGNEOUS SUMMARY: fully serpentinized dunite crosscut by gabbroic dikes

ALTERATION: fully serpentinized

VEINS: white veins

STRUCTURE: Brittle-

Veins-

Crystal plastic-
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle Fracture Membrane</th>
<th>Crystal Plastic Membrane</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle Fracture Membrane</th>
<th>Crystal Plastic Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sequence: 15b
- **ROCK NAME:** dunite
- **CONTACT:** Continuous
- **TEXTURE:** Igneous: fully serpentinized dunite crosscut by gabbroic dikes
- **ALTERATION:** Serpentinized
- **VEINS:** White veins, black veins, green veins
- **STRUCTURE:** Brittle-fracture membrane

Sequence: 15b
- **ROCK NAME:** gabbro
- **CONTACT:** Intrusive
- **TEXTURE:** Granular
- **IGNEOUS SUMMARY:** Highly altered gabbroic dike
- **ALTERATION:** Serpentinized
- **VEINS:** White veins, grey-green veins
- **STRUCTURE:** Brittle-fracture membrane

Fabric Intensity
- 5
- 4
- 3
- 2
- 1
- 0

Vein Density (per meter)
- 6
- 5
- 4
- 3
- 2
- 1
- 0

Grain Size
- 6
- 5
- 4
- 3
- 2
- 1
- 0

Magmatic Layering
- 3
- 2
- 1
- 0

Degree of Deformation
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Discrete Brittle Features
- 0
- 1
- 2
- 3
- 4
- 5

Alteration Intensity
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Alteration Halos
- 100
- 80
- 60
- 40
- 20
- 0

Degree of Alteration
- Complete (<90%)

Lithology
- Primary mineralogy (%)
- 100
- 75
- 50
- 25
- 0

Sulfide
- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine

Fracture/ Vein density (per meter)
- 0
- 1
- 2
- 3
- 4
- 5

Core Length (cm)
- 53.70 (m CCD)

Description
- Hole BA4A-24Z Section 1, Top of Section 53.70 (m CCD)
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/SUBUNIT</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Degree of deformation</th>
<th>Fracture/Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Vents</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>15b</td>
<td>dunite</td>
<td>Continuous</td>
<td></td>
<td>fully serpentinized dunite crosscut by gabbroic dikes</td>
<td>serpentinized</td>
<td>white veins, black veins, green veins</td>
<td>Brittle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Olivine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plagioclase</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clinopyroxene</td>
<td></td>
</tr>
</tbody>
</table>

Table:

- **Depth (m CCD):** 54.24
- **Core length (cm):** 0
- **Sampled image:** CT image
- **Magnetic susceptibility:** MSCL-W (SI x 10^-5)
- **GRA (g/cm³):** 2.68
- **Sequence:** I

Lithology:
- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Sulfide

Primary mineralogy (%):
- 100

Grain size:
- 0.1

Degree of deformation:
- Brittle

Veins:
- White veins
- Black veins
- Green veins

Fabric intensity:
- 5

Vein density (per meter):
- 0 per 10 cm

Alteration intensity:
- Fresh (<3%)

Dip Magnatic contact:
- Brittle

Brittle:
- Crystalline

Crystal plastic:
- Vents

Vents:
- Crystal plastic
Hole BA4A-24Z Section 3, Top of Section 54.92 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystall plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>54.92</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Sequences:
- 15b

Unit/Subunit: 15b

Rock Name: dunite

Contact: Continuous

Igneous Summary: Fully serpentinized dunite crosscut by gabbroic dikes

Alteration: Serpentinized

Veins: White veins, black veins, green veins

Structure: Brittle- Fracture network with small offset

Veins - Crystal plastic - Fabric intensity:

- 5
- 4
- 3
- 2
- 1
- 0

Vein density (per meter):

- 6
- 5
- 4
- 3
- 2
- 1
- 0

Grain size:

- 6
- 5
- 4
- 3
- 2
- 1
- 0

Hole BA4A-24Z Section 3, Top of Section 54.92 (m CCD)

Core length (cm):

- 54.92

Phased samples:

- CT image

Description:

- Sequence: 15b
- Unit/Subunit: 15b
- Rock Name: dunite
- Contact: Continuous
- Igneous Summary: Fully serpentinized dunite crosscut by gabbroic dikes
- Alteration: Serpentinized
- Veins: White veins, black veins, green veins
- Structure: Brittle - Fracture network with small offset

Magnetic susceptibility:

- MSCL-W
- MSP
-GRA (SI 10^-6)

Vein crosscutting Alteration intensity:

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Degree of deformation:

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Magmatic contact:

- Dip
- Brittle
- Crystall plastic
- Veins

Lithology:

- Primary mineralogy (%)

- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Spinel
- Sulfide

Fabric intensity:

- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

** Degree of deformation:**

- Brittle
- Magmatic
- Contact

Dip:

- 0
- 45
- 90

Fracture/ Vein density (per meter):

- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Vein density (per meter):

- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm
Hole BA4A-25Z Section 1, Top of Section 56.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Scanned image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact Brittle Crystal plastic Voids</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.70</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>56.80</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>56.90</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>57.00</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>57.10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>57.20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>57.30</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>57.40</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>57.50</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>57.60</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Description

SEQUENCE I, 15a
- CONTACT: Continuous
- IGNEOUS SUMMARY: fractured, serpentinized harzburgite with a melt impregnation fabric and multiple pyroxenite dikes
- ALTERATION: serpentinized
- VEINS: brown veins, black veins, grey veins
- STRUCTURE: Brittle

SEQUENCE I, 15b
- CONTACT: Intrusive
- IGNEOUS SUMMARY: serpentinized dunite with near-harzburgitic zone cross-cut by olivine gabbro dikes
- ALTERATION: serpentinized
- VEINS: cut by variety of serpentine veins
- STRUCTURE: Brittle

SEQUENCE I, 15c
- CONTACT: Continuous
- IGNEOUS SUMMARY: fractured, serpentinized harzburgite with a melt impregnation texture and multiple pyroxenite dikes
- ALTERATION: serpentinized
- VEINS: brown veins, black veins, grey veins
- STRUCTURE: Brittle

SEQUENCE I, 15d
- CONTACT: Intrusive
- IGNEOUS SUMMARY: serpentinized dunite with near-harzburgitic zone cross-cut by olivine gabbro dikes
- ALTERATION: serpentinized
- VEINS: cut by variety of serpentine veins
- STRUCTURE: Brittle

ALTERATION INTENSITY
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

FABRIC INTENSITY
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

UNIT/SUBUNIT
- LITHOLOGY
- PRIMARY MINERALOGY (%)

STRUCTURE
- Brittle
- Veins
- Crystal plastic

ALTERATION HALOS
- Sulfide
- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine

DISCRETE BRITTLE FEATURES
- Vein crosscutting
- Alteration intensity

FOLIATION
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

LAYERING
- Protolastic
- Porphyroclastic
- Strongly foliated

SCANNED IMAGE
- MAGNETIC SUSCEPTIBILITY
- MSCL-W
- MSP
- GRA (SI x 10^-5)
- GRA (g/cm^3)

HOLE BA4A-25Z SECTION 1, TOP OF SECTION 56.70 (m CCD)

DESCRIPTION

SEQUENCE I, 15a
- ROCK NAME: Harzburgite
- CONTACT: Continuous
- IGNEOUS SUMMARY: fractured, serpentinized harzburgite with a melt impregnation fabric and multiple pyroxenite dikes
- ALTERATION: serpentinized
- VEINS: brown veins, black veins, grey veins
- STRUCTURE: Brittle

SEQUENCE I, 15b
- ROCK NAME: Harzburgite
- CONTACT: Intrusive
- IGNEOUS SUMMARY: serpentinized dunite with near-harzburgitic zone cross-cut by olivine gabbro dikes
- ALTERATION: serpentinized
- VEINS: cut by variety of serpentine veins
- STRUCTURE: Brittle

SEQUENCE I, 15c
- ROCK NAME: Harzburgite
- CONTACT: Continuous
- IGNEOUS SUMMARY: fractured, serpentinized harzburgite with a melt impregnation texture and multiple pyroxenite dikes
- ALTERATION: serpentinized
- VEINS: brown veins, black veins, grey veins
- STRUCTURE: Brittle

SEQUENCE I, 15d
- ROCK NAME: Harzburgite
- CONTACT: Intrusive
- IGNEOUS SUMMARY: serpentinized dunite with near-harzburgitic zone cross-cut by olivine gabbro dikes
- ALTERATION: serpentinized
- VEINS: cut by variety of serpentine veins
- STRUCTURE: Brittle
Hole BA4A-25Z Section 2, Top of Section 57.65 (m CCD)

Sequence: I
Unit/Subunit: 15d
Rock Name: dunite
Contact: Tectonic
Texture: IGNEOUS
SUMMARY: serpentinized dunite with near-harzburgitic zone cross-cut by olivine gabbro dikes
Alteration: serpentinised
Veins: cut by a variety of serpentine veins
Structure: Brittle-
Veins-
Crystal plastic-

Sequence: I
Unit/Subunit: 15d
Rock Name: Olivine gabbro
Contact: Intrusive
Texture: Granular
Igneous Summary: olivine gabbro dike
Alteration: altered and pseudomorphed
Veins: grey veins, white veins, grey green veins
Structure: Brittle- Fault zone cuts dike
Veins-
Crystal plastic-

Sequence: I
Unit/Subunit: 15d
Rock Name: Olivine gabbro
Contact: Intrusive
Texture: Granular
Igneous Summary: olivine gabbro dike
Alteration: altered and pseudomorphed
Veins: thick black veins, white veins, brown veins, grey green veins
Structure: Brittle- Fault zone cuts dike
Veins-
Crystal plastic-
Hole BA4A-25Z Section 4, Top of Section 59.44 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Vents</th>
<th>Structures</th>
<th>Alteration halos</th>
<th>Vein density (per meter)</th>
<th>Fracture zones</th>
<th>Apparent offset</th>
<th>Fault zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>59.45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>59.55</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>59.65</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>59.75</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>59.85</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>59.95</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-26Z Section 1, Top of Section 59.70 (m CCD)

Magnetic susceptibility

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>59.70</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary mineralogy

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Lithology</th>
<th>Unit/subunit</th>
<th>Magnatic contact</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Brittle fractures</th>
</tr>
</thead>
<tbody>
<tr>
<td>15d</td>
<td>dunite</td>
<td>15d</td>
<td>intrusive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15d</td>
<td>olivine</td>
<td>15d</td>
<td>intrusive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15d</td>
<td>wehrlite</td>
<td>15d</td>
<td>intrusive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sequence: I

Unit/Subunit: 15d

- **ROCK NAME:** dunite
- **CONTACT:** intrusive
- **TEXTURE:** igneous
- **IGNEOUS SUMMARY:** serpentinized dunite with near-harzburgitic zone cross-cut by olivine gabbro dikes
- **ALTERATION:** serpentinised
- **VEINS:** cut by a variety of serpentine veins
- **STRUCTURE:** brittle fractures

Unit/Subunit: 15d

- **ROCK NAME:** olivine gabbro
- **CONTACT:** intrusive
- **TEXTURE:** granular
- **IGNEOUS SUMMARY:** altered and pseudomorphed olivine gabbro
- **ALTERATION:** altered and pseudomorphed
- **VEINS:** cut by green/white composite veins
- **STRUCTURE:** brittle fractures

Unit/Subunit: 15d

- **ROCK NAME:** wehrlite
- **CONTACT:** intrusive
- **TEXTURE:** granular
- **IGNEOUS SUMMARY:** altered and pseudomorphed wehrlite
- **ALTERATION:** altered and pseudomorphed
- **VEINS:** cut by sigmoidal white/black composite veins
- **STRUCTURE:** brittle fractures

Fabric intensity

- 0
- 1
- 2
- 3
- 4
- 5

Vein density (per meter)

- 1
- 2
- 3
- 4
- 5

Sequence: I

- **Description**
- **CT image**
- **Structures**
- **Alteration intensity**
- **Vein density (per meter)**
- **Alteration halos**
- **Rearrangement of veins**
- **Degree of deformation**
- **Fault zones**
- **Vein crosscutting**

Lithology

- **Primary mineralogy**
- **Mafic minerals**
- **Clay minerals**
- **Silica minerals**
- **Carbonate**
- **Sulphides**

Degree of deformation

- **Magmatic contact**
- **Structural features**
- **Discrete brittle features**
- **Vein crosscutting**
- **Alteration intensity**

Dip

- **Magnetic contact**
- **Brittle**
- **Crystal plastic**
- **Veins**
Hole BA4A-26Z Section 3, Top of Section 61.29 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16.33</td>
<td></td>
</tr>
<tr>
<td>16.34</td>
<td></td>
</tr>
<tr>
<td>16.35</td>
<td></td>
</tr>
<tr>
<td>16.36</td>
<td></td>
</tr>
<tr>
<td>16.37</td>
<td></td>
</tr>
<tr>
<td>16.38</td>
<td></td>
</tr>
<tr>
<td>16.39</td>
<td></td>
</tr>
<tr>
<td>16.40</td>
<td></td>
</tr>
<tr>
<td>16.41</td>
<td></td>
</tr>
<tr>
<td>16.42</td>
<td></td>
</tr>
<tr>
<td>16.43</td>
<td></td>
</tr>
<tr>
<td>16.44</td>
<td></td>
</tr>
<tr>
<td>16.45</td>
<td></td>
</tr>
<tr>
<td>16.46</td>
<td></td>
</tr>
<tr>
<td>16.47</td>
<td></td>
</tr>
<tr>
<td>16.48</td>
<td></td>
</tr>
<tr>
<td>16.49</td>
<td></td>
</tr>
<tr>
<td>16.50</td>
<td></td>
</tr>
<tr>
<td>16.51</td>
<td></td>
</tr>
<tr>
<td>16.52</td>
<td></td>
</tr>
<tr>
<td>16.53</td>
<td></td>
</tr>
<tr>
<td>16.54</td>
<td></td>
</tr>
<tr>
<td>16.55</td>
<td></td>
</tr>
<tr>
<td>16.56</td>
<td></td>
</tr>
<tr>
<td>16.57</td>
<td></td>
</tr>
<tr>
<td>16.58</td>
<td></td>
</tr>
<tr>
<td>16.59</td>
<td></td>
</tr>
<tr>
<td>16.60</td>
<td></td>
</tr>
<tr>
<td>16.61</td>
<td></td>
</tr>
<tr>
<td>16.62</td>
<td></td>
</tr>
<tr>
<td>16.63</td>
<td></td>
</tr>
<tr>
<td>16.64</td>
<td></td>
</tr>
<tr>
<td>16.65</td>
<td></td>
</tr>
<tr>
<td>16.66</td>
<td></td>
</tr>
<tr>
<td>16.67</td>
<td></td>
</tr>
<tr>
<td>16.68</td>
<td></td>
</tr>
<tr>
<td>16.69</td>
<td></td>
</tr>
<tr>
<td>16.70</td>
<td></td>
</tr>
<tr>
<td>16.71</td>
<td></td>
</tr>
<tr>
<td>16.72</td>
<td></td>
</tr>
<tr>
<td>16.73</td>
<td></td>
</tr>
<tr>
<td>16.74</td>
<td></td>
</tr>
<tr>
<td>16.75</td>
<td></td>
</tr>
<tr>
<td>16.76</td>
<td></td>
</tr>
<tr>
<td>16.77</td>
<td></td>
</tr>
<tr>
<td>16.78</td>
<td></td>
</tr>
<tr>
<td>16.79</td>
<td></td>
</tr>
<tr>
<td>16.80</td>
<td></td>
</tr>
<tr>
<td>16.81</td>
<td></td>
</tr>
<tr>
<td>16.82</td>
<td></td>
</tr>
<tr>
<td>16.83</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-26Z Section 4, Top of Section 61.86 (m CCD)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Alteration</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>dunite</td>
<td>olivine</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>wehlrite</td>
<td>plagioclase</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>gabbro</td>
<td>clinopyroxene</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>gabbro</td>
<td>orthopyroxene</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>gabbro</td>
<td>plagioclase</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fabric intensity</th>
<th>Vein density (per meter)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Alteration</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10</td>
<td>0–10</td>
<td>0–10</td>
<td>0–10</td>
<td>0–10</td>
<td>0–10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30–50</td>
<td>30–50</td>
<td>30–50</td>
<td>30–50</td>
<td>30–50</td>
<td>30–50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50–70</td>
<td>50–70</td>
<td>50–70</td>
<td>50–70</td>
<td>50–70</td>
<td>50–70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70–90</td>
<td>70–90</td>
<td>70–90</td>
<td>70–90</td>
<td>70–90</td>
<td>70–90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>90</td>
<td>>90</td>
<td>>90</td>
<td>>90</td>
<td>>90</td>
<td>>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Fault zones</th>
<th>Structures</th>
<th>Apparent offset</th>
<th>Alteration halos</th>
<th>Veins</th>
<th>Magmatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
SEQUENCE: 15e
UNIT/SUBUNIT: 15e
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE: Igneous
SUMMARY: Serpentinized dunite, crosscutted by gabbroic and pyroxenitic dikes, partially oxidized, weakly fractured
ALTERATION: Serpentinized
VEINS: Green, white veins, frankestein texture
STRUCTURE: Brittle-Veins- conjugate vein sets
Crystal plastic- Fabric intensity
Vein density (per meter)
Grain size
Depth (m CCD)
Core length (cm)
Shiptboard samples
Stained image
Magnetic susceptibility
MSCL-W MSP (SI x 10⁻⁵)
GRA (g/cm²)
Sequence
Lithology
Primary mineralogy (%)
Olivine
Plagioclase
Clinopyroxene
Orthopyroxene
Amphibole
Spinel
Sulfide
Degree of deformation
Fracture/ Vein density (per meter)
Alteration intensity
Magnetic contact Brittle
Crystal plastic Veins
Voins
Dip
Description
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Fabric intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>15e</td>
<td>Dunite</td>
<td>Continuous</td>
<td></td>
<td>serpentinized dunite, crosscutted by gabbroic and pyroxenitic dikes, partially oxidized, weakly fractured</td>
<td>serpentinized</td>
<td>green, white veins, frankestein texture</td>
<td>Brittle-Veins-Veins-Crystal plastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>15e</td>
<td>Gabbro</td>
<td>Intrusive</td>
<td></td>
<td>fractured and filled by serpentinization</td>
<td>highly altered</td>
<td>green veins</td>
<td>Brittle-Veins-Crystal plastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hole BA4A-27Z Section 4, Top of Section 65.00 (m CCD)
Hole BA4A-28Z Section 2, Top of Section 66.58 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W (SI x 10^-5)</th>
<th>MSP (g/cm^2)</th>
<th>GRA</th>
<th>Sequence</th>
<th>Unite/Subunit</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Alteration halos</th>
<th>Vein crosscutting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>66.61</td>
<td></td>
</tr>
<tr>
<td>66.61</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>66.68</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>66.68</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>66.68</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>66.68</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>66.68</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>66.68</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>66.68</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE 1: 15g
ROCK NAME: Dunite
CONTACT: Continuous

IGNEOUS SUMMARY: Serpentinized dunite, partially oxidized, weakly fractured, crosscut by gabbroic and pyroxenitic dikes.

ALTERATION: Serpentinized

VEINS: Green, white, and few black veins

STRUCTURE: Brittle. Network of anastomosing fault surfaces mostly with mineral fill. Vein density: 5-15 per 10 cm.
Hole BA4A-28Z Section 3, Top of Section 67.43 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Magmatic contact</th>
<th>Structures</th>
<th>Alteration intensity</th>
<th>Vein density (per meter)</th>
<th>Alteration</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

- **SEQUENCE 1**: 15g
- **ROCK NAME**: Dunite
- **CONTACT**: Continuous
- **KIND OF SUMMARY**: serpentinitized dunite, partially oxidized, weakly fractured, crosscutted by gabbroic and pyroxenitic dikes
- **ALTERATION**: serpentinized
- **VEINS**: green, white, and few black veins
- **STRUCTURE**: Brittle-Veins- conjugate vein sets are common
- **Magmatic contact**: Brittle
- **Crystal plastic**: Veins
- **Voids**: Ductile
- **Vein crosscutting**: Brittle

Alteration intensity

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Vein density (per meter)

- 0
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm
Hole BAA4-28Z Section 4, Top of Section 68.35 (m CCD)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Degree of Deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip of Magnetic contact</th>
<th>Brittle Veins</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Fabrics</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>15g</td>
<td>Dunite</td>
<td>Continuous</td>
<td>Igneous</td>
<td>Serpentinized dunite, partially oxidized, weakly fractured, crosscutted by gabbroic and pyroxenitic dikes</td>
<td>Serpentinized</td>
<td>Green, white, and few black veins</td>
<td>Brittle</td>
<td>Veins- conjugate vein sets are common</td>
<td>Veins: incongruent vein sets are common</td>
<td>Fabric intensity: 5</td>
<td>Vein density: 1 per 10 cm</td>
<td>0</td>
<td>45</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>15g</td>
<td>Clinopyroxenite</td>
<td>Intrusive</td>
<td>Equigranular</td>
<td>Offset</td>
<td>Highly altered</td>
<td>Thin green veins</td>
<td>Brittle</td>
<td>Veins- conjugate vein sets are common</td>
<td>Veins: incongruent vein sets are common</td>
<td>Fabric intensity: 3</td>
<td>Vein density: 1 per 10 cm</td>
<td>0</td>
<td>45</td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magnetic susceptibility (SI x 10^-5)

<table>
<thead>
<tr>
<th>GRA (g/cm³)</th>
<th>Magnetic susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.146</td>
<td>10^-5</td>
</tr>
<tr>
<td>2.147</td>
<td>10^-5</td>
</tr>
<tr>
<td>2.148</td>
<td>10^-5</td>
</tr>
<tr>
<td>2.149</td>
<td>10^-5</td>
</tr>
</tbody>
</table>

Core length (cm)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.39</td>
<td>10</td>
</tr>
<tr>
<td>68.49</td>
<td>10</td>
</tr>
<tr>
<td>68.59</td>
<td>10</td>
</tr>
<tr>
<td>68.69</td>
<td>10</td>
</tr>
</tbody>
</table>

CT Image

- Sequence I: 15g
- Rock Name: Dunite
- Contact: Continuous
- Igneous Summary: Serpentinized dunite, partially oxidized, weakly fractured, cross-cutted by gabbroic and pyroxenitic dikes
- Alteration: Serpentinized
- Veins: Green, white, and few black veins
- Structure: Brittle
- Degree of deformation: Veins: conjugate vein sets are common
- Fracture/vein density: 1 per 10 cm
- Alteration intensity: Fabric intensity: 5
- Dip of Magnetic contact: 0
- Brittle Veins: Incongruent vein sets are common
- Crystal plastic: Vein density: 1 per 10 cm

Lithology

- Primary mineralogy: Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Amphibole, Sulfide
- Grain size: 100, 300, 500, 700, 1000
- Discrete brittle features: None
- Magmatic Layering: None
- Foliation: None
- Fracture/ Vein density: None
- Alteration: None
- Fresh: None
- Undeformed: None
- Minor fracturing: None
- Moderate fracturing: None
- GS reduction and rotation: None
- Well-developed cataclasis: None
- Ultracataclastite: None
- Protogranular: None
- Porphyroclastic: None
- Strongly foliated: None
- Protomylonite: None
- Mylonite: None
- Ultramylonite: None
- Isotropic: None
- Weak: None
- Moderate: None
- Strong: None
- Fine grained: None
- Medium grained: None
- Coarse grained: None
- Pegmatitic: None
- Glassy: None
- Cryptocrystalline: None
- Microcrystalline: None

Core Analysis

- Core length (cm)
- Depth (m CCD)
- Sequence
- Unit/Subunit
- Lithology
- Primary mineralogy
- Grain size
- Magmatic susceptibility (SI x 10^-5)
- GRA (g/cm³)
- Degree of deformation
- Fracture/ Vein density (per meter)
- Alteration intensity
- Dip of Magnetic contact
- Brittle Veins
- Crystal plastic
- Veins
- Fabrics
- Description
Hole BA4A-29Z Section 1, Top of Section 68.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W</th>
<th>MSP</th>
<th>GRA (g/cm³)</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>68.73</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>68.83</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>68.93</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>69.03</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>69.13</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>69.23</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-29Z Section 3, Top of Section 70.28 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Abnormal habit</th>
<th>Vein crosscutting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Sequence I:

Unit/Subunit: 15g

Rock Name: Dolerite

Contact: Intrusive

Texture: Igneous

Igneous Summary: Serpentinized dunite, partially oxidized, weakly fractured, crosscutted by gabbroic and pyroxenitic dikes

Alteration: Serpentinized

Veins: Green, white, and few black veins

Structure: Brittle

Description:

- Crystal plastic
- Discrete brittle features
- Vein crosscutting
- Alteration halos
- Fault zones
- Degree of deformation
- Vein density
- Alteration intensity
- Dip
- Magnetic contact

Fabric intensity

- 5
- 4
- 3
- 2
- 1
- 0

Vein density

- 6 per 10 cm
- 5 per 10 cm
- 4 per 10 cm
- 3 per 10 cm
- 2 per 10 cm
- 1 per 10 cm
- 0 per 10 cm

Grain size

- 6
- 5
- 4
- 3
- 2
- 1
- 0

Hole BA4A-29Z Section 3, Top of Section 70.28 (m CCD)

Core length (cm)

- 100
- 50
- 25
- 10
- 5
- 2
- 1
- 0

Degree of deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Vein density

- 5-15 per 10 cm
- 15-20 per 10 cm
- >20 per 10 cm

Alteration intensity

- Complete (≥90%)
- Extensive (61–90%)
- Substantial (31–60%)
- Moderate (11–30%)
- Slight (3–10%)
- Fresh (<3%)

Textural summary: Serpentinized dunite, partially oxidized, weakly fractured, crosscutted by gabbroic and pyroxenitic dikes

Alteration: Serpentinized

Veins: Green, white, and few black veins

Structure: Brittle

Description:

- Crystal plastic
- Discrete brittle features
- Vein crosscutting
- Alteration halos
- Fault zones
- Degree of deformation
- Vein density
- Alteration intensity
- Dip
- Magnetic contact

Fabric intensity

- 5
- 4
- 3
- 2
- 1
- 0

Vein density

- 6 per 10 cm
- 5 per 10 cm
- 4 per 10 cm
- 3 per 10 cm
- 2 per 10 cm
- 1 per 10 cm
- 0 per 10 cm

Grain size

- 6
- 5
- 4
- 3
- 2
- 1
- 0

Hole BA4A-29Z Section 3, Top of Section 70.28 (m CCD)

Core length (cm)

- 100
- 50
- 25
- 10
- 5
- 2
- 1
- 0
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>IGNEOUS SUMMARY</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Degree of deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>15g</td>
<td>Dunite</td>
<td>Continuous</td>
<td></td>
<td>serpentinized dunite, partially oxidized, weakly fractured, crosscutted by</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>gabbroic and pyroxenitic dikes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>I</td>
<td>15h</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>Granular</td>
<td>fractured</td>
<td></td>
<td>white veins</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>I</td>
<td>15i</td>
<td>Dunite</td>
<td>Intrusive</td>
<td></td>
<td>serpentinized dunite, partially oxidized, weakly fractured, crosscutted by</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>gabbroic and pyroxenitic dikes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>I</td>
<td>15i</td>
<td>Clinopyroxenite</td>
<td>Intrusive</td>
<td>Equigranular</td>
<td>fractured and filled by serpentinization</td>
<td></td>
<td>green veins</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>70.69</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>70.79</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>70.89</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>70.99</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>70.99</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>71.09</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>71.09</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>71.19</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>71.19</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>71.29</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>71.29</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>71.39</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **SEQUENCE:** 15g
- **ROCK NAME:** Dunite
- **CONTACT:** Continuous
- **TEXTURE:**
- **IGNEOUS SUMMARY:** serpentinized dunite, partially oxidized, weakly fractured, crosscutted by gabbroic and pyroxenitic dikes
- **ALTERATION:** serpentinized
- **VEINS:** green, white, and few black veins
- **STRUCTURE:** Brittle
- **Degree of deformation:**
 - Fracture density (per meter)
 - Vein density (per meter)
 - Grain size
 - Magnetic susceptibility

Sequence:

- **SEQUENCE:** 15h
- **ROCK NAME:** Olivine gabbro
- **CONTACT:** Intrusive
- **TEXTURE:** Granular
- **IGNEOUS SUMMARY:** fractured
- **ALTERATION:** highly altered
- **VEINS:** white veins
- **STRUCTURE:** Brittle

Sequence:

- **SEQUENCE:** 15i
- **ROCK NAME:** Dunite
- **CONTACT:** Intrusive
- **TEXTURE:** serpentinized dunite, partially oxidized, weakly fractured, crosscutted by gabbroic and pyroxenitic dikes
- **ALTERATION:** serpentinized
- **VEINS:** green, white, and few black veins
- **STRUCTURE:** Brittle

Sequence:

- **SEQUENCE:** 15i
- **ROCK NAME:** Clinopyroxenite
- **CONTACT:** Intrusive
- **TEXTURE:** Equigranular
- **IGNEOUS SUMMARY:** fractured and filled by serpentinization
- **ALTERATION:** highly altered
- **VEINS:** green veins
- **STRUCTURE:** Brittle

Sequence:

- **SEQUENCE:** 15i
- **ROCK NAME:** Dunite
- **CONTACT:** Intrusive
- **TEXTURE:** serpentinized dunite, partially oxidized, weakly fractured, crosscutted by gabbroic and pyroxenitic dikes
- **ALTERATION:** serpentinized
- **VEINS:** green, white, and few black veins
- **STRUCTURE:** Brittle

Sequence:

- **SEQUENCE:** 15i
- **ROCK NAME:** Clinopyroxenite
- **CONTACT:** Intrusive
- **TEXTURE:** Equigranular
- **IGNEOUS SUMMARY:** fractured and filled by serpentinization
- **ALTERATION:** highly altered
- **VEINS:** green veins
- **STRUCTURE:** Brittle
Hole BA4A-30Z Section 1, Top of Section 71.70 (m CCD)

SEQUENCE: 1G
ROCK NAME: Dunite
CONTACT: Continuous

TEXTURE:
IGNEOUS
SUMMARY: serpentinized dunite, partially oxidized, weakly fractured, crosscutted by gabbroic and pyroxenitic dikes

ALTERATION: serpentinized

VEINS: green, white, and few black veins

STRUCTURE: Brittle-

Veins- conjugate vein sets are common
Crystal plastic-

Fabric intensity

Vein density (per meter)

6
5
4
3
2
1
0

Fracture/ Vein density (per meter)

100
10
1
0

Discrete brittle features

Degree of deformation

Vein crosscutting

Alteration intensity

90
45
0

Description

Fault zones

Stained image

Core length (cm)

Sequence

Core
length (cm)

Depth (m CCD)

MSCL-W

MSP

(μl x 10^-5)

GRA

(g/cm³)

Primary mineralogy (%)

Olivine
Plagioclase
Clinopyroxene
Orthopyroxene
Amphibole
Spinel
Sulfide

Granulite
Porphyroclastic
Strongly foliated
Protomylonite
Mylonite
Ultramylonite
Isotropic
Weak
Moderate
Strong

Fracture/ Vein density

0–10
10–30
30–50
50–70
70–90
>100

Degree of deformation

Undeformed
Minor fracturing
Moderate fracturing
GS reduction and rotation
Well-developed cataclasis
Ultracataclastite

Alteration halos

Fresh (<3%)
Slight (3–10%)
Moderate (11–30%)
Substantial (31–60%)
Extensive (61–90%)
Complete (>90%)

Magmatic contact

Brittle
Crystal plastic

Veins

Crystal plastic

Veins

CT image

Sulfide

Amphibole

Spinel

Orthopyroxene

Clinopyroxene

Plagioclase

Olivine

Foliation

3
2
1
0

Layering

3
2
1
0

Magmatic

Protogranular

Porphyroclastic

Strongly foliated

Ultramylonite

Mylonite

Protomylonite

Isotropic

Weak

Moderate

Strong

Fine grained (0.2–1 mm)
Medium grained (1–5 mm)
Coarse grained (5–30 mm)
Pegmatitic (>30 mm)

Glassy

Cryptocrystalline (<0.1 mm)
Microcrystalline (0.1–0.2 mm)

GRA (g/cm³)

2.74
2.69
2.64

0-10
10-30
30-50
50-70
70-90
>100

3-5 per 10 cm
15-20 per 10 cm
5-15 per 10 cm
>20 per 10 cm
1-3 per 10 cm
5-10 per 10 cm

10
30
50
70
90
100

0
45
90

4
3
2
1
0

Vein density

Vein crosscutting

Alteration intensity

Dip

Magnetic

contact

Brittle

Crystal plastic

Veins
Table: Hole BA4A-31Z Section 3, Top of Section 76.20 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Scanned image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.20</td>
<td></td>
</tr>
<tr>
<td>76.30</td>
<td></td>
</tr>
<tr>
<td>76.40</td>
<td></td>
</tr>
<tr>
<td>76.50</td>
<td></td>
</tr>
<tr>
<td>76.60</td>
<td></td>
</tr>
<tr>
<td>76.70</td>
<td></td>
</tr>
<tr>
<td>76.80</td>
<td></td>
</tr>
<tr>
<td>76.90</td>
<td></td>
</tr>
<tr>
<td>77.00</td>
<td></td>
</tr>
<tr>
<td>77.10</td>
<td></td>
</tr>
</tbody>
</table>

Description: The image shows a detailed geological section with various geological features marked. The section includes various lithologies, primary mineralogy, alteration intensity, and other geological characteristics, which are recorded in the table format above. The section is from Hole BA4A-31Z, Top of Section 76.20 (m CCD).
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W</th>
<th>MSP</th>
<th>GRA (g/cm³)</th>
<th>GR (°)</th>
<th>Fabric intensity</th>
<th>Vein density (per meter)</th>
<th>Degree of deformation</th>
<th>Magmatic Layering</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magmatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>77.17</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>77.27</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>77.37</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>77.47</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>77.57</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>77.67</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>77.77</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>77.87</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Sequence</td>
<td>Unit/Subunit</td>
<td>Rock Name</td>
<td>Contact</td>
<td>Texture</td>
<td>Igneous Summary</td>
<td>Alteration</td>
<td>Veins</td>
<td>Structure</td>
<td>Alteration Intensity</td>
<td>Vein Density (per meter)</td>
<td>Degree of Deformation</td>
<td>Fabric Intensity</td>
<td>Fracture/Vein Density (per meter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>------------</td>
<td>-------</td>
<td>-----------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>16d</td>
<td>dunite</td>
<td>intrusive</td>
<td>Granular</td>
<td>densely veined black dunite</td>
<td>serpentinised with paler haloes around the veins</td>
<td>cut by a variety of serpentine veins</td>
<td>Brittle- Zone of cohesive possibly magmatic derived brecciation</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>17a</td>
<td>wehrlite</td>
<td>intrusive</td>
<td>Granular</td>
<td>altered fine-grained wehrlite dike</td>
<td>altered and pseudomorphed</td>
<td>cut by green veins</td>
<td>Brittle- Crystal plastic</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>17a</td>
<td>dunite</td>
<td>intrusive</td>
<td>Granular</td>
<td>altered fine-grained wehrlite dike</td>
<td>altered and pseudomorphed</td>
<td>cut by green veins</td>
<td>Brittle- Crystal plastic</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-32Z Section 3, Top of Section 79.37 (m CCD)

| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | Magnetic susceptibility | MSCL-W MSP (SI x 10^-5) | GRA (g/cm²) | Sequence | Lithology | Primary mineralogy (%) | Grain size (µm) | Degree of deformation | Fabric intensity | Discrete brittle features | Fracture/ Vein density (per meter) | Alteration intensity | Alteration halos | Vein density (per meter) | Structures | Vein crosscutting | Alteration | Dip | Magnetic contact | Brittle | Crystal plastic | Veins | Apparent offset | Description |
|--------------|------------------|-------------------|---------------|------------------------|---------------------------|----------------|---------|----------|--------------|----------------|----------------------|----------------|------------------------|-----------------|------------------------|--------------------------|----------------|--------------|-------------------|----------|------------------|----------------|----------------|----------------|
| 79.40 | 0 | | | | | | | | | | | | | | | | | | | | | | | | |
| 79.50 | 10 | | | | | | | | | | | | | | | | | | | | | | | | |
| 79.60 | 20 | | | | | | | | | | | | | | | | | | | | | | | | |
| 79.70 | 30 | | | | | | | | | | | | | | | | | | | | | | | | |
| 79.80 | 40 | | | | | | | | | | | | | | | | | | | | | | | | |
| 79.90 | 50 | | | | | | | | | | | | | | | | | | | | | | | | |
| 80.00 | 60 | | | | | | | | | | | | | | | | | | | | | | | | |
| 80.10 | 70 | | | | | | | | | | | | | | | | | | | | | | | | |
| 80.20 | 80 | | | | | | | | | | | | | | | | | | | | | | | | |
| 80.30 | 90 | | | | | | | | | | | | | | | | | | | | | | | | |

Sequence: 17a

Rock Name: dunite

Contact: continuous

Texture: igneous

Summary: densely veined black dunite

Alteration: serpentinised with paler haloes around the veins

Veins: cut by a variety of serpentine veins

Structure: Brittle-Veins-Crystal plastic-

Fabric intensity

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Undeformed</td>
</tr>
<tr>
<td>1</td>
<td>Minor fracturing</td>
</tr>
<tr>
<td>2</td>
<td>Moderate fracturing</td>
</tr>
<tr>
<td>3</td>
<td>Well-developed cataclasis</td>
</tr>
<tr>
<td>4</td>
<td>Ultracataclastite</td>
</tr>
</tbody>
</table>

Degree of deformation

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Undeformed</td>
</tr>
<tr>
<td>1</td>
<td>Minor fracturing</td>
</tr>
<tr>
<td>2</td>
<td>Moderate fracturing</td>
</tr>
<tr>
<td>3</td>
<td>GS reduction and rotation</td>
</tr>
<tr>
<td>4</td>
<td>Well-developed cataclasis</td>
</tr>
<tr>
<td>5</td>
<td>Ultracataclastite</td>
</tr>
</tbody>
</table>

Discrete brittle features

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Undeformed</td>
</tr>
<tr>
<td>1</td>
<td>Minor fracturing</td>
</tr>
<tr>
<td>2</td>
<td>Moderate fracturing</td>
</tr>
<tr>
<td>3</td>
<td>GS reduction and rotation</td>
</tr>
<tr>
<td>4</td>
<td>Well-developed cataclasis</td>
</tr>
<tr>
<td>5</td>
<td>Ultracataclastite</td>
</tr>
</tbody>
</table>

Fracture/ Vein density (per meter)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Undeformed</td>
</tr>
<tr>
<td>1</td>
<td>Minor fracturing</td>
</tr>
<tr>
<td>2</td>
<td>Moderate fracturing</td>
</tr>
<tr>
<td>3</td>
<td>GS reduction and rotation</td>
</tr>
<tr>
<td>4</td>
<td>Well-developed cataclasis</td>
</tr>
<tr>
<td>5</td>
<td>Ultracataclastite</td>
</tr>
</tbody>
</table>

Alteration intensity

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unaltered</td>
</tr>
<tr>
<td>1</td>
<td>Slight alteration</td>
</tr>
<tr>
<td>2</td>
<td>Moderate alteration</td>
</tr>
<tr>
<td>3</td>
<td>Substantial alteration</td>
</tr>
<tr>
<td>4</td>
<td>Extensive alteration</td>
</tr>
<tr>
<td>5</td>
<td>Complete alteration</td>
</tr>
</tbody>
</table>

Vein density (per meter)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Undeformed</td>
</tr>
<tr>
<td>1</td>
<td>Minor fracturing</td>
</tr>
<tr>
<td>2</td>
<td>Moderate fracturing</td>
</tr>
<tr>
<td>3</td>
<td>GS reduction and rotation</td>
</tr>
<tr>
<td>4</td>
<td>Well-developed cataclasis</td>
</tr>
<tr>
<td>5</td>
<td>Ultracataclastite</td>
</tr>
</tbody>
</table>

Sequence: 17a

Rock Name: wehrlite

Contact: intrusive

Texture: granular

Summary: densely veined wehrlite

Alteration: altered and pseudomorphed

Veins: 50% obscured by veins up to 3 cm thick

Structure: Brittle - Zone of cohesive possibly magmatic derived brecciation

Measurements

- **Vein density (per meter)**
 - 0: Undeformed
 - 1: 0–10 per 10 cm
 - 2: 10–30 per 10 cm
 - 3: 30–50 per 10 cm
 - 4: 50–70 per 10 cm
 - 5: 70–90 per 10 cm
 - 6: >90 per 10 cm

- **Grain size**
 - 0: Undeformed
 - 1: Fine grained (0.2–1 mm)
 - 2: Medium grained (1–5 mm)
 - 3: Coarse grained (5–30 mm)
 - 4: Pegmatitic (>30 mm)
 - 5: Glassy
 - 6: Cryptocrystalline (<0.1 mm)
 - 7: Microcrystalline (0.1–0.2 mm)

- **Density (g/cm³)**
 - 0: Undeformed
 - 1: 2.4
 - 2: 1.4
 - 3: 0.4
 - 4: 0.2

Structures

- **Fault zones**
 - Discrete brittle features
 - Brittle-Magmatic contact

Other Observations

- **Magnetic susceptibility**
 - MSCL-W MSP (SI x 10^-5)

Sample Information

- **Sample number**
 - BA4A-32Z Section 3, Top of Section 79.37 (m CCD)

Mineralogy

- **Primary mineralogy**
 - Olivine
 - Plagioclase
 - Clinopyroxene
 - Orthopyroxene
 - Amphibole
 - Spinel
 - Sulfide

Additional Observations

- **Apparent offset**
 - 0: Undeformed
 - 1: Minor fracturing
 - 2: Moderate fracturing
 - 3: GS reduction and rotation
 - 4: Well-developed cataclasis
 - 5: Ultracataclastite

- **GS reduction and rotation**
 - Protogranular
 - Porphyroclastic
 - Strongly foliated
 - Protomylonite
 - Mylonite
 - Ultramylonite

- **Degree of deformation**
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
 - GS reduction and rotation
 - Well-developed cataclasis
 - Ultracataclastite

- **Alteration intensity**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (≥90%)

Notes

- The sequence is 17a, indicating a specific unit or subunit.

Visual Observations

- **CT image**
 - Images of the samples with various mineralogical and textural features.

Appendix

- **Magnetic susceptibility measurements**
 - MSCL-W MSP (SI x 10^-5)

- **Dip**
 - Magnetic contact
 - Brittle
 - Crystal plastic
 - Veins
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sequence

- 1

Unit/subunit

- 17a

Lithology

- Magmatic
- Layering
- Foliation

Discrete brittle features

- 5

Vein crosscutting

- 4

Alteration intensity

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Magmatic contact

- Dip

- Structure

- Fracture/ Vein density (per meter)

- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Vein density (per meter)

- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Alteration intensity

- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Dip

- Magnetic contact
- Brittle
- Crystal plastic
- Veins
Hole BA4A-33Z Section 1, Top of Section 80.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.70</td>
<td>0</td>
<td>Dunite</td>
<td>Olivine, Clinopyroxene, Orthopyroxene</td>
<td>Brittle-Veins</td>
<td>Fresh (<3%)</td>
</tr>
<tr>
<td>80.80</td>
<td>10</td>
<td>Harzburgite</td>
<td>Magnetic Contact, Garnet</td>
<td>Brittle-Veins</td>
<td>Slight (3–10%)</td>
</tr>
<tr>
<td>80.90</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.00</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.10</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.20</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.30</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.40</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.50</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.60</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEXTURE: Grains are moderately elongated.
Sequence I: 18a
Rock Name: Harzburgite

- **Contact:** Continuous
- **Texture:** Igneous Summary: Serpentised harzburgite with thin gabbroid veins
- **Alteration:** Serpentinised
- **Veins:** Cut by a variety of serpentine veins

Sequence I: 18b
Rock Name: Dunite

- **Contact:** Modal
- **Texture:** Igneous Summary: Serpentinised dunite with thin gabbroid veins
- **Alteration:** Serpentinised
- **Veins:** Cut by a variety of serpentine veins

Sequence I: 18b
Rock Name: Gabbro

- **Contact:** Intrusive
- **Texture:** Igneous Summary: Replaced gabbro vein
- **Alteration:** Altered and pseudomorphed
- **Veins:** Composite white/grey veins and pale green veins to 4 mm emanating from dyke

| Sequence | Unit/Subunit | Lithology | Primary Mineralogy (%) | Grain Size | Degree of deformation | Fracture/ Vein density (per meter) | Alteration intensity | Dip
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18a</td>
<td>18a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Magnetic susceptibility:**
 - MSCL-W MSP: (SI x 10^-5)

- **Vein density (per meter):**
- **Vein crosscutting:**
- **Degree of alteration:**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (>90%)

- **Lithology:**
 - **Primary mineralogy:**
 - Olivine
 - Plagioclase
 - Clinopyroxene
 - Orthopyroxene
 - Amphibole
 - Sulfide

- **Grain size:**
 - < 30
 - 30 – 50
 - 50 – 100
 - 100 – 150
 - 150 – 200

- **Contact:**
 - Continuous
 - Modal
 - Intrusive

- **Texture:**
 - Igneous Summary:

- **Fabric intensity:**
 - 0
 - 1
 - 2
 - 3
 - 4

- **Discrete brittle features:**

- **Fault zones:**

- **Structures:**

- **Apparent offset:**

- **Alteration halos:**

- **Degree of deformation:**
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
 - GS reduction and rotation
 - Well-developed cataclasis
 - Ultracataclastite

- **Protodiorite:**
 - Protogranular
 - Porphyroclastic
 - Strongly foliated
 - Protomylonite
 - Mylonite
 - Ultramylonite

- **Protomylonite:**
 - Isotropic
 - Weak
 - Moderate
 - Strong

- **Porphyroclastic:**
 - Fine grained (0.2–1 mm)
 - Medium grained (1–5 mm)
 - Coarse grained (5–30 mm)
 - Pegmatitic (>30 mm)

- **Retrograde:**
 - Glassy
 - Cryptocrystalline (<0.1 mm)
 - Microcrystalline (0.1–0.2 mm)

- **Grain size:**
 - < 30
 - 30 – 50
 - 50 – 100
 - 100 – 150
 - 150 – 200

- **Hole:** BA4A-33Z

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip Magnatic contact brittle</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Voins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>81.65</td>
<td></td>
</tr>
<tr>
<td>81.69</td>
<td></td>
</tr>
<tr>
<td>81.74</td>
<td></td>
</tr>
<tr>
<td>81.77</td>
<td></td>
</tr>
<tr>
<td>81.80</td>
<td></td>
</tr>
<tr>
<td>81.83</td>
<td></td>
</tr>
<tr>
<td>81.86</td>
<td></td>
</tr>
<tr>
<td>81.89</td>
<td></td>
</tr>
<tr>
<td>81.92</td>
<td></td>
</tr>
<tr>
<td>81.95</td>
<td></td>
</tr>
<tr>
<td>82.00</td>
<td></td>
</tr>
<tr>
<td>82.03</td>
<td></td>
</tr>
<tr>
<td>82.06</td>
<td></td>
</tr>
<tr>
<td>82.09</td>
<td></td>
</tr>
<tr>
<td>82.12</td>
<td></td>
</tr>
<tr>
<td>82.15</td>
<td></td>
</tr>
<tr>
<td>82.18</td>
<td></td>
</tr>
<tr>
<td>82.21</td>
<td></td>
</tr>
<tr>
<td>82.24</td>
<td></td>
</tr>
</tbody>
</table>
SEQUENCE: 1
UNIT/SUBUNIT: 18d
ROCK NAME: dunite
CONTACT: continuous
TEXTURE:
IGNEOUS SUMMARY: serpentinised dunite hosting diffuse gabbroid veins
ALTERATION: serpentinised
VEINS: cut by a variety of serpentine veins, some fine black and white veins
STRUCTURE: Brittle-

SEQUENCE: 1
UNIT/SUBUNIT: 18d
ROCK NAME: Clinopyroxenite
CONTACT: Intrusive
TEXTURE: granular
IGNEOUS SUMMARY: highly altered clinopyroxenite dike
ALTERATION: highly altered
VEINS: network of green veins
STRUCTURE: Brittle-

Fabric intensity

<table>
<thead>
<tr>
<th>Core length (cm)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRA (g/cm²)</td>
<td>0.8</td>
<td>1.3</td>
<td>2.3</td>
<td>3.3</td>
<td>4.3</td>
<td>5.3</td>
<td>6.3</td>
<td>7.3</td>
<td>8.3</td>
</tr>
</tbody>
</table>
| Magnetic
susceptibility | MSCL-W MSP (SI x 10⁻⁵) |
| | 84.43 | 84.33 | 84.23 | 84.13 | 84.03 | 83.93 | 83.83 | 83.73 | 83.63 |
| | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |

Vein density (per meter)

<table>
<thead>
<tr>
<th>Core length (cm)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRA (g/cm²)</td>
<td>0.8</td>
<td>1.3</td>
<td>2.3</td>
<td>3.3</td>
<td>4.3</td>
<td>5.3</td>
<td>6.3</td>
<td>7.3</td>
<td>8.3</td>
</tr>
</tbody>
</table>
| Magnetic
susceptibility | MSCL-W MSP (SI x 10⁻⁵) |
| | 84.43 | 84.33 | 84.23 | 84.13 | 84.03 | 83.93 | 83.83 | 83.73 | 83.63 |
| | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |

Grain size

<table>
<thead>
<tr>
<th>Core length (cm)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRA (g/cm²)</td>
<td>0.8</td>
<td>1.3</td>
<td>2.3</td>
<td>3.3</td>
<td>4.3</td>
<td>5.3</td>
<td>6.3</td>
<td>7.3</td>
<td>8.3</td>
</tr>
</tbody>
</table>
| Magnetic
susceptibility | MSCL-W MSP (SI x 10⁻⁵) |
| | 84.43 | 84.33 | 84.23 | 84.13 | 84.03 | 83.93 | 83.83 | 83.73 | 83.63 |
| | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |

Degree of deformation

<table>
<thead>
<tr>
<th>Core length (cm)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRA (g/cm²)</td>
<td>0.8</td>
<td>1.3</td>
<td>2.3</td>
<td>3.3</td>
<td>4.3</td>
<td>5.3</td>
<td>6.3</td>
<td>7.3</td>
<td>8.3</td>
</tr>
</tbody>
</table>
| Magnetic
susceptibility | MSCL-W MSP (SI x 10⁻⁵) |
<p>| | 84.43 | 84.33 | 84.23 | 84.13 | 84.03 | 83.93 | 83.83 | 83.73 | 83.63 |
| | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |</p>
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>GRA (g/cm²)</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Brittle</th>
<th>Veins</th>
<th>Structures</th>
<th>Alteration halos</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>85.45</td>
<td></td>
</tr>
<tr>
<td>85.50</td>
<td></td>
</tr>
<tr>
<td>85.55</td>
<td></td>
</tr>
<tr>
<td>85.60</td>
<td></td>
</tr>
<tr>
<td>85.65</td>
<td></td>
</tr>
<tr>
<td>85.70</td>
<td></td>
</tr>
<tr>
<td>85.75</td>
<td></td>
</tr>
<tr>
<td>85.80</td>
<td></td>
</tr>
<tr>
<td>85.85</td>
<td></td>
</tr>
<tr>
<td>85.90</td>
<td></td>
</tr>
<tr>
<td>85.95</td>
<td></td>
</tr>
<tr>
<td>86.00</td>
<td></td>
</tr>
<tr>
<td>86.05</td>
<td></td>
</tr>
<tr>
<td>86.10</td>
<td></td>
</tr>
<tr>
<td>86.15</td>
<td></td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Stained image</td>
<td>Magnetic susceptibility</td>
<td>Primary mineralogy</td>
<td>Alteration intensity</td>
<td>Degree of deformation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>86.17</td>
<td></td>
</tr>
<tr>
<td>86.27</td>
<td></td>
</tr>
<tr>
<td>86.37</td>
<td></td>
</tr>
<tr>
<td>86.47</td>
<td></td>
</tr>
<tr>
<td>86.57</td>
<td></td>
</tr>
<tr>
<td>86.67</td>
<td></td>
</tr>
<tr>
<td>86.77</td>
<td></td>
</tr>
</tbody>
</table>

Lithology:
- **Primary mineralogy:**
 - Olivine
 - Plagioclase
 - Amphibole
 - Orthopyroxene
 - Sulfide
- **Grain size:**
 - Finer than 0.2 mm
- **Degree of deformation:**
 - Undeformed
- **Alteration:**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (>90%)

Structures:
- **Vein crosscutting**
- **Alteration halos**

Magnetic contact
- Brittle
- Crystal plastic

Veins:
- **Sulfide**
- **Amphibole**
- **Spinel**
- **Orthopyroxene**
- **Clinopyroxene**
- **Plagioclase**
- **Olivine**

Magmatic Layering
- Discrete brittle features

Vein density (per meter):
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- 90–100
- >100

Alteration intensity
- 0
- 45
- 90

Contact:
- Intrusive

Texture:
- Protodolerite
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite
- Isotropic

Dip:
- 0–45°
- 45–90°

Description:
- Sequence: I
- Unit/Subunit: 18d
- Rock Name: dunite
- Contact: continuous
- Igneous Summary: serpentinised dunite hosting diffuse gabbroid veins
- Alteration: serpentinised
- Veins: cut by a variety of serpentine veins, some fine black and white veins
- Structure: Brittle- Zone of cohesive possibly magmatic derived brecciation

Fabric intensity:
- 5
- 4
- 3
- 2
- 1
- 0

Vein density:
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm

Magnetic susceptibility (SI x 10^-5):
- 1000
- 100
- 10
- 1
- 0

Sulfide density (per meter):
- 0
- 1
- 3
- 5
- 10
- 15
- 20
- 30
- 50
- 70
- 90
- 100

Magmatic contact:
- Brittle
- Crystal plastic

Voids:
- 0
- 45
- 90

Fresh (<3%):
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis

Moderate (3–10%):
- Ultracataclastite

Substantial (11–30%):
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Extensive (31–60%):
- Isotropic

Complete (>90%):
- Weak
- Moderate
- Strong
Hole BA4A-35Z Section 3, Top of Section 88.20 (m CCD)

Depth (m CCD)	Core length (cm)	Shipboard samples	Stained image	Magnetic susceptibility	MSCL-W MSP (SI x 10^-5)	GRA (g/cm²)	Density	Core length	Fabric intensity	Unit/subunit	Lithology	Primary mineralogy (%)	Degree of deformation	Fracture/ Vein density (per meter)	Alteration intensity	Alteration halos		
--------------	------------------	-------------------	---------------	-----------------------	--------------------------	-------------------------	---------	------------	-------------	---------------------	--------------	-----------	------------------------	-----------------------	-----------------------------	---------------------	----------------	
88.20	0																	
88.30	10																	
88.40	20																	
88.50	30																	
88.60	40																	
88.70	50																	
88.80	60																	

Description

- **SEQUENCE I**: 18d
- **UNIT/SUBUNIT**: 18d
- **CONTACT**: continuous
- **TEXTURE**: igneous
- **IGNEOUS SUMMARY**: Serpentinised dunite hosting diffuse gabbroid veins
- **ALTERATION**: Serpentinised
- **VEINS**: Cut by a variety of serpentine veins, some fine black and white veins
- **STRUCTURE**: Brittle-Veins-Crystal plastic

Notes

- **Magnetic contact**
- **Brittle**
- **Crystal plastic**
- **Veins**

Textual Content

ROCK NAME: dunite

CONTACT: continuous

TEXTURE: Igneous

IGNEOUS SUMMARY: Serpentinised dunite hosting diffuse gabbroid veins

ALTERATION: Serpentinised

VEINS: Cut by a variety of serpentine veins, some fine black and white veins

STRUCTURE: Brittle-Veins-Crystal plastic
Hole BA4A-35Z Section 4, Top of Section 88.83 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI \times 10^{-5})</th>
<th>GRA (g/cm²)</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Fabric intensity</th>
<th>Vein density (per meter)</th>
<th>Alteration phenozone</th>
<th>Dip</th>
<th>Structures</th>
<th>Alteration phenozone</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>88.85</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>88.95</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>89.05</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>89.15</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>89.25</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>89.35</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>89.45</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>89.55</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>89.65</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>89.75</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Lithology:
- **Sequence:** I, Unit/SUBUNIT: 18d, Rock Name: dunite, Contact: continuous, Texture: igneous summary: serpentinised dunite hosting diffuse gabbroid veins, Alteration: serpentinised, Veins: cut by a variety of serpentine veins, some fine black and white veins.

Sequence: I, Unit/SUBUNIT: 18d, Rock Name: Olivine gabbro, Contact: Intrusive, Texture: granular, Igneous summary: highly altered olivine rich micro gabbro, Alteration: highly altered, Veins: green veins, Structure: Brittle- Minor faulting.

Sequence: I, Unit/SUBUNIT: 18d, Rock Name: Olivine gabbro, Contact: Intrusive, Texture: granular, Igneous summary: highly altered olivine rich micro gabbro, Alteration: highly altered, Veins: few green veins, Structure: Brittle- Minor faulting.

Fabric intensity:
- 1: Undeformed, 2: Minor fracturing, 3: Moderate fracturing, 4: GS reduction and rotation, 5: Well-developed cataclasis.

Vein density (per meter):
- 0: Undeformed, 1: Minor fracturing, 2: Moderate fracturing, 3: GS reduction and rotation, 4: Well-developed cataclasis.

Discrete brittle features:

Alteration intensity:
- Fresh (<3%), Slight (3–10%), Moderate (11–30%), Substantial (31–60%), Extensive (61–90%), Complete (>90%).

Degree of deformation:
- Undeformed, Minor fracturing, Moderate fracturing, GS reduction and rotation, Well-developed cataclasis.

Magmatic contact:
- Brittle, Crystal plastic, Veins.

Vesicles:
- Discrete features, Brittle features, Magmatic features, Vein crosscutting, Alteration intensity, Degree of deformation, Universal offset, Fault zonation, Structures, Abnormal halos, Vein concentration.

Units:

Geomagnetic:
- Magnetic susceptibility: MSCL-W MSP (SI \times 10^{-5}).

Image:
- CT image, Sulfide, Amphibole, Spinel, Orthopyroxene, Clinopyroxene, Plagioclase, Olivine, Glassy, Cryptocrystalline (<0.1 mm), Microcrystalline (0.1–0.2 mm), Pegmatitic (>30 mm).

Lithology:
- Primary mineralogy: Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Amphibole, Sulfide, Grain size (0.2–1 mm), Median grained (1–5 mm), Coarse grained (5–30 mm), Pegmatitic (>30 mm).

Degree of deformation:
- Magmatic layering, Foliation, Protogranular, Porphyroclastic, Strongly foliated, Protomylonite, Mylonite, Ultramylonite, Isotropic, Weak, Moderate, Strong.
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Alteration halo</th>
<th>Vein density (per meter)</th>
<th>Alteration halo</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.33</td>
<td></td>
</tr>
<tr>
<td>90.43</td>
<td></td>
</tr>
<tr>
<td>90.53</td>
<td></td>
</tr>
<tr>
<td>90.63</td>
<td></td>
</tr>
<tr>
<td>90.73</td>
<td></td>
</tr>
<tr>
<td>90.83</td>
<td></td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Lithology</td>
<td>Primary mineralogy (%)</td>
<td>Grain size</td>
<td>Degree of deformation</td>
<td>Fracture/ Vein density (per meter)</td>
<td>Alteration intensity</td>
<td>Dip</td>
<td>Magnetic contact</td>
<td>Brittle</td>
<td>Crystal plastic</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>-------------------</td>
<td>-----</td>
<td>-----------------</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>90.90</td>
<td>0</td>
<td>Dunite</td>
<td>Olivine</td>
<td>100</td>
<td>Undeformed</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.00</td>
<td></td>
</tr>
<tr>
<td>91.10</td>
<td></td>
</tr>
<tr>
<td>91.20</td>
<td></td>
</tr>
<tr>
<td>91.30</td>
<td></td>
</tr>
<tr>
<td>91.40</td>
<td></td>
</tr>
<tr>
<td>91.50</td>
<td></td>
</tr>
<tr>
<td>91.60</td>
<td></td>
</tr>
<tr>
<td>91.70</td>
<td></td>
</tr>
<tr>
<td>91.80</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-36Z Section 4, Top of Section 91.85 (m CCD)

<p>| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | Magnetic susceptibility | MSCL-W (SI × 10^-5) | MSP | GRA (g/cm³) | Sequence | Lithology | Uncertainties | Alteration intensity | Degree of deformation | Fracture/ Vein density (per meter) | Vein density (per meter) | Alteration | Dip | Magnetic contact | Brittle | Crystal plastic | Veins | Structures | Apparent offset | Alteration halos | Fault zones | Fabric intensity | Vein crosscutting | Description |
|--------------|------------------|-------------------|---------------|------------------------|----------------------|-----|------------|----------|-----------|--------------|---------------------|-----------------------|---------------------------|------------------------|------------|-----|------------------|---------|----------------|--------|------------|---------------|----------------|----------------|---------------|-------------|-------------|----------------|-----------|
| 0 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W (SI x 10^-5)</th>
<th>MSP</th>
<th>GRA (g/cm^3)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fabric</th>
<th>Discrete brittle features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>UNIT/SUBUNIT</td>
<td>ROCK NAME</td>
<td>CONTACT</td>
<td>TEXTURE</td>
<td>IGNEOUS SUMMARY</td>
<td>ALTERATION</td>
<td>VEINS</td>
<td>STRUCTURE</td>
<td>Alteration intensity</td>
<td>Vein density (per meter)</td>
<td>Fracture/ Vein density (per meter)</td>
<td>Degree of deformation</td>
<td>Alteration intensity</td>
<td>Dip</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>------------</td>
<td>-------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>I 18f</td>
<td></td>
<td>dunite</td>
<td>Intrusive</td>
<td></td>
<td>serpentinized</td>
<td>serpentinized</td>
<td>black veins, white veins</td>
<td>Brittle-Veins-Crystal plastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hole BA4A-37Z Section 3, Top of Section 94.57 (m CCD)
Hole BA4A-37Z Section 4, Top of Section 95.25 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI x 10^{-5})</th>
<th>GRA (g/cm³)</th>
<th>Unit/subunit</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Alteration intensity</th>
<th>Dip Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Voids</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.29</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>95.39</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>95.49</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>95.59</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>95.69</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Shipboard samples</td>
<td>Stained image</td>
<td>Magnetic susceptibility</td>
<td>MSCL-W (SI × 10^-5)</td>
<td>MSP</td>
<td>GRA (g/cm²)</td>
<td>CT image</td>
<td>Sequence</td>
<td>Unit/subunit</td>
<td>Lithology</td>
<td>Primary mineralogy</td>
<td>Degree of deformation</td>
<td>Discrete brittle features</td>
<td>Fracture/ Vein density (per meter)</td>
<td>Alteration intensity</td>
<td>Dip</td>
<td>Magnetic contact</td>
<td>Brittle</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>-----</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
<tr>
<td>95.73</td>
<td></td>
</tr>
</tbody>
</table>
Sequence: I

Unit/Subunit: 18f

Rock Name: Dunite

Contact: Tectonic

Texture: Igneous

Summary: Serpentinized dunite

Alteration: Serpentinized

Veins: Black veins, white veins

Structure: Brittle

<table>
<thead>
<tr>
<th>Fabric intensity</th>
<th>Vein density (per meter)</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>0-10</td>
<td>0-10</td>
<td>0-10</td>
<td>0-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-30</td>
<td>10-30</td>
<td>10-30</td>
<td>10-30</td>
<td>10-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-50</td>
<td>30-50</td>
<td>30-50</td>
<td>30-50</td>
<td>30-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-70</td>
<td>50-70</td>
<td>50-70</td>
<td>50-70</td>
<td>50-70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-90</td>
<td>70-90</td>
<td>70-90</td>
<td>70-90</td>
<td>70-90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>90</td>
<td>>90</td>
<td>>90</td>
<td>>90</td>
<td>>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magnetic susceptibility:

- **MSCL-W**
 - **MSP (SI x 10^-5):**
 - 10
 - 5
 - 1

Gra (g/cm^2):

- 1
- 0.5
- 0.2

Lithology:

- Orthopyroxene
- Spinel
- Amphibole
- Quartz
- Sulfide
- Plagioclase
- Olivine

Primary mineralogy (%):

- 100
- 75
- 50
- 25
- 0

Magmatic Layering:

- 3
- 2
- 1
- 0

Foliation:

- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Discrete brittle features:

<table>
<thead>
<tr>
<th>Vein crosscutting alteration halos</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Alteration intensity:

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Degree of deformation:

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Structures:

- Fault zones
- Structures
- Apparent offset

Vein density (per meter):

<table>
<thead>
<tr>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10</td>
</tr>
<tr>
<td>10–30</td>
</tr>
<tr>
<td>30–50</td>
</tr>
<tr>
<td>50–70</td>
</tr>
<tr>
<td>>70</td>
</tr>
</tbody>
</table>

Core length (cm):

- 60
- 50
- 40
- 30
- 20
- 10
- 5
- 1

Depth (m CCD):

- 96.53
- 96.63
- 96.73
- 96.83
- 96.93
- 97.03

Hole BA4A-38Z Section 2, Top of Section 96.49 (m CCD)
SEQUENCE: I
UNIT/SUBUNIT: 19c
ROCK NAME: dunite
CONTACT: Tectonic
TEXTURE: IGNEOUS SUMMARY: slightly fractured serpentinized dunite with minor dikes
ALTERATION: serpentinized
VEINS: grey-green veins, white veins
STRUCTURE: Brittle-Stepped shear vein with pull apart structure
Vein crosscutting

SEQUENCE: I
UNIT/SUBUNIT: 19c
ROCK NAME: gabbro
CONTACT: Intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: gabbroic dike
ALTERATION:
VEINS: grey-green veins, black veins
STRUCTURE: Brittle-
Vein crosscutting

SEQUENCE: I
UNIT/SUBUNIT: 19d
ROCK NAME: Harzburgite
CONTACT: Continuous
TEXTURE: IGNEOUS SUMMARY: serpentinized harzburgic with multiple gabbroic intrusions
ALTERATION: serpentinized
VEINS: grey veins, black veins
STRUCTURE: Brittle-
Pyroxene grains are rounded and slightly elongated.
Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Fabric intensity

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Vein density

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Primary mineralogy

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Degree of deformation

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Alteration intensity

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Dip of contact

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Brittle

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Crystal plastic

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Veins

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Structures

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Alteration halos

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

CT image

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Magnetic susceptibility

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

MSCL-W MSP

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

GRA

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Depth (m CCD)

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Core length (cm)

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Shipboard samples

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Scanned image

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Magnetic contact

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Degree of deformation

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Brittle

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Crystal plastic

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Veins

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

CT image

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Magnetic susceptibility

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

MSCL-W MSP

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

GRA

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Depth (m CCD)

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Core length (cm)

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Shipboard samples

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Scanned image

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Magnetic contact

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Degree of deformation

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Brittle

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Crystal plastic

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Veins

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

CT image

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Magnetic susceptibility

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

MSCL-W MSP

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

GRA

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Depth (m CCD)

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Core length (cm)

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Shipboard samples

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Scanned image

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Magnetic contact

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Degree of deformation

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Brittle

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Crystal plastic

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Veins

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

CT image

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Magnetic susceptibility

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

MSCL-W MSP

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

GRA

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Depth (m CCD)

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Core length (cm)

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Shipboard samples

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Scanned image

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Magnetic contact

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Degree of deformation

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Brittle

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Crystal plastic

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Veins

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

CT image

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Magnetic susceptibility

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

MSCL-W MSP

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

GRA

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Depth (m CCD)

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Core length (cm)

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Shipboard samples

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Scanned image

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Magnetic contact

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Degree of deformation

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Brittle

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Crystal plastic

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)

Veins

- Hole BA4A-39Z Section 1, Top of Section 98.70 (m CCD)
Hole BA4A-39Z Section 4, Top of Section 100.95 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.97</td>
<td></td>
</tr>
<tr>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>100.05</td>
<td></td>
</tr>
<tr>
<td>100.10</td>
<td></td>
</tr>
<tr>
<td>100.15</td>
<td></td>
</tr>
<tr>
<td>100.20</td>
<td></td>
</tr>
<tr>
<td>100.25</td>
<td></td>
</tr>
<tr>
<td>100.30</td>
<td></td>
</tr>
<tr>
<td>100.35</td>
<td></td>
</tr>
<tr>
<td>100.40</td>
<td></td>
</tr>
<tr>
<td>100.45</td>
<td></td>
</tr>
<tr>
<td>100.50</td>
<td></td>
</tr>
<tr>
<td>100.55</td>
<td></td>
</tr>
<tr>
<td>100.60</td>
<td></td>
</tr>
<tr>
<td>100.65</td>
<td></td>
</tr>
<tr>
<td>100.70</td>
<td></td>
</tr>
<tr>
<td>100.75</td>
<td></td>
</tr>
<tr>
<td>100.80</td>
<td></td>
</tr>
<tr>
<td>100.85</td>
<td></td>
</tr>
<tr>
<td>100.90</td>
<td></td>
</tr>
<tr>
<td>100.95</td>
<td></td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Sampled image</td>
<td>Magnetic susceptibility</td>
<td>MSCL-W</td>
<td>MSP</td>
<td>GRA (μT)</td>
<td>LITHOLOGY</td>
<td>GRAI</td>
<td>Unit/subunit</td>
<td>Degree of deformation</td>
<td>Fracture/ Vein density (per meter)</td>
<td>Alteration intensity</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
<td>------------</td>
<td>------</td>
<td>--------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>101.73</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>101.83</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>101.93</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>102.03</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>102.13</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>102.23</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>102.33</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE 1: 30m
ROCK NAME: Harzburgite
CONTACT: Continuous
IGNEOUS SUMMARY: fractured, erpentinized harzburgite crosscut by multiple gabbroic dikes
ALTERATION: erpentinized
VEINS: grey, green veins

SEQUENCE 2: 10m
ROCK NAME: Olivine gabbro
CONTACT: Intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: gabbroic dike
ALTERATION:
VEINS: grey veins

SEQUENCE 3: 10m
ROCK NAME: Gabbro
CONTACT: Intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: fractured gabbroic dike
ALTERATION:
VEINS: grey veins, green veins

Magmatic contact
Brittle
Crystal plastic
Veins

Fabric intensity

Magmatic Layering

Foliation

Discrete brittle features

Vein crosscutting

Alteration intensity

Degree of deformation

Vein density (per meter)

Fracture/ Vein density (per meter)

Alteration intensity

Dip

Description
Hole BA4A-40Z Section 2, Top of Section 102.39 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Magnetic contact</th>
<th>Brittle Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Alteration halos</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102.41</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>102.51</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>102.61</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>102.71</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>102.81</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>102.91</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>103.01</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>103.11</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Description

Sequence: I

Rock Name: Olivine gabbro

Contact: Continuous

Texture: Granular

Igneous Summary: Olivine gabbro dike

Alteration:

Veins: Thick replacive green vein, white veins

Structure: Brittle

Sequence: I

Unit/Subunit: 20f

Rock Name: Dunite

Contact: Intrusive

Texture:

Igneous Summary: Fully serpentinized dunite crosscut by gabbroic dikes

Alteration: Serpentinized

Veins: White, grey veins, grey-green veins

Structure: Brittle

Sequence: I

Unit/Subunit: 20f

Rock Name: Clinopyroxenite

Contact: Intrusive

Texture: Granular

Igneous Summary: Orthopyroxenite dike

Alteration:

Veins: Black veins, grey veins

Structure: Brittle

Fabric intensity

100

Vein density

(per meter)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Grain size

<table>
<thead>
<tr>
<th>Fine grained (0.2–1 mm)</th>
<th>Medium grained (1–5 mm)</th>
<th>Coarse grained (5–30 mm)</th>
<th>Pegmatitic (>30 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Hole BA4A-40Z Section 2, Top of Section 102.39 (m CCD)
Hole BA4A-40Z Section 3, Top of Section 103.18 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W (SI x 10^-5)</th>
<th>MR-A (SI x 10^-5)</th>
<th>GRA (g/cm²)</th>
<th>Sequance</th>
<th>Unit/subunit</th>
<th>Lithology</th>
<th>Primary mineralogy</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>103.20</td>
<td></td>
</tr>
<tr>
<td>103.30</td>
<td></td>
</tr>
<tr>
<td>103.40</td>
<td></td>
</tr>
<tr>
<td>103.50</td>
<td></td>
</tr>
<tr>
<td>103.60</td>
<td></td>
</tr>
<tr>
<td>103.70</td>
<td></td>
</tr>
<tr>
<td>103.80</td>
<td></td>
</tr>
<tr>
<td>103.90</td>
<td></td>
</tr>
<tr>
<td>104.00</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: I
UNIT/SUBUNIT: 20f
ROCK NAME: dunite
CONTACT: Continuous
TEXTURE: IGNEOUS
SUMMARY: fully serpentinized dunite crosscut by gabbroic dikes
ALTERATION: serpentinized
VEINS: white, grey veins, grey-green veins
STRUCTURE: Brittle-

SEQUENCE: I
UNIT/SUBUNIT: 20g
ROCK NAME: Harzburgite
CONTACT: Intrusive
TEXTURE: IGNEOUS
SUMMARY: highly fractured, serpentinized harzburgite with numerous thick gabbroic intrusions
ALTERATION: serpentinized
VEINS: black veins, grey veins, grey-green veins
STRUCTURE: Brittle-

SEQUENCE: I
UNIT/SUBUNIT: 20g
ROCK NAME: Olivine gabbro
CONTACT: Intrusive
TEXTURE: IGNEOUS
SUMMARY: altered, rubbly gabbroic dike
ALTERATION:
VEINS: grey-green veins, white veins, grey veins
STRUCTURE: Brittle-

Description

- Brittle: Shear zones associated with dikes
- Crystal plastic: Pyroxene grains are rounded and slightly elongated
- Veins:
 - White, grey veins, grey-green veins
 - Black veins, grey veins, grey-green veins

Table:

- **Fabric intensity**
- **Vein density (per meter)**
- **Grain size**
- **Hole BA4A-40Z Section 3, Top of Section 103.18 (m CCD)**
- **Core length (cm)**
- **Shipboard samples**
- **Stained image**
- **Magnetic susceptibility**
- **MSCL-W (SI x 10^-5)**
- **MR-A (SI x 10^-5)**
- **GRA (g/cm²)**
- **Sequence**
- **Unit/subunit**
- **Lithology**
- **Primary mineralogy**
- **Degree of deformation**
- **Fracture/ Vein density (per meter)**
- **Alteration intensity**
- **Dip**
- **Magnetic contact**
- **Brittle**
- **Crystal plastic**
- **Veins**

Legend:

- **Sequence:** I
- **Unit/subunit:** 20f
- **Rock Name:** dunite
- **Contact:** Continuous
- **Texture:** Igneous
- **Summary:** Fully serpentinized dunite crosscut by gabbroic dikes
- **Alteration:** Serpentinized
- **Veins:** White, grey veins, grey-green veins
- **Structure:** Brittle-

- **Sequence:** I
- **Unit/subunit:** 20g
- **Rock Name:** Harzburgite
- **Contact:** Intrusive
- **Texture:** Igneous
- **Summary:** Highly fractured, serpentinized harzburgite with numerous thick gabbroic intrusions
- **Alteration:** Serpentinized
- **Veins:** Black veins, grey veins, grey-green veins
- **Structure:** Brittle-

- **Sequence:** I
- **Unit/subunit:** 20g
- **Rock Name:** Olivine gabbro
- **Contact:** Intrusive
- **Texture:** Igneous
- **Summary:** Altered, rubbly gabbroic dike
- **Alteration:**
- **Veins:** Grey-green veins, white veins, grey veins
- **Structure:** Brittle-

Notes:

- **Degree of deformation**
 - Brittle-
 - Crystal plastic-
 - Veins-

- **Vein crosscutting**
- **Alteration intensity**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (≥90%)

- **Fracture/Vein density (per meter)**
 - 0–1 per 10 cm
 - 1–3 per 10 cm
 - 3–5 per 10 cm
 - >5 per 10 cm

- **Magnetic contact**
- **Brittle**
- **Crystal plastic**
- **Veins**
Hole BA4A-41Z Section 1, Top of Section 104.70 (m CCD)

Depth (m CCD)	Core length (cm)	Shipboard samples	Stained image	Magnetic susceptibility	MSCL-W	MSP (SI x 10^-5)	GRA (g/cm^3)	Sequence	Lithology	Unit/subunit	Primary mineralogy (%)	Grainsize	Degree of deformation	Alteration intensity	Dip	Magnatic contact	Brittle	Crystal plastic	Veins	Fabic intensity	Vein density (per meter)	Discrete brittle features	Alteration halos	Structures	Abnormal heating	Vein crosscutting	Alteration halo	Fault zones	Apparent offset	Description	
104.70																															
104.80																															
104.90																															
105.00																															
105.10																															
105.20																															
105.30																															
105.40																															
105.50																															
105.60																															

SEQUENCE: 1

ROCK NAME: dunite

CONTACT: Continuous

TEXTURE: IGNEOUS SUMMARY: mildly fractured, serpentinized dunite crosscut by fractured gabbroic dikes, harzburgitic zones

ALTERATION: serpentinized

VEINS: grey-green veins, grey veins

STRUCTURE: Brittle- Veins- conjugate vein sets occur Crystal plastic- Pyroxene grains are rounded and slightly elongated.
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W</th>
<th>MSP (SI x 10^-5)</th>
<th>GRA (g/cm²)</th>
<th>GRA Sequence</th>
<th>Lithology</th>
<th>Unit/subunit</th>
<th>rocks</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle contact</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>105.64</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>105.65</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>105.70</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>105.75</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>105.80</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>105.85</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>105.90</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>105.95</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>106.00</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>106.05</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

- **Description**: Details about the rock sequence, contact types, textures, and deformation characteristics are provided. The image shows a CT scan and core samples with annotations indicating the various rock types, alteration, and deformation features.
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>106.61</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>106.71</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>106.81</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>106.91</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>107.01</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Sequence: 1
Unit/Subunit: 21c
Rock Name: dunite
Contact: Tectonic
Igneous Summary: Fractured serpentinized dunite crosscut by numerous olivine gabbro dikes
Alteration: Serpentinized
Veins: grey veins, grey-green veins, brown veins, black veins
Structure: Brittle

Sequence: 1
Unit/Subunit: 21c
Rock Name: Olivine gabbro
Contact: Intrusive
Texture: Granular
Igneous Summary: olivine gabbro dike
Alteration:
Veins: grey veins, grey-green veins
Structure: Brittle

Sequence: 1
Unit/Subunit: 21c
Rock Name: Olivine gabbro
Contact: Intrusive
Texture: Granular
Igneous Summary: olivine gabbro dike
Alteration:
Veins: grey veins, grey-green veins
Structure: Brittle

Fabric intensity
<table>
<thead>
<tr>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Vein density (per meter)
<table>
<thead>
<tr>
<th>20</th>
<th>15</th>
<th>10</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Degree of deformation
<table>
<thead>
<tr>
<th>Undeformed</th>
<th>Minor fracturing</th>
<th>Moderate fracturing</th>
<th>Magmatic contact</th>
<th>Dip of contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Alteration intensity
<table>
<thead>
<tr>
<th>Fresh (<3%)</th>
<th>Slight (3–10%)</th>
<th>Moderate (11–30%)</th>
<th>Substantial (31–60%)</th>
<th>Extensive (61–90%)</th>
<th>Complete (≥ 90%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Magmatic contact
<table>
<thead>
<tr>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>45</td>
<td>90</td>
</tr>
</tbody>
</table>

Magnetic susceptibility
<table>
<thead>
<tr>
<th>MSCL-W</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.72</td>
<td>2.67</td>
</tr>
</tbody>
</table>

Primary mineralogy
- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Sulfide

Grain size
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Alteration halos
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥ 90%)
Hole BA4A-42Z Section 1, Top of Section 107.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%</th>
<th>Degree of deformation</th>
<th>Magmatic Layering</th>
<th>Foliation</th>
<th>Discrete brittle features</th>
<th>Vein crosscutting</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle contacts</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>107.70</td>
<td></td>
<td>Dunite</td>
<td>100</td>
<td>Undeformed</td>
<td>Protogranular</td>
<td>Porphyroclastic</td>
<td>Strongly foliated</td>
<td>Fresh (<3%)</td>
<td>0–10</td>
<td>0</td>
<td>Discrete</td>
<td>Brittle</td>
<td>Crystalline</td>
<td></td>
</tr>
<tr>
<td>107.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Protomylonite</td>
<td>Mylonite</td>
<td>Ultramylonite</td>
<td>Slight (3–10%)</td>
<td>10–30</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Isotropic</td>
<td>Weak</td>
<td>Fine grained (0.2–1 mm)</td>
<td>Substantial (31–60%)</td>
<td>30–50</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium</td>
<td>Medium grained (1–5 mm)</td>
<td>Extensive (61–90%)</td>
<td>50–70</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description:
- Sequence: 21c
- Rock Name: Dunite
- Contact: Continuous
- Textural Summary: Fractured serpentinized dunite crosscut by numerous olivine gabbro dikes
- Alteration: Serpentinized
- Veins: Grey veins, grey-green veins, brown veins, black veins
- Structure: Brittle contacts and crystalline veins occur
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/subunit</th>
<th>Rock name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Alteration intensity</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>21d</td>
<td>Gabbro</td>
<td>Continuous</td>
<td>Granular</td>
<td>Highly altered, moderately fractured</td>
<td>Serpentinized</td>
<td>Green, white veins</td>
<td>Brittle-Veins-Crystal plastic</td>
<td>50%</td>
<td>20%</td>
<td></td>
</tr>
</tbody>
</table>

| Hole BA4A-42Z Section 3, Top of Section 109.29 (m CCD) |

Description

- ROCK NAME: Gabbro
- CONTACT: Continuous
- TEXTURE: Granular
- Alteration: Serpentinized
- Veins: Green, white veins
- Structure: Brittle-Veins-Crystal plastic
- Alteration intensity: 50%
- Degree of deformation: 20%
- Fracture/ Vein density (per meter): 20%
Hole BA4A-42Z Section 4, Top of Section 110.00 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility (MSCL-W MSP (SI x 10^-5))</th>
<th>GRA (g/cm²)</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>110.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>110.10</td>
<td>10</td>
<td></td>
<td>MEBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110.20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>110.30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>110.40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>110.50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>110.60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>110.70</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>110.80</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>110.90</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Description

SEQUENCE 1: T

ROCK NAME: Dunite

CONTACT: Continuous

KINEMATIC SUMMARY: Serpentinized dunite crosscutted by gabbroic dikes, orthopyroxene enriched towards top

ALTERATION: Serpentinized

VEINS: Green, white, few black veins

TEXTURE: Brittle

Structure

Vein crosscutting

Alteration

Alteration halos

Degree of deformation

Degree of deformation

Magmatic contact

Brittle

Crystal plastic

Veins

- Green
- White
- Few black

Degree of deformation

- Brittle
- Crystal plastic

Fabric intensity

5

Vein density (per meter)

- 0
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm
| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | Magnetic susceptibility | MSCL-W MSP (SI x 10^-5) | GRA (g/cm^3) | Sequence | Lithology | Primary mineralogy (%) | Degree of deformation | Fracture/ Vein density (per meter) | Alteration intensity | Dip | Magnetic contact | Brittle | Crystal plastic | Veins | Alteration halos | Structures | Vein crosscutting | Discrete brittle features | Vein density (per meter) | Fabric intensity | Magmatic Layering | Foliation | |
|---|
| 110.70 | 0 | | | | | | I | 21f | Grano-phyric | | | | | | | | | | | | | | | | | |
| 110.80 | 10 | | | | | | I | 22a | Porphyroclastic | | | | | | | | | | | | | | | | | |

Description

- **SEQUENCE**: 1
- **UNIT/SUBUNIT**: 21f
- **ROCK NAME**: Gabbro
- **CONTACT**: Continuous
- **TEXTURE**: Granular

IGNEOUS SUMMARY:
- Highly altered, moderately fractured

ALTERATION:
- Veins: green, white veins

STRUCTURE:
- Brittle
- Veins: conjugate vein sets occur

Veins
- Discrete brittle features

Grain size
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Hole BA4A-43Z Section 1, Top of Section 110.70 (m CCD)
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm²)</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>111.61</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>111.71</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>111.81</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>111.91</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>112.01</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>112.11</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>112.21</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>112.31</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>112.41</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: I

UNIT/SUBUNIT: 22a

ROCK NAME: Dunite

CONTACT: Continuous

TEXTURE: Igneous

SUMMARY: Serpentinized dunite, orthopyroxenitic zones

ALTERATION: Serpentinized

VEINS: Green frankenstein veins

STRUCTURE: Brittle

SEQUENCE: I

UNIT/SUBUNIT: 22b

ROCK NAME: Harzburgite

CONTACT: Modal

TEXTURE: Granular

IGNEOUS SUMMARY: Serpentinized harzburgite

ALTERATION: Serpentinized

VEINS:

STRUCTURE: Brittle

Crystal plastic - Pyroxene grains are rounded and slightly elongated.

SEQUENCE: I

UNIT/SUBUNIT: 22c

ROCK NAME: Dunite

CONTACT: Modal

TEXTURE: Igneous

SUMMARY: Serpentinized dunite crosscutted by offset pyroxenitic dike, thin gabbroic dike, sporadic orthopyroxene patches

ALTERATION: Serpentinized

VEINS: Green, white veins

STRUCTURE: Brittle

Fabric intensity

- 1
- 2
- 3
- 4
- 5

Vein density (per meter)

- 0
- 1
- 2
- 3
- 4
- 5
- 6

Grain size

- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Magnetic contact

- Brittle
- Magmatic

Degree of deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Vein crosscutting alteration halos

- Alteration halos

Degree of deformation

- Protomylonite
- Mylonite
- Ultramylonite

Dip

- 0
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >90

Vein density (per meter)

- 0–1 per 10 cm
- 1–3 per 10 cm
- 3–5 per 10 cm
- >5 per 10 cm

Degree of deformation

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Lithology

- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine

Magmatic contact

- Dip
- Contact

Description

- Crystal plastic
- Discrete brittle features
- Brittle fault zones
- Discrete brittle features
SEQUENCE: I
UNIT/SUBUNIT: 22c
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: serpentinized dunite crosscutted by offsetpyroxenitic dike, thin gabbroic dike, sporadic orthopyroxene patches
ALTERATION: serpentinzed
VEINS: green, white veins
STRUCTURE: Brittle-
Veins-
Crystal plastic-

SEQUENCE: I
UNIT/SUBUNIT: 22d
ROCK NAME: Harzburgite
CONTACT: Intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: serpentinized harzburgite crosscutted by pyroxenitic
dike
ALTERATION: serpentinzed
VEINS: thin black, blue/grey veins
STRUCTURE: Brittle-
Veins-
Crystal plastic- Pyroxene grains are rounded and slightly elongated.

SEQUENCE: I
UNIT/SUBUNIT: 22e
ROCK NAME: Dunite
CONTACT: Modal
TEXTURE:
IGNEOUS SUMMARY: serpentinized dunite crosscutted by pyroxenitic dike, mesh texture zone, weakly fractured, locally oxidized
ALTERATION: serpentinzed
VEINS: black, green, white veins
STRUCTURE: Brittle-
Veins-
Crystal plastic-
Rock Name and Contact
- **Rock Name**: Dunite
- **Contact**: Continuous

Petrographic Summary
- **Sericinized dunite crosscutted by pyroxenitic dike, mesh texture zone, weakly fractured, locally oxidized**

Fabric Intensity
- **Vein density**:
 - 0–1 per 10 cm
 - 1–2 per 10 cm
 - 2–4 per 10 cm
 - 4–15 per 10 cm
 - >15 per 10 cm

Lithology
- **Mineralogy**:
 - Orthopyroxene
 - Clinopyroxene
 - Amphibole
 - Olivine
 - Plagioclase
 - Sulfide

Grain Size
- **Grain size**:
 - Fine grained (0.2–1 mm)
 - Medium grained (1–5 mm)
 - Coarse grained (5–30 mm)
 - Pegmatitic (>30 mm)

Degree of Deformation
- **Foliation**:
 - Protomylonite
 - Mylonitve
 - Ultramylonite

Alteration Intensity
- **Alteration halos**:
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (≥90%)

Structures
- **Fault zones**: Rearrangement of layers, folding, fracturing, vein crosscutting

Magnetic Properties
- **Magnetic susceptibility**
 - MSCL-W (SI x 10^-9)
 - MSP

Density
- **GRA (g/cm^3)**
 - 2.1
 - 2.7

Table

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Contact</th>
<th>Texture</th>
<th>IGNEOUS SUMMARY</th>
<th>ALTERATION</th>
<th>VEINS</th>
<th>STRUCTURE</th>
<th>VEIN DENSITY</th>
<th>ALTERATION INTENSITY</th>
<th>MAGNETIC CONTACT</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>22e</td>
<td>Continuous</td>
<td>Igneous</td>
<td>Serpentinized dunite crosscutted by pyroxenitic dike, mesh texture zone, weakly fractured, locally oxidized</td>
<td>Serpentinized</td>
<td>Black, green, white veins</td>
<td>Brittle-fracture, crystal plastic</td>
<td>Density (per meter)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-44Z Section 2, Top of Section 114.65 (m CCD)

ROCK NAME: Dunite

CONTACT: Continuous

TEXTURE:
- IGNEOUS
 - Summary: serpentinized dunite crosscutted by pyroxenitic dike, mesh texture zone, weakly fractured, locally oxidized

ALTERATION: serpentinized

VEINS: black, green, white veins

STRUCTURE: Brittle
- Zone of cohesive possibly magmatic derived brecciation

FABRIC INTENSITY:
- Vein density (per meter):
 - 0
 - 1 per 10 cm
 - 3-5 per 10 cm
 - >20 per 10 cm
 - 5-15 per 10 cm
 - 15-20 per 10 cm

GRA (g/cm³):
- 2.52
- 2.32
- 2.12

Primary mineralogy (%):
- Olivine
- Plagioclase
- Chlorite
- Spinel
- Orthopyroxene
- Sulfide

Other features:
- Discrete brittle features
- Alteration intensity
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Lithology:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Magmatic Layering:
- Protogranular
- Porphyroclastic
- Strongly foliated

Dip:
- Magnetic contact
- Brittle
- Crystal plastic

Vein density (per meter):
- 0
- 5-10 cm
- 10-30 cm
- >50 cm
- 50-70 cm
- 70-90 cm
- >90 cm

CT image:
- Sedimentary rock
- Diagenetic overprint
- Fracture/vein density (per meter)
- 0
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm

Magnetic susceptibility:
- MSCL-W
- MSP

Scanned image:
- Sedimentary rock
- Diagenetic overprint

Sequences and units:
- Sequence: I
- Unit/subunit: 22e

Shaded areas:
- Contact zone
- Sedimentary rock
- Diagenetic overprint
- Fracture/vein density (per meter)

Depth (m CCD):
- 114.69
- 114.79
- 114.89
- 114.99
- 115.09

Core length (cm):
- Hole BA4A-44Z Section 2
Hole BA4A-44Z Section 3, Top of Section 115.15 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size (mm)</th>
<th>Degree of deformation</th>
<th>Discrete brittle features</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Alteration</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>115.15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>115.25</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>115.35</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>115.45</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>115.55</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>115.65</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>115.75</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>115.85</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>115.95</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Sequences and Units

- **Sequence I**: Unit 23a, Rock Name: Dunite, Contact: Intrusive
- **Lithology**: Igneous Summary - Highly serpentinized dunite, harzburgitic patch, crosscutted by branched out dikes
- **Alteration**: Serpentinized
- **Veins**: Structure - Brittle, Veins - Crystal plastic

- **Sequence II**: Unit 23b, Rock Name: Olivine gabbro, Contact: Intrusive
- **Lithology**: Igneous Summary - Branched out
- **Alteration**: Highly altered
- **Veins**: Structure - Brittle, Grey, White veins

- **Sequence III**: Unit 23c, Rock Name: Harzburgite, Contact: Intrusive
- **Lithology**: Igneous Summary - Serpentinized harzburgite, locally oxidized, crossed by serpentinized veins
- **Alteration**: Serpentinized
- **Veins**: Structure - Brittle, Green, White veins

Fabric Intensity

- Sequence: I
- Unit/Subunit: 23a
- Rock Name: Dunite
- Contact: Intrusive
- Texture: Granular
- Igneous Summary: Highly serpentinized dunite, harzburgitic patch, crosscutted by branched out dikes
- Alteration: Serpentinized
- Veins: Structure - Brittle, Veins - Crystal plastic

Itemized List

- **Primary Mineralogy**:
 - Olivine
 - Plagioclase
 - Clinopyroxene
 - Orthopyroxene
 - Amphibole
 - Sulfide

- **Grain Size**: mm (microscopic scale)

- **Depth Range**: m CCD
- **Core Length**: cm
- **Shipboard Samples**: Y/N
- **Stained Image**: Y/N
- **Magnetic Susceptibility**: SI 10^-5
- **MSCL-W**: SI 10^-5
- **MSP**: SI 10^-5
SEQUENCE: I
UNIT/SUBUNIT: 23b
ROCK NAME: Harzburgite
CONTACT: Continuous
TEXTURE: Granular
IGNEOUS SUMMARY: serpentinized harzburgite, locally oxidized, crossed by sutured serpentinized veins
ALTERATION: serpentinized
VEINS: green, white veins
STRUCTURE: Brittle-
Crystal plastic-
Pyroxene grains are rounded and slightly elongated.

SEQUENCE: I
UNIT/SUBUNIT: 23c
ROCK NAME: Dunite
CONTACT: Modal
TEXTURE:
IGNEOUS SUMMARY: serpentinized dunite
ALTERATION: serpentinized
VEINS: green, white veins
STRUCTURE: Brittle-
Crystal plastic-

SEQUENCE: I
UNIT/SUBUNIT: 23d
ROCK NAME: Dunite
CONTACT: Intrusive
TEXTURE:
IGNEOUS SUMMARY: serpentinized dunite
ALTERATION: serpentinized
VEINS:
STRUCTURE: Brittle-
Crystal plastic-

Fabric intensity
Vein density (per meter)
Grain size
Hole BA4A-44Z Section 4, Top of Section 116.05 (m CCD)
Depth (m CCD)
Core length (cm)
Sequence
Lithology
Primary mineralogy (%)
Grain size
Degree of deformation
Fracture/ Vein density (per meter)
Alteration intensity
Dip
Magnetic contact
Brittle
Crystal plastic
Veins
Magmatic
Layering
Foliation
Discrete brittle features
Fracture zones
Alteration halos
Fault zones
Structures
Apparent offset
Alteration
Intensity
Description
SEQUENCE: I
UNIT/SUBUNIT: 23e
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: highly serpentinized dunite, moderately fractured, crosscutted by gabbroic and offset branched out pyroxenitic dikes, locally oxidized, mesh texture
ALTERATION: serpentinized
VEINS: black, green, white veins
STRUCTURE: Brittle- Veins- conjugate vein sets occur

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dipl</th>
<th>Magnetic contact</th>
<th>Brittle Fabric plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>117.30</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Olivena</td>
<td>100</td>
<td>0</td>
<td>1 per 10 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.40</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>Plagioclase</td>
<td>95</td>
<td>1</td>
<td>3-5 per 10 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.50</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>90</td>
<td>2</td>
<td>>20 per 10 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.60</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>Spinel</td>
<td>85</td>
<td>3</td>
<td>5-15 per 10 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.70</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>Orthopyroxene</td>
<td>80</td>
<td>4</td>
<td>15-20 per 10 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.80</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>Clinopyroxene</td>
<td>75</td>
<td>5</td>
<td>>30 per 10 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.90</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td>Plagioclase</td>
<td>70</td>
<td>6</td>
<td>90-100 (m CCD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118.00</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>60</td>
<td>7</td>
<td>80-90 (m CCD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118.10</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td>Spinel</td>
<td>50</td>
<td>8</td>
<td>70-80 (m CCD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118.20</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>Orthopyroxene</td>
<td>40</td>
<td>9</td>
<td>60-70 (m CCD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION:
- Fault zones
- Structures
- Vein density
- Degree of deformation
- Magnetic contact
- Brittle Fabric
- Crystal plastic
- Veins
SEQUENCE: I
UNIT/SUBUNIT: 23e
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: highly serpentinized dunite, moderately fractured, crosscutted by gabbroic and offset branched out pyroxenitic dikes, locally oxidized, mesh texture
ALTERATION: serpentinized

VEINS: black, green, white veins

STRUCTURE: Brittle-
Veins- conjugate vein sets occur
Crystal plastic-

SEQUENCE: I
UNIT/SUBUNIT: 23e
ROCK NAME: Clinopyroxenite
CONTACT: Intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: branched out
ALTERATION: highly altered

VEINS:

STRUCTURE: Brittle-

SEQUENCE: I
UNIT/SUBUNIT: 23f
ROCK NAME: Dunite
CONTACT: Intrusive
TEXTURE:
IGNEOUS SUMMARY: serpentinized dunite, harzburgitic patche, crosscutted by thin pyroxenitic dikes
ALTERATION: serpentinized

VEINS: green, white veins
STRUCTURE: Brittle-
Veins- conjugate vein sets occur
Crystal plastic-

Fabric intensity

Vein density (per meter)

Grain size

Hole BA4A-45Z Section 3, Top of Section 118.23 (m CCD)

Depth (m CCD)

Core length (cm)

Sequence

Contact

TEXTURE

IGNEOUS SUMMARY

ALTERATION

VEINS

STRUCTURE

Description

Magnetic contact

Brittle

Crystal plastic

Vents

Discrete brittle features

Vein crosscutting

Alteration intensity

Degree of deformation

Vein density (per meter)

Core length (cm)

Sequence

Contact

TEXTURE

IGNEOUS SUMMARY

ALTERATION

VEINS

STRUCTURE

Description

Magnetic contact

Brittle

Crystal plastic

Vents

Discrete brittle features

Vein crosscutting

Alteration intensity

Degree of deformation

Vein density (per meter)

Core length (cm)

Sequence

Contact

TEXTURE

IGNEOUS SUMMARY

ALTERATION

VEINS

STRUCTURE

Description

Magnetic contact

Brittle

Crystal plastic

Vents

Discrete brittle features

Vein crosscutting

Alteration intensity

Degree of deformation

Vein density (per meter)

Core length (cm)

Sequence

Contact

TEXTURE

IGNEOUS SUMMARY

ALTERATION

VEINS

STRUCTURE

Description

Magnetic contact

Brittle

Crystal plastic

Vents

Discrete brittle features

Vein crosscutting

Alteration intensity

Degree of deformation

Vein density (per meter)

Core length (cm)
Hole BA4A-45Z Section 4, Top of Section 119.01 (m CCD)

Core length (cm) | Depth (m CCD) | Shipboard samples | Stained image | Magnetic susceptibility (SI x 10^-5) | MSCL-W | MSP | GRA (g/cm³) | Surface Unit | Lithology | Primary mineralogy (%) | Grain size | Degree of deformation | Fracture/ Vein density (per meter) | Alteration intensity | Dip Magnetic contact | Brittle | Crystal plastic | Veins |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>119.01</td>
<td></td>
</tr>
<tr>
<td>119.05</td>
<td>119.06</td>
<td></td>
</tr>
<tr>
<td>119.10</td>
<td>119.11</td>
<td></td>
</tr>
<tr>
<td>119.15</td>
<td>119.16</td>
<td></td>
</tr>
<tr>
<td>119.20</td>
<td>119.21</td>
<td></td>
</tr>
<tr>
<td>119.25</td>
<td>119.26</td>
<td></td>
</tr>
<tr>
<td>119.30</td>
<td>119.31</td>
<td></td>
</tr>
<tr>
<td>119.35</td>
<td>119.36</td>
<td></td>
</tr>
<tr>
<td>119.40</td>
<td>119.41</td>
<td></td>
</tr>
<tr>
<td>119.45</td>
<td>119.46</td>
<td></td>
</tr>
<tr>
<td>119.50</td>
<td>119.51</td>
<td></td>
</tr>
<tr>
<td>119.55</td>
<td>119.56</td>
<td></td>
</tr>
<tr>
<td>119.60</td>
<td>119.61</td>
<td></td>
</tr>
<tr>
<td>119.65</td>
<td>119.66</td>
<td></td>
</tr>
<tr>
<td>119.70</td>
<td>119.71</td>
<td></td>
</tr>
<tr>
<td>119.75</td>
<td>119.76</td>
<td></td>
</tr>
</tbody>
</table>

Description
- **SEQUENCE 1:** I
- **UNIT/SUBUNIT:** 23f
- **CONTACT:** Continuous
- **TEXTURE:**
 - IGNEOUS: Serpentinized dunite, harzburgitic patch, crosscut by thin pyroxenitic dikes
- **ALTERATION:** Serpentinized
- **VEINS:** Green, white veins
- **STRUCTURE:** Brittle-Veins: Conjugate vein sets occur
 - Crystal plastic:
 - Vein density (per meter): 3-5 per 10 cm
- **Veins:**
 - Fabric intensity: 5
 - Grain size: 6
 - Hole BA4A-45Z Section 4, Top of Section 119.01 (m CCD)
 - Depth (m CCD): 0
 - Core length (cm): 119.75

Lithology
- **Primary mineralogy:**
 - Olivine
 - Plagioclase
 - Clinopyroxene
 - Orthopyroxene
 - Amphibole
 - Sulfide

Degree of deformation
- **Discrete brittle features:**
 - Fabric intensity: 5
 - Grain size: 6

Alteration intensity
- **Altered:**
 - Serpentinized

Structures
- **Veins:**
 - Vein density (per meter): 3-5 per 10 cm

Fabric intensity
- **Vein crosscutting:**
 - Degree of deformation: 5
 - Vein density (per meter): 3-5 per 10 cm

Veins
- **Alteration intensity:**
 - Fresh (<3%): 90
 - Slight (3–10%): 45
 - Moderate (11–30%): 0
 - Substantial (31–60%): 45
 - Extensive (61–90%): 0
 - Complete (≥90%): 0

Vein density (per meter)
- 0–10: 0
- 10–30: 0
- 30–50: 0
- 50–70: 0
- 70–90: 0
- >100: 0

Blow-by-build sequence
- **CT image:**
 - Sulfide
 - Amphibole
 - Clinopyroxene
 - Orthopyroxene
 - Plagioclase
 - Olivine

Magnetic susceptibility
- **MSCL-W:**
 - MSP
 - GRA (g/cm³)
 - Surface Unit
 - Lithology
 - Degree of deformation
 - Fabric intensity
 - Vein density (per meter)
 - Alteration intensity
 - Dip Magnetic contact
 - Brittle
 - Crystal plastic
 - Veins

Core length (cm)
- 119.01
- 119.06
- 119.11
- 119.16
- 119.21
- 119.26
- 119.31
- 119.36
- 119.41
- 119.46
- 119.51
- 119.56
- 119.61
- 119.66
- 119.71
- 119.76
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Lithology</th>
<th>Primary mineralogy (unit/subunit)</th>
<th>Hole BA4A-46Z Section 1, Top of Section 119.70 (m CCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>119.73</td>
<td></td>
<td>119.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119.83</td>
<td></td>
<td>119.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119.93</td>
<td></td>
<td>119.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.03</td>
<td></td>
<td>120.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.13</td>
<td></td>
<td>120.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.23</td>
<td></td>
<td>120.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.33</td>
<td></td>
<td>120.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.43</td>
<td></td>
<td>120.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: Dunite
ROCK NAME: Dunite
CONTACT: Continuous
ALTERATION SUMMARY: Serpentinised dunite

SEQUENCE: Gabbro
ROCK NAME: Gabbro
CONTACT: Intrusive
ALTERATION SUMMARY: Partially altered and pseudomorphed

VEINS: Threadlike white veins, denser near dyke, cut by a variety of serpentine veins

TEXTURE: Brittle

DIMENSIONS

- **Vein density (per meter):** 0 to 10, 10 to 30, 30 to 50, 50 to 70, 70 to 90, >90
- **Grain size (mm):** 0.2 to 1, 1 to 5, 5 to 30, >30
- **Degree of deformation:** Undeformed, Minor fracturing, Moderate fracturing, GS reduction and rotation, Well-developed cataclasis
- **Alteration intensity:** Fresh (<3%), Slight (3–10%), Moderate (11–30%), Substantial (31–60%), Extensive (61–90%), Complete (>90%)

Lithology

- **Primary Mineralogy:**
 - Orthopyroxene
 - Clinopyroxene
 - Amphibole
 - Plagioclase
 - Sulfide
 - Olivine
- **Secondary Mineralogy:**
 - Chlorite
 - Serpentine

Magnetic contact

- **Contact Type:** Brittle
- **Texture:** Crystal plastic

Structures

- **Fault zones:** 0 to 10, 10 to 30, 30 to 50, 50 to 70, 70 to 90, >90
- **Vein crosscutting:** 0 to 10, 10 to 30, 30 to 50, 50 to 70, 70 to 90, >90
- **Alteration halos:** 0 to 10, 10 to 30, 30 to 50, 50 to 70, 70 to 90, >90

Fabric Intensity

- **Elemental distribution:**
 - GRA (g/cm²)
 - CT image
- **Texture:**
 - Protogranular
 - Protomylonite
 - Mylonite
 - Ultramylonite

Vein crosscutting

- **Description:**
 - Magnetic contact
 - Brittle
 - Crystal plastic
 - Veins
Sequence I: Dunite

Unit/Subunit: 23g
- **Rock Name:** Dunite
- **Contact:** Continuous
- **Texture:** Igneous
- **Summary:** Serpentinized dunite
- **Alteration:** Serpentinized
 - **Veins:** Thread-like white veins, denser near dyke, cut by a variety of serpentine veins
- **Structure:** Brittle-Veins-Crystal plastic

Sequence I: Harzburgite

Unit/Subunit: 23h
- **Rock Name:** Harzburgite
- **Contact:** Modal
- **Texture:** Granular
- **Summary:** Serpentinized opx-poor harzburgite
- **Alteration:** Serpentinized
 - **Veins:** Cut by a variety of serpentine veins
- **Structure:** Brittle-Veins-Crystal plastic

Pyroxene Grains are Moderately Elongated.

Sequence I: Dunite

Unit/Subunit: 23i
- **Rock Name:** Dunite
- **Contact:** Modal
- **Texture:** Igneous
- **Summary:** Serpentinized dunite
- **Alteration:** Serpentinized
 - **Veins:** Cut by a variety of serpentine veins
- **Structure:** Brittle-Veins-Crystal plastic

Fabric Intensity

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>0</td>
</tr>
<tr>
<td>10-20</td>
<td>1</td>
</tr>
<tr>
<td>20-30</td>
<td>2</td>
</tr>
<tr>
<td>30-40</td>
<td>3</td>
</tr>
<tr>
<td>40-50</td>
<td>4</td>
</tr>
<tr>
<td>50-60</td>
<td>5</td>
</tr>
</tbody>
</table>

Depth (m CCD)

<table>
<thead>
<tr>
<th>Core length (cm)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT image</td>
<td></td>
</tr>
</tbody>
</table>

Lithology

<table>
<thead>
<tr>
<th>Magnetic susceptibility</th>
<th>MSCL-W</th>
<th>MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SI x 10^-5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary Mineralogy

<table>
<thead>
<tr>
<th>Plagioclase</th>
<th>Amphibole</th>
<th>Orthopyroxene</th>
<th>Clinopyroxene</th>
<th>Spinel</th>
<th>Magnetite</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Degree of deformation

<table>
<thead>
<tr>
<th>Fractures</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>0</td>
</tr>
<tr>
<td>10-20</td>
<td>1</td>
</tr>
<tr>
<td>20-30</td>
<td>2</td>
</tr>
<tr>
<td>30-40</td>
<td>3</td>
</tr>
<tr>
<td>40-50</td>
<td>4</td>
</tr>
<tr>
<td>50-60</td>
<td>5</td>
</tr>
</tbody>
</table>

Alteration intensity

<table>
<thead>
<tr>
<th>Alteration intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
</tr>
<tr>
<td>10-20</td>
</tr>
<tr>
<td>20-30</td>
</tr>
<tr>
<td>30-40</td>
</tr>
<tr>
<td>40-50</td>
</tr>
<tr>
<td>50-60</td>
</tr>
</tbody>
</table>

Description

- **Veins:** Serpentine veins are present near dyke, cut by a variety of serpentine veins.
- **Structure:** Brittle-Veins-Crystal plastic
Hole BA4A-47Z Section 3, Top of Section 124.34 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>124.37</td>
<td></td>
</tr>
<tr>
<td>124.47</td>
<td></td>
</tr>
<tr>
<td>124.57</td>
<td></td>
</tr>
<tr>
<td>124.67</td>
<td></td>
</tr>
<tr>
<td>124.77</td>
<td></td>
</tr>
<tr>
<td>124.87</td>
<td></td>
</tr>
<tr>
<td>124.97</td>
<td></td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Magnetic susceptibility</td>
<td>Lithology</td>
<td>Primary mineralogy (%)</td>
<td>Grain size</td>
<td>Degree of deformation</td>
<td>Alteration intensity</td>
<td>Dip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.70</td>
<td>0</td>
<td>Dunite</td>
<td>Olivine - Plagioclase</td>
<td>Medium</td>
<td>Brittle</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.80</td>
<td>10</td>
<td>Wehrlite</td>
<td>Amphibole - Spinel</td>
<td>Fine</td>
<td>Brittle</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.90</td>
<td>20</td>
<td>Olivine</td>
<td>Orthopyroxene - Clinopyroxene</td>
<td>Medium</td>
<td>Brittle</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.00</td>
<td>30</td>
<td>Amphibole</td>
<td>Orthopyroxene</td>
<td>Coarse</td>
<td>Brittle</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.10</td>
<td>40</td>
<td>Plagioclase</td>
<td>Orthopyroxene</td>
<td>Fine</td>
<td>Brittle</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.20</td>
<td>50</td>
<td>Clinopyroxene</td>
<td>Orthopyroxene</td>
<td>Medium</td>
<td>Brittle</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.30</td>
<td>60</td>
<td>Orthopyroxene</td>
<td>Orthopyroxene</td>
<td>Fine</td>
<td>Brittle</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.40</td>
<td>70</td>
<td>Orthopyroxene</td>
<td>Orthopyroxene</td>
<td>Medium</td>
<td>Brittle</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.50</td>
<td>80</td>
<td>Orthopyroxene</td>
<td>Orthopyroxene</td>
<td>Fine</td>
<td>Brittle</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.60</td>
<td>90</td>
<td>Orthopyroxene</td>
<td>Orthopyroxene</td>
<td>Medium</td>
<td>Brittle</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SEQUENCE: I
UNIT/SUBUNIT: 23k
ROCK NAME: dunite
CONTACT: continuous
TEXTURE:
IGNEOUS SUMMARY: serpentinised dunite
ALTERATION: serpentinised
VEINS: cut by a variety of serpentine veins
STRUCTURE: Brittle-

Vein density (per meter):

- 0
- 1: 2-5 per 10 cm
- 2: >20 per 10 cm
- 3: 5-15 per 10 cm
- 4: 15-20 per 10 cm
- 5: 20-30 per 10 cm
- 6: 30-50 per 10 cm
- 7: 50-70 per 10 cm
- 8: 70-90 per 10 cm
- 9: >90 per 10 cm

Granulometry:

- 0
- 1: Fine grained (0.2–1 mm)
- 2: Medium grained (1–5 mm)
- 3: Coarse grained (5–30 mm)
- 4: Pegmatitic (>30 mm)

Alteration intensity:

- 0: Fresh (<3%)
- 1: Slight (3–10%)
- 2: Moderate (11–30%)
- 3: Substantial (31–60%)
- 4: Extensive (61–90%)
- 5: Complete (>90%)

Magmatic contact:

- 0: Undeformed
- 1: Minor fracturing
- 2: Moderate fracturing
- 3: GS reduction and rotation
- 4: Well-developed cataclasis
- 5: Ultracataclastite

Dip:

- 0: Protomylonite
- 1: Mylonite
- 2: Ultramylonite
- 3: Isotropic
- 4: Weak
- 5: Moderate
- 6: Strong

Degree of deformation:

- 0: Undeformed
- 1: Minor fracturing
- 2: Moderate fracturing
- 3: GS reduction and rotation
- 4: Well-developed cataclasis
- 5: Ultracataclastite

Magmatic layering:

- 0: Protogranular
- 1: Porphyroclastic
- 2: Strongly foliated
- 3: Protomylonite
- 4: Mylonite
- 5: Ultramylonite

Fabric intensity:

- 0: Undeformed
- 1: Minor fracturing
- 2: Moderate fracturing
- 3: GS reduction and rotation
- 4: Well-developed cataclasis
- 5: Ultracataclastite

Vein crosscutting:

- 0: Undeformed
- 1: Minor fracturing
- 2: Moderate fracturing
- 3: GS reduction and rotation
- 4: Well-developed cataclasis
- 5: Ultracataclastite

Strength:

- 0: Undeformed
- 1: Minor fracturing
- 2: Moderate fracturing
- 3: GS reduction and rotation
- 4: Well-developed cataclasis
- 5: Ultracataclastite

Drillhole description:

- 0: Fault zones
- 1: Structures
- 2: Apparent offset
- 3: Alteration halos
- 4: Vein zones
- 5: Vein crosscutting
- 6: Vein density (per meter)
- 7: Degree of deformation
- 8: Magmatic contact
- 9: Brittle plastic
- 10: Veins

Depth (m CCD):

- 126.70
- 126.80
- 126.90
- 127.00
- 127.10
- 127.20
- 127.30
- 127.40
- 127.50
- 127.60
- 127.70
- 127.80
- 127.90
- 128.00

Core length (cm):

- 90
- 80
- 70
- 60
- 50
- 40
- 30
- 20
- 10
- 0

Magnetic susceptibility (MSCL-W):

- SP (SI 10^-5)

MSCL-W:

- MSP
- GRA (g/cm^3)

Primary mineralogy:

- Olivine
- Plagioclase
- Chloropyroxene
- Orthopyroxene
- Amphibole
- Sulfide

Degree of deformation:

- 0: Undeformed
- 1: Minor fracturing
- 2: Moderate fracturing
- 3: GS reduction and rotation
- 4: Well-developed cataclasis
- 5: Ultracataclastite

Vein density (per meter):

- 0
- 1: 2-5 per 10 cm
- 2: >20 per 10 cm
- 3: 5-15 per 10 cm
- 4: 15-20 per 10 cm
- 5: 20-30 per 10 cm
- 6: 30-50 per 10 cm
- 7: 50-70 per 10 cm
- 8: 70-90 per 10 cm
- 9: >90 per 10 cm

Mineralogy:

- Sulfide
- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine

Grain size:

- 0
- 1: Fine grained (0.2–1 mm)
- 2: Medium grained (1–5 mm)
- 3: Coarse grained (5–30 mm)
- 4: Pegmatitic (>30 mm)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Scanned image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Degree of deformation</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>126.70</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.80</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126.90</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127.00</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127.10</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127.20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127.30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127.40</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127.50</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127.60</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description:

- Sheet image
- CT image
- Sequence
- Unit/subunit
- Rock name
- Contact
- Texture
- Igneous summary
- Alteration
- Veins
- Structure
- Apparent offset
- Alteration halos
- Vein crosscutting
- Vein density (per meter)
- Degree of deformation
- Primary mineralogy
- Grain size
- Magnetic susceptibility
- GRA (g/cm^3)

Hole BA4A-48Z Section 2, Top of Section 126.69 (m CCD)
Table: Integrated Rock Description

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility (SI 10^-5)</th>
<th>MSCL-W MSP</th>
<th>GRA (g/cm³)</th>
<th>Sequence</th>
<th>Sedimentology</th>
<th>Lithology</th>
<th>Grain size (%)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>DIP</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Voids</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.61</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1.6</td>
<td>1</td>
<td>25</td>
<td>Dunite</td>
<td>75</td>
<td>Fresh (<3%)</td>
<td>Serpentinised</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127.71</td>
<td>10</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2.16</td>
<td>2</td>
<td>50</td>
<td>Gabbro</td>
<td>100</td>
<td>alteration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127.81</td>
<td>20</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2.18</td>
<td>2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>127.91</td>
<td>30</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2.18</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>128.01</td>
<td>40</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2.18</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>128.11</td>
<td>50</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2.18</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>128.21</td>
<td>60</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2.18</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>128.31</td>
<td>70</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2.18</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-48Z Section 4, Top of Section 128.32 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W (SI)</th>
<th>GRA (g/cm³)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Unit/subunit</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Fabric intensity</th>
<th>Fracture/Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.33</td>
<td></td>
</tr>
<tr>
<td>128.34</td>
<td></td>
</tr>
<tr>
<td>128.35</td>
<td></td>
</tr>
<tr>
<td>128.36</td>
<td></td>
</tr>
<tr>
<td>128.37</td>
<td></td>
</tr>
<tr>
<td>128.38</td>
<td></td>
</tr>
<tr>
<td>128.39</td>
<td></td>
</tr>
<tr>
<td>128.40</td>
<td></td>
</tr>
<tr>
<td>128.41</td>
<td></td>
</tr>
<tr>
<td>128.42</td>
<td></td>
</tr>
<tr>
<td>128.43</td>
<td></td>
</tr>
<tr>
<td>128.44</td>
<td></td>
</tr>
<tr>
<td>128.45</td>
<td></td>
</tr>
<tr>
<td>128.46</td>
<td></td>
</tr>
<tr>
<td>128.47</td>
<td></td>
</tr>
<tr>
<td>128.48</td>
<td></td>
</tr>
<tr>
<td>128.49</td>
<td></td>
</tr>
<tr>
<td>128.50</td>
<td></td>
</tr>
<tr>
<td>128.51</td>
<td></td>
</tr>
<tr>
<td>128.52</td>
<td></td>
</tr>
<tr>
<td>128.53</td>
<td></td>
</tr>
<tr>
<td>128.54</td>
<td></td>
</tr>
<tr>
<td>128.55</td>
<td></td>
</tr>
<tr>
<td>128.56</td>
<td></td>
</tr>
<tr>
<td>128.57</td>
<td></td>
</tr>
<tr>
<td>128.58</td>
<td></td>
</tr>
<tr>
<td>128.59</td>
<td></td>
</tr>
<tr>
<td>128.60</td>
<td></td>
</tr>
<tr>
<td>128.61</td>
<td></td>
</tr>
<tr>
<td>128.62</td>
<td></td>
</tr>
<tr>
<td>128.63</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **Lithology:** Serpentinitised dunite
- **TEXTURE:** Igneous
- **ALTERATION:** Serpentinitised
- **VEINS:** Cut by a variety of serpentine veins
- **STRUCTURE:** Brittle, Veins, Crystal plastic

Samples

- **Unit/Subunit:** 23k
- **Contact:** Continuous
- **ROCK NAME:** Dunite
- **MSCL-W:** 128.83
- **GRA:** 128.73
- **Orthopyroxene:** 128.63
- **Clinoxylosene:** 128.53
- **Plagioclase:** 128.43
- **Olivine:** 128.33

Alteration Intensity

- **Alteration:** Slight (3–10%)
- **Visual:** Serpentinitised, altered plagioclase

Vein Crosscutting

- **Density:** 1–5 per 10 cm

Grain Size

- **Grain size:** 0.2–1 mm

Degree of Deformation

- **Minor fracturing**
- **Moderate fracturing**
- **GS reduction and rotation**
- **Well-developed cataclasis**
- **Ultracataclastite**

Contact: Intrusive

Texture: Granular

Igneous Summary: Serpentinitised dunite

Alteration: Slight (3–10%)
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Lithology</th>
<th>Primary Mineralogy (%)</th>
<th>Degree of Deformation</th>
<th>Magmatic Layering</th>
<th>Fracture/ Vein Density (per meter)</th>
<th>Alteration Intensity</th>
<th>Magnetic Contact</th>
<th>Brittle Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23a</td>
<td>23a</td>
<td>Dunite</td>
<td>Olivine</td>
<td>Undeformed</td>
<td>Protomylonite</td>
<td>< 0.1</td>
<td>Fresh (<3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24a</td>
<td>24a</td>
<td>Dunite</td>
<td>Orthopyroxene</td>
<td>Undeformed</td>
<td>Protomylonite</td>
<td>0.1–1</td>
<td>Fresh (<3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fabric Intensity

- 0
- 1
- 2
- 3
- 4
- 5

Vein Density (per meter)

- < 0.1
- 0.1–1
- 1–10
- 10–30
- 30–50
- 50–70
- 70–90
- > 90

Magnetic Susceptibility

- MSCL-W
- MSP
- GRA

Core Sample Details

- Core length (cm)
- Core orientation (°)
- Core image

Core Description

- Sequence
- Unit/Subunit
- Lithology
- Primary Mineralogy ((%))
- Degree of Deformation
- Magmatic Layering
- Fracture/ Vein Density (per meter)
- Alteration Intensity
- Magnetic Contact
- Brittle Features
- Description
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Magmatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>132.79</td>
<td>30</td>
<td>10</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>132.79</td>
<td>30</td>
<td>10</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>132.79</td>
<td>30</td>
<td>10</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>132.79</td>
<td>30</td>
<td>10</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>132.79</td>
<td>30</td>
<td>10</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

SEQUENCE: I

UNIT/SUBUNIT: 24a

ROCK NAME: Dunite

CONTACT: Continuous

TEXTURE:

IGNEOUS SUMMARY: Serpentinized dunite

ALTERATION: Serpentinized

VEINS: Network of millimetric green veins and few thin white veins

STRUCTURE: Brittle-

Sequence: I

Unit/Subunit: 24a

Rock Name: Dunite

Contact: Continuous

Texture:

Igneous Summary: Serpentinized dunite

Alteration: Serpentinized

Veins: Network of millimetric green veins and few thin white veins

Structure: Brittle-

SEQUENCE: I

UNIT/SUBUNIT: 24f

ROCK NAME: Olivine gabbro

CONTACT: Intrusive

TEXTURE:

IGNEOUS SUMMARY: Highly altered olivine gabbro

ALTERATION: Highly altered

VEINS: Green veins

STRUCTURE: Brittle-

Sequence: I

Unit/Subunit: 24f

Rock Name: Olivine gabbro

Contact: Intrusive

Texture:

Igneous Summary: Highly altered olivine gabbro

Alteration: Highly altered

Veins: Green veins

Structure: Brittle-

SEQUENCE: I

UNIT/SUBUNIT: 24g

ROCK NAME: Dunite

CONTACT: Intrusive

TEXTURE:

IGNEOUS SUMMARY: Serpentinized dunite with a patch of layered Opx

ALTERATION: Serpentinized

VEINS: Network of millimetric green veins and few thin black and white veins

STRUCTURE: Brittle-

Sequence: I

Unit/Subunit: 24g

Rock Name: Dunite

Contact: Intrusive

Texture:

Igneous Summary: Serpentinized dunite with a patch of layered Opx

Alteration: Serpentinized

Veins: Network of millimetric green veins and few thin black and white veins

Structure: Brittle-
Sequence: I

Unit/Subunit: 24g
Rock Name: Dunite
Contact: Continuous

Igneous Summary: Serpentinized dunite with a patch of layered Opx
Alteration: Serpentinized
Veins: Network of milimetric green veins and few thin black and white veins
Structure: Brittle-Veins-Crystal plastic-

Sequence: I

Unit/Subunit: 24g
Rock Name: Olivine gabbro
Contact: Intrusive

Igneous Summary: Highly altered olivine gabbro
Alteration: Highly altered
Veins: Green veins
Structure: Brittle-Veins-Crystal plastic-

Scan Image

Description: Series of images depicting core samples with various textural and structural features.
Sequence: I

Unit/Subunit: 24g
- **Rock Name:** Dunite
- **Contact:** Continuous
- **Texture:**
- **Igneous Summary:** Serpentinized dunite with a patch of layered Opx
- **Alteration:** Serpentinized
- **Veins:** Network of millimetric green veins and few thin black and white veins
- **Structure:** Brittle-

Fabric Intensity

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Fabric Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.43</td>
<td>5</td>
</tr>
<tr>
<td>135.33</td>
<td>4</td>
</tr>
<tr>
<td>135.23</td>
<td>3</td>
</tr>
<tr>
<td>135.13</td>
<td>2</td>
</tr>
<tr>
<td>135.03</td>
<td>1</td>
</tr>
<tr>
<td>134.93</td>
<td>0</td>
</tr>
</tbody>
</table>

Grain Size

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Grain Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.43</td>
<td>6</td>
</tr>
<tr>
<td>135.33</td>
<td>5</td>
</tr>
<tr>
<td>135.23</td>
<td>4</td>
</tr>
<tr>
<td>135.13</td>
<td>3</td>
</tr>
<tr>
<td>135.03</td>
<td>2</td>
</tr>
<tr>
<td>134.93</td>
<td>1</td>
</tr>
</tbody>
</table>

Degree of Deformation

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Degree of Deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.43</td>
<td>Undeformed</td>
</tr>
<tr>
<td>135.33</td>
<td>Minor fracturing</td>
</tr>
<tr>
<td>135.23</td>
<td>Moderate fracturing</td>
</tr>
<tr>
<td>135.13</td>
<td>GS reduction and rotation</td>
</tr>
<tr>
<td>135.03</td>
<td>Well-developed cataclasis</td>
</tr>
<tr>
<td>134.93</td>
<td>Ultracataclastite</td>
</tr>
</tbody>
</table>

Lithology

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.43</td>
<td>Protogranular</td>
</tr>
<tr>
<td>135.33</td>
<td>Porphyroclastic</td>
</tr>
<tr>
<td>135.23</td>
<td>Strongly foliated</td>
</tr>
<tr>
<td>135.13</td>
<td>Protomylonite</td>
</tr>
<tr>
<td>135.03</td>
<td>Mylonite</td>
</tr>
<tr>
<td>134.93</td>
<td>Ultramylonite</td>
</tr>
</tbody>
</table>

Magnetic Susceptibility (SI x 10^-5)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Magnetic Susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.43</td>
<td>2.96</td>
</tr>
<tr>
<td>135.33</td>
<td>2.86</td>
</tr>
<tr>
<td>135.23</td>
<td>2.76</td>
</tr>
</tbody>
</table>

Degree of Alteration

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Degree of Alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.43</td>
<td>Fresh (<3%)</td>
</tr>
<tr>
<td>135.33</td>
<td>Slight (3–10%)</td>
</tr>
<tr>
<td>135.23</td>
<td>Moderate (11–30%)</td>
</tr>
<tr>
<td>135.13</td>
<td>Substantial (31–60%)</td>
</tr>
<tr>
<td>135.03</td>
<td>Extensive (61–90%)</td>
</tr>
<tr>
<td>134.93</td>
<td>Complete (≥90%)</td>
</tr>
</tbody>
</table>

Discrete Vein density (per meter)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Discrete Vein density</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.43</td>
<td>0–1 per 10 cm</td>
</tr>
<tr>
<td>135.33</td>
<td>1 per 10 cm</td>
</tr>
<tr>
<td>135.23</td>
<td>3 per 10 cm</td>
</tr>
<tr>
<td>135.13</td>
<td>>20 per 10 cm</td>
</tr>
<tr>
<td>135.03</td>
<td>5–15 per 10 cm</td>
</tr>
<tr>
<td>134.93</td>
<td>15–20 per 10 cm</td>
</tr>
</tbody>
</table>

Vein density (per meter)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Vein density</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.43</td>
<td>0–1 per 10 cm</td>
</tr>
<tr>
<td>135.33</td>
<td>1 per 10 cm</td>
</tr>
<tr>
<td>135.23</td>
<td>3 per 10 cm</td>
</tr>
<tr>
<td>135.13</td>
<td>>20 per 10 cm</td>
</tr>
<tr>
<td>135.03</td>
<td>5–15 per 10 cm</td>
</tr>
<tr>
<td>134.93</td>
<td>15–20 per 10 cm</td>
</tr>
</tbody>
</table>

Magnetic contact

- Brittle

Structures

- Fault zones
- Vein cross-cutting

Alteration halos

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Key Points:
- **SEQUENCE:** I
- **UNIT:** 24g
- **ROCK NAME:** Dunite
- **CONTACT:** Continuous
- **TEXTURE:**
- **Igneous Summary:** Serpentinized dunite with a patch of layered Opx
- **Alteration:** Serpentinized
- **Veins:** Network of millimetric green veins and few thin black and white veins
- **Structure:** Brittle-

Sequence: II

Unit/Subunit: 24h
- **Rock Name:** Olivine gabbro
- **Contact:** Modal
- **Texture:**
- **Igneous Summary:** Highly altered olivine gabbro
- **Alteration:** Highly altered
- **Veins:** Dense network of millimetric green veins
- **Structure:** Brittle-

Depth (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.43</td>
</tr>
<tr>
<td>135.33</td>
</tr>
<tr>
<td>135.23</td>
</tr>
<tr>
<td>135.13</td>
</tr>
<tr>
<td>135.03</td>
</tr>
<tr>
<td>134.93</td>
</tr>
</tbody>
</table>

Key Points:
- **SEQUENCE:** II
- **UNIT:** 24h
- **ROCK NAME:** Olivine gabbro
- **CONTACT:** Modal
- **TEXTURE:**
- **Igneous Summary:** Highly altered olivine gabbro
- **Alteration:** Highly altered
- **Veins:** Dense network of millimetric green veins
- **Structure:** Brittle-
Hole BA4A-51Z Section 2, Top of Section 135.48 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Fabric intensity</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Structures</th>
<th>Vein density (per meter)</th>
<th>Alteration</th>
<th>Degree of deformation</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.48</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>135.58</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>135.68</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>135.78</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>135.88</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>135.98</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>136.08</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>136.18</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>136.28</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Description:
- **SEQUEL:** 24h
- **ROCK NAME:** olivine gabbro
- **CONTACT:** Continuous
- **TEXTURE:** Brittle
- **ALTERATION:** Highly altered
- **VEINS:** Dense network of milimetric green veins
- **STRUCTURE:** Brittle

Core data:
- **Magnetic susceptibility (SI x 10^-5)**
- **GRA (g/cm^3)**
- **Primary mineralogy (%)**
 - Olivine
 - Plagioclase
 - Amphibole
 - Spinel
 - Sulfide
- **Grain size (mm)**
- **Fracture/ Vein density (per meter)**
- **Alteration intensity**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (≥ 90%)

Additional data:
- ** chocolating features**
- **Contact:** Modal
- **Texture:** Brittle
- **Igneous Summary:** Highly altered olivine gabbro
- **Alteration:** Highly altered
- **Veins:** Dense network of milimetric green veins
- **Structure:** Brittle
Hole BA4A-52Z Section 1, Top of Section 137.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Vein density (per meter)</th>
<th>Vein crosscutting Alteration intensity</th>
<th>Discrete brittle features</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Vents</th>
<th>Structures</th>
<th>Apparent offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>137.70</td>
<td>100</td>
<td>Dunite</td>
<td>5</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>Magnetic contact</td>
<td>Brittle</td>
<td>Crystal plastic</td>
<td>Vents</td>
<td>Structures</td>
<td>Apparent offset</td>
</tr>
<tr>
<td>137.73</td>
<td>100</td>
<td>Olivine gabbro</td>
<td>3</td>
<td>Slight (3–10%)</td>
<td>1</td>
<td>Minor fracturing</td>
<td>1</td>
<td>45</td>
<td>Brittle</td>
<td>Crystal plastic</td>
<td>Vents</td>
<td>Structures</td>
<td>Apparent offset</td>
<td></td>
</tr>
<tr>
<td>137.83</td>
<td>100</td>
<td>Harzburgite</td>
<td>2</td>
<td>Moderate (11–30%)</td>
<td>2</td>
<td>Moderate fracturing</td>
<td>2</td>
<td>90</td>
<td>Brittle</td>
<td>Crystal plastic</td>
<td>Vents</td>
<td>Structures</td>
<td>Apparent offset</td>
<td></td>
</tr>
<tr>
<td>137.93</td>
<td>100</td>
<td>Protogranular</td>
<td>1</td>
<td>Substantial (31–60%)</td>
<td>3</td>
<td>Well-developed cataclasis</td>
<td>3</td>
<td>150</td>
<td>Brittle</td>
<td>Crystal plastic</td>
<td>Vents</td>
<td>Structures</td>
<td>Apparent offset</td>
<td></td>
</tr>
<tr>
<td>138.03</td>
<td>100</td>
<td>Porphyroclastic</td>
<td>0</td>
<td>Extensive (61–90%)</td>
<td>4</td>
<td>Ultracataclastite</td>
<td>4</td>
<td>0</td>
<td>Brittle</td>
<td>Crystal plastic</td>
<td>Vents</td>
<td>Structures</td>
<td>Apparent offset</td>
<td></td>
</tr>
<tr>
<td>138.13</td>
<td>100</td>
<td>Strongly foliated</td>
<td>0</td>
<td>Complete (≥90%)</td>
<td>5</td>
<td>Ultramylonite</td>
<td>5</td>
<td>0</td>
<td>Brittle</td>
<td>Crystal plastic</td>
<td>Vents</td>
<td>Structures</td>
<td>Apparent offset</td>
<td></td>
</tr>
</tbody>
</table>

Legend:*
- **Dunite**: serpentinized dunite
- **Olivine gabbro**: highly altered olivine gabbro
- **Harzburgite**: serpentinized harzburgite
- **Brittle**: brittle-plastic features
- **Crystal plastic**: crystal plastic features
- **Vents**: green veins
- ** Structures**: brittle-fracture veins
- **Apparent offset**: 0 45 90
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Scanned image</th>
<th>Magnetic</th>
<th>Magnetic</th>
<th>Primary mineralogy</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Structures</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>138.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Olivine, Plagioclase, Clinopyroxene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138.35</td>
<td></td>
</tr>
<tr>
<td>138.45</td>
<td></td>
</tr>
<tr>
<td>138.55</td>
<td></td>
</tr>
<tr>
<td>138.65</td>
<td></td>
</tr>
<tr>
<td>138.75</td>
<td></td>
</tr>
<tr>
<td>138.85</td>
<td></td>
</tr>
<tr>
<td>138.95</td>
<td></td>
</tr>
<tr>
<td>139.05</td>
<td></td>
</tr>
<tr>
<td>139.15</td>
<td></td>
</tr>
</tbody>
</table>

Sequence: I

Unit/Subunit: 24m

Rock Name: Harzburgite

Contact: Continuous

Texture: Granular

Igneous Summary: serpentinized harzburgite

Alteration: serpentinized

Veins: dense network of green veins

Structure: Brittle-

Crystal plastic- Pyroxene grains are moderately elongated.

Sequence: I

Unit/Subunit: 24n

Rock Name: Olivine gabbro

Contact: intrusive

Texture:

Igneous Summary: highly altered olivine gabbro

Alteration: highly altered

Veins: few green veins

Structure: Brittle-

Sequence: I

Unit/Subunit: 24o

Rock Name: Dunite

Contact: intrusive

Texture:

Igneous Summary: serpentinized dunite

Alteration: serpentinized

Veins: network of green veins

Structure: Brittle-

Crystal plastic- Pyroxene grains are moderately elongated.

Sequence: I

Unit/Subunit: 25a

Rock Name: Harzburgite

Contact: modal

Texture: Granular

Igneous Summary: serpentinized harzburgite

Alteration: serpentinized

Veins: green and fine white veins

Structure: Brittle-

Pyroxene grains are rounded and slightly elongated.
Hole BA4A-52Z Section 4, Top of Section 139.96 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility (MSCL-W MSP (SI x 10^-5))</th>
<th>GRA (g/cm^3)</th>
<th>Primary mineralogy (%)</th>
<th>Lithology</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Structures</th>
<th>Vein density (per meter)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>139.96</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>140.06</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>140.16</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>140.26</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>140.36</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>140.46</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>140.56</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>140.66</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-53Z Section 4, Top of Section 142.95 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Scanned image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W (SI x 10^-5)</th>
<th>MSP (g/cm^3)</th>
<th>GRA (1/cm^3)</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>142.95</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.05</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.15</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.25</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.5</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.65</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.75</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.85</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.95</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magnetic susceptibility
- **MSCL-W** (SI x 10^-5)
- **MSP (g/cm^3)**
- **GRA (1/cm^3)**

Primary mineralogy (%)
- **Olivine**
- **Plagioclase**
- **Clinopyroxene**
- **Orthopyroxene**
- **Amphibole**
- **Spinel**
- **Sulfide**

Degree of deformation
- **Fabric intensity**
- **Vein crosscutting**
- **Alteration intensity**
- **Fracture/ Vein density (per meter)**
- **Vein density (per meter)**
- **Alteration halos**
- **Magnetic contact**
- **Brittle**
- **Crystal plastic**
- **Veins**

Description
- **SEQUENCE I**: 26a
 - **ROCK NAME**: dunite
 - **CONTACT**: Tectonic
 - **IGNEOUS SUMMARY**: mildly fractured, fully serpentinized dunite cross-cut by fractured gabbroic dikes
 - **ALTERATION**: serpentinized
 - **VEINS**: grey veins
 - **STRUCTURE**: Brittle

- **SEQUENCE I**: 26a
 - **ROCK NAME**: olivine gabbro
 - **CONTACT**: Intrusive
 - **TEXTURE**: Granular
 - **IGNEOUS SUMMARY**: fractured varitextured gabbroic dike
 - **ALTERATION**: serpentinized
 - **VEINS**: grey-green veins, white veins
 - **STRUCTURE**: Brittle

- **SEQUENCE I**: 26a
 - **ROCK NAME**: Clinopyroxenite
 - **CONTACT**: Intrusive
 - **TEXTURE**: Granular
 - **IGNEOUS SUMMARY**: orthopyroxenite dike
 - **ALTERATION**: serpentinized
 - **VEINS**: black veins, grey veins
 - **STRUCTURE**: Brittle

- **SEQUENCE I**: 26a
 - **ROCK NAME**: Clinopyroxenite
 - **CONTACT**: Intrusive
 - **TEXTURE**: Granular
 - **IGNEOUS SUMMARY**: orthopyroxenite dike
 - **ALTERATION**: serpentinized
 - **VEINS**: grey veins, grey-green/white veins
 - **STRUCTURE**: Brittle
**Sequence: I
Unit/Subunit: 26a
Rock Name: Dunite
Contact: Continuous
Texture:
Igneous Summary: Mildly fractured, fully serpentinized dunite cross-cut by fractured gabbroic dikes
Alteration: Serpentinized
Veins: Grey veins, black veins, grey-green veins
Structure: Brittle-
Veins-
Crystal plastic-

**

**Sequence: I
Unit/Subunit: 26a
Rock Name: Clinopyroxenite
Contact: Intrusive
Texture:
Igneous Summary: Sheared pyroxenitic dike
Alteration:
Veins: Grey-green veins, grey veins
Structure: Brittle-
Veins-
Crystal plastic-

**Sequence: I
Unit/Subunit: 26b
Rock Name: Olivine gabbro
Contact: Intrusive
Texture: Granular
Igneous Summary: Sheared gabbroic dike
Alteration:
Veins: Grey veins, white veins, black veins
Structure: Brittle-
Veins-
Crystal plastic-

**Sequence: I
Unit/Subunit: 26c
Rock Name: Dunite
Contact: Intrusive
Texture:
Igneous Summary: Mildly fractured, fully serpentinized dunite cross-cut by fractured gabbroic dikes
Alteration: Serpentinized
Veins: Brown veins, grey veins, black veins
Structure: Brittle-
Subtle black fracture network runs up most of section offsetting dikes by several cm
Veins-
Crystal plastic-

**Sequence: I
Unit/Subunit: 26c
Rock Name: Gabbro
Contact: Intrusive
Texture: Granular
Igneous Summary: Sheared gabbroic dike
Alteration:
Veins: Grey veins, black veins, green veins
Structure: Brittle-
Veins-
Crystal plastic-

**Sequence: I
Unit/Subunit: 26c
Rock Name: Olivine Gabbro
Contact: Intrusive
Texture: Granular
Igneous Summary: Sheared gabbroic dike
Alteration:
Veins:
Structure: Brittle-

Sequence: I
Unit/Subunit: 26c

Rock Name: dunite

Contact: Tectonic

Texture: Igneous

Summary: Mildly fractured, fully serpentinized dunite cross-cut by fractured gabbroic dikes

Alteration: Serpentinized

Veins: Brown veins, grey veins, black veins

Structure: Brittle-Veins-Crystal plastic

Sequence: I
Unit/Subunit: 26c

Rock Name: gabbro

Contact: Intrusive

Texture: Granular

Summary: Gabbroic dike

Alteration:

Veins: Grey veins, green veins

Structure: Brittle-Veins-Crystal plastic

Fabric Intensity

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Core samples</th>
<th>Scanned image</th>
<th>Magnetic susceptibility</th>
<th>Core images</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Structures</th>
<th>Alteration halos</th>
<th>Fractures/ Vein density (per meter)</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>144.55</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>144.65</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>144.75</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>144.85</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>144.95</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>145.05</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>145.15</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>145.25</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>145.35</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>145.45</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>145.55</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>145.65</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>145.75</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>145.85</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>145.95</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>26c</td>
<td>100</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Site/Ship Samples
- Magnetic contact: 36c
- Rock Name: dunite
- Core length (cm): 0 to 10
- Scanned image: 0
- Magnetic susceptibility: 26c

Primary Mineralogy
- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Spinel
- Sulfide

Degree of Deformation
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Fabric Intensity
- Protomylonite
- Mylonite
- Ultramylonite
- Protogranular
- Porphyroclastic
- Strongly foliated
- Weak
- Moderate
- Strong

Grain Size
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)
- Glassy
- Cryptocrystalline (<0.1 mm)
- Microcrystalline (0.1–0.2 mm)

Vein Density
- 0–10 per 10 cm
- 10–30 per 10 cm
- 30–50 per 10 cm
- 50–70 per 10 cm
- 70–90 per 10 cm
- >90 per 10 cm

Dip
- Magnetic contact: 36c
- Brittle-Crystal plastic:
- Veins:
 - Grey veins
 - Green veins
 - Black veins
Hole BA4A-54Z Section 3, Top of Section 145.45 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI × 10^-5)</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Fabric intensity</th>
<th>Discrete brittle features</th>
<th>Alteration halos</th>
<th>Structures</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Shipboard samples</td>
<td>Stained image</td>
<td>Magnetic susceptibility</td>
<td>MSCL-W MSP (SI x 10^-5)</td>
<td>GRA (g/cm²)</td>
<td>GRA (%)</td>
<td>Sequence</td>
<td>Lithology</td>
<td>Primary mineralogy (%)</td>
<td>Grain size</td>
<td>Degree of deformation</td>
<td>Fabric intensity</td>
<td>Fracture/ Vein density (per meter)</td>
<td>Alteration intensity</td>
<td>Alteration</td>
<td>Dip</td>
<td>Magnetic contact</td>
<td>Brittle</td>
<td>Crystal plastic</td>
<td>Veins</td>
<td>Structures</td>
<td>Fissure alteration</td>
<td>fault zones</td>
<td>Apparent offset</td>
<td>Alteration halos</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
<td>---------------</td>
<td>-------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>146.13</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>146.23</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>146.33</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>146.43</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>146.53</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>146.63</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>146.73</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
Sequence 1: 26e
- **Unit/Subunit:** 26e
- **Rock Name:** dunite
- **Contact:** Continuous
- **Igneous Summary:** fractured serpentinized dunite with cross-cutting gabbroic dikes
- **Alteration:** serpentinized
- **Veins:** brown veins, white veins, grey veins, black veins
- **Structure:** Brittle-Veins--Crystal plastic--

Sequence 1: 26e
- **Unit/Subunit:** 26e
- **Rock Name:** gabbro
- **Contact:** Intrusive
- **Texture:** Granular
- **Igneous Summary:** gabbroic dike
- **Alteration:** altered
- **Veins:** white veins
- **Structure:** Brittle-Veins--

Sequence 1: 26e
- **Unit/Subunit:** 26e
- **Rock Name:** gabbro
- **Contact:** Intrusive
- **Texture:**
- **Igneous Summary:** gabbroic dike
- **Alteration:**
- **Veins:** grey veins, grey-green veins
- **Structure:** Brittle-Veins--

Fabric Intensity
- 5
- 4
- 3
- 2
- 1
- 0

Vein Density (per meter)
- 6
- 5
- 4
- 3
- 2
- 1
- 0

Grain Size (cm)
- 6
- 5
- 4
- 3
- 2
- 1
- 0

Hole BA4A-55Z Section 1: Top of Section 146.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Discrete brittle features</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>146.70</td>
<td></td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Shapedboard samples</td>
<td>X-ray image</td>
<td>Magnetic susceptibility</td>
<td>MSCL-W MSP (SI x 10^-5)</td>
<td>GRA (g/cm³)</td>
<td>Primary mineralogy (%)</td>
<td>Grain size</td>
<td>Degree of deformation</td>
<td>Fracture/ Vein density (per meter)</td>
<td>Alteration intensity</td>
<td>Dip</td>
<td>Magnitic contact</td>
<td>Brittle</td>
<td>Crystal plastic</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>-----</td>
<td>-------------------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>147.35</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>147.45</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>147.55</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>147.65</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>147.75</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>147.85</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>147.95</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>148.05</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>148.15</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>148.25</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: I
UNIT/SUBUNIT: 26e
ROCK NAME: dunite
CONTACT: tectonic
TEXTURE: IGNEOUS: Serpentinized dunite with cross-cutting gabbroic dikes
ALTERATION: Serpentinized
VEINS: Brown veins, white veins, grey veins, black veins
STRUCTURE: Brittle

SEQUENCE: I
UNIT/SUBUNIT: 26f
ROCK NAME: Harzburgite
CONTACT: Modal
TEXTURE: IGNEOUS: Serpentinized harzburgite
ALTERATION: Serpentinized
VEINS: Black veins, grey-green veins
STRUCTURE: Brittle

SEQUENCE: I
UNIT/SUBUNIT: 26h
ROCK NAME: Dunite
CONTACT: Tectonic
TEXTURE: IGNEOUS: Rubbly serpentinized dunite fracture zone
ALTERATION: Serpentinized
VEINS: Grey veins, grey-green veins, white veins
STRUCTURE: Brittle

Fabric intensity
- 5
- 4
- 3
- 2
- 1
- 0

Vein density (per meter)
- 0
- 1
- 2
- 3
- 4
- 5
- 6

Grain size
- 0
- 1
- 2
- 3
- 4
- 5

Hole BA4A-55Z Section 2, Top of Section 147.33 (m CCD)
Hole BA4A-55Z Section 3, Top of Section 148.31 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility (MSCL-W MSP)</th>
<th>GRA (g/cm³)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Alteration halos</th>
<th>Structures</th>
<th>Vein density (per meter)</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>148.31</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26h</td>
<td></td>
</tr>
<tr>
<td>148.33</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26i</td>
<td></td>
</tr>
</tbody>
</table>

Lithology:
- **26h:** Dunite
- **26i:** Dunite

Primary Mineralogy (%):
- Olivine
- Plagioclase
- Clinopyroxene
- Amphibole
- Spinel
- Sulfide

Degree of Deformation:
- Discrete brittle features

Fracture/ Vein density (per meter):
- Veins:
 - Grey
 - Grey-green
 - White

Alteration intensity:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Structures:
- Fault zones
- Veins

Vein density (per meter):
- Veins:
 - 0–1 per 10 cm
 - 1–3 per 10 cm
 - 3–5 per 10 cm
 - >20 per 10 cm

Magnetic contact:
- Brittle
- Crystal plastic

Veins:
- Grey
- Grey-green
- White
Sequence: I
Unit/Subunit: 26j
- **Rock Name:** Dunite
- **Contact:** Intrusive
- **Texture:**
- **Igneous Summary:** Serpentinized dunite with minor harzburgitic zones
- **Alteration:** Serpentinized
- **Veins:** White veins, brown veins, grey-green veins
- **Structure:** Brittle-

Sequence: I
Unit/Subunit: 26i
- **Rock Name:** Olivine gabbro
- **Contact:** Intrusive
- **Texture:**
- **Igneous Summary:** Gabbroic dike
- **Alteration:**
- **Veins:** Grey veins, grey-green veins
- **Structure:** Brittle-

Fabric intensity

- **Vein density (per meter):**
 - 0–1
 - 1–3
 - 3–5
 - >20

Degree of deformation

- **Vein crosscutting:**
 - 0
 - 1
 - 2
 - 3

Alteration intensity

- **Description:**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (≥90%)

Lithology

- **Primary mineralogy (%):**
 - Olivine
 - Plagioclase
 - Clinopyroxene
 - Orthopyroxene
 - Amphibole
 - Sulfide

Magnetic susceptibility

- **MSCL-W MSP (SI x 10^-5):**
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5

Grain size

- **Primary:**
 - Fine grained (0.2–1 mm)
 - Medium grained (1–5 mm)
 - Coarse grained (5–30 mm)
 - Pegmatitic (>30 mm)

- **Alteration:**
 - Glassy
 - Cryptocrystalline (<0.1 mm)
 - Microcrystalline (0.1–0.2 mm)

Degree of deformation

- **Discrete brittle features:**
 - 0
 - 1
 - 2
 - 3

Structures

- **Fault zones:**
 - Apparent offset:**
 - 0
 - 0.5
 - 1
 - 1.5

Alteration halos

- **Description:**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (≥90%)

Degree of deformation

- **Structure:**
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
 - GS reduction and rotation
 - Well-developed cataclasis
 - Ultracataclastite

Literature references

- [fabric intensity](#)
- [primary mineralogy](#)
- [magnetic susceptibility](#)
- [grain size](#)
- [degree of deformation](#)
- [structures](#)
- [alteration halos](#)
SEQUENCE: I
UNIT/SUBUNIT: 26j
ROCK NAME: dunite
CONTACT: Intrusive
TEXTURE: IGNEOUS
SUMMARY: serpentinized dunite with minor harzburgitic zones
ALTERATION: serpentinized
VEINS: brown veins, black veins, grey veins
STRUCTURE: Brittle-
Veins-
Crystal plastic-

Vein density (per meter)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>GRA (g/cm²)</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Discrete brittle features</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip Magnatic contact</th>
<th>Brittles</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>149.70</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>149.75</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>149.80</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>149.90</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>150.00</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>150.10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>150.20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>150.30</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>150.40</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>150.50</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

VEINS: brown veins, black veins, grey veins
MSCL-W MSP (SI x 10^-5)
GRA (g/cm²)

Dip Magnatic contact Brittles Crystal plastic Veins

MINERALOGY:
- Olive
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Spinel
- Sulfide

Degree of deformation:
- Magmatic contact
- Dip
- Brittles
- Crystal plastic
- Veins

Contact:
- Intrusive

Texture:
- IGNEOUS
- Alteration: serpentinized
- Veins: brown, black, grey

Sequence:
- I

Unit/Subunit:
- 26j

Rock Name:
- Dunite

Description:
- Serpentinized dunite with minor harzburgitic zones
- Alteration: serpentinized
- Veins: brown, black, grey
Hole BA4A-56Z Section 2, Top of Section 150.60 (m CCD)

Magnetic susceptibility

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Grained image</th>
<th>Contact</th>
<th>Lithology</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Alteration</th>
<th>Dip</th>
<th>Magnitic contact Brittle Crystal plastic Voids</th>
</tr>
</thead>
<tbody>
<tr>
<td>150.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>150.70</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>150.80</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>150.90</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>151.00</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>151.10</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>151.20</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>151.30</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>151.40</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>151.50</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **SEQUENCE I:**
 - **Unit/Subunit:** 26
 - **Rock Name:** dunite
 - **Contact:** Continuous
 - **KINEMATIC SUMMARY:** Serpentinized dunite with minor harzburgitic zones
 - **Igneous Summary:** Serpentinized dunite with minor harzburgitic zones
 - **Alteration:** Serpentinized
 - **Veins:** Black veins, brown veins, white veins
 - **Structure:** Brittle

- **SEQUENCE II:**
 - **Unit/Subunit:** 26
 - **Rock Name:** dunite
 - **Contact:** Intrusive
 - **KINEMATIC SUMMARY:** Serpentinized dunite with minor harzburgitic zones
 - **Igneous Summary:** Serpentinized dunite with minor harzburgitic zones
 - **Alteration:** Serpentinized
 - **Veins:** Black veins, grey veins, white veins
 - **Structure:** Brittle

- **SEQUENCE III:**
 - **Unit/Subunit:** 26
 - **Rock Name:** dunite
 - **Contact:** Intrusive
 - **KINEMATIC SUMMARY:** Serpentinized dunite with minor harzburgitic zones
 - **Igneous Summary:** Serpentinized dunite with minor harzburgitic zones
 - **Alteration:** Serpentinized
 - **Veins:** Black veins, grey veins, white veins
 - **Structure:** Brittle

- **SEQUENCE IV:**
 - **Unit/Subunit:** 26
 - **Rock Name:** olivine gabbro
 - **Contact:** Intrusive
 - **KINEMATIC SUMMARY:** Fractured gabbroic dike
 - **Igneous Summary:** Fractured gabbroic dike
 - **Alteration:**
 - **Veins:** Grey veins, grey-green veins
 - **Structure:** Brittle, semi-brittle shear zone within dike

- **SEQUENCE V:**
 - **Unit/Subunit:** 26
 - **Rock Name:** dunite
 - **Contact:** Intrusive
 - **KINEMATIC SUMMARY:** Serpentinized dunite with minor harzburgitic zones
 - **Igneous Summary:** Serpentinized dunite with minor harzburgitic zones
 - **Alteration:** Serpentinized
 - **Veins:** Black veins, grey-green veins, white veins
 - **Structure:** Brittle

Alteration Intensity

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Complete (≥90%)

Degree of Deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Fabric Intensity

- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite
- Isotropic

Vein Density

- 0–1 per 10 cm
- 1–3 per 10 cm
- 3–5 per 10 cm
- >5 per 10 cm
- 5–15 per 10 cm
- 15–20 per 10 cm
- >20 per 10 cm

Alteration Halos

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Complete (≥90%)

Magmatic Contact

- Brittle
- Crystal plastic
- Voids

Dip Magnitic contact

- Brittle
- Crystal plastic
- Voids

Veins

- Continuous
- Intrusive
Hole BA4A-56Z Section 4, Top of Section 152.11 (m CCD)

Depth (m CCD)	Core length (cm)	Stained image	Magnetic susceptibility	Primary mineralogy	Lithology	Grain size	Degree of deformation	Alteration intensity	Alteration	Dip	VMS	Structures	Alteration halos	
152.11	0													

Sequence: 1

Unit/Subunit: 26L

Rock Name: dunite

Contact: Tectonic

Texture:
- Igneous

Summary: serpentinized dunite with minor harzburgitic zones

Alteration: serpentinized

Veins: black veins

Structure: Brittle

Vein density (per meter):
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Degree of deformation:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Fabric intensity:
- Isotropic
- Weak
- Moderate
- Strong

Grain size:
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)
- Glassy
- Cryptocrystalline (<0.1 mm)
- Microcrystalline (0.1–0.2 mm)

Magnetic susceptibility:
- MSCL-W MSP (SI 10^{-5})

Magnetic contact:
- Brittle

Crystal plastic:
- VMS

Vein crosscutting:
- Discrete brittle features

Alteration intensity:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (\geq 90%)

Magmatic contact:
- Brittle

Dip:
- 0–45°
- 45–90°

Alteration halos:
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Degree of fracturing:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis

Ultracataclastite:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Isotropic:
- Weak
- Moderate
- Strong

Fine grained:
- 0.2–1 mm
- 1–5 mm
- 5–30 mm
- >30 mm

Medium grained:
- 0.1–0.2 mm
- 0.1–0.2 mm

Coarse grained:
- 0.1–0.2 mm
- 0.1–0.2 mm

Pegmatitic:
- 0.1–0.2 mm
- 0.1–0.2 mm

Glassy:
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Cryptocrystalline:
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Microcrystalline:
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Degree of deformation:
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Pegmatitic:
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Glassy:
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Cryptocrystalline:
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Microcrystalline:
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Vein density (per meter):
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Degree of deformation:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Isotropic:
- Weak
- Moderate
- Strong

Fine grained:
- 0.2–1 mm
- 1–5 mm
- 5–30 mm
- >30 mm

Medium grained:
- 0.1–0.2 mm
- 0.1–0.2 mm

Coarse grained:
- 0.1–0.2 mm
- 0.1–0.2 mm

Pegmatitic:
- 0.1–0.2 mm
- 0.1–0.2 mm

Glassy:
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Cryptocrystalline:
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Microcrystalline:
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100
Hole BA4A-57Z Section 1, Top of Section 152.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Voins</th>
</tr>
</thead>
<tbody>
<tr>
<td>152.73</td>
<td></td>
</tr>
<tr>
<td>152.83</td>
<td></td>
</tr>
<tr>
<td>152.93</td>
<td></td>
</tr>
<tr>
<td>153.03</td>
<td></td>
</tr>
<tr>
<td>153.13</td>
<td></td>
</tr>
<tr>
<td>153.23</td>
<td></td>
</tr>
<tr>
<td>153.33</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **SEQUENCE**: 1; 26o
- **ROCK NAME**: Dunite
- **CONTACT**: Intrusive
- **TEXTURE**: Granular
- **IGNEOUS SUMMARY**: partially fractured
- **ALTERATION**: highly altered
- **VEINS**: white veins
- **STRUCTURE**: Brittle

Alteration intensity

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Vein density

- 0–1 per 10 cm
- 1–2 per 10 cm
- 3–5 per 10 cm
- >20 per 10 cm
- 5–15 per 10 cm
- 15–20 per 10 cm

Degree of deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Magmatic contact

- Brittle
- Crystal plastic

Magnetic susceptibility

- MSCL-W
- MSP

Lithology

- Primary mineralogy (%)
 - Olivine
 - Plagioclase
 - Clinopyroxene
 - Orthopyroxene
 - Amphibole
 - Spinel
 - Sulfide

Fabric intensity

- 0
- 1
- 2
- 3
- 4
- 5

Vein crosscutting

Alteration intensity

- 0
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
- 100

Discrete brittle features

- 0
- 1
- 2
- 3
- 4
- 5

Structures

- Fault zones
- Apparent offset
- Alteration halos

Discrete features

- Discrete brittle features
- Sulfide
- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine

Vein crosscutting

- Black, frankestein green and white veins

Degree of deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Structures

- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Isotropic

- Weak
- Moderate
- Strong

Grain size

- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Vein density

- 0
- 1
- 2
- 3
- 4
- 5

Vein crosscutting

- Black, frankestein green and white veins

Structures

- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Isotropic

- Weak
- Moderate
- Strong
Hole BA4A-57Z Section 2, Top of Section 153.43 (m CCD)

SEQUENCE: 26n
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE: Igneous
SUMMARY: Serpentinized dunite, weakly fractured, crosscut by thin pyroxenitic dike, oxidation by dense zone of short white veins
ALTERATION: Serpentinized, oxidized
VEINS: Black, Frankestein green and white veins
STRUCTURE: Brittle features

Depth (m CCD)	Core length (cm)	Stained image	Magnetic susceptibility (SI 10^-5)	GRA (g/cm³)	Sequence	Lithology	Unit/subunit	Text	Degree of deformation	Fracture/ Vein density (per meter)	Alteration intensity	Dip	Magneto contact	Brittle Contact	Crystal Plastic	Vens	Structures	Apparent offset				
153.45																						

Description:
- **SEQUENCE**: 26n
- **ROCK NAME**: Dunite
- **CONTACT**: Continuous
- **TEXTURE**: Igneous
- **SUMMARY**: Serpentinized dunite, weakly fractured, crosscut by thin pyroxenitic dike, oxidation by dense zone of short white veins
- **ALTERATION**: Serpentinized, oxidized
- **VEINS**: Black, Frankestein green and white veins
- **STRUCTURE**: Brittle features

Additional Notes:
- Degree of deformation: Minor fracturing, Moderate fracturing, GS reduction and rotation, Well-developed cataclasis, Ultracataclastite
- Alteration intensity: Fresh (<3%), Slight (3–10%), Moderate (11–30%), Substantial (31–60%), Extensive (61–90%), Complete (>90%)
- Fabric: Protogranular, Porphyroclastic, Strongly foliated
- Degree of deformation: Undeformed, Minor fracturing, Moderate fracturing, GS reduction and rotation, Well-developed cataclasis, Ultracataclastite
- Structure: Brittle, Magmatic contact, Dip
- Core length: 10 cm, 20 cm, 30 cm, 40 cm, 50 cm, 60 cm, 70 cm
- GRA: 10, 20, 30, 40, 50, 60, 70
- Magnetic susceptibility: MSCL-W, MSP
- Degree of deformation: 0–10, 10–30, 30–50, 50–70, 70–90, >90
- Vein density: 0–1, 1–2, 2–3, 3–5, >5 per 10 cm
- Fresh (<3%), Slight (3–10%), Moderate (11–30%), Substantial (31–60%), Extensive (61–90%), Complete (>90%)
- Brittle contact: Lame, Dike, Vein
- Dip: 0, 45, 90

Legend:
- CT image
- Magnetite
- Serpentinite
- Sulfide
- Chalcopyrite
- Amphibole
- Plagioclase
- Orthopyroxene
- Clinopyroxene
- Magnetite
- Serpentinite
- Sulfide
- Veins
- Brittle
- Magmatic contact

Notes:
- CT image: CT scan of the sample
- Magnetite: Presence of Magnetite
- Serpentinite: Presence of Serpentinite
- Sulfide: Presence of Sulfide
- Chalcopyrite: Presence of Chalcopyrite
- Amphibole: Presence of Amphibole
- Plagioclase: Presence of Plagioclase
- Orthopyroxene: Presence of Orthopyroxene
- Clinopyroxene: Presence of Clinopyroxene
- Magnetite: Presence of Magnetite
- Serpentinite: Presence of Serpentinite
- Sulfide: Presence of Sulfide
- Veins: Presence of Veins
- Brittle: Brittle features
- Magmatic contact: Magmatic contact
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Alteration halos</th>
<th>Vein density (per meter)</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Apparent offset</th>
<th>Alteration halos</th>
<th>Vein crosscutting</th>
<th>Alteration halos</th>
<th>Discrete brittle features</th>
</tr>
</thead>
</table>
Hole BA4A-57Z Section 4, Top of Section 154.99 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fabric intensity</th>
<th>Fracture/Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>155.01</td>
<td></td>
</tr>
<tr>
<td>155.11</td>
<td></td>
</tr>
<tr>
<td>155.21</td>
<td></td>
</tr>
<tr>
<td>155.31</td>
<td></td>
</tr>
<tr>
<td>155.41</td>
<td></td>
</tr>
<tr>
<td>155.51</td>
<td></td>
</tr>
<tr>
<td>155.61</td>
<td></td>
</tr>
<tr>
<td>155.71</td>
<td></td>
</tr>
<tr>
<td>155.81</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: I

UNIT/SUBUNIT: 27a

ROCK NAME: Harzburgite

CONTACT: Continuous

TEXTURE: Granular

IGNEOUS SUMMARY: Highly serpentinized harzburgite, moderately fractured, crosscut by pyroxenitic, vertical thickness filled and branch out fractures.

ALTERATION: Serpentinized, locally oxidized

VEINS: Green, white veins

STRUCTURE: Brittle

- Discrete brittle features
- Vein crosscutting

Alteration halos:

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation:

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Lithology:

- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Magmatic contact:

- Dip
- Brittle
- Crystal plastic
- Veins

Description:

- Crystal plastic: Pyroxene grains are rounded and slightly elongated.
Hole BA4A-58Z Section 1, Top of Section 155.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Alteration intensity</th>
<th>Vein density (per meter)</th>
<th>Structure</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>155.7</td>
<td>10</td>
<td>CT image</td>
<td></td>
</tr>
<tr>
<td>155.8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>155.9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>156.0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>156.1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>156.2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>156.3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>156.4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>156.5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>UNIT/SUBUNIT</th>
<th>ROCK NAME</th>
<th>CONTACT</th>
<th>TEXTURE</th>
<th>IGNEOUS SUMMARY</th>
<th>ALTERATION</th>
<th>VEINS</th>
<th>STRUCTURE</th>
<th>Degree of deformation</th>
<th>Discrete brittle features</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Vein density (per meter)</th>
<th>Altation intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27b</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes, dunitic patches with pyroxenitic layerings</td>
<td>serpentinized</td>
<td>black locally oriented, white veins</td>
<td>Brittle-</td>
<td>Veins-</td>
<td>Crystal plastic-</td>
<td>Pyroxene grains are moderately elongated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>27b</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>Granular</td>
<td></td>
</tr>
</tbody>
</table>

Note: The diagram and table are filled with various geological data points and visual representations to illustrate the sequence, unit/subunit, rock name, contact, texture, igneous summary, alteration, veins, structure, degree of deformation, and other geological features.
SEQUENCE: I
UNIT/SUBUNIT: 27b
ROCK NAME: Harzburgite
CONTACT: Continuous
TEXTURE: Granular
IGNEOUS SUMMARY: serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes, dunitic patches with pyroxenitic layerings
ALTERATION: serpentinized
VEINS: black locally oriented, white veins
STRUCTURE: Brittle-Veins-Crystal plastic-Veins

SEQUENCE: I
UNIT/SUBUNIT: 27b
ROCK NAME: Olivine gabbro
CONTACT: Intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: layered, offset
ALTERATION: altered
VEINS:

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Fabric intensity</th>
<th>Vein density (per meter)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>156.58</td>
<td>27b</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Description:
- **GRA (g/cm³):**
 - 2.9
 - 2.65
 - 2.4
 - 2.15
 - 1.9
 - 1.75
- **FABRIC INTENSITY:**
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5
- **VEIN DENSITY:**
 - 0 per 10 cm
 - 1 per 10 cm
 - 3-5 per 10 cm
 - >20 per 10 cm
 - 5-15 per 10 cm
 - 15-20 per 10 cm
- **ALTERATION INTENSITY:**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (≥90%)
- **DIP:**
 - Magnetic contact
 - Brittle
 - Crystal plastic
 - Veins
Hole BA4A-58Z Section 3, Top of Section 157.10 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>157.00</td>
<td></td>
</tr>
<tr>
<td>157.10</td>
<td></td>
</tr>
<tr>
<td>157.20</td>
<td></td>
</tr>
<tr>
<td>157.30</td>
<td></td>
</tr>
<tr>
<td>157.40</td>
<td></td>
</tr>
<tr>
<td>157.50</td>
<td></td>
</tr>
<tr>
<td>157.60</td>
<td></td>
</tr>
<tr>
<td>157.70</td>
<td></td>
</tr>
<tr>
<td>157.80</td>
<td></td>
</tr>
<tr>
<td>157.90</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: I

- **UNIT/SUBUNIT**: 27c
- **ROCK NAME**: Dunite
- **CONTACT**: Modal
- **TEXTURE**: Protogranular
- **IGNEOUS SUMMARY**: Serpentinized dunite, weakly fractured, crosscut by gabbroic and pyroxenitic dike
- **ALTERATION**: Serpentinized, oxidized
- **VEINS**: Set of thin oriented white veins, green ones cut dikes orthogonally
- **STRUCTURE**: Degree of deformation: 5; Brittle features: 5; Brittle/Magmatic contact layers: 5; Dip: 0–60°; Crystal plastic: 0; Veins: 0–100 per 10 cm

Note: Crystal plastic-Pyroxene grains are moderately exsolved.
SEQUENCE: 28a
ROCK NAME: Dunite
CONTACT: Continuous

TEXTURE:
IGNEOUS SUMMARY: serpentinized dunite, weakly fractured, crosscut by gabbroic and pyroxenitic dike
ALTERATION: serpentinized, oxidized
VEINS: set of thin oriented white veins, green ones cut dikes orthogonally
STRUCTURE: Brittle-

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magmatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Absorption index</th>
<th>Vein crosscutting</th>
<th>Alteration halos</th>
</tr>
</thead>
<tbody>
<tr>
<td>157.97</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>157.94 (m CCD)</td>
<td></td>
</tr>
</tbody>
</table>

Lithology
- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Spinel
- Sulfide

Grain size (μm)
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Hole BA4A-58Z Section 4, Top of Section 157.94 (m CCD)

Magnetic susceptibility (SI x 10^-5)
- MSCL-W
- MSP

GRA (g/cm³)
- 2.66
- 2.61
- 2.56
- 2.51

Vein density (per meter)
- 0
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm

Alteration intensity
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Vein crosscutting
- Brittle
- Magmatic
- Contact
- Dip
- Discrete brittle features

Degree of deformation
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Protogranular
- Porphyroclastic

Foliation
- Strongly foliated

Protomylonite
- Mylonite
- Ultramylonite

Degree of deformation
- Brittle
- Magmatic
- Contact

Dip
- 0
- 45
- 90

Fabric intensity
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Degree of deformation
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Protogranular
- Porphyroclastic

Foliation
- Strongly foliated

Protomylonite
- Mylonite
- Ultramylonite

Degree of deformation
- Brittle
- Magmatic
- Contact

Dip
- 0
- 45
- 90

Fabric intensity
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100
Hole BA4A-59Z Section 1, Top of Section 158.70 (m CCD)

Depth (m CCD)	Core length (cm)	Shipboard samples	Stained image	Magnetic susceptibility (SI 10^-5)	MSCL-W MSP	GRA (g/cm²)	Sequence	Lithology	Unit/subunit	Alteration	Vein density (per meter)	Alteration intensity	Dip	Magnetic contact	Brittle	Crystal plastic	
0	158.73																
158.83																	
158.93																	
159.03																	
159.13																	
159.23																	
159.33																	
159.43																	

SEQUENCE 1: 28a
RIG NAME: Dunite
CONTACT: Continuous
TEXTURE: IGNEOUS
SUMMARY: serpentinized dunite, weakly fractured, crosscut by gabbroic and pyroxenitic dike
ALTERATION: serpentinized, oxidized
VEINS: set of thin oriented white veins, green ones cut dikes orthogonally
STRUCTURE: Brittle-Veins- conjugate vein sets occur
Magmatic contact
Brittle
Crystal plastic
Veins

Mineralogy:
- Olivine
- Plagioclase
- Amphibole
- Orthopyroxene
- Clinopyroxene
- Spinel
- Sulfide
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis

Degree of deformation:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Texture:
- Isotropic
- Weak
- Moderate
- Strong
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Fabric intensity:
- Glassy
- Cryptocrystalline (<0.1 mm)
- Microcrystalline (0.1–0.2 mm)
- Medium grained (1–5 mm)
- Fine grained (0.2–1 mm)

Vein crosscutting:
- Discrete brittle features

Degree of deformation:
- Brittle
- Magmatic
- Contact

Dip
- 0
- 45
- 90

Description:
- Fault zones
- Structures
- Apparent offset
- Alteration halos
- Vein density (per meter)
- Degree of deformation
- Fracture/ Vein density (per meter)
- Magmatic Layering
- Foliation
- Discrete brittle features
- Grain size
- Vein density (per meter)
- Alteration intensity
- Degree of deformation
- Vein crosscutting
- Alteration halos
- Structures
- Apparent offset
- Vein density (per meter)
Sequence: 28a
Rock Name: Dunite
Contact: Continuous
Texture:
Igneous Summary: Serpentinized dunite, weakly fractured, crosscut by gabbroic and pyroxenitic dike
Alteration: Serpentinized, oxidized
Veins: Set of thin oriented white veins, green ones cut dikes orthogonally
Structure: Brittle-

Grain Size

<table>
<thead>
<tr>
<th>Fabric intensity</th>
<th>Grain size (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0–10</td>
</tr>
<tr>
<td>4</td>
<td>10–30</td>
</tr>
<tr>
<td>3</td>
<td>30–50</td>
</tr>
<tr>
<td>2</td>
<td>50–70</td>
</tr>
<tr>
<td>1</td>
<td>70–90</td>
</tr>
<tr>
<td>0</td>
<td>90–100</td>
</tr>
<tr>
<td>0</td>
<td>>100</td>
</tr>
</tbody>
</table>

Magnetic susceptibility

<table>
<thead>
<tr>
<th>Magnetic susceptibility (SI 10^-5)</th>
<th>Core length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Contact information

- **Shipboard samples**: [Details missing]
- **Scanned image**: [Details missing]
SEQUENCE: I
UNIT/SUBUNIT: 28a
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE: Igneous
SUMMARY: Serpentinized dunite, weakly fractured, crosscut by gabbroic and pyroxenitic dike
ALTERATION: Serpentinized, oxidized
VEINS: Set of thin oriented white veins, green ones cut dikes orthogonally
STRUCTURE: Brittle-Veins-Crystal plastic

SEQUENCE: I
UNIT/SUBUNIT: 28b
ROCK NAME: Dunite
CONTACT: Colour
TEXTURE: Igneous
SUMMARY: Serpentinized dunite, weakly fractured
ALTERATION: Highly oxidized
VEINS: Few green, thin white veins
STRUCTURE: Brittle-Veins-Conjugate vein sets occur

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>GRA (g/cm²)</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnitic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>160.41</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-60Z Section 1, Top of Section 161.70 (m CCD)

| Depth (m CCD) | Core length (cm) | Stained image | Magnetic susceptibility | Primary mineralogy (%) | Degree of deformation | Discrete brittle features | Fracture/ Vein density (per meter) | Alteration intensity | Alteration halos | Structures | Vein density (per meter) | Degree of deformation | Dip | Magnetic contact | Brittle Crystals plastic Veins |
|--------------|-----------------|---------------|-------------------------|------------------------|------------------------|--------------------------|-------------------------------|-------------------|----------------|------------------------|--------------------------|-----|---------------------|--------------------------------|
| 161.73 | 30 | | | | | | | | | | | | | |
| 161.83 | 30 | | | | | | | | | | | | | |
| 161.93 | 30 | | | | | | | | | | | | | |

Description

SEQUENCE: 28b
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: serpentinized dunite, weakly fractured
ALTERATION: highly oxidized
VEINS: few green, white veins
STRUCTURE: Brittle-Veins-Crystal plastic
Hole BA4A-60Z Section 2, Top of Section 162.03 (m CCD)

Sequence: I

Unit/Subunit: 28c
Rock Name: Dunite
Contact: Continuous
Texture:
- Igneous

Summary:
- Strongly serpentinized dunite, moderately fractured, crosscut by highly altered thin pyroxenitic dikes, sporadic harzburgitic patches

Alteration:
- Serpentinized, partially oxidized dunite

Veins:
- Green, white veins

Structure:
- Brittle-Veins-Crystal plastic

Fabric Intensity

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vein Density (per meter)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grain Size

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magnetic Susceptibility

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>1000</th>
<th>100</th>
<th>10</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lithology

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Primary Mineralogy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.03</td>
<td>-</td>
</tr>
</tbody>
</table>

Degree of Deformation

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Fracture/Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.03</td>
<td></td>
</tr>
</tbody>
</table>

Alteration

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Alteration intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.03</td>
<td></td>
</tr>
</tbody>
</table>

Structures

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.03</td>
<td></td>
</tr>
</tbody>
</table>

Description

- Sequence: I 30c
- Rock Name: Dunite
- Contact: Continuous
- Textural Summary: Strongly serpentinized dunite, moderately fractured, crosscut by highly altered thin pyroxenitic dikes, sporadic harzburgitic patches
- Alteration: Serpentinized, partially oxidized dunite
- Vein: Green, white veins
- Structure: Brittle-Veins-Crystal plastic
Hole BA4A-60Z Section 3, Top of Section 162.98 (m CCD)

Lithology

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>28c</td>
<td>Dunite</td>
<td>Continuous</td>
<td>Strongly serpentinized dunite, moderately fractured, crosscut by highly altered thin pyroxenitic dikes, sporadic harzburgitic patches</td>
</tr>
</tbody>
</table>

Alteration

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>28c</td>
<td>Dunite</td>
<td>Continuous</td>
<td>Serpentinized, partially oxidized dunite</td>
</tr>
</tbody>
</table>

Veins

- Green, white veins

Structures

- Brittle-Semimnemonic fault zone

Vein density (per meter)

- 0-10
- 10-30
- 30-50
- 50-70
- 70-90
- >100

Alteration intensity

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Vein density (per meter)

- 0-1
- 1-5
- >20
- >5-15
- >15-20

Magnetic contact

- Brittle
- Crystal plastic
- Veins

Fabric intensity

- 0-5
- 4-3
- 2-1
- 1-0

Degree of deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Alteration halos

- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Magmatic contact

- Dip
- Contact

CT image

- Sulfide
- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine

Magnetic susceptibility

- MSCL-W MSP
- GRA (g/cm³)

Primary mineralogy

- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Sulfide

Grain size

- 0-1
- 1-5
- 5-30
- >30

Degree of deformation

- Fracture/ Vein density (per meter)

Alteration halos

- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Isotropic

- Weak
- Moderate
- Strong

Fine grained (0.2–1 mm)

- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Glassy

- Cryptocrystalline (<0.1 mm)
- Microcrystalline (0.1–0.2 mm)

GRA (g/cm³)

- 2.5
- 2
- 1.5
- 1
Hole BA4A-60Z Section 4, Top of Section 163.97 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Lithology</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetocontact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Voins</th>
<th>Structures</th>
<th>Area of focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>164.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>164.10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>164.20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>164.30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>164.40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>164.50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>164.60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>164.70</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>164.80</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: 28c

ROCK NAME: Dunite

CONTACT: Continuous

TEXTURE:

IGNEOUS SUMMARY: strongly serpentinized dunite, moderately fractured, crosscut by highly altered thin pyroxenitic dikes, sporadic harzburgitic patches

ALTERATION: serpentinized, partially oxidized dunite

VEINS: green, white veins

STRUCTURE: brittle, steeply dipping wavy shear vein

Voids:

GRA: (g/cm³)

- 2.58
- 2.48
- 2.38
- 2.28

Magnetic susceptibility (SI 10⁻⁵):

- 1000
- 100
- 10
- 1

Degree of deformation:

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis

Vein crosscutting alteration:

- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Vein density (per meter):

- 0
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm
SEQUENCE: I
UNIT/SUBUNIT: 28c
ROCK NAME: dunite
CONTACT: continuous
TEXTURE: IGNEOUS
SUMMARY: strongly serpentinized dunite, moderately fractured, crosscut by highly altered thin pyroxenitic dikes, sporadic harzburgitic patches
ALTERATION: serpentinized, partially oxidized dunite
VEINS: cut by a variety of serpentine veins
STRUCTURE: Brittle-Veins-Crystal plastic-

SEQUENCE: I
UNIT/SUBUNIT: 28d
ROCK NAME: Harzburgite
CONTACT: modal
TEXTURE: Granular
IGNEOUS SUMMARY: highly altered harzburgite with dunitic units and gabbro dykes
ALTERATION: highly serpentinized harzburgite
VEINS: cut by a variety of serpentine veins
STRUCTURE: Brittle-Veins-Crystal plastic-

Veins: Crystal plastic-Pyroxene grains are rounded and slightly elongated.
Hole BA4A-61Z Section 2, Top of Section 165.66 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W</th>
<th>MSP (SI x 10^-5)</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Unit/subunit</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip Magnetic contact Brittle Crystal plastic Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Sequence 1:
- **Unit/subunit:** 28a
- **Rock Name:** harzburgite
- **Contact:** intrusive
- **Texture:** Granular
- **Igneous Summary:** highly fractured harzburgite with gabbro dykes
- **Alteration:** highly serpentinised
- **Veins:** cut by a variety of serpentine veins
- **Structure:** Brittle - Major faulting on anastamosing planes
- **Vein Cross-cutting:** Crystal plastic - Pyroxene grains are rounded and slightly elongated.

Sequence 2:
- **Unit/subunit:** 28b
- **Rock Name:** gabbro
- **Contact:** intrusive
- **Texture:** Granular
- **Igneous Summary:** altered gabbro dyke
- **Alteration:** altered and pseudomorphed
- **Veins:** white veins cut and emanate from dyke
- **Structure:** Brittle - Minor faulting on anastamosing planes
- **Vein Cross-cutting:** Crystal plastic - Pyroxene grains are rounded and slightly elongated.

Sequence 3:
- **Unit/subunit:** 28c
- **Rock Name:** harzburgite
- **Contact:** intrusive
- **Texture:** Granular
- **Igneous Summary:** highly serpentinised harzburgite with gabbro dykes
- **Alteration:** highly serpentinised
- **Veins:** cut by a variety of serpentine veins
- **Structure:** Brittle - Minor faulting on anastamosing planes
- **Vein Cross-cutting:** Crystal plastic - Pyroxene grains are rounded and slightly elongated.

Sequence 4:
- **Unit/subunit:** 28d
- **Rock Name:** harzburgite
- **Contact:** intrusive
- **Texture:** Granular
- **Igneous Summary:** highly fractured harzburgite with gabbro dykes
- **Alteration:** highly serpentinised
- **Veins:** cut by a variety of serpentine veins
- **Structure:** Brittle - Minor faulting on anastamosing planes
- **Vein Cross-cutting:** Crystal plastic - Pyroxene grains are rounded and slightly elongated.

Sequence 5:
- **Unit/subunit:** 28e
- **Rock Name:** harzburgite
- **Contact:** intrusive
- **Texture:** Granular
- **Igneous Summary:** highly fractured harzburgite with gabbro dykes
- **Alteration:** highly serpentinised
- **Veins:** cut by a variety of serpentine veins
- **Structure:** Brittle - Minor faulting on anastamosing planes
- **Vein Cross-cutting:** Crystal plastic - Pyroxene grains are rounded and slightly elongated.

Sequence 6:
- **Unit/subunit:** 28f
- **Rock Name:** harzburgite
- **Contact:** intrusive
- **Texture:** Granular
- **Igneous Summary:** highly serpentinised harzburgite with gabbro dykes
- **Alteration:** highly serpentinised
- **Veins:** cut by a variety of serpentine veins
- **Structure:** Brittle - Minor faulting on anastamosing planes
- **Vein Cross-cutting:** Crystal plastic - Pyroxene grains are rounded and slightly elongated.

Sequence 7:
- **Unit/subunit:** 28g
- **Rock Name:** harzburgite
- **Contact:** intrusive
- **Texture:** Granular
- **Igneous Summary:** highly fractured harzburgite with gabbro dykes
- **Alteration:** highly serpentinised
- **Veins:** cut by a variety of serpentine veins
- **Structure:** Brittle - Minor faulting on anastamosing planes
- **Vein Cross-cutting:** Crystal plastic - Pyroxene grains are rounded and slightly elongated.
Hole BA4A-61Z Section 3, Top of Section 166.58 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Structure</th>
<th>Alteration intensity</th>
<th>Vein density (per meter)</th>
<th>Altered halos</th>
<th>Vein crosscutting</th>
<th>Magnetic contact</th>
<th>Brittleness</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>166.00</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>166.10</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>166.20</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>166.30</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>166.40</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>166.50</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>166.60</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>166.70</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>166.80</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>166.90</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>167.00</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>167.10</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>167.20</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>167.30</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>167.40</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>167.50</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>167.60</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>167.70</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>167.80</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>167.90</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>168.00</td>
<td>10.00</td>
<td>dunite</td>
<td>Minor fracturing</td>
<td>Fault zones</td>
<td>Poor</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Slight (3–10%)</td>
<td>None</td>
<td>Brittle</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **Primary mineralogy**: Serpentinised dunite with gabbro dykes and patches of opx-rich material.
- **ALTERATION**: Highly serpentinised.
- **VEINS**: Cut by a variety of serpentine veins.
- **TEXTURE**: Brittle.

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Olivine</td>
<td>35</td>
<td>Brittleness features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plagioclase</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinopyroxene</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Orthopyroxene</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spinel</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfide</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magnetic susceptibility (SI x 10^-5):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Sequence: I

Contact: Brittle

Texture: Brittleness of respective rocks

Degree of deformation: Brittleness of respective rocks

Alteration intensity: Brittleness of respective rocks

Veins: Brittleness of respective rocks

Veins density (per meter): Brittleness of respective rocks

Core length (cm): Brittleness of respective rocks

Hole BA4A-61Z Section 4, Top of Section 167.38 (m CCD)
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Vein</th>
<th>Structure</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
</tr>
</thead>
</table>
| I | 28g | dunite | continuous | Granular | serpentinised dunite with gabbro dykes and patches of opx-rich material | highly serpentinised | cut by a variety of serpentine veins | Brittle | Veins: 3
| I | 28g | wehrlite | intrusive | Granular | altered wehrlite dyke | altered and pseudomorphed | rare white veins | Brittle | Veins: 1
| I | 29a | harzburgite | intrusive | Granular | serpentinised harzburgite intruded by gabbro and wehrlite dykes | highly serpentinised | cut by a variety of serpentine veins | Brittle | Veins: 1
| I | 29a | gabbro | intrusive | Granular | altered gabbro dyke | altered and pseudomorphed | white veins cut and emanate from dyke | Brittle | Veins: 1
| I | 29b | dunite | modal | Granular | serpentinised dunite with wehrlite and gabbroic dykes | highly serpentinised | cut by a variety of serpentine veins | Brittle | Veins: 1
| I | 29b | wehrlite | intrusive | Granular | altered wehrlite dyke | altered and pseudomorphed | white and white/green veins | Brittle | Veins: 1

Fabric intensity

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>167.70</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
</tbody>
</table>

Description

- Sequence: I, Unit/Subunit: 28g, Rock Name: dunite, Contact: continuous, Igneous Summary: serpentinised dunite with gabbro dykes and patches of opx-rich material, Alteration: highly serpentinised, Veins: cut by a variety of serpentine veins, Structure: Brittle, Vein density: 3
- Sequence: I, Unit/Subunit: 28g, Rock Name: wehrlite, Contact: intrusive, Igneous Summary: altered wehrlite dyke, Alteration: altered and pseudomorphed, Veins: rare white veins, Structure: Brittle, Vein density: 1
- Sequence: I, Unit/Subunit: 29a, Rock Name: harzburgite, Contact: intrusive, Igneous Summary: serpentinised harzburgite intruded by gabbro and wehrlite dykes, Alteration: highly serpentinised, Veins: cut by a variety of serpentine veins, Structure: Brittle, Vein density: 1
- Sequence: I, Unit/Subunit: 29a, Rock Name: gabbro, Contact: intrusive, Igneous Summary: altered gabbro dyke, Alteration: altered and pseudomorphed, Veins: white veins cut and emanate from dyke, Structure: Brittle, Vein density: 1
- Sequence: I, Unit/Subunit: 29b, Rock Name: dunite, Contact: modal, Igneous Summary: serpentinised dunite with wehrlite and gabbroic dykes, Alteration: highly serpentinised, Veins: cut by a variety of serpentine veins, Structure: Brittle, Vein density: 1

SEQUENCE: I
UNIT/SUBUNIT: 29b
ROCK NAME: dunite
CONTACT: continuous
TEXTURE: IGNEOUS
SUMMARY: serpentinised dunite with wehrlite and gabbroic dykes
ALTERATION: highly serpentinised
VEINS: cut by a variety of serpentine veins
STRUCTURE: Brittle

SEQUENCE: I
UNIT/SUBUNIT: 29c
ROCK NAME: harzburgite
CONTACT: modal
TEXTURE: Granular
IGNEOUS SUMMARY: highly serpentinised harzburgite with gabbro dykes
ALTERATION: highly serpentinised
VEINS: cut by a variety of serpentine veins
STRUCTURE: Brittle

Fabric intensity

Vein density (per meter)

Grain size

Magnetic susceptibility

Lithology

Primary mineralogy (%):
- Olivine
- Plagioclase
- Chloropyroxene
- Orthopyroxene
- Amphibole
- Spinel
- Sulfide

Degree of deformation

Fracture/ Vein density (per meter)

Alteration intensity

Hole BA4A-62Z Section 2, Top of Section 168.59 (m CCD)

Magmatic contact

Brittle

Crystal plastic

Hole BA4A-62Z Section 3, Top of Section 169.38 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>169.41</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>169.51</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>169.61</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>169.71</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>169.81</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>169.91</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>170.01</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

MBIO

SEQUENCE: I
UNIT/SUBUNIT: 29c
ROCK NAME: harzburgite
CONTACT: continuous
TEXTURE: Granular

IGNEOUS SUMMARY: Highly serpentinised harzburgite with gabbro dykes

ALTERATION: Highly serpentinised

VEINS: Cut by a variety of serpentine veins

STRUCTURE: Brittle - Network of fine black fractures with small amounts of displacement

Crystal plastic - Pyroxene grains are rounded and slightly exfoliated.

SEQUENCE: I
UNIT/SUBUNIT: 29c
ROCK NAME: gabbro
CONTACT: intrusive
TEXTURE: Granular

IGNEOUS SUMMARY: Altered gabbro dyke

ALTERATION: Altered and pseudomorphed

VEINS: White veins cut and emanate from dyke

STRUCTURE: Brittle - Brittle contact
Hole BA4A-63Z Section 1, Top of Section 170.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W (SI x 10^-5)</th>
<th>MSP (SI x 10^-5)</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Fabric intensity</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>170.70</td>
<td></td>
</tr>
<tr>
<td>170.83</td>
<td></td>
</tr>
<tr>
<td>170.93</td>
<td></td>
</tr>
<tr>
<td>171.03</td>
<td></td>
</tr>
<tr>
<td>171.13</td>
<td></td>
</tr>
<tr>
<td>171.23</td>
<td></td>
</tr>
<tr>
<td>171.33</td>
<td></td>
</tr>
<tr>
<td>171.43</td>
<td></td>
</tr>
<tr>
<td>171.53</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE 1:

UNIT/SUBUNIT: 29e
ROCK NAME: harzburgite
CONTACT: continuous
TEXTURE: Granular

IGNEOUS SUMMARY: Serpentinised harzburgite with gabbroic and wehrlitic dykes

ALTERATION: Highly serpentinised

VEINS: Cut by a variety of serpentine veins

STRUCTURE: Brittle - Network of fine black fractures with small amounts of displacement runs down most of this section

SEQUENCE 1:

UNIT/SUBUNIT: 29e
ROCK NAME: wehrlite
CONTACT: intrusive
TEXTURE: Granular

IGNEOUS SUMMARY: Altered wehrlite dyke

ALTERATION: Altered and pseudomorphed

VEINS: White and green veins

STRUCTURE: Brittle - Veins - Crystal plastic -

SEQUENCE 1:

UNIT/SUBUNIT: 29f
ROCK NAME: dunite
CONTACT: modal
TEXTURE:

IGNEOUS SUMMARY: Serpenized and oxidized dunite with a partly displaced gabbroic dye

ALTERATION: Highly serpentinised

VEINS: Network of green veins and black veins and fine white veins

STRUCTURE: Brittle - Veins - Crystal plastic -
SEQUENCE: I
UNIT/SUBUNIT: 29f
ROCK NAME: dunite
CONTACT: continuous
TEXTURE: IGNEOUS SUMMARY: serpenized and oxidized dunite with a partly displaced gabbroic dike
ALTERATION: highly serpentinised
VEINS: network of green veins and black veins and fine white veins
STRUCTURE: Brittle-Veins- conjugate vein sets occur

SEQUENCE: I
UNIT/SUBUNIT: 29f
ROCK NAME: gabbro
CONTACT: intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: altered gabbro dyke
ALTERATION: altered and pseudomorphed
VEINS: grey and white veins
STRUCTURE: Brittle-Veins-

SEQUENCE: I
UNIT/SUBUNIT: 29f
ROCK NAME: gabbro
CONTACT: intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: altered gabbro dyke
ALTERATION: altered and pseudomorphed
VEINS: grey and white veins
STRUCTURE: Brittle-Veins-

SEQUENCE: I
UNIT/SUBUNIT: 29f
ROCK NAME: gabbro
CONTACT: intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: altered gabbro dyke
ALTERATION: altered and pseudomorphed
VEINS: grey and white veins
STRUCTURE: Brittle-Zone of cohesive possibly magmatic derived brecciation

Fabric intensity

Vein density (per meter)

Grain size

Hole BA4A-63Z Section 2, Top of Section 171.54 (m CCD)

Depth (m CCD) | Core length (cm) | Striation image | Magnetic susceptibility | Primary mineralogy (%) | Degree of deformation | Fracture/ Vein density (per meter) | Alteration intensity | Dip | Magnetic contact | Brittle | Crystal plastic | Veins | Structures | Apparent offset |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
171.55 | 0 | | | | | | | | | | | | | | |
171.65 | 10 | | | | | | | | | | | | | | |
171.75 | 20 | | | | | | | | | | | | | | |
171.85 | 30 | | | | | | | | | | | | | | |
171.95 | 40 | | | | | | | | | | | | | | |
172.05 | 50 | | | | | | | | | | | | | | |
172.15 | 60 | | | | | | | | | | | | | | |
172.25 | 70 | | | | | | | | | | | | | | |
172.35 | 80 | | | | | | | | | | | | | | |
172.45 | 90 | | | | | | | | | | | | | | |

Sequences and Units:
- Sequence I: Unit/Subunit 29f
- Rock Name: Dunite
 - Contact: Continuous
 - Textural Summary: Serpentized and oxidized dunite with a partly displaced gabbroic dike
 - Alteration: Highly serpentinised
 - Veins: Network of green veins and black veins and fine white veins
 - Structure: Brittle Veins - Conjugate vein sets occur
- Sequence I: Unit/Subunit 29f
 - Rock Name: Gabbro
 - Contact: Intrusive
 - Texture: Granular
 - Igneous Summary: Altered gabbro dyke
 - Alteration: Altered and pseudomorphed
 - Veins: Grey and white veins
 - Structure: Brittle
- Sequence I: Unit/Subunit 29f
 - Rock Name: Gabbro
 - Contact: Intrusive
 - Texture: Granular
 - Igneous Summary: Altered gabbro dyke
 - Alteration: Altered and pseudomorphed
 - Veins: Grey and white veins
 - Structure: Brittle Zone of cohesive possibly magmatic derived brecciation
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Structure</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.57</td>
<td></td>
</tr>
<tr>
<td>172.77</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>172.79</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>172.81</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Sequence: I

Unit/Subunit: 29f

Rock Name: dunite

Contact: continuous

Texture: igneous

Summary: serpentinized and oxidized dunite with a partly displaced gabbroic dike

Alteration: highly serpentinised

Veins: network of green veins and black veins and fine white veins

Fabric intensity: 5

Vein density (per meter): 6

Grain size: 6

Hole BA4A-63Z Section 3, Top of Section 172.54 (m CCD)
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>173.36</td>
<td>0</td>
<td>Dunite</td>
<td>Olivine, Plagioclase, Amphibole</td>
</tr>
<tr>
<td>173.36</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173.46</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173.56</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173.66</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173.76</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173.86</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MSCL-W Magnetic susceptibility (SI x 10^-5)

GRA (g/cm³)

Degree of deformation

- **Discrete brittle features**
- **Fracture/ Vein density (per meter)**
- **Alteration intensity**
- **Vein density (per meter)**

Contact
- Continuous

Texture
- Igneous
- Serpenized and oxidized dunite with a partly displaced gabbroic dike

Alteration
- Highly serpentinised

Veins
- Network of green veins and black veins and fine white veins

Structure
- Brittle- Incohesive, clearly bounded brittle fault zone

Vein crosscutting Alteration halos

Vein density (per meter)
- 0 per 10 cm
- 1 per 10 cm
- 10-30 per 10 cm
- >20 per 10 cm

Alteration intensity
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclasite

Magmatic contact

Dip

Magnetic contact

Brittle plastic

Veins

Structures

- Fault zones

fabrics
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Degree of foliation
- Isotropic
- Weak
- Moderate
- Strong

Porphyroclast size
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Degree of foliation
- Glassy
- Cryptocrystalline (<0.1 mm)
- Microcrystalline (0.1–0.2 mm)

Rock density (g/cm³)
- 2.5
- 2.25
- 2.0
- 1.75

Degree of deformation
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Sequence 29f

Contact
- Continuous

Texture
- Igneous
- Serpenized and oxidized dunite with a partly displaced gabbroic dike

Alteration
- Highly serpentinised

Veins
- Network of green veins and black veins and fine white veins

Structure
- Brittle- Incohesive, clearly bounded brittle fault zone

Vein crosscutting Alteration halos

Vein density (per meter)
- 0 per 10 cm
- 1 per 10 cm
- 10-30 per 10 cm
- >20 per 10 cm

Alteration intensity
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclasite

Magmatic contact

Brittle plastic

Veins

Structures

- Fault zones

fabrics
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Degree of foliation
- Isotropic
- Weak
- Moderate
- Strong

Porphyroclast size
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Degree of foliation
- Glassy
- Cryptocrystalline (<0.1 mm)
- Microcrystalline (0.1–0.2 mm)

Rock density (g/cm³)
- 2.5
- 2.25
- 2.0
- 1.75

Degree of deformation
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100
SEQUENCE: 17
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE: IGNEOUS
SUMMARY: serpentinized and oxidized dunite with a partly displaced gabbroic dike
ALTERATION: highly serpentinised
VEINS: network of green veins and black veins and fine white veins
STRUCTURE: Brittle - Minor faulting

SEQUENCE: 17
ROCK NAME: Olivine gabbro
CONTACT: intrusive
TEXTURE: IGNEOUS
SUMMARY: highly altered olivine gabbro
ALTERATION: highly altered
VEINS: few green veins

Surface Fabric Intensity

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (wt %)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174.50</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174.60</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174.70</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174.80</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174.90</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175.00</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175.10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175.20</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175.30</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175.40</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of deformation

<table>
<thead>
<tr>
<th>Fabric intensity</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brittle features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alteration intensity

<table>
<thead>
<tr>
<th>Alteration</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td></td>
</tr>
<tr>
<td>Slight</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Substantial</td>
<td></td>
</tr>
<tr>
<td>Extensive</td>
<td></td>
</tr>
<tr>
<td>Complete</td>
<td></td>
</tr>
</tbody>
</table>

Magmatic contact

<table>
<thead>
<tr>
<th>Dip</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>45</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Fault zones

<table>
<thead>
<tr>
<th>Fault zone</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degree of deformation

<table>
<thead>
<tr>
<th>Degree of deformation</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor fracturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate fracturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS reduction and rotation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well-developed cataclasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultracataclastite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magmatic Layering

<table>
<thead>
<tr>
<th>Magmatic Layering</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protogranular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porphyroclastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly foliated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protomylonite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mylonite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultramylonite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crystal plastic

<table>
<thead>
<tr>
<th>Crystal plastic</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotropic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vein density (per meter)

<table>
<thead>
<tr>
<th>Vein density (per meter)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh (<3%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slight (3–10%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate (11–30%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substantial (31–60%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive (61–90%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete (>90%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magnetic susceptibility

<table>
<thead>
<tr>
<th>Magnetic susceptibility (SI x 10^-5)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh (<3%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slight (3–10%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate (11–30%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substantial (31–60%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive (61–90%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete (>90%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scanned image:

- **Contact:** Continuous
- **Texture:** IGNEOUS
- **Summary:** Serpentinized and oxidized dunite with a partly displaced gabbroic dike
- **Alteration:** Highly serpentinized
- **Veins:** Network of green veins and black veins and fine white veins
- **Structure:** Brittle - Minor faulting

Vein density (per meter):

- 0-1 per 10 cm
- 1-5 per 10 cm
- >5 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm

Primary mineralogy:

- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Spinel
- Sulfide

Degree of deformation:

- Brittle

Sequence:

- 17

Description:

- Magnetic contact
- Brittle
- Crystal plastic
- Veins

Structures:

- Fault zones
Hole BA4A-64Z Section 3, Top of Section 175.46 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>GRA (g/cm²)</th>
<th>MSCL-W (SI x 10⁻⁵)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Unit/subunit</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Structures</th>
<th>Vein density (per meter)</th>
<th>Alteration</th>
<th>Fracture/ Vein density (per meter)</th>
<th>MINING CONTACT</th>
<th>Fabric intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>175.49</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>175.59</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>175.69</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>175.79</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>175.89</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>175.99</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td>1000</td>
</tr>
</tbody>
</table>

DESCRIPTION: The image shows a section of a core sample with various geological features marked. The scale bar indicates the section length of 10 cm. The description includes color-coded sections for different rock types and features such as veins, fractures, and lithological units. The image helps in visualizing the spatial distribution of these features along the core. The table provides a structured overview of the geological data, including magnetic susceptibility, GRA, MSCL-W, GRA, and other parameters, allowing for a detailed analysis of the section's composition and structure.
Sequence I: Section 1, Top of Section 176.20 (m CCD)

Lithology
- Dunite
 - **Primary mineralogy:** Olivine, Plagioclase, Amphibole
 - **Alteration:** Highly serpentinized
 - **Veins:** Network of green veins and black veins and fine white veins
 - **Texture:** Igneous, Brittle
 - **Structure:** Brittle

- Gabbro
 - **Primary mineralogy:** Plagioclase, Orthopyroxene
 - **Alteration:** Highly altered
 - **Veins:** Few green to white veins
 - **Texture:** Igneous, Brittle
 - **Structure:** Brittle

- Harzburgite
 - **Primary mineralogy:** Olivine
 - **Alteration:** Serpentinized
 - **Veins:** White and black veins
 - **Texture:** Granular, Brittle
 - **Structure:** Brittle

Table

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
</tr>
</thead>
<tbody>
<tr>
<td>176.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description
- **Sequence:** I: 30a
- **Rock Name:** Harzburgite
- **Contact:** Intrusive
- **Texture:** Granular
- **Igneous Summary:** Serpentinized harzburgite with few smaller (<5mm) dikes
- **Alteration:** Serpentinized
- **Veins:** White and black veins
- **Structure:** Brittle

Notes:
- **Vein crosscutting:**
- **Alteration intensity:**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (>90%)
- **Degree of deformation:**
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
 - GS reduction and rotation
 - Well-developed cataclasis
 - Ultracataclastite

Table Columns:
- **Sequence**
- **Unit/Subunit**
- **Lithology**
- **Primary mineralogy**
- **Alteration**
- **Veins**
- **Structure**
- **Alteration intensity**
- **Vein density**
- **Vein crosscutting**
- **Alteration halos**
- **CT image**
- **Sulfide**
- **Amphibole**
- **Spinel**
- **Orthopyroxene**
- **Clinopyroxene**
- **Plagioclase**
- **Olivine**

Graphs and Images:
- **Core length vs. Depth**
- **Stained image**
- **Magnetic susceptibility**
- **Primary mineralogy**
- **Grain size**
- **Degree of deformation**
- **Alteration intensity**
- **Vein density**
- **Vein crosscutting**
- **Alteration halos**
- **CT image**

Additional Notes:
- **Degree of deformation:**
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
 - GS reduction and rotation
 - Well-developed cataclasis
 - Ultracataclastite
- **Texture:**
 - Protogranular
 - Porphyroclastic
 - Strongly foliated
 - Protomylonite
 - Mylonite
 - Ultramylonite
- **Strength:**
 - Isotropic
 - Weak
 - Moderate
 - Strong
- **Grain size class:**
 - Fine (0.2–1 mm)
 - Medium (1–5 mm)
 - Coarse (5–30 mm)
 - Pegmatitic (>30 mm)
- **CT image:**
 - 3D visualization of rock structure
- **Sulfide:**
 - Amphibole
 - Spinel
 - Orthopyroxene
 - Clinopyroxene
 - Plagioclase
 - Olivine
- **Magnetic susceptibility:**
 - MSCL-W
 - MSP
 - (SI x 10^-5)
 - 1000
 - 100
 - 10
 - 1
 - 0

Contact Details:
- **Continuous**
- **Intrusive**
Lithology:
- Harzburgite
- Contact: Continuous
- Texture: Granular
- Igneous Summary: Serpentinized harzburgite with few smaller (<5mm) dikes
- Alteration: Serpentinized
- Veins: White and black veins
- Structure: Brittle-

Magnetic Susceptibility (MSCL-W)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Fabric intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>30a</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>Serpentinized harzburgite with few smaller (<5mm) dikes</td>
<td>Serpentinized</td>
<td>White and black veins</td>
<td>Brittle-</td>
<td>3</td>
</tr>
</tbody>
</table>

Degree of deformation

- Magmatic contact
- Dip
- Crystal plastic
- Veins

Vein crosscutting

- Alteration halos
- Fault zones

Hole BA4A-66Z Section 1

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>176.70</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary mineralogy</th>
<th>Grain size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfide</td>
<td>0–10</td>
</tr>
<tr>
<td>Amphibole</td>
<td>10–30</td>
</tr>
<tr>
<td>Spinel</td>
<td>30–50</td>
</tr>
<tr>
<td>Orthopyroxene</td>
<td>50–70</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>70–90</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>90–100</td>
</tr>
<tr>
<td>Olivine</td>
<td>>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnetic susceptibility</th>
<th>Gamma (SI 10^-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSCL-W</td>
<td>2.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree of deformation</th>
<th>Vein crosscutting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undeformed</td>
<td>None</td>
</tr>
<tr>
<td>Minor fracturing</td>
<td>None</td>
</tr>
<tr>
<td>Moderate fracturing</td>
<td>None</td>
</tr>
<tr>
<td>Well-developed cataclasis</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brittle contact</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracture/ Vein density (per meter)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10</td>
<td>1 per 10 cm</td>
</tr>
<tr>
<td>10–30</td>
<td>3–5 per 10 cm</td>
</tr>
<tr>
<td>30–50</td>
<td>>20 per 10 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracture/ Vein density (per meter)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10</td>
<td>3 per 10 cm</td>
</tr>
<tr>
<td>10–30</td>
<td>5–15 per 10 cm</td>
</tr>
<tr>
<td>30–50</td>
<td>15–20 per 10 cm</td>
</tr>
</tbody>
</table>

Description

- Fault zones
- Structures
- Alteration halos
- Vein crosscutting
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shiptboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size (SI)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Structures</th>
<th>Alteration halos</th>
<th>Vein density (per meter)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>178.25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>178.35</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>178.45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>178.55</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>178.65</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-66Z Section 4, Top of Section 178.73 (m CCD)

Depth (m CCD)

Core length (cm)

Shipboard samples

Stained image

Magnetic susceptibility

MSCL-W MSP

GRA (g/cm²)

Primary mineralogy (%)

Sequence

Unit/ Subunit

Lithology

ROCK NAME

CONTACT

TEXTURE

IGNEOUS SUMMARY

ALTERATION

VEINS

STRUCTURE

Fabric intensity

Vein density (per meter)

Fracture / Vein density (per meter)

Degree of deformation

Discrete brittle features

Fracture halos

Alteration halos

CT image

Sulfide

Amphibole

Spinel

Orthopyroxene

Clinopyroxene

Plagioclase

Olivine

Degree of deformation

Vein crosscutting

Alteration intensity

Description

Foliation

Protogranular

Porphyroclastic

Strongly foliated

Protomylonite

Mylonite

Ultramylonite

Isotropic

Weak

Moderate

Strong

Fine grained (0.2–1 mm)

Medium grained (1–5 mm)

Coarse grained (5–30 mm)

Pegmatitic (>30 mm)

Glassy

Cryptocrystalline (<0.1 mm)

Microcrystalline (0.1–0.2 mm)

CONTACT

CONTINUOUS

MAGNETIC contact

Brittle

Crystal plastic

Veins

Apparent offset (cm)

Alteration halos

Alteration intensity

Description

Fault zones

Structures

Vein density (per meter)

Fracture / Vein density (per meter)

Degree of deformation

Discrete brittle features

Fracture halos

Alteration halos

CT image

Sulfide

Amphibole

Spinel

Orthopyroxene

Clinopyroxene

Plagioclase

Olivine

Degree of deformation

Vein crosscutting

Alteration intensity

Description

Foliation

Protogranular

Porphyroclastic

Strongly foliated

Protomylonite

Mylonite

Ultramylonite

Isotropic

Weak

Moderate

Strong

Fine grained (0.2–1 mm)

Medium grained (1–5 mm)

Coarse grained (5–30 mm)

Pegmatitic (>30 mm)

Glassy

Cryptocrystalline (<0.1 mm)

Microcrystalline (0.1–0.2 mm)
Hole BA4A-67Z Section 1, Top of Section 179.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Magnetic susceptibility MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm³)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Structures</th>
<th>Vein density (per meter)</th>
<th>Alteration</th>
<th>Dip</th>
<th>Magnetic contact Brittle Crystal plastic Voids</th>
</tr>
</thead>
<tbody>
<tr>
<td>179.73</td>
<td></td>
</tr>
<tr>
<td>179.83</td>
<td></td>
</tr>
<tr>
<td>179.93</td>
<td></td>
</tr>
<tr>
<td>180.03</td>
<td></td>
</tr>
<tr>
<td>180.13</td>
<td></td>
</tr>
<tr>
<td>180.23</td>
<td></td>
</tr>
<tr>
<td>180.33</td>
<td></td>
</tr>
<tr>
<td>180.43</td>
<td></td>
</tr>
</tbody>
</table>

- **Lithology:**
 - Serpentinitized dunite
 - Brittle-vein conjugate sets common
 - Brittle-Magmatic contact
 - Strong foliation

- **Description:**
 - Serpentinitized dunite with dense network of green veins and thin white veins.
<p>| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | Magnetic susceptibility | Magnetic susceptibility | MSCL-W MSP (SI x 10^-5) | GRA (g/cm²) | Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | Magnetic susceptibility | Magnetic susceptibility | MSCL-W MSP (SI x 10^-5) | GRA (g/cm²) | Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | Magnetic susceptibility | Magnetic susceptibility | MSCL-W MSP (SI x 10^-5) | GRA (g/cm²) | Sequence | Lithology | Degree of deformation | Structures | Vein density (per meter) | Alteration intensity | Dip | Magnetic contact | Brittle | Crystal plastic | Veins | Alteration intensity | Dip | Magnetic contact | Brittle | Crystal plastic | Veins |
|--------------|------------------|------------------|--------------|-----------------------|-----------------------|-------------------------|----------------|--------------|------------------|------------------|--------------|-----------------------|-----------------------|-------------------------|----------------|--------------|------------------|------------------|--------------|-----------------------|-----------------------|--------------|-------------------|----------------|-------------------|----------------|-------------------|----------------|-------------------|----------------|-------------------|----------------|
| 180.48 | 0 | | | | | | | 0 | | | | | | | | 0 | | | | | | | | | | | | | | | |
| 180.56 | 10 | | | | | | | 10 | | | | | | | | 10 | | | | | | | | | | | | | | | |
| 180.68 | 20 | | | | | | | 20 | | | | | | | | 20 | | | | | | | | | | | | | | | |
| 180.78 | 30 | | | | | | | 30 | | | | | | | | 30 | | | | | | | | | | | | | | | |
| 180.80 | 40 | | | | | | | 40 | | | | | | | | 40 | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Vein density (per meter)</th>
<th>Alteration halo</th>
<th>Structures</th>
<th>Apparent offset</th>
<th>Fault zones</th>
<th>Alteration halos</th>
<th>Veins</th>
<th>Discreet brittle features</th>
</tr>
</thead>
<tbody>
<tr>
<td>180.95</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>181.05</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>181.15</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>181.25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>181.35</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>181.45</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>181.55</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>181.65</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>181.75</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>181.85</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Sampled image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Abnormal hiatus</th>
<th>Vein density (per meter)</th>
<th>Alteration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>181.95</td>
<td></td>
</tr>
<tr>
<td>182.05</td>
<td></td>
</tr>
<tr>
<td>182.15</td>
<td></td>
</tr>
<tr>
<td>182.25</td>
<td></td>
</tr>
<tr>
<td>182.35</td>
<td></td>
</tr>
<tr>
<td>182.45</td>
<td></td>
</tr>
<tr>
<td>182.55</td>
<td></td>
</tr>
<tr>
<td>182.65</td>
<td></td>
</tr>
<tr>
<td>182.75</td>
<td></td>
</tr>
<tr>
<td>182.85</td>
<td></td>
</tr>
</tbody>
</table>
SEQUENCE: I
UNIT/SUBUNIT: 30j
ROCK NAME: harzburgite
CONTACT: continuous
TEXTURE: Granular
IGNEOUS SUMMARY: serpentinised harzburgite with gabbroic veins
ALTERATION: serpentinised
VEINS: white thread veins with golden haloes, white/brown composite veins and a network of dark veins
STRUCTURE: Brittle-Veins-Crystal plastic-Pyroxene grains are rounded and slightly elongated.

Fabric intensity

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core length (cm)</td>
<td>182.73</td>
<td>182.83</td>
<td>182.93</td>
<td>183.03</td>
<td>183.13</td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>183.23</td>
<td>183.33</td>
<td>183.43</td>
<td>183.53</td>
<td>183.63</td>
</tr>
<tr>
<td>Core length (cm)</td>
<td>183.73</td>
<td>183.83</td>
<td>183.93</td>
<td>184.03</td>
<td>184.13</td>
</tr>
</tbody>
</table>

Hole BA4A-68Z Section 1, Top of Section 182.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core length (cm)</td>
<td>182.73</td>
<td>182.83</td>
<td>182.93</td>
<td>183.03</td>
<td>183.13</td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>183.23</td>
<td>183.33</td>
<td>183.43</td>
<td>183.53</td>
<td>183.63</td>
</tr>
<tr>
<td>Core length (cm)</td>
<td>183.73</td>
<td>183.83</td>
<td>183.93</td>
<td>184.03</td>
<td>184.13</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Olivine 75, Plagioclase 25</td>
<td>Minor fracturing</td>
<td>15-20 per 10 cm</td>
<td>Slight (3–10%)</td>
<td>0</td>
<td>Magnetic contact</td>
<td>Brittle</td>
<td>Crystal plastic</td>
<td>Veins</td>
</tr>
</tbody>
</table>

Description:

- Magnetic susceptibility (SI x 10^-5):
 - MSCL-W:
 - 1: 0.1, 10
 - MSP: 100
- GRA (g/cm³):
 - 1.4, 2.4
- Sequence:
 - I
- Lithology:
 - Unit/subunit: 30j
 - Rock name: Harzburgite
- Contact:
 - Continuous
- Texture:
 - Granular
- Igneous Summary:
 - Serpentinised harzburgite with gabbroic veins
- Alteration:
 - Serpentinised
- Veins:
 - White thread veins with golden haloes, white/brown composite veins and a network of dark veins
- Structure:
 - Brittle-Veins-Crystal plastic-Pyroxene grains are rounded and slightly elongated.
Hole BA4A-68Z Section 2, Top of Section 183.37 (m CCD)

| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | Magnetic susceptibility | MSCL-W MSP (SI x 10^-5) | GRA (g/cm³) | Sequence | Lithology | Primary mineralogy (%) | Grain size | Degree of deformation | Fracture/ Vein density (per meter) | Alteration intensity | Dip | Magnetics | Structures | Vein density (per meter) | Alteration | Discrete Vein features | Fault zones | Apparent offset | Description |
|---------------|------------------|-------------------|---------------|------------------------|--------------------------|--------------------------|-----------|-----------|----------------------|-----------|--------------------|--------------------------------|-------------------|-----|------------|-------------|-----------------|---------------|-------------|
| 183.41 | 0 | | | | | | | | | | | | | | | | | | |
| 183.51 | 10 | | | | | | | | | | | | | | | | | | |
| 183.61 | 20 | | | | | | | | | | | | | | | | | | |
| 183.71 | 30 | | | | | | | | | | | | | | | | | | |
| 183.81 | 40 | | | | | | | | | | | | | | | | | | |
| 183.91 | 50 | | | | | | | | | | | | | | | | | | |

SERIES: I

UNIT/SUBUNIT: 30k

ROCK NAME: dunite

CONTACT: continuous

TEXTURE: IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle

SEQUENCE: 1, 30k

TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised dunite with thin gabbroic dykes

ALTERATION: serpentinised

VEINS: white thread veins and white/brown composite veins

STRUCTURE: Brittle
Hole BA4A-68Z Section 3, Top of Section 183.92 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Shipboard samples</th>
<th>Grained image</th>
<th>Primary mineralogy (%)</th>
<th>Grain size (μm)</th>
<th>Degree of deformation</th>
<th>Fracture/Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>183.95</td>
<td></td>
</tr>
<tr>
<td>184.05</td>
<td></td>
</tr>
<tr>
<td>184.15</td>
<td></td>
</tr>
<tr>
<td>184.25</td>
<td></td>
</tr>
<tr>
<td>184.35</td>
<td></td>
</tr>
<tr>
<td>184.45</td>
<td></td>
</tr>
<tr>
<td>184.55</td>
<td></td>
</tr>
<tr>
<td>184.65</td>
<td></td>
</tr>
<tr>
<td>184.75</td>
<td></td>
</tr>
</tbody>
</table>

Sequence: 30l

Unit/Subunit: 30l

Rock Name: Harzburgite

Contact: Continuous

Texture: Granular

Igneous Summary: Highly fractured serpentinised harzburgite with abundant veins and thin gabbroic dykes

Alteration: Serpentinised

Veins: White/black and green/white composite veins plus white thread veins

Structure: Brittle-Vein-Crystal plastic

Veins: Pyroxene grains are moderately elongated.
Hole BA4A-68Z Section 4, Top of Section 184.83 (m CCD)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>30l</td>
<td>harzburgite</td>
<td>Olivine, Plagioclase, Amphibole, Spinel, Sulfide</td>
<td>Brittle</td>
<td>6</td>
<td>Fresh (<3%)</td>
<td>0</td>
<td>Brittle</td>
<td>Crystal plastic</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>I</td>
<td>31a</td>
<td>harzburgite</td>
<td>Olivine, Plagioclase, Amphibole, Spinel, Sulfide</td>
<td>Brittle</td>
<td>3</td>
<td>Slight (3–10%)</td>
<td>45</td>
<td>Brittle</td>
<td>Crystal plastic</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>I</td>
<td>31a</td>
<td>olivine gabbro</td>
<td>Olivine, Amphibole, Spinel, Sulfide</td>
<td>Brittle</td>
<td>1.4</td>
<td>Moderate (11–30%)</td>
<td>90</td>
<td>Brittle</td>
<td>Crystal plastic</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-69Z Section 1, Top of Section 185.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Sampled image</th>
<th>Magnetic susceptibility (SI x 10^-5)</th>
<th>GRA (g/cm³)</th>
<th>Primary mineralogy</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Discrete brittle features</th>
<th>Vein density (per meter)</th>
<th>Vein density (per meter)</th>
<th>Fracture/ Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>185.70</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>185.80</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>185.90</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>186.00</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>186.10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>186.20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>186.30</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>186.40</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>186.50</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>186.60</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: I

UNIT/SUBUNIT: 31a

CONTACT: Continuous

TEXTURE: IGNEOUS

SUMMARY: serpentinized harzburgite

ALTERATION: serpentinised

VEINS: white complex, contorted veins and white/black composite veins, white veins, grey veins, grey-green veins, gilfy veins.

STRUCTURE: Brittle

Veins:

- Crystal plastic: Pyroxene grains are moderately exsolved.
Hole BA4A-69Z Section 3, Top of Section 187.62 (m CCD)

<table>
<thead>
<tr>
<th>Sequence: I</th>
<th>Unit/Subunit: 31b</th>
<th>Rock Name: Olivine gabbro</th>
<th>Contact: Intrusive</th>
<th>Textural Summary: Fractured, rubbly olivine gabbro dike</th>
<th>Alteration: Voids, grey vein, white vein, grey-green veins</th>
<th>Structure: Brittle-Vein-Crystal Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence: I</td>
<td>Unit/Subunit: 31c</td>
<td>Rock Name: Harzburgite</td>
<td>Contact: Intrusive</td>
<td>Textural Summary: Fractured, serpentinized, harzburgite cross-cut by olivine gabbro dikes</td>
<td>Alteration: Serpentinization</td>
<td>Structure: Brittle-Vein-Crystal Plastic-Pyroxene grains are rounded and slightly elongated.</td>
</tr>
<tr>
<td>Sequence: I</td>
<td>Unit/Subunit: 31c</td>
<td>Rock Name: Olivine gabbro</td>
<td>Contact: Intrusive</td>
<td>Textural Summary: Fractured, rubbly olivine gabbro dike</td>
<td>Alteration: Voids, grey vein, white vein, grey-green veins</td>
<td>Structure: Brittle-Vein-Crystal Plastic</td>
</tr>
</tbody>
</table>

Core Length (cm)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>187.62</td>
<td>10</td>
</tr>
<tr>
<td>187.65</td>
<td>10</td>
</tr>
<tr>
<td>187.68</td>
<td>10</td>
</tr>
<tr>
<td>187.71</td>
<td>10</td>
</tr>
<tr>
<td>187.74</td>
<td>10</td>
</tr>
<tr>
<td>187.77</td>
<td>10</td>
</tr>
<tr>
<td>187.80</td>
<td>10</td>
</tr>
<tr>
<td>187.83</td>
<td>10</td>
</tr>
<tr>
<td>187.86</td>
<td>10</td>
</tr>
<tr>
<td>187.89</td>
<td>10</td>
</tr>
<tr>
<td>187.92</td>
<td>10</td>
</tr>
<tr>
<td>187.95</td>
<td>10</td>
</tr>
<tr>
<td>187.98</td>
<td>10</td>
</tr>
<tr>
<td>188.01</td>
<td>10</td>
</tr>
<tr>
<td>188.04</td>
<td>10</td>
</tr>
<tr>
<td>188.07</td>
<td>10</td>
</tr>
<tr>
<td>188.10</td>
<td>10</td>
</tr>
<tr>
<td>188.13</td>
<td>10</td>
</tr>
<tr>
<td>188.16</td>
<td>10</td>
</tr>
<tr>
<td>188.19</td>
<td>10</td>
</tr>
<tr>
<td>188.22</td>
<td>10</td>
</tr>
<tr>
<td>188.25</td>
<td>10</td>
</tr>
<tr>
<td>188.28</td>
<td>10</td>
</tr>
<tr>
<td>188.31</td>
<td>10</td>
</tr>
<tr>
<td>188.34</td>
<td>10</td>
</tr>
<tr>
<td>188.37</td>
<td>10</td>
</tr>
<tr>
<td>188.40</td>
<td>10</td>
</tr>
<tr>
<td>188.43</td>
<td>10</td>
</tr>
</tbody>
</table>

CT Image

- **X** marks the location of the drilled section.
- **X** marks the location of the CT scan.

Scanned Image

- **X** marks the location of the scanned image.

Alteration Halos

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Degree of Deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Magmatic Contact

- Discrete brittle features
- Fracture/vein density (per meter)
- Vein crosscutting

Dip

- Magnetic contact
- Brittle
- Crystal plastic

Vein Density (per meter)

- 0–1 per 10 cm
- 1–3 per 10 cm
- 4–20 per 10 cm
- 21–50 per 10 cm
- 51–100 per 10 cm
- >100 per 10 cm

Fracture/ Vein Density (per meter)

- 0–1 per 10 cm
- 1–3 per 10 cm
- 3–5 per 10 cm
- >5 per 10 cm

Magmatic Layering

- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Foliation

- Isotropic
- Weak
- Moderate
- Strong

Dip

- 0° 45° 90°

Vein Crosscutting

- Alteration halos
- Structures
- Apparent offset

Lithology

- Primary mineralogy (%)
- Degree of deformation
- Fracture/vein density (per meter)
- Vein density (per meter)
- Alteration intensity
- Dip
- Magmatic contact
- Brittle
- Crystal plastic

Grain Size

- Medium grained (1–5 mm)
- Fine grained (0.2–1 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Fabric Intensity

- 0
- 1
- 2
- 3
- 4
- 5

Vein Density

- 0
- 1
- 2
- 3
- 4
- 5

Discrete Brittle Features

- Vein crosscutting
- Structures
- Apparent offset

Alteration Halos

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Degree of Deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Magmatic Contact

- Discrete brittle features
- Fracture/vein density (per meter)
- Vein crosscutting

Dip

- Magnetic contact
- Brittle
- Crystal plastic

Vein Density (per meter)

- 0–1 per 10 cm
- 1–3 per 10 cm
- 3–5 per 10 cm
- >5 per 10 cm

Fracture/ Vein Density (per meter)

- 0–1 per 10 cm
- 1–3 per 10 cm
- 3–5 per 10 cm
- >5 per 10 cm

Magmatic Layering

- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Foliation

- Isotropic
- Weak
- Moderate
- Strong

Dip

- 0° 45° 90°

Vein Crosscutting

- Alteration halos
- Structures
- Apparent offset

Lithology

- Primary mineralogy (%)
- Degree of deformation
- Fracture/vein density (per meter)
- Vein density (per meter)
- Alteration intensity
- Dip
- Magmatic contact
- Brittle
- Crystal plastic

Grain Size

- Medium grained (1–5 mm)
- Fine grained (0.2–1 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Fabric Intensity

- 0
- 1
- 2
- 3
- 4
- 5

Vein Density

- 0
- 1
- 2
- 3
- 4
- 5

Discrete Brittle Features

- Vein crosscutting
- Structures
- Apparent offset

Alteration Halos

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Degree of Deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite
Harzburgite

Contact: Tectonic
Texture: Igneous
Summary: Fractured, serpentinized, harzburgite cross-cut by olivine gabbro dikes.
Alteration: Serpentinized
Veins: Black veins, grey veins.
Structure: Brittle - Splayed fault zone

Crystal Plasticity: Pyroxene grains are rounded and slightly elongated.

Gabbro

Contact: Intrusive
Texture: Granular
Summary: Fractured gabbroic dike.
Alteration:
Veins: White veins, grey veins.
Structure: Brittle - Splayed fault zone

Crystal Plasticity: Well-developed cataclasis.

Magnetic susceptibility

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Magnetic susceptibility (SI x 10^-5)</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size (µm)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration</th>
<th>Dip</th>
<th>Fabric intensity</th>
<th>Vein density (per meter)</th>
<th>Adjacent offset</th>
<th>Structures</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>188.40</td>
<td></td>
<td>10</td>
<td>2.0</td>
<td>I</td>
<td>Harzburgite</td>
<td>olivine, clinopyroxene</td>
<td>< 25</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0–10</td>
<td>0–100</td>
<td>0</td>
<td></td>
<td>0–100</td>
<td></td>
</tr>
<tr>
<td>188.50</td>
<td></td>
<td>10</td>
<td>2.0</td>
<td>I</td>
<td>gabbro</td>
<td>plagioclase, orthopyroxene</td>
<td>< 25</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0–10</td>
<td>0–100</td>
<td>0</td>
<td></td>
<td>0–100</td>
<td></td>
</tr>
<tr>
<td>188.60</td>
<td></td>
<td>10</td>
<td>2.0</td>
<td>I</td>
<td>gabbro</td>
<td>amphibole, Spinel</td>
<td>< 25</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0–10</td>
<td>0–100</td>
<td>0</td>
<td></td>
<td>0–100</td>
<td></td>
</tr>
<tr>
<td>188.70</td>
<td></td>
<td>10</td>
<td>2.0</td>
<td>I</td>
<td>gabbro</td>
<td>orthopyroxene, clinopyroxene</td>
<td>< 25</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0–10</td>
<td>0–100</td>
<td>0</td>
<td></td>
<td>0–100</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **Visual:** Brittle contact.
- **Texture:** Fresh (<3%).
- **Alteration:** Complete (>90%).
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Alteration</th>
<th>Vein density (per meter)</th>
<th>Degree of deformation</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>189.67</td>
<td>0</td>
<td>31d</td>
<td>Olivine</td>
<td>100</td>
<td>Fresh</td>
<td>0–1 per 10 cm</td>
<td>Undeformed</td>
<td>Brittle</td>
</tr>
<tr>
<td>189.75</td>
<td>0</td>
<td>31e</td>
<td>Dunite</td>
<td>90</td>
<td>Slight</td>
<td>10–30 per 10 cm</td>
<td>Semi-cohesive cataclastic fault zone</td>
<td></td>
</tr>
<tr>
<td>189.85</td>
<td>0</td>
<td>Gabbro</td>
<td>Orthopyroxene, Plagioclase</td>
<td>50 25</td>
<td>Moderate</td>
<td>30–50 per 10 cm</td>
<td>Protomylonite</td>
<td></td>
</tr>
<tr>
<td>189.95</td>
<td>0</td>
<td>Gabbro</td>
<td>Amibbole, Spinel</td>
<td>0</td>
<td>Complete</td>
<td>>100 per 10 cm</td>
<td>Ultramylonite</td>
<td></td>
</tr>
</tbody>
</table>

Magnetic susceptibility

- MSCL-W: 2.15 GRC/cm³
- MSP: 2.65 GRC/cm³

Sequences

- 31d: Intrusive, Fractured olivine gabbro dike
- 31e: Intrusive, Fractured, serpentinized dunite with minor near-harzburgitic zones, cross-cut by rubbly gabbroic dikes

Contact

- Intrusive

Texture

- Granular

Igneous summary

- Fractured olivine gabbro dike
- Fractured, serpentinized dunite with minor near-harzburgitic zones, cross-cut by rubbly gabbroic dikes

Alteration

- Serpentinized

Veins

- Green veins, grey veins, red veins, grey-green veins

Structure

- Brittle: Zone of cohesive cataclastic fault zone
Hole BA4A-72Z Section 1, Top of Section 191.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>LOI</th>
<th>CT image</th>
<th>MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm^2)</th>
<th>Magnetic susceptibility</th>
<th>Dip</th>
<th>Contact</th>
<th>Texture</th>
<th>Veins</th>
<th>Discrete brittle features</th>
<th>Structures</th>
<th>Alteration halos</th>
<th>Vein crosscutting</th>
<th>Vein density (per meter)</th>
<th>Magnetic contact</th>
<th>Crystallinity</th>
<th>Veins</th>
<th>Fabric intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>191.70</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>191.80</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>191.90</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>192.00</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>192.10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>192.20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>192.30</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>192.40</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>192.50</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-72Z Section 2, Top of Section 192.59 (m CCD)

Depth (m CCD)	Core length (cm)	Stained image	Magnetic susceptibility	Primary mineralogy (%)	Grain size	Degree of deformation	Alteration intensity	Dip	Description
0	10	CT image	2.8	100	50	3	0	0	SEQUENCE: 32a
192.00	1								ROCK NAME: dunite
192.10	10								CONTACT: tectonic
192.20	1								SUMMARY: fractured, serpentized dunite, cross-cut by numerous gabbroic dikes
192.30	1								A T E R T I O N: serpentized
192.40	1								Un-filled: black, grey veins, white veins
192.50	1								Veins: Crystal plastic
192.60	1								Crystal plastic
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary minera</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip Magnetic contact</th>
<th>Brittle Crystal plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>194.05</td>
<td></td>
</tr>
<tr>
<td>194.15</td>
<td></td>
</tr>
<tr>
<td>194.25</td>
<td></td>
</tr>
<tr>
<td>194.35</td>
<td></td>
</tr>
<tr>
<td>194.45</td>
<td></td>
</tr>
<tr>
<td>194.55</td>
<td></td>
</tr>
<tr>
<td>194.65</td>
<td></td>
</tr>
<tr>
<td>194.75</td>
<td></td>
</tr>
<tr>
<td>194.85</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: I 32a
ROCK NAME: dunite
CONTACT: Continuous
IGNEOUS SUMMARY: fractured, serpentized dunite, cross-cut by numerous gabbroic dikes
ALTERATION: serpentinized
VEINS: brown veins, grey veins, black veins
STRUCTURE: Brittle-Veins-Crystal plastic-

SEQUENCE: I 32a
ROCK NAME: gabbro
CONTACT: Intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: olivine gabbro dike
ALTERATION:
VEINS: grey-green veins
STRUCTURE: Brittle-Veins-Crystal plastic-

SEQUENCE: I 32a
ROCK NAME: olivine gabbro
CONTACT: Intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: sheared olivine gabbro dike
ALTERATION:
VEINS: grey veins, grey-green veins
STRUCTURE: Brittle-Veins-Crystal plastic-

SEQUENCE: I 32b
ROCK NAME: Harzburgite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: serpentinized, fractured harzburgite cross-cut by gabbroic dikes
ALTERATION: serpentinized
VEINS: white veins, grey veins, black veins
STRUCTURE: Brittle-Veins-Crystal plastic-
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>Sequence</th>
<th>Contact</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>194.70</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Sequence: I
Unit/Subunit: 32b
Rock Name: Harzburgite
Contact: Continuous
Texture:
Igneous Summary: Serpentinized, fractured harzburgite cross-cut by gabbroic dikes
Alteration: Serpentinized
Veins: White veins, grey veins
Structure: Brittle
- **Footwall Vein:** Crosscut by gabbroic dikes.
- **Wallrock Vein:** Crosscut by gabbroic dikes.

Unit/Subunit: 32c
Rock Name: Dunite
Contact: Modal
Texture:
Igneous Summary: Fractured, serpentized dunite, cross-cut by numerous gabbroic dikes
Alteration: Serpentinized
Veins: Brown veins, grey veins, white veins
Structure: Brittle
- **Footwall Vein:** Crosscut by gabbroic dikes.
- **Wallrock Vein:** Crosscut by gabbroic dikes.

Unit/Subunit: 32d
Rock Name: Harzburgite
Contact: Modal
Texture:
Igneous Summary: Serpentinized, fractured harzburgite cross-cut by minor gabbroic dikes
Alteration: Serpentinized
Veins: Black veins, grey veins
Structure: Brittle
- **Footwall Vein:** Crosscut by gabbroic dikes.
- **Wallrock Vein:** Crosscut by gabbroic dikes.

<table>
<thead>
<tr>
<th>Fabric intensity</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1–5</td>
</tr>
<tr>
<td>2</td>
<td>5–15</td>
</tr>
<tr>
<td>3</td>
<td>15–20</td>
</tr>
<tr>
<td>4</td>
<td>20–30</td>
</tr>
<tr>
<td>5</td>
<td>>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRA (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.04</td>
</tr>
<tr>
<td>2.24</td>
</tr>
<tr>
<td>2.44</td>
</tr>
<tr>
<td>2.64</td>
</tr>
<tr>
<td>2.84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree of deformation</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td>Minor fracturing</td>
<td>1–5</td>
</tr>
<tr>
<td>Moderate fracturing</td>
<td>5–15</td>
</tr>
<tr>
<td>GS reduction and rotation</td>
<td>15–20</td>
</tr>
<tr>
<td>Well-developed cataclasis</td>
<td>>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree of deformation</th>
<th>Vein crosscutting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td>Minor fracturing</td>
<td>1–5</td>
</tr>
<tr>
<td>Moderate fracturing</td>
<td>5–15</td>
</tr>
<tr>
<td>GS reduction and rotation</td>
<td>15–20</td>
</tr>
<tr>
<td>Well-developed cataclasis</td>
<td>>30</td>
</tr>
</tbody>
</table>

Table of Lithology

<table>
<thead>
<tr>
<th>Unit/Subunit</th>
<th>Lithology</th>
<th>Primary mineralogy</th>
<th>Degree of deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>32b</td>
<td>Harzburgite</td>
<td>Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Spinel, Sulfide</td>
<td>Brittle</td>
</tr>
<tr>
<td>32c</td>
<td>Dunite</td>
<td>Olivine, Clinopyroxene, Pyroxene, Amphibole</td>
<td>Brittle</td>
</tr>
<tr>
<td>32d</td>
<td>Harzburgite</td>
<td>Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Spinel, Sulfide</td>
<td>Brittle</td>
</tr>
</tbody>
</table>

Summary of Magnetic Susceptibility

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>GRA (g/cm³)</th>
<th>Magnetite (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>2.04</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>2.24</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>2.44</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>2.64</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>2.84</td>
<td>10⁻⁵</td>
</tr>
</tbody>
</table>

Summary of Core Length and Shipboard Samples

<table>
<thead>
<tr>
<th>Hole BA4A-73Z Section 2, Top of Section 195.59 (m CCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m CCD)</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>195.61</td>
</tr>
<tr>
<td>195.71</td>
</tr>
<tr>
<td>195.81</td>
</tr>
<tr>
<td>195.91</td>
</tr>
<tr>
<td>196.01</td>
</tr>
<tr>
<td>196.11</td>
</tr>
<tr>
<td>196.21</td>
</tr>
</tbody>
</table>

Summary of Grains and Structures

<table>
<thead>
<tr>
<th>Degree of deformation</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td>Minor fracturing</td>
<td>1–5</td>
</tr>
<tr>
<td>Moderate fracturing</td>
<td>5–15</td>
</tr>
<tr>
<td>GS reduction and rotation</td>
<td>15–20</td>
</tr>
<tr>
<td>Well-developed cataclasis</td>
<td>>30</td>
</tr>
</tbody>
</table>

Summary of Alteration and Veins

<table>
<thead>
<tr>
<th>Degree of alteration</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh (<3%)</td>
<td></td>
</tr>
<tr>
<td>Slight (3–10%)</td>
<td></td>
</tr>
<tr>
<td>Moderate (11–30%)</td>
<td></td>
</tr>
<tr>
<td>Substantial (31–60%)</td>
<td></td>
</tr>
<tr>
<td>Extensive (61–90%)</td>
<td></td>
</tr>
<tr>
<td>Complete (≥90%)</td>
<td></td>
</tr>
</tbody>
</table>

Summary of Degree of Deformation

<table>
<thead>
<tr>
<th>Degree of deformation</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td>Minor fracturing</td>
<td>1–5</td>
</tr>
<tr>
<td>Moderate fracturing</td>
<td>5–15</td>
</tr>
<tr>
<td>GS reduction and rotation</td>
<td>15–20</td>
</tr>
<tr>
<td>Well-developed cataclasis</td>
<td>>30</td>
</tr>
</tbody>
</table>

Summary of Degree of Deformation

<table>
<thead>
<tr>
<th>Degree of deformation</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td>Minor fracturing</td>
<td>1–5</td>
</tr>
<tr>
<td>Moderate fracturing</td>
<td>5–15</td>
</tr>
<tr>
<td>GS reduction and rotation</td>
<td>15–20</td>
</tr>
<tr>
<td>Well-developed cataclasis</td>
<td>>30</td>
</tr>
</tbody>
</table>

Summary of Grains

<table>
<thead>
<tr>
<th>Grain size</th>
<th>Pegmatitic (>30 mm)</th>
<th>Glassy</th>
<th>Cryptocrystalline (<0.1 mm)</th>
<th>Microcrystalline (0.1–0.2 mm)</th>
<th>Fine grained (0.2–1 mm)</th>
<th>Medium grained (1–5 mm)</th>
<th>Coarse grained (5–30 mm)</th>
<th>Protomylonite</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10–30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30–50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50–70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary of Structures

<table>
<thead>
<tr>
<th>Structure</th>
<th>Degree of deformation</th>
<th>Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footwall</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td>Wallrock</td>
<td>Minor fracturing</td>
<td>1–5</td>
</tr>
<tr>
<td>GS reduction and rotation</td>
<td>5–15</td>
<td></td>
</tr>
<tr>
<td>Well-developed cataclasis</td>
<td>>30</td>
<td></td>
</tr>
</tbody>
</table>

Summary of Dip

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>GRA (g/cm³)</th>
<th>Magnetite (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>2.04</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>2.24</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>2.44</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>2.64</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>2.84</td>
<td>10⁻⁵</td>
</tr>
</tbody>
</table>

Summary of Sedimentary Structures

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>GRA (g/cm³)</th>
<th>Magnetite (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>2.04</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>2.24</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>2.44</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>2.64</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>2.84</td>
<td>10⁻⁵</td>
</tr>
</tbody>
</table>

Summary of Sedimentary Structures

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>GRA (g/cm³)</th>
<th>Magnetite (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>2.04</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>2.24</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>2.44</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>2.64</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>2.84</td>
<td>10⁻⁵</td>
</tr>
</tbody>
</table>
Hole BA4A-73Z Section 3, Top of Section 196.24 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magmatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>196.25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>196.35</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>196.45</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>196.55</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>196.65</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>196.75</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>196.85</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>196.95</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>197.05</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
NEDS SUMMARY: Highly serpentinitized dunite, crosscut by several filled fractures both vertical and inclined

ALTERATION: Highly serpentinitized, oxidized

VEINS: Grey veins, grey-green veins, white veins, brown, frankestein green

STRUCTURE: Brittle-Conjugate fault sets

SEQUENCE: I
UNIT/SUBUNIT: 33a
ROCK NAME: Dunite
CONTACT: Continuous

TEXTURE: Igneous

SUMMARY: Highly serpentinized dunite, crosscut by several filled fractures both vertical and inclined

ALTERATION: Highly serpentinized, oxidized

VEINS: Grey veins, grey-green veins, white veins, brown, frankestein green

STRUCTURE: Brittle-Conjugate fault sets

SEQUENCE: I
UNIT/SUBUNIT: 33b
ROCK NAME: Dunite
CONTACT: Continuous

TEXTURE: Igneous

SUMMARY: Serpentinized dunite, crosscut by gabbroic dikes, few fractures with rubbly zone, few harzburgitic inclined layerings

ALTERATION: Highly serpentinized, oxidized

VEINS: Brown, green, white, few black veins

STRUCTURE: Brittle-Conjugate fault sets

Fabric intensity

| Density (per meter) | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Vein density

| Density (per meter) | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Grain size

| Density (per meter) | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Depth (m CCD)

| 198.60 | 198.70 | 198.80 | 198.90 | 199.00 | 199.10 | 199.20 | 199.30 | 199.40 |

Core length (cm)

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Hole BA4A-74Z Section 2, Top of Section 198.58 (m CCD)
Hole BA4A-74Z Section 3, Top of Section 199.46 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W (SI x 10^-5)</th>
<th>MSP</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Unit/subunit</th>
<th>Lithology</th>
<th>Primary mineralogy</th>
<th>Grain size (°)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Abnormal habit</th>
<th>Vein crosscutting</th>
</tr>
</thead>
<tbody>
<tr>
<td>199.49</td>
<td></td>
</tr>
<tr>
<td>199.59</td>
<td></td>
</tr>
<tr>
<td>199.69</td>
<td></td>
</tr>
<tr>
<td>199.99</td>
<td></td>
</tr>
<tr>
<td>200.09</td>
<td></td>
</tr>
<tr>
<td>200.19</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-74Z Section 4, Top of Section 200.20 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm³)</th>
<th>Core alteration</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Fracture/ Vein density (per meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.21</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33b</td>
<td>Dunite</td>
<td>Olivine</td>
<td>100</td>
<td>1.6</td>
</tr>
<tr>
<td>200.31</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plagioclase</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>200.41</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clinopyroxene</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>200.51</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Orthopyroxene</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>200.61</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>200.71</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spinel</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>200.81</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulfide</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>200.91</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fresh (<3%)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Contact:
- Continuous

Texture:
- Igneous

Summary:
- Serpentinized dunite, crosscut by gabbroic dikes, few fractures with rubbly zone, few harzburgitic inclined layerings

Alteration:
- Highly serpentinized, oxidized

Veins:
- Brown, green, white, few black veins

Structure:
- Brittle fractures

Vein/Structure:
- Brittle plastic fabrics

Degree of deformation:
- Brittle features

Degree of alteration:
- Fresh (<3%)

CT Image:
- Magnetic contact
- Brittle plastic fabrics

Fabric intensity:
- Protogranular

Degree of foliation:
- Strongly foliated

Degree of layering:
- Protomylonite

Degree of deformation:
- Well-developed cataclasis
- Ultramylonite

Dip:
- 0-45°
- 45°-90°

Grain size:
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Degree of deformation:
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultramylonite

Degree of foliation:
- Strongly foliated
- Protomylonite
- Ultramylonite

Degree of alteration:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultramylonite

Degree of foliation:
- Strongly foliated
- Protomylonite
- Ultramylonite

Degree of alteration:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultramylonite

Degree of foliation:
- Strongly foliated
- Protomylonite
- Ultramylonite

Degree of alteration:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultramylonite

Degree of foliation:
- Strongly foliated
- Protomylonite
- Ultramylonite

Degree of alteration:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultramylonite

Degree of foliation:
- Strongly foliated
- Protomylonite
- Ultramylonite

Degree of alteration:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultramylonite

Degree of foliation:
- Strongly foliated
- Protomylonite
- Ultramylonite

Degree of alteration:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultramylonite

Degree of foliation:
- Strongly foliated
- Protomylonite
- Ultramylonite

Degree of alteration:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultramylonite

Degree of foliation:
- Strongly foliated
- Protomylonite
- Ultramylonite

Degree of alteration:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultramylonite

Degree of foliation:
- Strongly foliated
- Protomylonite
- Ultramylonite
SEQUENCE: 33b
UNIT/SUBUNIT: 33b
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: serpentinized dunite, crosscut by gabbroic dikes, few fractures with rubbly zone, few harzburgitic inclined layerings
ALTERATION: highly serpentinized, oxidized
VEINS: brown, green, white, few black veins
STRUCTURE: Brittle-
Vein density
Crystal plastic-
Fabric intensity
Degree of deformation
Crack/ Vein density (per meter)
ALTERATION INTENSITY:
0–10
10–30
30–50
50–70
70–90
90–100
>100

Degree of deformation:
Undeformed
Minor fracturing
Moderate fracturing
GS reduction and rotation
Well-developed cataclasis
Ultracataclastite
Protogranular
Porphyroclastic
Strongly foliated
Protomylonite
Mylonite
Ultramylonite
Isotropic
Weak
Moderate
Strong

Vein density (per meter):
1 per 10 cm
3–5 per 10 cm
>20 per 10 cm
5–15 per 10 cm
15–20 per 10 cm
Hole BA4A-75Z Section 2, Top of Section 201.50 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W (SI < 10<sup>-5</sup>)</th>
<th>MSP (SI < 10<sup>-6</sup>)</th>
<th>GRA (g/cm<sup>2</sup>)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Unit/subunit</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.53</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.6</td>
<td>5</td>
<td>Dunite</td>
<td>33b</td>
<td>Olivine, Plagioclase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201.63</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.1</td>
<td>5</td>
<td>Dunite</td>
<td>33c</td>
<td>Olivine, Plagioclase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

1. Sequence 33b: Rock Name: Dunite
2. Sequence 33c: Rock Name: Dunite
3. Fabric intensity: 5
4. Vein density: 4
5. Alteration intensity: 90
6. Dip: 45°

Alteration

- Highly serpentinized, oxidized

Veins

- Brown, green, white, few black veins

Structures

- Brittle Veins

Grade (g/cm³)

- 2.6, 1.6, 0.6

Vein Crosscutting

- 1 per 10 cm

Fracture/ Vein density (per meter)

- 0–10, 10–30, 30–50, 50–70, 70–90, >100

Detailed lithology and mineralogy

- Olivine, Plagioclase, Amphibole, Spinel, Sulfd
- Crosscut by gabbroic dikes, few fractures with rubbly zones, few harzburgitic inclined layerings
- Highly serpentinized, oxidized
- Brown, green, white, few black veins
- Brittle plastic deformation

Contact

- Continuous
- Tectonic

Texture

- Igneous
- Brittle

Fabric intensity

- 5

Grain size

- 0.2–1 mm, 1–5 mm, 5–30 mm, >30 mm

Magnetic susceptibility

- MSCL-W: 10⁻⁵, MSP: 10⁻⁶

Alteration halos

- Sulfide, Amphibole, Spinel, Orthopyroxene, Clinopyroxene, Plagioclase, Olivine

Degree of deformation

- Discrete brittle features

Degree of fracturing

- Minor, Moderate, Significant, Well-developed cataclasis, Ultracataclastite

Protomylonite

- Protogranular, Porphyroclastic, Strongly foliated

Detailed structures

- Fault zones, Structures, Apparent offset

Alteration halos

- Fresh (<3%), Slight (3–10%), Moderate (11–30%), Substantial (31–60%), Extensive (61–90%), Complete (>90%)

Degree of deformation

- Undeformed, Undeformed, Minor fracturing, Moderate fracturing, GS reduction and rotation, Well-developed cataclasis, Ultracataclastite

Protomylonite

- Protogranular, Porphyroclastic, Strongly foliated

Porphyroclastic

- Strongly foliated

Ultramylonite

- Ultracataclastite, Mylonite, Ultramylonite

Porphyroclastic

- Strongly foliated

Isotropic

- Strong, Weak, Moderate

Fine grained

- (<0.1 mm), Microcrystalline (0.1–0.2 mm), Glassy

Medium grained

- (1–5 mm), Microcrystalline, Glassy

Coarse grained

- (5–30 mm), Glassy

Pegmatitic

- (>30 mm), Glassy

Glassy

- (<0.1 mm), Microcrystalline, Glassy

Cryptocrystalline

- (<0.1 mm), Microcrystalline, Glassy

Microcrystalline

- (0.1–0.2 mm), Glassy

Ultramylonite

- Ultracataclastite, Mylonite, Ultramylonite

Porphyroclastic

- Strongly foliated

Isotropic

- Strong, Weak, Moderate

Fine grained

- (<0.1 mm), Microcrystalline, Glassy

Medium grained

- (1–5 mm), Microcrystalline, Glassy

Coarse grained

- (5–30 mm), Glassy

Pegmatitic

- (>30 mm), Glassy

Glassy

- (<0.1 mm), Microcrystalline, Glassy

Cryptocrystalline

- (<0.1 mm), Microcrystalline, Glassy

Microcrystalline

- (0.1–0.2 mm), Glassy

Ultramylonite

- Ultracataclastite, Mylonite, Ultramylonite

Porphyroclastic

- Strongly foliated

Isotropic

- Strong, Weak, Moderate

Fine grained

- (<0.1 mm), Microcrystalline, Glassy

Medium grained

- (1–5 mm), Microcrystalline, Glassy

Coarse grained

- (5–30 mm), Glassy

Pegmatitic

- (>30 mm), Glassy

Glassy

- (<0.1 mm), Microcrystalline, Glassy

Cryptocrystalline

- (<0.1 mm), Microcrystalline, Glassy

Microcrystalline

- (0.1–0.2 mm), Glassy

Ultramylonite

- Ultracataclastite, Mylonite, Ultramylonite

Porphyroclastic

- Strongly foliated

Isotropic

- Strong, Weak, Moderate

Fine grained

- (<0.1 mm), Microcrystalline, Glassy

Medium grained

- (1–5 mm), Microcrystalline, Glassy

Coarse grained

- (5–30 mm), Glassy

Pegmatitic

- (>30 mm), Glassy

Glassy

- (<0.1 mm), Microcrystalline, Glassy

Cryptocrystalline

- (<0.1 mm), Microcrystalline, Glassy

Microcrystalline

- (0.1–0.2 mm), Glassy
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Discrete brittle features</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Vein crosscutting</th>
<th>Structures</th>
<th>Alteration halos</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>202.29</td>
<td></td>
</tr>
<tr>
<td>202.30</td>
<td></td>
</tr>
<tr>
<td>202.39</td>
<td></td>
</tr>
<tr>
<td>202.49</td>
<td></td>
</tr>
<tr>
<td>202.59</td>
<td></td>
</tr>
<tr>
<td>202.69</td>
<td></td>
</tr>
<tr>
<td>202.79</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-75Z Section 4, Top of Section 202.83 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Sediment samples</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Alteration halos</th>
<th>Vein density (per meter)</th>
<th>Voids</th>
<th>Degree of deformation</th>
<th>Brittle contact</th>
<th>Dip</th>
<th>CT image</th>
</tr>
</thead>
<tbody>
<tr>
<td>202.83</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>202.85</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>202.95</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>203.05</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>203.15</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>203.25</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>203.35</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>203.45</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>203.55</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>203.65</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>203.75</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Description
- **SEQUENCE:** 33c
- **ROCK NAME:** Dunite
- **CONTACT:** Continuous
- **TEXTURE:** IGNEOUS
- **SUMMARY:** Serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, rich in fractures with rubbly zones.
- **ALTERATION:** Highly serpentinized, oxidized
- **VEINS:** Green, white veins
- **STRUCTURE:** Brittle-Wide but relatively low intensity fault zone, fractured rock and signs of some melt impregnation.
- **Veins:** Crystal plastic
SEQUENCE: 33c
UNIT/SUBUNIT: 33c
ROCK NAME: Dunite
CONTACT: Continuous

TEXTURE:
IGNEOUS: serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, rich in fractures with rubbly zones,
ALTERATION: highly serpentinized, oxidized
VEINS: green, white veins
STRUCTURE: Brittle- Incohesive fault breccia

Vein density (per meter):
0-1 per 10 cm
3-5 per 10 cm
>20 per 10 cm
5-15 per 10 cm
15-20 per 10 cm

Degree of deformation:
Fracture/ Vein density (per meter):
0-1 per 10 cm
3-5 per 10 cm
>20 per 10 cm
5-15 per 10 cm
15-20 per 10 cm

Alteration intensity:
0-1 per 10 cm
3-5 per 10 cm
>20 per 10 cm
5-15 per 10 cm
15-20 per 10 cm

Magmatic contact
Brittle
Crystal plastic
Veins

Description

GRA (g/cm³)
2.74
2.64
2.54
2.44

Texture:
Isotropic
Weak
Moderate
Strong

Grain size:
Fine grained (0.2–1 mm)
Medium grained (1–5 mm)
Coarse grained (5–30 mm)
Pegmatitic (>30 mm)

fabric intensity:
0–10
10–30
30–50
50–70
70–90
90–100
>100

Degree of deformation:
Undeformed
Minor fracturing
Moderate fracturing
GS reduction and rotation
Well-developed cataclasis
Ultracataclastite

Magmatic Layering
Protogranular
Porphyroclastic
Strongly foliated
Protomylonite
Mylonite
Ultramylonite

Magmatic Layering:
Discrete brittle features
Thresholding Value: 0.0

Stained image
Shipboard samples
CT image
Magnetic susceptibility
MSCL-W
MSP
Depth (m CCD)
Core length (cm)
Hole BA4A-76Z Section 1, Top of Section 203.70 (m CCD)
Hole BA4A-76Z Section 2, Top of Section 204.57 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>10-19</td>
<td></td>
<td>MSCL-W MSP (SI x 10^-6)</td>
<td>Olivine</td>
<td>50</td>
<td>Moderate</td>
<td>0-1 per 10 cm</td>
<td>Fresh (<3%)</td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>20-29</td>
<td></td>
<td>GRA (g/cm³)</td>
<td>Plagioclase</td>
<td>30</td>
<td>Minor</td>
<td>5-15 per 10 cm</td>
<td>Slight (3-10%)</td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>30-39</td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>25</td>
<td>Fine-grained</td>
<td>15-20 per 10 cm</td>
<td>Moderate (11-30%)</td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td>40-49</td>
<td></td>
<td></td>
<td>Orthopyroxene</td>
<td>20</td>
<td>Pegmatitic</td>
<td>>20 per 10 cm</td>
<td>Substantial (31-60%)</td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td>50-59</td>
<td></td>
<td></td>
<td>Clinopyroxene</td>
<td>15</td>
<td>Glassy</td>
<td></td>
<td>Complete (≥ 90%)</td>
<td></td>
</tr>
</tbody>
</table>

Lithology
- **Primary mineralogy**: Olivine, Plagioclase, Amphibole, Orthopyroxene, Clinopyroxene, Spinel, Sulfide.
- **Grain size**: 50-70%.
- **Degree of deformation**: Moderate.
- **Fracture/ Vein density**: 0-1 per 10 cm.
- **Alteration intensity**: Fresh (<3%).

Sequence: 33d
Unit/Subunit: 33d
Rock Name: Dunite
Contact: Continuous
Texture: Igneous
Summary: Serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, few fractures.

Alteration: Serpentinized, oxidized.
Veins: Green, white, few black veins.

Structure: Brittle-Veins-Crystal plastic.
Fabric intensity: 4.
Hole BA4A-76Z: Section 3, Top of Section 205.08 (m CCD)

Depth (m CCD)
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>205.09</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lithology
- **Primary mineralogy (%)**
 - Olivine
 - Plagioclase
 - Clinopyroxene
 - Amphibole
 - Spinel
 - Sulfide

Grain size (mm)
- 5
- 3
- 1
- 0

Degree of deformation
- Discrete brittle features
 - 5
 - 4
 - 3
 - 2
 - 1
 - 0

Fabric intensity
- 5
- 4
- 3
- 2
- 1
- 0

Fracture/ Vein density (per meter)
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm

Alteration intensity
- Complete (>90%)
- Extensive (61–90%)
- Substantial (31–60%)
- Moderate (11–30%)
- Slight (3–10%)
- Fresh (<3%)

Structures
- Fault zones
- Vein crosscutting
- Alteration halos

Dip
- Magnetic contact
- Brittle
- Crystal plastic
- Veins

Description
- **Magnitude**: 33d
- **Unit/Subunit**: 33d
- **Rock Name**: Dunite
- **Contact**: Continuous
- **Texture**: Igneous
- **Summary**: Serpentinized dunite, crosscut by gabbroic and pyroxeinitic dikes, few fractures
- **Alteration**: Serpentinized, oxidized
- **Veins**: Green, white, few black veins
- **Structure**: Brittle-
- **Vein crosscutting**: Crystal plastic-
- **Fabric intensity**: 5
- **Fracture/ Vein density (per meter)**: 3-5 per 10 cm
- **Alteration intensity**: Complete (>90%)
- **Description**: Serpentinized dunite, crosscut by gabbroic and pyroxeinitic dikes, few fractures.
Hole BA4A-76Z Section 4, Top of Section 205.84 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Apparent offset</th>
<th>Alteration halo</th>
<th>Vein crosscutting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>205.85</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>205.95</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>206.05</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>206.15</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>206.25</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>206.35</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>206.45</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>206.55</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>206.65</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>206.75</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-77Z Section 1, Top of Section 206.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Sampled image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>206.70</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>206.80</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>206.90</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>207.00</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>207.10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>207.20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>207.30</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>207.40</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>207.50</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>207.60</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Description

SEQUENCE: I
UNIT/SUBUNIT: 34a
ROCK NAME: Gabbro
CONTACT: Intrusive
TEXTURE: IGNEOUS
SUMMARY: altered brecciated gabbro/dunite unit
ALTERATION: highly altered
VEINS: cut by white veins, vein halo
STRUCTURE: Brittle, Zone of cohesive possibly magmatic derived
FABRIC INTENSITY: Moderate
Vein crosscutting
ALTERATION INTENSITY: High
SEQUENCE: I

UNIT/SUBUNIT: 34a

ROCK NAME: Gabbro

CONTACT: Intrusive

TEXTURE:

IGNEOUS SUMMARY: altered brecciated gabbro/dunite unit

ALTERATION: highly altered

VEINS: cut by white veins, vein halo

STRUCTURE: Brittle-

SEQUENCE: I

UNIT/SUBUNIT: 34b

ROCK NAME: Dunite

CONTACT: Intrusive

TEXTURE:

IGNEOUS SUMMARY: serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, few fractured

ALTERATION: serpentinized, oxidized

VEINS: white veins

STRUCTURE: Brittle-

Core length (cm)

<table>
<thead>
<tr>
<th>Core length (cm)</th>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Depth (m CCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.00</td>
<td>30</td>
<td>0.00</td>
<td>50</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>0.00</td>
<td>40</td>
<td>0.00</td>
<td>60</td>
<td>0.00</td>
</tr>
<tr>
<td>30</td>
<td>0.00</td>
<td>50</td>
<td>0.00</td>
<td>70</td>
<td>0.00</td>
</tr>
<tr>
<td>40</td>
<td>0.00</td>
<td>60</td>
<td>0.00</td>
<td>80</td>
<td>0.00</td>
</tr>
<tr>
<td>50</td>
<td>0.00</td>
<td>70</td>
<td>0.00</td>
<td>90</td>
<td>0.00</td>
</tr>
<tr>
<td>60</td>
<td>0.00</td>
<td>80</td>
<td>0.00</td>
<td>100</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Core Image

- **CT image:**
- **Stained image:**
- **Scanned image:**

Magnetic susceptibility

- **MSCL-W MSP (SI x 10^-5):**
- **GRA (g/cm³):**

Rock type

- **Primary mineralogy (%):**
- **Grain size:**

Degree of deformation

- **Fracture/ Vein density (per meter):**
- **Discrete brittle features:**

Alteration intensity

- **Alteration:**

Vein density

- **Vein density (per meter):**

Fabric intensity

- **Fabric intensity:**

Structure

- **Fault zone:**
- **Mineral:**

Degree of deformation

- **Discrete brittle features:**
- **Vein crosscutting:**
- **Alteration intensity:**

Description

- **Description:**

Core log data

- **Core log data:**
- **Core description:**
- **Core identification:**
Hole BA4A-77Z Section 3, Top of Section 208.57 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm³)</th>
<th>Sequence</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Brittle-Vein-crystall plastic</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Degree of deformation</th>
<th>Alteration halos</th>
<th>Structures</th>
<th>Apparent offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>Dunite</td>
<td>Continuous</td>
<td>2.71</td>
<td>2.685</td>
<td>34b</td>
<td>Dunite</td>
<td>Dunite</td>
<td>Serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, few fractured</td>
<td>Serpentinized, oxidized</td>
<td>White veins</td>
<td>Brittle-Vein-crystall plastic</td>
<td>5 per 10 cm</td>
<td>100</td>
<td>Strong</td>
<td>0–10</td>
<td>Dunite</td>
<td></td>
</tr>
<tr>
<td>208.71</td>
<td>20</td>
<td>Dunite</td>
<td>Continuous</td>
<td>2.71</td>
<td>2.685</td>
<td>34b</td>
<td>Dunite</td>
<td>Dunite</td>
<td>Serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, few fractured</td>
<td>Serpentinized, oxidized</td>
<td>White veins</td>
<td>Brittle-Vein-crystall plastic</td>
<td>5 per 10 cm</td>
<td>100</td>
<td>Strong</td>
<td>0–10</td>
<td>Dunite</td>
<td></td>
</tr>
<tr>
<td>208.81</td>
<td>30</td>
<td>Dunite</td>
<td>Continuous</td>
<td>2.71</td>
<td>2.685</td>
<td>34b</td>
<td>Dunite</td>
<td>Dunite</td>
<td>Serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, few fractured</td>
<td>Serpentinized, oxidized</td>
<td>White veins</td>
<td>Brittle-Vein-crystall plastic</td>
<td>5 per 10 cm</td>
<td>100</td>
<td>Strong</td>
<td>0–10</td>
<td>Dunite</td>
<td></td>
</tr>
<tr>
<td>208.91</td>
<td>40</td>
<td>Dunite</td>
<td>Continuous</td>
<td>2.71</td>
<td>2.685</td>
<td>34b</td>
<td>Dunite</td>
<td>Dunite</td>
<td>Serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, few fractured</td>
<td>Serpentinized, oxidized</td>
<td>White veins</td>
<td>Brittle-Vein-crystall plastic</td>
<td>5 per 10 cm</td>
<td>100</td>
<td>Strong</td>
<td>0–10</td>
<td>Dunite</td>
<td></td>
</tr>
</tbody>
</table>

Description
- **SEQUENCE:** 34b
- **ROCK NAME:** Dunite
- **CONTACT:** Continuous
- **TEXTURE:** Dunite
- **Igneous Summary:** Serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, few fractured
- **ALTERATION:** Serpentinized, oxidized
- **VEINS:** White veins
- **STRUCTURE:** Brittle-Vein-crystall plastic
- **Fabric intensity:** 5 per 10 cm
- **Alteration intensity:** 100
- **Degree of deformation:** Strong
- **Vein density (per meter):** 5 per 10 cm

Magnetic susceptibility
- **GRA (g/cm³):** 2.71, 2.685, 2.66, 2.635

Core length: 10 cm

Core sample: 34b

Vein density: 5 per 10 cm
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Sampled image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>209.70</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209.80</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209.90</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210.00</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210.10</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210.20</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210.30</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210.40</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210.50</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210.60</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hole BA4A-78Z Section 1, Top of Section 209.70 (m CCD)

- **SEQUENCE:** I
- **UNIT/SUBUNIT:** 34c, 35a
- **ROCK NAME:** Gabbro, Dunite
- **CONTACT:** Intrusive, Tectonic
- **TEXTURE:** IGNEOUS
 - Summary: altered brecciated gabbro/dunite unit
 - Alteration: highly altered
- **VEINS:** cut by white veins, vein halo
- **STRUCTURE:** Brittle-Zone of cohesive possibly magmatic derived brecciation
 - Fabric intensity: 5
- **VEIN density (per meter):** 0 to 45 per 10 cm
- **VEIN density:** 5-15 per 10 cm
- **ALTERATION:** Complete (≥ 90%)
- **Dip:** Magnetic contact
- **Brittle Crystal plastic Veins**

Fabric Intensity:
- 5: Strongly foliated
- 4: Protomylonite
- 3: Mylonite
- 2: Ultramylonite
- 1: Ultracataclastite
- 0: Protogranular

Magmatic Layering:
- 3: Strongly foliated
- 2: Porphyroclastic
- 1: Protomylonite
- 0: Isotropic

Primary Mineralogy:
- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Spinel
- Sulfide

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Grain size:
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)
- Glassy
- Cryptocrystalline (<0.1 mm)
- Microcrystalline (0.1–0.2 mm)

Magnetic susceptibility:
- MSCL-W
- MSP
- GRA (g/cm³)

Core length:
- Hole BA4A-78Z Section 1, Top of Section 209.70 (m CCD)
Hole BA4A-78Z Section 2, Top of Section 210.68 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size (µm)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Vein density (per meter)</th>
<th>Alteration halos</th>
<th>Structures</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>210.70</td>
<td></td>
</tr>
<tr>
<td>210.80</td>
<td></td>
</tr>
<tr>
<td>210.90</td>
<td></td>
</tr>
<tr>
<td>211.00</td>
<td></td>
</tr>
<tr>
<td>211.10</td>
<td></td>
</tr>
<tr>
<td>211.20</td>
<td></td>
</tr>
<tr>
<td>211.30</td>
<td></td>
</tr>
<tr>
<td>211.40</td>
<td></td>
</tr>
<tr>
<td>211.50</td>
<td></td>
</tr>
<tr>
<td>211.60</td>
<td></td>
</tr>
</tbody>
</table>

- **Magnetic susceptibility**
 - MSCL-W MSP (SI x 10^-5)

- **GRA (g/cm³)
 - 1.75
 - 2.15
 - 2.75
 - 3.35
 - 4.00

- **Lithology**
 - Mbio

- **Primary mineralogy**
 - Olivine
 - Plagioclase
 - Chalcopyrite

- **Grain size**
 - 35 µm
 - 50 µm
 - 75 µm
 - 100 µm

- **Degree of deformation**
 - Minor fracturing
 - Moderate fracturing

- **Alteration**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (≥ 90%)

- **Vein density (per meter)**
 - 0–1 per 10 cm
 - 1–3 per 10 cm
 - 3–5 per 10 cm
 - >20 per 10 cm
 - 5–15 per 10 cm
 - 15–20 per 10 cm

- **Structures**
 - Fault zones

- **Dip**
 - Magnetic contact
 - Brittle
 - Crystal plastic
 - Veins

- **CT image**
- **Shipboard samples**
- **Scanned image**

Legend
- **Lithology**
- **Primary mineralogy**
- **Grain size**
- **Degree of deformation**
- **Fracture/ Vein density**
- **Alteration intensity**
- **Vein density**
- **Structures**
- **Dip**

Note: The diagram includes detailed geological and mineralogical data, with various scales and legends for easier interpretation.
Hole BA4A-79Z Section 1, Top of Section 211.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Magnetic susceptibility</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip Magnetic contact</th>
<th>литология</th>
<th>MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/ccm²)</th>
<th>Alteration halos</th>
<th>Vein density (per meter)</th>
<th>Vein crosscutting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>211.73</td>
<td>0</td>
<td>I 35a</td>
<td>dunite</td>
<td>fine</td>
<td>fresh (<3%)</td>
<td>100</td>
<td>0 45 90</td>
<td>0.2</td>
<td>0.4</td>
<td>1 per 10 cm</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211.83</td>
<td></td>
</tr>
<tr>
<td>211.93</td>
<td></td>
</tr>
<tr>
<td>212.03</td>
<td></td>
</tr>
<tr>
<td>212.13</td>
<td></td>
</tr>
<tr>
<td>212.23</td>
<td></td>
</tr>
</tbody>
</table>

Summary:
- **Sequence:** I 35a
- **Rock Name:** dunite
- **Contact:** continuous
- **Texture:** igneous
- **Serpentinised dunite with gabbroic dykes
- **Alteration:** serpentinised
- **Veins:** cut by white veins as vein halos on dykes, white and dark frankenstein veins, white and brown thread veins.
- **Structure:** Brittle-Veins-Crystal plastic

Measurements:
- **Magnetic susceptibility:**
 - 0 to 90
- **GRA (g/ccm²):**
 - 212.23: 0.4
- **Hole BA4A-79Z Section 1, Top of Section 211.70:**
 - Depth: 211.70 m CCD
 - Core length: 10 cm

Additional Details:*
- **Text:**...
Hole BA4A-79Z Section 2, Top of Section 212.26 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Sampled image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle Crystal plastic</th>
<th>Vein density (per meter)</th>
<th>Alteration halos</th>
<th>Structures</th>
<th>Shear zones</th>
<th>Fault zones</th>
<th>Alteration halos</th>
<th>Structures</th>
<th>Shear zones</th>
<th>Fault zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>212.29</td>
<td></td>
</tr>
<tr>
<td>212.39</td>
<td></td>
</tr>
<tr>
<td>212.49</td>
<td></td>
</tr>
<tr>
<td>212.59</td>
<td></td>
</tr>
<tr>
<td>212.69</td>
<td></td>
</tr>
<tr>
<td>212.79</td>
<td></td>
</tr>
<tr>
<td>212.89</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: I
UNIT/SUBUNIT: 35a
ROCK NAME: dunite
CONTACT: continuous
TEXTURE: IGNEOUS
SUMMARY: serpentinised dunite with gabbroic dykes
ALTERATION: serpentinised
VEINS: cut by white veins as vein halos on dykes, white and dark frankenstein veins plus white and brown thread veins.
STRUCTURE: Brittle-Crystal plastic

Description:
- **Dunite:** Continuous contact, texturally homogeneous dunite with minor gabbroic dykes.
- **Veins:** Cut by white veins as vein halos on dykes, white and dark frankenstein veins plus white and brown thread veins.
- **Vein Density:** (per meter)
 - 0-10 per 10 cm
 - 10-30 per 10 cm
 - 30-50 per 10 cm
 - 50-70 per 10 cm
 - 70-90 per 10 cm
 - >90 per 10 cm

Other Features:
- **Magnetic susceptibility** (SI x 10^-5)
 - 1000
 - 100
 - 10
 - 1
- **Degree of deformation**
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
 - GS reduction and rotation
 - Well-developed cataclasis
 - Ultracataclastite
- **Alteration intensity**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (>90%)

Additional Notations:
- **Core:** BA4A-79Z
- **Shipboard samples:** BA4A-79Z
- **Scanned images:** BA4A-79Z
- **Sulfide:** 90
- **Amphibole:** 45
- **Spinel:** 0
- **Orthopyroxene:** 90
- **Clinopyroxene:** 45
- **Plagioclase:** 0
- **Olivine:** 90

Characteristics:
- **Mineralogy:**
 - Primary: Dunite
 - Secondary: Sulfide, Amphibole, Spinel, Orthopyroxene, Clinopyroxene, Plagioclase, Olivine

Physical Properties:
- **GRA (g/cm³):**
 - 2.6
 - 2.1
 - 1.6
 - 1.1

Fabric Intensity:
- 1
- 2
- 3
- 4
- 5

Vein Crosscutting:
- 0
- 1
- 2
- 3
- 4
- 5

Alteration:
- 0
- 10
- 30
- 50
- 70
- 90
- >100

Degree of Brittle Plasticity:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis

Vein Density (per meter):
- 0
- 1
- 3-5
- >20
- 5-15
- 15-20

Structures:
- Fault zones
- Vein crosscutting
- Vein halos
- Brittle contact
- Dip
- Magnetic contact
- Crystal plastic

Injection:
- Discrete brittle features
- Veins
- Fabric intensity
- Unit/subunit
- Lithology
- Primary mineralogy
- Degree of deformation
- Fracture/ Vein density (per meter)
- Alteration intensity
- Dip
- Magnatic contact
- Brittle Crystal plastic
- Vein density (per meter)
- Alteration halos
- Structures
- Shear zones
- Fault zones

Voids:
- Discrete brittle features
- Veins
- Fabric intensity
- Unit/subunit
- Lithology
- Primary mineralogy
- Degree of deformation
- Fracture/ Vein density (per meter)
- Alteration intensity
- Dip
- Magnatic contact
- Brittle Crystal plastic
- Vein density (per meter)
- Alteration halos
- Structures
- Shear zones
- Fault zones

Hole Section: 212.26 (m CCD)

Core Length:
- 1
- 10
- 30
- 50
- 70
- 90
- >100
Hole BA4A-80Z Section 1, Top of Section 212.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Sampled image</th>
<th>Magnetic susceptibility</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>212.70</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212.80</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212.90</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213.00</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213.10</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213.20</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213.30</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213.40</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213.50</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213.60</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-80Z Section 2, Top of Section 213.62 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnitic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>213.65</td>
<td></td>
</tr>
<tr>
<td>213.75</td>
<td></td>
</tr>
<tr>
<td>213.85</td>
<td></td>
</tr>
<tr>
<td>213.95</td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION:
- **SEQUENCE:** 35a
- **ROCK NAME:** dunite
- **CONTACT:** continuous
- **TEXTURE:**
 - **IGNEOUS:** serpentinised dunite with gabbroic dykes
- **ALTERATION:** serpentinised
- **VEINS:** cut by white veins as vein halos on dykes, white and dark frankenstein veins plus white and brown thread veins.
- **STRUCTURE:** Brittle

VEIN DENSITY (PER METER):
- 0
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm

TEXTURE:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

ALTERATION:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

DEGREE OF DEFORMATION:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

FABRIC INTENSITY:
- Isotropic
- Weak
- Moderate
- Strong

GRAVITY (g/cm^3):
- 2.72
- 2.62
- 2.52
- 2.42
- 2.32

GRAIN SIZE:
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

ALTERATION HALOS:
- 0
- 1 per 10 cm
- 3-5 per 10 cm
- 5-15 per 10 cm
- >20 per 10 cm

DISCRETE BRITTLE FEATURES:
- 1
- 2
- 3
- 4
- 5

MAGNETIC CONTACT:
- Brittle
- Crystal plastic
- Veins
Hole BA4A-80Z Section 3, Top of Section 214.03 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size (μm)</th>
<th>Degree of deformation</th>
<th>Magmatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Vein density (per meter)</th>
<th>Discrete brittle features</th>
<th>Alteration halos</th>
<th>Vein crosscutting</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Vein crosscutting</th>
<th>Structures</th>
<th>Apparent offset</th>
<th>Alteration halos</th>
</tr>
</thead>
<tbody>
<tr>
<td>214.03</td>
<td></td>
</tr>
<tr>
<td>214.05</td>
<td></td>
</tr>
<tr>
<td>214.15</td>
<td></td>
</tr>
<tr>
<td>214.25</td>
<td></td>
</tr>
<tr>
<td>214.35</td>
<td></td>
</tr>
<tr>
<td>214.45</td>
<td></td>
</tr>
<tr>
<td>214.55</td>
<td></td>
</tr>
<tr>
<td>214.65</td>
<td></td>
</tr>
<tr>
<td>214.75</td>
<td></td>
</tr>
<tr>
<td>214.85</td>
<td></td>
</tr>
</tbody>
</table>
SEQUENCE: I
UNIT/SUBUNIT: 35c
ROCK NAME: dunite
CONTACT: continuous
TEXTURE:
IGNEOUS SUMMARY: serpentinised dunite with gabbroic dykes
ALTERATION: serpentinised
VEINS: brown and white thread veins, plus an array of evenly spaced dark veins, green dyke-sourced, brown/white composite veins, veins relatively sparse in this unit.

STRUCTURE: Brittle-Vein-Crystal plastic

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Sampled image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>214.93</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215.03</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215.04</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215.06</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215.12</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description: Serpentinised dunite with gabbroic dykes, serpentinised veins, brown and white thread veins, plus an array of evenly spaced dark veins.
Hole BA4A-81Z Section 2, Top of Section 216.59 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>216.61</td>
<td>0</td>
<td>Dunite</td>
<td>Olivine, Clinopyroxene</td>
<td>Brittleness</td>
<td>Fresh (<3%)</td>
</tr>
<tr>
<td>216.71</td>
<td>10</td>
<td>Dunite</td>
<td>Orthopyroxene, Plagioclase</td>
<td>Crystal plastic</td>
<td>Undeformed</td>
</tr>
<tr>
<td>216.81</td>
<td>20</td>
<td>Dunite</td>
<td>Amphibole, Spinel</td>
<td>Fault zones</td>
<td>Minor fracturing</td>
</tr>
<tr>
<td>216.91</td>
<td>30</td>
<td>Dunite</td>
<td>Magnetic Layering</td>
<td>Structures</td>
<td>Moderate fracturing</td>
</tr>
<tr>
<td>217.01</td>
<td>40</td>
<td>Dunite</td>
<td>Protogranular</td>
<td>Veins</td>
<td>Well-developed cataclasis</td>
</tr>
<tr>
<td>217.11</td>
<td>50</td>
<td>Dunite</td>
<td>Porphyroclastic</td>
<td>Vein crosscutting</td>
<td>Ultracataclastite</td>
</tr>
</tbody>
</table>

Description
- **SEQUENCE:** I35c
- **ROCK NAME:** Dunite
- **CONTACT:** Continuous
- **TEXTURE:** Ignisum
- **IGNEOUS SUMMARY:** Serpentinised dunite with gabbroic dykes
- **ALTERATION:** Serpentinised
- **VEINS:** Brown and white thread veins, plus an array of evenly spaced dark veins, graded layered veins, lenticular composite veins, veins with breccia.
- **STRUCTURE:** Brittleness
- **Veins:** Crystal plastic
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Contact</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>217.01</td>
<td></td>
</tr>
<tr>
<td>217.17</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE 1: 35c
ROCK NAME: dunite
CONTACT: continuous

TEXTURE: igneous

SUMMARY: Serpentinised dunite with gabbroic dykes

ALTERATION: serpentinised

VEINS: Brown and white thread veins, plus an array of evenly spaced dark veins, parallel to the strike. Slightly composite veins, with minor laminations. Some veins are mineralised.

STRUCTURES: Brittle

Vein crosscutting features occur

Vein density (per meter):
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >90

Fracture/ Vein density (per meter):
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >90

Contact: continuous

Structures:
- Fault zones
- Apparent offset
- Alteration halos

Alteration intensity:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Lithology:
- Olivine
- Plagioclase
- Clinopyroxene

Vein density (per meter):
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >90

Spinel

Orthopyroxene

Plagioclase

Olivine

Magnetic layering

Foliation

Protogranular

Porphyroclastic

Strongly foliated

Protomylonite

Mylonite

Ultramylonite

Isotropic

Weak

Moderate

Strong

Fine grained (0.2–1 mm)

Medium grained (1–5 mm)

Coarse grained (5–30 mm)

Pegmatitic (>30 mm)

Glassy

Cryptocrystalline (<0.1 mm)

Microcrystalline (0.1–0.2 mm)

GRA:
- 2.712
- 2.692
- 2.672
- 2.652

CT image:
- Black
- Blue
- Green
- Red

Description:
- Fault zones
- Apparent offset
- Alteration halos

Sulfide

Amphibole

Spinell

Orthopyroxene

Plagioclase

Olivine

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Vein density (per meter):
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >90

Foliation

Protogranular

Porphyroclastic

Strongly foliated

Protomylonite

Mylonite

Ultramylonite

Isotropic

Weak

Moderate

Strong

Fine grained (0.2–1 mm)

Medium grained (1–5 mm)

Coarse grained (5–30 mm)

Pegmatitic (>30 mm)

Glassy

Cryptocrystalline (<0.1 mm)

Microcrystalline (0.1–0.2 mm)

GRA:
- 2.712
- 2.692
- 2.672
- 2.652
Hole BA4A-81Z Section 4, Top of Section 217.93 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[Sequence] 35c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217.97</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dunite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218.07</td>
<td></td>
</tr>
<tr>
<td>218.17</td>
<td></td>
</tr>
<tr>
<td>218.27</td>
<td></td>
</tr>
<tr>
<td>218.37</td>
<td></td>
</tr>
<tr>
<td>218.47</td>
<td></td>
</tr>
<tr>
<td>218.57</td>
<td></td>
</tr>
<tr>
<td>218.67</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: 35c
UNIT/SUBUNIT: 35c
ROCK NAME: dunite
CONTACT: continuous

TEXTURE: IGNEOUS
SUMMARY: serpentinised dunite with gabbroic dykes

ALTERATION: serpentinised

VEINS: brown and white thread veins, plus an array of evenly spaced dark veins, green dyke-sourced, brown/white composite veins, veins relatively sparse in this unit.

STRUCTURE: Brittle

Description: Discrete brittle features
Hole BA4A-B2Z Section 1, Top of Section 218.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP</th>
<th>GRA (g/cc²)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I 35d</td>
<td></td>
<td></td>
<td>I 35d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lithology
- Dunite
- Olivine gabbro

Sequence
- I 35d

Alteration
- Oxidized and fractured serpentinized unite

Veins
- Few thin white veins

Description
- Continuous
- Brittle
- Crystal plastic
- Veins
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>MSCL-W MSP GRA (g/cm²)</th>
<th>Magnetic susceptibility (SI x 10⁻⁵)</th>
<th>Primary mineralogy (%)</th>
<th>Grain size (µm)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Alteration</th>
<th>Degree of deformation</th>
<th>Vein density (per meter)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>219.50</td>
<td>0</td>
<td>Dunite</td>
<td>1 10 10 10 10 10 10 10</td>
<td>10 10 10 10 10 10 10 10</td>
<td>Olivine, Plagioclase</td>
<td>35</td>
<td>Brittle</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Undeformed</td>
<td>Minor fracturing</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>219.60</td>
<td>10</td>
<td>Dunite</td>
<td>1 10 10 10 10 10 10 10</td>
<td>10 10 10 10 10 10 10 10</td>
<td>Olivine, Plagioclase</td>
<td>35</td>
<td>Brittle</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Undeformed</td>
<td>Minor fracturing</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>219.70</td>
<td>20</td>
<td>Dunite</td>
<td>1 10 10 10 10 10 10 10</td>
<td>10 10 10 10 10 10 10 10</td>
<td>Olivine, Plagioclase</td>
<td>35</td>
<td>Brittle</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Undeformed</td>
<td>Minor fracturing</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>219.80</td>
<td>30</td>
<td>Dunite</td>
<td>1 10 10 10 10 10 10 10</td>
<td>10 10 10 10 10 10 10 10</td>
<td>Olivine, Plagioclase</td>
<td>35</td>
<td>Brittle</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Undeformed</td>
<td>Minor fracturing</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>219.90</td>
<td>40</td>
<td>Dunite</td>
<td>1 10 10 10 10 10 10 10</td>
<td>10 10 10 10 10 10 10 10</td>
<td>Olivine, Plagioclase</td>
<td>35</td>
<td>Brittle</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Undeformed</td>
<td>Minor fracturing</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>220.00</td>
<td>50</td>
<td>Dunite</td>
<td>1 10 10 10 10 10 10 10</td>
<td>10 10 10 10 10 10 10 10</td>
<td>Olivine, Plagioclase</td>
<td>35</td>
<td>Brittle</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Undeformed</td>
<td>Minor fracturing</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>220.10</td>
<td>60</td>
<td>Dunite</td>
<td>1 10 10 10 10 10 10 10</td>
<td>10 10 10 10 10 10 10 10</td>
<td>Olivine, Plagioclase</td>
<td>35</td>
<td>Brittle</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Undeformed</td>
<td>Minor fracturing</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>220.20</td>
<td>70</td>
<td>Dunite</td>
<td>1 10 10 10 10 10 10 10</td>
<td>10 10 10 10 10 10 10 10</td>
<td>Olivine, Plagioclase</td>
<td>35</td>
<td>Brittle</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Undeformed</td>
<td>Minor fracturing</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>220.30</td>
<td>80</td>
<td>Dunite</td>
<td>1 10 10 10 10 10 10 10</td>
<td>10 10 10 10 10 10 10 10</td>
<td>Olivine, Plagioclase</td>
<td>35</td>
<td>Brittle</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Undeformed</td>
<td>Minor fracturing</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>220.40</td>
<td>90</td>
<td>Dunite</td>
<td>1 10 10 10 10 10 10 10</td>
<td>10 10 10 10 10 10 10 10</td>
<td>Olivine, Plagioclase</td>
<td>35</td>
<td>Brittle</td>
<td>0</td>
<td>Fresh (<3%)</td>
<td>Undeformed</td>
<td>Minor fracturing</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table includes various geological features and measurements, such as depth, core length, lithology, mineralogy, grain size, magnetic susceptibility, primary mineralogy, alteration intensity, and degree of deformation. The description column provides a detailed explanation of the observed features, such as veins, alteration halos, and structural features. The image shows a detailed cross-section with annotations indicating various geological phenomena.
Hole BA4A-82Z Section 4, Top of Section 221.38 (m CCD)

Sequence

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Structure</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>MAGNETIC contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>221.38</td>
<td>5</td>
<td>Dunite</td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alteration

- Oxidized and fractured serpentinized unite
- Serpentinized, oxidized and fractured

Veins

- Few thin white veins

Texture

- Igneous summary: oxidized and fractured serpentinized unite

Rock Name

- Dunite

Contact

- Continuous

Sequence

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Structure</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>MAGNETIC contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>221.38</td>
<td>5</td>
<td>Dunite</td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alteration

- Oxidized and fractured serpentinized unite
- Serpentinized, oxidized and fractured

Veins

- Few thin white veins

Texture

- Igneous summary: oxidized and fractured serpentinized unite

Rock Name

- Dunite

Contact

- Continuous

Sequence

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Structure</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>MAGNETIC contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>221.38</td>
<td>5</td>
<td>Dunite</td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alteration

- Oxidized and fractured serpentinized unite
- Serpentinized, oxidized and fractured

Veins

- Few thin white veins

Texture

- Igneous summary: oxidized and fractured serpentinized unite

Rock Name

- Dunite

Contact

- Continuous

Sequence

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Structure</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>MAGNETIC contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>221.38</td>
<td>5</td>
<td>Dunite</td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alteration

- Oxidized and fractured serpentinized unite
- Serpentinized, oxidized and fractured

Veins

- Few thin white veins

Texture

- Igneous summary: oxidized and fractured serpentinized unite

Rock Name

- Dunite

Contact

- Continuous

Sequence

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Structure</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>MAGNETIC contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>221.38</td>
<td>5</td>
<td>Dunite</td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alteration

- Oxidized and fractured serpentinized unite
- Serpentinized, oxidized and fractured

Veins

- Few thin white veins

Texture

- Igneous summary: oxidized and fractured serpentinized unite

Rock Name

- Dunite

Contact

- Continuous

Sequence

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Structure</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>MAGNETIC contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>221.38</td>
<td>5</td>
<td>Dunite</td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alteration

- Oxidized and fractured serpentinized unite
- Serpentinized, oxidized and fractured

Veins

- Few thin white veins

Texture

- Igneous summary: oxidized and fractured serpentinized unite

Rock Name

- Dunite

Contact

- Continuous

Sequence

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Structure</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>MAGNETIC contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>221.38</td>
<td>5</td>
<td>Dunite</td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alteration

- Oxidized and fractured serpentinized unite
- Serpentinized, oxidized and fractured

Veins

- Few thin white veins

Texture

- Igneous summary: oxidized and fractured serpentinized unite

Rock Name

- Dunite

Contact

- Continuous

Sequence

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Structure</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>MAGNETIC contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>221.38</td>
<td>5</td>
<td>Dunite</td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alteration

- Oxidized and fractured serpentinized unite
- Serpentinized, oxidized and fractured

Veins

- Few thin white veins

Texture

- Igneous summary: oxidized and fractured serpentinized unite

Rock Name

- Dunite

Contact

- Continuous

Sequence

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Structure</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>MAGNETIC contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>221.38</td>
<td>5</td>
<td>Dunite</td>
<td>Undeformed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alteration

- Oxidized and fractured serpentinized unite
- Serpentinized, oxidized and fractured

Veins

- Few thin white veins

Texture

- Igneous summary: oxidized and fractured serpentinized unite

Rock Name

- Dunite

Contact

- Continuous
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W</th>
<th>MSP</th>
<th>GRA (g/cm³)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>221.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35d</td>
<td>Dunite</td>
<td>Olivine, Plagioclase</td>
<td>Minor fracturing</td>
<td>Discrete brittle features</td>
<td>Fresh (<3%)</td>
<td></td>
</tr>
<tr>
<td>221.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35d</td>
<td>Clinopyroxenite</td>
<td>Orthopyroxene, Amphibole</td>
<td>Minor fracturing</td>
<td>Discrete brittle features</td>
<td>Fresh (<3%)</td>
<td></td>
</tr>
<tr>
<td>221.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35d</td>
<td>Clinopyroxenite</td>
<td>Orthopyroxene, Amphibole</td>
<td>Minor fracturing</td>
<td>Discrete brittle features</td>
<td>Fresh (<3%)</td>
<td></td>
</tr>
<tr>
<td>222.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35d</td>
<td>Clinopyroxenite</td>
<td>Orthopyroxene, Amphibole</td>
<td>Minor fracturing</td>
<td>Discrete brittle features</td>
<td>Fresh (<3%)</td>
<td></td>
</tr>
<tr>
<td>222.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35d</td>
<td>Clinopyroxenite</td>
<td>Orthopyroxene, Amphibole</td>
<td>Minor fracturing</td>
<td>Discrete brittle features</td>
<td>Fresh (<3%)</td>
<td></td>
</tr>
<tr>
<td>222.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35d</td>
<td>Clinopyroxenite</td>
<td>Orthopyroxene, Amphibole</td>
<td>Minor fracturing</td>
<td>Discrete brittle features</td>
<td>Fresh (<3%)</td>
<td></td>
</tr>
<tr>
<td>222.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35d</td>
<td>Clinopyroxenite</td>
<td>Orthopyroxene, Amphibole</td>
<td>Minor fracturing</td>
<td>Discrete brittle features</td>
<td>Fresh (<3%)</td>
<td></td>
</tr>
<tr>
<td>222.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35d</td>
<td>Clinopyroxenite</td>
<td>Orthopyroxene, Amphibole</td>
<td>Minor fracturing</td>
<td>Discrete brittle features</td>
<td>Fresh (<3%)</td>
<td></td>
</tr>
<tr>
<td>222.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35d</td>
<td>Clinopyroxenite</td>
<td>Orthopyroxene, Amphibole</td>
<td>Minor fracturing</td>
<td>Discrete brittle features</td>
<td>Fresh (<3%)</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-83Z Section 2, Top of Section 222.57 (m CCD)

Sequence: I
Unit/Subunit: 35d
Rock Name: Dunite
Contact: Continuous
Texture: Igneous summary: serpentinized dunite
Alteration: Serpentinized
Veins: Few black and green veins
Structure: Brittle

Sequence: I
Unit/Subunit: 36a
Rock Name: Harzburgite
Contact: Modal
Texture: Igneous summary: serpentinized harzburgite
Alteration: Serpentinized
Veins: Few black and green veins
Structure: Brittle

Fabric Intensity

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>CT Image</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>222.61</td>
<td></td>
</tr>
<tr>
<td>222.71</td>
<td></td>
</tr>
<tr>
<td>222.81</td>
<td></td>
</tr>
<tr>
<td>222.91</td>
<td></td>
</tr>
<tr>
<td>223.01</td>
<td></td>
</tr>
<tr>
<td>223.11</td>
<td></td>
</tr>
<tr>
<td>223.21</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-83Z Section 4, Top of Section 224.18 (m CCD)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Vein Density (per meter)</th>
<th>Vein Fracture/ Vein density (per meter)</th>
<th>Degree of Deformation</th>
<th>Magmatic Layering</th>
<th>Foliation</th>
<th>Fissility</th>
<th>Brittle Deformation</th>
<th>Brittle Contact</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>36b</td>
<td>Dunite</td>
<td>Continuous</td>
<td>Igneous</td>
<td>serpentinized dunite, with harzburgitic zones</td>
<td>Serpentinized</td>
<td>2.5</td>
<td>2.5</td>
<td>Brittle</td>
<td>Brittle</td>
<td>Protogranular</td>
<td>Porphyroclastic</td>
<td>Strongly foliated</td>
<td>Brittle</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>36c</td>
<td>Harzburgite</td>
<td>Modal</td>
<td>Igneous</td>
<td>serpentinized harzburgite</td>
<td>Serpentinized</td>
<td>2.5</td>
<td>2.5</td>
<td>Brittle</td>
<td>Brittle</td>
<td>Strongly foliated</td>
<td>Porphyroclastic</td>
<td>Strongly foliated</td>
<td>Brittle</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>36d</td>
<td>Dunite</td>
<td>Modal</td>
<td>Igneous</td>
<td>serpentinized dunite, with harzburgitic zones</td>
<td>Serpentinized</td>
<td>2.5</td>
<td>2.5</td>
<td>Brittle</td>
<td>Brittle</td>
<td>Strongly foliated</td>
<td>Porphyroclastic</td>
<td>Strongly foliated</td>
<td>Brittle</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Contact:** Continuous, Modal
- **Texture:** Igneous Summary: serpentinized dunite, with harzburgitic zones
- **Alteration:** Serpentinized
- **Veins:** Network of white veins
- **Structure:** Brittle

Fabric Intensity:
- **Vein Density:**
 - 0
 - 1 per 10 cm
 - 3-5 per 10 cm
 - >20 per 10 cm
 - 5-15 per 10 cm
 - 15-20 per 10 cm

Degree of Deformation:
- **Brittle Contact:**
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
 - GS reduction and rotation
 - Well-developed cataclasis
 - Ultracataclastite

Veins:
- Pyroxene grains are rounded and slightly elongated.

Lithology:
- **Primary Mineralogy (%):**
 - Olivine
 - Clinopyroxene
 - Orthopyroxene
 - Spinel
 - Amphibole

Magnetic Susceptibility (SI x 10^-5):
- 1
- 0.9
- 0.8
- 0.7
- 0.6
- 0.5
- 0.4
- 0.3
- 0.2
- 0.1
- 0

Dip:
- **Magnetic contact:** Brittle
- **Brittle Contact:**
 - Protogranular
 - Porphyroclastic
 - Strongly foliated

Veins:
- Pyroxene grains are rounded and slightly elongated.
Hole BA4A-84Z Section 2, Top of Section 225.10 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Magnetic susceptibility</th>
<th>Alteration intensity</th>
<th>Structure</th>
<th>Vein density</th>
<th>Vein crosscutting</th>
<th>Fabric intensity</th>
<th>Grain size (%)</th>
<th>Degree of deformation</th>
<th>Vein crosscutting</th>
<th>Brittle contact</th>
<th>Dip</th>
<th>Apparent offset</th>
<th>Alteration halos</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>225.10</td>
<td>0</td>
<td>dunite</td>
<td>MSCL-W MSP (SI x 10^-5)</td>
<td></td>
</tr>
<tr>
<td>225.20</td>
<td>10</td>
<td>gabbro</td>
<td>GRA (g/cm³)</td>
<td></td>
</tr>
<tr>
<td>225.30</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>225.40</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>225.50</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>225.60</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>225.70</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>225.80</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>225.90</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>226.00</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: I

UNIT/SUBUNIT: 36f

ROCK NAME: dunite

CONTACT: tectonic

TEXTURE:

IGNEOUS SUMMARY: serpentnized, midly fractured dunite with minor crosscutting gabbroic dikes

ALTERATION: serpentinized

VEINS: grey-green, black, grey

STRUCTURE:

Brittle

Veins - conjugate vein sets occur

Crystal plastic -

Veins -

Discrete brittle features

Fabric intensity

Vein density (per meter)

Grain size (%)

Degree of deformation

Foliation

Magmatic layering

Minerals

- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Sulfide

Description

- Fault zones
- Structures
- Apparent offset
- Alteration halos
- Vein crosscutting

Magnetic contact

Brittle

Crystal plastic

Veins

Alteration

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Fracture/Vein density (per meter)

- 0–1 per 10 cm
- 1–2 per 10 cm
- 2–3 per 10 cm
- 3–5 per 10 cm
- >5 per 10 cm

Dip

- 0°
- 45°
- 90°
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W</th>
<th>GRA (g/cm²)</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>227.04</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>227.14</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>227.24</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>227.34</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>227.44</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>227.54</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>227.64</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>227.74</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>
minespecimen

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Magnetized susceptibility</th>
<th>Magnetic susceptibility (SI x 10^{-5})</th>
<th>GRA (g/cm³)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>227.70</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>227.80</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>227.90</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>228.00</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>228.10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>228.20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>228.30</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>228.40</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>228.50</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>228.60</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Description

SEQUENCE 1: 36k
ROCK NAME: harzburgite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: fractured, serpentinized harzburgite cross-cut by gabbroic dikes
ALTERATION: serpentinized
VEINS: grey-green veins, grey veins, black veins
STRUCTURE: Brittle
Veins:
- Crystal plastic

SEQUENCE 1: 37a
ROCK NAME: dunite
CONTACT: modal
TEXTURE:
IGNEOUS SUMMARY: serpentinized, fractured dunite with cross-cutting gabbroic dikes
ALTERATION: serpentinized
VEINS: grey veins, grey-green veins, green veins, white veins
STRUCTURE: Brittle
Veins:
- Crystal plastic

SEQUENCE 1: 37a
ROCK NAME: gabbro
CONTACT: intrusive
TEXTURE:
IGNEOUS SUMMARY: gabbroic dike
ALTERATION: grey-green veins, grey veins
VEINS: grey-green veins, grey veins
STRUCTURE: Brittle
Veins:
- Crystal plastic
Hole BA4A-85Z Section 2, Top of Section 228.66 (m CCD)

SEQUENCE: I
UNIT/SUBUNIT: 37a
ROCK NAME: dunite
CONTACT: Continuous
TEXTURE: Igneous
SUMMARY: serpentinized, fractured dunite with cross-cutting gabbroic dikes
ALTERATION: serpentinized
VEINS: grey veins, grey-green veins, green veins, white veins
STRUCTURE: Brittle
Veins: conjugate vein sets are common
Crystal plastic:
Dip:
Magnetic contact:
Brittle:
Crystal plastic:
Veins:

<table>
<thead>
<tr>
<th>Fabric intensity</th>
<th>Vein density (per meter)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>1</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>80</td>
<td>1</td>
<td>2</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>3</td>
<td>0.6</td>
<td>4.0</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>4</td>
<td>0.4</td>
<td>6.0</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>5</td>
<td>0.2</td>
<td>8.0</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td></td>
<td>0.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discrete brittle features</th>
<th>Alteration halos</th>
<th>Magmatic contact</th>
<th>Brittles</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>30</td>
<td>10</td>
<td>20</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>50</td>
<td>70</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>

**Depth (m CCD) | Core length (cm) | Stained image | Magnetic susceptibility | Primary mineralogy (%) | Grain size | Degree of deformation | Alteration intensity |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>228.69</td>
<td>10</td>
<td>8</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>228.79</td>
<td>15</td>
<td>10</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>228.89</td>
<td>20</td>
<td>15</td>
<td>0.5</td>
<td>0.5</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>228.99</td>
<td>25</td>
<td>20</td>
<td>0.3</td>
<td>0.3</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>229.09</td>
<td>30</td>
<td>25</td>
<td>0.1</td>
<td>0.1</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>229.19</td>
<td>35</td>
<td>30</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SEQUENCE: I
UNIT/SUBUNIT: 37a
ROCK NAME: dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: serpentinized, fractured dunite with cross-cutting gabbroic dikes
ALTERATION: serpentinized
VEINS: brown veins, blakc veins, grey-green veins
STRUCTURE: Brittle-
Veins-
Crystal plastic-

SEQUENCE: I
UNIT/SUBUNIT: 37a
ROCK NAME: olivine gabbro
CONTACT: intrusive
TEXTURE:
IGNEOUS SUMMARY: olivine gabbro dike
ALTERATION:
VEINS: grey veins
STRUCTURE: Brittle-
Veins-
Crystal plastic-

SEQUENCE: I
UNIT/SUBUNIT: 37a
ROCK NAME: gabbro
CONTACT: intrusive
TEXTURE:
IGNEOUS SUMMARY: olivine gabbro dike
ALTERATION:
VEINS: black veins, grey veins
STRUCTURE: Brittle-
Veins-
Crystal plastic-

SEQUENCE: I
UNIT/SUBUNIT: 37b
ROCK NAME: gabbro
CONTACT: intrusive
TEXTURE: granular
IGNEOUS SUMMARY: fractured gabbroic dike
ALTERATION:
VEINS: grey-green veins, white veins
STRUCTURE: Brittle-
Veins-
Crystal plastic-
Hole BA4A-86Z Section 1, Top of Section 230.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W</th>
<th>MSP</th>
<th>GRA</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip Magnetic contact</th>
<th>Brittle Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>230.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37b</td>
<td>Olivine Plagioclase</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37c</td>
<td>Amphibole Orthopyroxene</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37c</td>
<td>Plagioclase Spinel</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37c</td>
<td>Orthopyroxene</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37c</td>
<td>Sulfide</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

- **SEQNCE: 17 37b**
 - ROCK NAME: gabbro
 - CONTACT: intrusive
 - TEXTURE: brittle
 - MAGNETIC SUMMARY: fractured gabbroic dike
 - ALTERATION: grey-green veins, white veins
 - VEINS: grey-green veins, white veins
 - STRUCTURAL: brittle
 - Veins: Crystal plastic

- **SEQNCE: 17 37c**
 - ROCK NAME: dunite
 - CONTACT: intrusive
 - TEXTURE: brittle
 - MAGNETIC SUMMARY: fractured serpentinized dunite cross-cut by gabbroic dike
 - ALTERATION: serpentinized
 - VEINS: grey-green veins, grey veins, brown veins
 - STRUCTURAL: brittle
 - Veins: Crystal plastic

- **SEQNCE: 17 37c**
 - ROCK NAME: gabbro
 - CONTACT: intrusive
 - TEXTURE: brittle
 - MAGNETIC SUMMARY: gabbroic dike
 - ALTERATION: grey-green veins, white veins
 - VEINS: grey-green veins, white veins
 - STRUCTURAL: brittle
 - Veins: Crystal plastic

Fabric intensity

<table>
<thead>
<tr>
<th>Hole</th>
<th>BA4A-86Z Section 1, Top of Section 230.70 (m CCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
</tr>
<tr>
<td>230.73</td>
<td></td>
</tr>
<tr>
<td>230.83</td>
<td></td>
</tr>
<tr>
<td>230.93</td>
<td></td>
</tr>
<tr>
<td>231.03</td>
<td></td>
</tr>
<tr>
<td>231.13</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **SEQNCE: 17 37b**
 - ROCK NAME: gabbro
 - CONTACT: intrusive
 - TEXTURE: brittle
 - MAGNETIC SUMMARY: fractured gabbroic dike
 - ALTERATION: grey-green veins, white veins
 - VEINS: grey-green veins, white veins
 - STRUCTURAL: brittle
 - Veins: Crystal plastic

- **SEQNCE: 17 37c**
 - ROCK NAME: dunite
 - CONTACT: intrusive
 - TEXTURE: brittle
 - MAGNETIC SUMMARY: fractured serpentinized dunite cross-cut by gabbroic dike
 - ALTERATION: serpentinized
 - VEINS: grey-green veins, grey veins, brown veins
 - STRUCTURAL: brittle
 - Veins: Crystal plastic

- **SEQNCE: 17 37c**
 - ROCK NAME: gabbro
 - CONTACT: intrusive
 - TEXTURE: brittle
 - MAGNETIC SUMMARY: gabbroic dike
 - ALTERATION: grey-green veins, white veins
 - VEINS: grey-green veins, white veins
 - STRUCTURAL: brittle
 - Veins: Crystal plastic
SEQUENCE: I
UNIT/SUBUNIT: 37c
ROCK NAME: dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: fractured serpentinized dunite cross-cut by gabbroic dikes
ALTERATION: serpentinized
VEINS: grey-green veins, grey veins, black veins, brown veins
STRUCTURE: Brittle-

SEQUENCE: I
UNIT/SUBUNIT: 37c
ROCK NAME: gabbro
CONTACT: intrusive
TEXTURE: granular
IGNEOUS SUMMARY: gabbroic dike
ALTERATION:
VEINS: white veins, brown veins
STRUCTURE: Brittle-

SEQUENCE: I
UNIT/SUBUNIT: 37c
ROCK NAME: gabbro
CONTACT: intrusive
TEXTURE: granular
IGNEOUS SUMMARY: gabbroic dike
ALTERATION:
VEINS: white veins, grey veins
STRUCTURE: Brittle-

SEQUENCE: I
UNIT/SUBUNIT: 37c
ROCK NAME: gabbro
CONTACT: intrusive
TEXTURE: granular
IGNEOUS SUMMARY: gabbroic dike
ALTERATION:
VEINS: black veins, grey veins
STRUCTURE: Brittle-

SEQUENCE: I
UNIT/SUBUNIT: 37c
ROCK NAME: gabbro
CONTACT: intrusive
TEXTURE: granular
IGNEOUS SUMMARY: gabbroic dike
ALTERATION:
VEINS: grey veins, black veins
STRUCTURE: Brittle-

SEQUENCE: I
UNIT/SUBUNIT: 37c
ROCK NAME: Clinopyroxenite
CONTACT: intrusive
TEXTURE: granular
IGNEOUS SUMMARY: pyroxenitic dike
ALTERATION:
VEINS: grey veins, black veins
STRUCTURE: Brittle-

SEQUENCE: I
UNIT/SUBUNIT: 37c
ROCK NAME: gabbro
CONTACT: intrusive
TEXTURE: granular
IGNEOUS SUMMARY: gabbroic dike
ALTERATION:
VEINS: black veins, white veins
STRUCTURE: Brittle-

MAGNETIC contact
** Brittle Crystal plastic**
Veins
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm²)</th>
<th>Primary mineralogy (%)</th>
<th>Lithology</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magneto contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Alteration</th>
<th>Vein density (per meter)</th>
<th>Apparent offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>232.13</td>
<td></td>
</tr>
<tr>
<td>232.23</td>
<td></td>
</tr>
<tr>
<td>232.33</td>
<td></td>
</tr>
<tr>
<td>232.43</td>
<td></td>
</tr>
<tr>
<td>232.53</td>
<td></td>
</tr>
<tr>
<td>232.63</td>
<td></td>
</tr>
<tr>
<td>232.73</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-87Z Section 1, Top of Section 233.70 (m CCD)

Depth (m CCD)	Core length (cm)	Shipboard samples	Stained image	CT image	Magnetic susceptibility	MSCL-W MSP (SI x 10^-5)	GRA (g/cm³)	Primary mineralogy (%)	Lithology	Degree of deformation	Fracture/ Vein density (per meter)	Alteration intensity	Dip	Magnetic contact	Brittle Crystal plastic	Veins	Structures	Absorption halos	Vein crosscutting	Alteration halos	Fault zones	Apparent offset	Alteration	Description	
0	22																								
233.73	22																								
233.83	22																								
233.93	22																								
234.03	22																								
234.13	22																								
234.23	22																								
234.33	22																								
234.43	22																								
234.53	22																								

Description
- **SEQUENCE**: 37a
- **ROCK NAME**: dunite
- **CONTACT**: Continuous
- **TEXTURE**: igneous
- **IGNEOUS SUMMARY**: fractured, serpentinized dunite crosscut by gabbroic dikes
- **ALTERATION**: serpentinized
- **VEINS**: grey veins, grey-green veins, black veins, brown veins
- **STRUCTURE**: brittle

Fabric intensity

0 1 2 3 4 5

Vein density (per meter)

0 1 per 10 cm 3-5 per 10 cm >20 per 10 cm 5-15 per 10 cm 15-20 per 10 cm

Grain size

0-1 mm 1-5 mm 5-30 mm >30 mm

Hole BA4A-87Z Section 1, Top of Section 233.70 (m CCD)
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Alteration</th>
<th>Dip</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>37e</td>
<td>dunite</td>
<td>Continuous</td>
<td></td>
<td>Fractured, serpentinized dunite crosscut by gabbroic dikes</td>
<td>Serpentinized</td>
<td>Grey, grey-green, black, brown veins in gabbroic dikes</td>
<td>Brittle</td>
<td>Veins: grey veins, structural: Brittle-</td>
<td>Magnetic contact: Brittle, Crystal plastic: Veins:</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Alteration</th>
<th>Dip</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>37e</td>
<td>gabbro</td>
<td>Intrusive</td>
<td></td>
<td>Gabbroic dike</td>
<td></td>
<td>Grey veins</td>
<td>Brittle</td>
<td>Veins:</td>
<td>Magnetic contact: Brittle, Crystal plastic:</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Alteration</th>
<th>Dip</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>37e</td>
<td>gabbro</td>
<td>Intrusive</td>
<td></td>
<td>Gabbroic dike</td>
<td></td>
<td>Grey veins</td>
<td>Brittle</td>
<td>Veins:</td>
<td>Magnetic contact: Brittle, Crystal plastic:</td>
<td>0</td>
</tr>
<tr>
<td>Sequence</td>
<td>Unit/Subunit</td>
<td>Rock Name</td>
<td>Contact</td>
<td>Texture</td>
<td>Igneous Summary</td>
<td>Alteration</td>
<td>Vein</td>
<td>Structure</td>
<td>Dip</td>
<td>Magnetic contact</td>
<td>Vein density (per meter)</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>------------</td>
<td>------</td>
<td>-----------</td>
<td>-----</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>37a</td>
<td>37e</td>
<td>dunite</td>
<td>tectonic</td>
<td></td>
<td>fractured, serpentinized dunite crosscut by gabbroic dikes</td>
<td>serpentinized</td>
<td>grey, grey-green, black, brown veins</td>
<td>Brittle-</td>
<td>Veins- conjugate vein sets occur</td>
<td>Crystal plastic</td>
<td>0-10 per 10 cm</td>
</tr>
<tr>
<td>37e</td>
<td>37e</td>
<td>Clinopyroxenite</td>
<td>intrusive</td>
<td>granular</td>
<td>orthopyroxenite dike</td>
<td></td>
<td>black veins</td>
<td>Brittle-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lithology
- Primary mineralogy (%): Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Amphibole, Sulfide
- Grain size: < 0.1 mm, 0.1-0.2 mm, 0.2-1 mm, 1-5 mm, 5-30 mm, >30 mm
- Degree of deformation: Unaffected, Minor fracturing, Moderate fracturing, GS reduction and rotation, Well-developed cataclasis
- Fracture/ Vein density (per meter): 0-10, 10-30, 30-50, 50-70, 70-90, >100
- Fracture/ Vein density (per meter): 0-10, 10-30, 30-50, 50-70, 70-90, >100
Hole BA4A-87Z Section 4, Top of Section 236.06 (m CCD)

Lithology and Contacts
- Rock Name: Gabbro
 - Contact: Tectonic
 - Texture: Granular
 - Igneous Summary: Gabbroic Dike

- Rock Name: Dunite
 - Contact: Intrusive
 - Texture:
 - Igneous Summary: Fractured, Serpentinized Dunite Crosscut by Gabbroic Dikes
 - Alteration: Serpentinized
 - Veins: Grey Veins, Grey-Green Veins

- Rock Name: Gabbro
 - Contact: Intrusive
 - Texture: Granular
 - Igneous Summary: Gabbroic Dike
 - Alteration:
 - Veins: Grey Veins, Green Veins

- Rock Name: Olivine Gabbro
 - Contact: Intrusive
 - Texture: Granular
 - Igneous Summary: Gabbroic Dike
 - Alteration:
 - Veins: Grey Veins

- Rock Name: Olivine Gabbro
 - Contact: Intrusive
 - Texture: Granular
 - Igneous Summary: Olivine Gabbro Dike
 - Alteration:
 - Veins: Grey-Green Veins, White Veins, Black Veins

Fabric Intensity
- Hole BA4A-87Z Section 4, Top of Section 236.06 (m CCD)
- Sequence: I
- Unit/Subunit: 37e
- Rock Name: Gabbro
- Contact: Tectonic
- Texture: Granular
- Igneous Summary: Gabbroic Dike
- Alteration:
- Veins: Grey Veins, Green Veins
- Structure: Brittle-Veins-Crystal Plastic

Vein Density
- Hole BA4A-87Z Section 4, Top of Section 236.06 (m CCD)
- Sequence: I
- Unit/Subunit: 37e
- Rock Name: Dunite
- Contact: Intrusive
- Texture: Fractured, Serpentinized
- Igneous Summary: Fractured, Serpentinized Dunite Crosscut by Gabbroic Dikes
- Alteration: Serpentinized
- Veins: Grey Veins, Grey-Green Veins
- Structure: Brittle-Veins-Crystal Plastic
| Sequence | Unit/Subunit | Rock Name | Contact | Texture | Igneous Summary | Alteration | Veins | Structure | Vein density (per meter) | Alteration intensity | |
|----------|--------------|---------------|-----------|-----------|--|------------|-------------------------------|-----------------|--------------------------|----------------------| |
| I | 37g | dunite | Continuous| | fractured, serpentinized dunite with rubbly zone | | | Brittle- | | | |
| I | 37h | olivine gabbro| Continuous| | fractured olivine gabbro dike | | | Brittle-Crystal plastic- | | | |
| I | 37i | dunite | intrusive | | fractured, serpentized dunite crosscut by gabbroic dike | | | Brittle- | | | |
| I | 37i | olivine gabbro| intrusive | | gabbroic dike | | | Brittle-Crystal plastic- | | | |

Fabric Intensity

- 0: Undeformed
- 1: Minor fracturing
- 2: Moderate fracturing
- 3: GS reduction and rotation
- 4: Well-developed cataclasis
- 5: Ultracataclastite

Degree of Deformation

- 0–10%
- 11–30%
- 31–60%
- 61–90%
- ≥90%

Magmatic Contact

- 0: Undeformed
- 1: Minor fracturing
- 2: Moderate fracturing
- 3: GS reduction and rotation
- 4: Well-developed cataclasis
- 5: Ultracataclastite

Dip

- 0: Undeformed
- 1: Minor fracturing
- 2: Moderate fracturing
- 3: GS reduction and rotation
- 4: Well-developed cataclasis
- 5: Ultracataclastite

Vein Crosscutting

- 0: Undeformed
- 1: Minor fracturing
- 2: Moderate fracturing
- 3: GS reduction and rotation
- 4: Well-developed cataclasis
- 5: Ultracataclastite

Alteration Intensity

- 0: Fresh (<3%)
- 1: Slight (3–10%)
- 2: Moderate (11–30%)
- 3: Substantial (31–60%)
- 4: Extensive (61–90%)
- 5: Complete (>90%)

Magmatic Layering

- 0: Protogranular
- 1: Porphyroclastic
- 2: Strongly foliated
- 3: Protomylonite
- 4: Mylonite
- 5: Ultramylonite

Foliation

- 0: Isotropic
- 1: Weak
- 2: Moderate
- 3: Strong

Grain Size

- 0: Fine grained (0.2–1 mm)
- 1: Medium grained (1–5 mm)
- 2: Coarse grained (5–30 mm)
- 3: Pegmatitic (>30 mm)
- 4: Glassy
- 5: Cryptocrystalline (<0.1 mm)
- 6: Microcrystalline (0.1–0.2 mm)

Magnetic Susceptibility

- 0: 2.76
- 1: 2.96
- 2: 3.06
- 3: 3.16
- 4: 3.26
- 5: 3.36

Lithology

- 0: Basalt
- 1: Basaltic andesite
- 2: Andesite
- 3: Rhyolite
- 4: Tuff
- 5: Pumice

Primary Mineralogy

- 0: Olivine
- 1: Plagioclase
- 2: Clinopyroxene
- 3: Orthopyroxene
- 4: Amphibole
- 5: Sulfide

Degree of Fracture/Vein

- 0: 0–10 per 10 cm
- 1: 10–30 per 10 cm
- 2: 30–50 per 10 cm
- 3: 50–70 per 10 cm
- 4: 70–90 per 10 cm
- 5: >90 per 10 cm

Discrete brittle features

- 0: Undeformed
- 1: Minor fracturing
- 2: Moderate fracturing
- 3: GS reduction and rotation
- 4: Well-developed cataclasis
- 5: Ultracataclastite
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Magnetic susceptibility (SI x 10^-5)</th>
<th>GRA (g/cm³)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Grainsize</th>
<th>Degree of deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>238.49</td>
<td>0</td>
<td>1</td>
<td>1.9 ± 0.2</td>
<td>37</td>
<td>dunite</td>
<td>Brittle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEXT:
- **SEQUENCE**: 37I
- **UNIT/SUBUNIT**: I
- **ROCK NAME**: dunite
- **CONTACT**: Continuous
- **TEXTURE**: I
- **IGNEOUS SUMMARY**: fractured, serpentized dunite crosscut by gabbroic dike
- **ALTERATION**: serpentinized
- **VEINS**: grey veins, black veins, brown veins, white veins
- **STRUCTURE**: Brittle

MAGNETIC susceptibility:
- **MSCL-W**: 1
- **MSP**: 1

LITHOLOGY:
- **Primary Mineralogy (%):**
 - Olivine
 - Plagioclase
 - Clinopyroxene
 - Orthopyroxene
 - Amphibole
 - Sulfide

GRA (g/cm³): 1.9 ± 0.2

Degree of deformation:
- **Vein density (per meter)**
- **Fabric intensity**
- **Magmatic Layering**
- **Foliation**

Alteration intensity:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Description:
- Fault zones
- Structures
- Apparent offset
- Alteration halos

CT image: Sulfide
- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine

Vein density (per meter)
- 0–1 per 10 cm
- 1–3 per 10 cm
- 3–5 per 10 cm
- >20 per 10 cm

Vein density (per meter)
- 0–1 per 10 cm
- 1–3 per 10 cm
- 3–5 per 10 cm
- >20 per 10 cm

Degree of deformation:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Texture:
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Alteration halo:
- Undertone: serpentized
- Slight: dunite, serpentinized

MSCL-W: 1000
- High: 10–30
- Medium: 30–50
- Low: 50–70
- Very low: 70–90
- Very high: >90

MSP: 1
- High: 10–30
- Medium: 30–50
- Low: 50–70
- Very low: 70–90
- Very high: >90

GRA (g/cm³): 2.65
- Low: 1.9
- Medium: 2.15
- High: 2.4

Vein density (per meter)
- 0–1 per 10 cm
- 1–3 per 10 cm
- 3–5 per 10 cm
- >20 per 10 cm

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Dip
- Magnetite
- Quartz
- Crystal plastic
- Veins

CT image: Sulfide
- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine
Hole BA4A-88Z Section 4, Top of Section 239.03 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stratigraphic image</th>
<th>Magnetically susceptibility (SI x 10^-4)</th>
<th>GRA (g/cm²)</th>
<th>Sequence (per meter)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>239.03 - 239.05</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>239.05 - 239.15</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>239.15 - 239.25</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>239.25 - 239.35</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>239.35 - 239.45</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>239.45 - 239.55</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Sequence: I

Unit/Subunit: 37I

Rock Name: dunite

Contact: Continuous

IGNEOUS SUMMARY: fractured, serpentized dunite crosscut by gabbroic dike

Alteration: serpentinized

Veins: grey veins, black veins, brown veins, white veins

STRUCTURE: Brittle

SEQUENCE: I

Unit/Subunit: 37I

Rock Name: gabbro

Contact: intrusive

Textured:

IGNEOUS SUMMARY: altered gabbroic dike

Alteration:

Veins: grey veins, white veins, green veins

STRUCTURE: Brittle

Sequence: I

Unit/Subunit: 37I

Rock Name: gabbro

Contact: intrusive

Texture:

IGNEOUS SUMMARY: altered gabbroic dike

Alteration:

Veins: grey veins, white veins, green veins

Structure: Brittle

Sequence: I

Unit/Subunit: 37I

Rock Name: dunite

Contact: Continuous

Textured:

IGNEOUS SUMMARY: fractured, serpentized dunite crosscut by gabbroic dike

Alteration: serpentinized

Veins: grey veins, black veins, brown veins, white veins

Structure: Brittle
Hole BA4A-89Z Section 1, Top of Section 239.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility (SI x 10^-5)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>239.70</td>
<td></td>
<td></td>
<td></td>
<td>2.592</td>
<td>MBIO</td>
<td>Olivine</td>
<td>Strong</td>
<td>0–10 per 10 cm</td>
<td>0–10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239.83</td>
<td></td>
<td></td>
<td></td>
<td>2.572</td>
<td></td>
<td>Plagioclase</td>
<td>Moderate</td>
<td>10–30 per 10 cm</td>
<td>10–30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239.93</td>
<td></td>
<td></td>
<td></td>
<td>2.552</td>
<td></td>
<td>Clinopyroxene</td>
<td>Substantial</td>
<td>30–50 per 10 cm</td>
<td>30–50%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240.03</td>
<td></td>
<td></td>
<td></td>
<td>2.532</td>
<td></td>
<td>Amphibole</td>
<td>Extensive</td>
<td>50–70 per 10 cm</td>
<td>50–70%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240.13</td>
<td></td>
<td></td>
<td></td>
<td>2.512</td>
<td></td>
<td>Spinel</td>
<td>Complete</td>
<td>>70 per 10 cm</td>
<td>>70%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240.23</td>
<td></td>
<td></td>
<td></td>
<td>2.492</td>
<td></td>
<td>Orthopyroxene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240.33</td>
<td></td>
<td></td>
<td></td>
<td>2.472</td>
<td></td>
<td>Sulfide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240.43</td>
<td></td>
<td></td>
<td></td>
<td>2.452</td>
<td></td>
<td>Fresh (<3%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: 371
ROCK NAME: dunite
CONTACT: intrusive
TEXTURE: IGNEOUS
SUMMARY: fractured, serpentized dunite crosscut by gabbroic dike

ALTERATION: serpentinized

VEINS: grey veins, black veins, brown veins, white veins

STRUCTURE: Brittle - Veins - Crystal plastic

FABRIC INTENSITY: 5

VEIN DENSITY: 1 per 10 cm

ALTERATION INTENSITY: 0–10%
SEQUENCE: 37I
UNIT/SUBUNIT: 37I
ROCK NAME: dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS
SUMMARY: fractured, serpentized dunite crosscut by gabbroic dike
ALTERATION: serpentinized
VEINS: grey veins, black veins, brown veins, white veins
STRUCTURE: Brittle-Veins- conjugate vein sets occur
Crystal plastic-Fabric intensity

Hole BA4A-89Z Section 2, Top of Section 240.49 (m CCD)

Depth (m CCD) Core length (cm) Shipboard samples Stained image

Magnetic susceptibility MSCL-W MSP (SI x 10^5) GRA (g/cm²)

Primary mineralogy (%)
Olivine Plagioclase Clinopyroxene Orthopyroxene Amphibole Spinel Sulfide

Grain size
< 5 5-10 10-30 30-100 100+

Discrete brittle features
Fracture/ Vein (per meter)
Vein density (per meter)
Alteration intensity
Dip Magnatic contact Brittle Crystal plastic Veins Voids

Lithology
Fresh (<3%) Slight (3–10%) Moderate (11–30%) Substantial (31–60%) Extensive (61–90%) Complete (≥90%)

Magmatic Layering Foliation
Foliation
3 2 1 0

Degree of deformation
Ultramylonite Mylonite Ultramylonite

Structures
Fault zones
Apparent offset

Degree of deformation
GS reduction and rotation Well-developed cataclasis Ultracataclastite

Degree of deformation
Protomylonite Mylonite

Degree of deformation
Protogranular Porphyroclastic Strongly foliated

Degree of deformation
Isotropic Weak Moderate Strong

Degree of deformation
Fine grained (0.2–1 mm) Medium grained (1–5 mm) Coarse grained (5–30 mm) Pegmatitic (>30 mm)

Degree of deformation
Glassy Cryptocrystalline (0.1–0.2 mm) Microcrystalline (0.1–0.2 mm)

Degree of deformation
0–10 10–30 30–50 50–70 70–90 >100

Magnetic contact
Brittle Crystal plastic Veins Voids

Description

SEQUENCE: 37I
ROCK NAME: dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS
SUMMARY: fractured, serpentized dunite crosscut by gabbroic dike
ALTERATION: serpentinized
VEINS: grey veins, black veins, brown veins, white veins
STRUCTURE: Brittle-Veins- conjugate vein sets occur
Crystal plastic-
Hole BA4A-89Z Section 4, Top of Section 242.08 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>242.09</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242.19</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242.29</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242.39</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242.49</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242.59</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242.69</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242.79</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sequence 1: 38a
Unit/Subunit: 38a
Rock Name: Harzburgite
Contact: Continuous
Texture: Igneous_summary: slightly fractured, serpentinized harzburgite with minor dunitic zones cross-cut by minor gabbroic dikes
Alteration: Serpentinized
Veins: Black veins, grey veins
Structure: Brittle-crystal plastic, pyroxene grains are rounded and slightly elongated.
SEQUENCE: I
UNIT/SUBUNIT: 38b
ROCK NAME: Harzburgite
CONTACT: Continuous
TEXTURE:
IGNEOUS
SUMMARY: serpentinized harzburgite with dunitic patches, crosscut by gabbroic and pyroxenitic dikes, weakly fractured
ALTERATION: serpentinized
VEINS: green, white veins usually crosscut fractures and dikes
STRUCTURE: Brittle-
Veins-
Crystal plastic- Pyroxene grains are rounded and slightly elongated.

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fabric intensity</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>243.90</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243.95</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244.00</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244.05</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244.10</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244.15</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244.20</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244.25</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244.30</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244.35</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244.40</td>
<td>170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244.45</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244.50</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hole BA4A-90Z Section 1, Top of Section 242.70 (m CCD)

Description:
- Sequence: I
- Unit/Subunit: 38b
- Rock Name: Harzburgite
- Contact: Continuous
- Textural Summary: Serpentinized harzburgite with dunitic patches, crosscut by gabbroic and pyroxenitic dikes, weakly fractured
- Alteration: Serpentinized
- Veins: Green, white veins usually crosscut fractures and dikes
- Structure: Brittle-Veins-Crystal plastic: Pyroxene grains are rounded and slightly elongated.
SEQUENCE: 38b
UNIT/SUBUNIT: Harzburgite
ROCK NAME: Continuous
TEXTURE:
IGNEOUS
SUMMARY: Serpentinized harzburgite with dunitic patches, crosscut by gabbroic and pyroxenitic dikes, weakly fractured
ALTERATION: Serpentinized
VEINS: Green, white veins usually crosscut fractures and dikes
STRUCTURE: Brittle-Veins-Crystal plastic-Pyroxene grains are moderately elongated.

Vein crosscutting Alteration intensity

Fracture/ Vein density (per meter)

0-10 10-30 30-50 50-70 70-90 90-100 >100

74-77

Alteration halos

0-10 10-30 30-50 50-70 70-90 90-100 >100

0 Degree of deformation

Vein density (per meter)

0 1 per 10 cm 3-5 per 10 cm >20 per 10 cm 5-15 per 10 cm 15-20 per 10 cm

Discrete brittle features

Vein fracture

Fabric intensity

5 4 3 2 1 0

Degree of deformation

Farbe intensity

5 4 3 2 1 0

0-10 10-30 30-50 50-70 70-90 90-100 >100

5 Magnetic contact Brittle Crystal plastic Veins

Veins: Crystal plastic-Pyroxene grains are moderately elongated.
Hole BA4A-90Z Section 3, Top of Section 244.51 (m CCD)

<table>
<thead>
<tr>
<th>Core</th>
<th>Lithology</th>
<th>Primary Mineralogy (%)</th>
<th>Degree of Deformation</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Fabric intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>244.53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sequences and Subunits

SEQUENCE: I, UNIT/SUBUNIT: 38b
- **ROCK NAME:** Harzburgite
- **CONTACT:** Continuous
- **TEXTURE:** Igneous
- **SUMMARY:** Serpentinized harzburgite with dunitic patches, crosscut by gabbroic and pyroxenitic dikes, weakly fractured
- **ALTERATION:** Serpentinized
- **VEINS:** Green, white veins usually crosscut fractures and dikes
- **STRUCTURE:** Brittle

SEQUENCE: I, UNIT/SUBUNIT: 38b
- **ROCK NAME:** Olivine gabbro
- **CONTACT:** Intrusive
- **TEXTURE:** Granular
- **SUMMARY:** Crosscut by white orthogonally to the margin, pretty pull-apart fracture in middle of fine grain size area
- **ALTERATION:** Altered
- **VEINS:** White veins
- **STRUCTURE:** Brittle

SEQUENCE: I, UNIT/SUBUNIT: 39a
- **ROCK NAME:** Dunite
- **CONTACT:** Intrusive
- **TEXTURE:** Highly serpentinized dunite, altered with dunitic patches, crosscut by gabbroic and pyroxenitic dikes often branched out, moderately fractured
- **ALTERATION:** Serpentinized, locally oxidized
- **VEINS:** Black, green, white veins
- **STRUCTURE:** Brittle

Core Length (cm)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>244.53</td>
<td>-</td>
</tr>
<tr>
<td>244.63</td>
<td>-</td>
</tr>
<tr>
<td>244.73</td>
<td>-</td>
</tr>
<tr>
<td>244.83</td>
<td>-</td>
</tr>
<tr>
<td>244.93</td>
<td>-</td>
</tr>
<tr>
<td>245.03</td>
<td>-</td>
</tr>
<tr>
<td>245.13</td>
<td>-</td>
</tr>
<tr>
<td>245.23</td>
<td>-</td>
</tr>
</tbody>
</table>

Depth (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>244.53</td>
<td>-</td>
</tr>
<tr>
<td>244.63</td>
<td>-</td>
</tr>
<tr>
<td>244.73</td>
<td>-</td>
</tr>
<tr>
<td>244.83</td>
<td>-</td>
</tr>
<tr>
<td>244.93</td>
<td>-</td>
</tr>
<tr>
<td>245.03</td>
<td>-</td>
</tr>
<tr>
<td>245.13</td>
<td>-</td>
</tr>
<tr>
<td>245.23</td>
<td>-</td>
</tr>
</tbody>
</table>
Hole BA4A-90Z Section 4, Top of Section 245.25 (m CCD)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>39a</td>
<td>Dunite</td>
<td>Intrusive</td>
<td>Igneous summary: highly serpentinized dunite, altered with dunitic patches, crosscut by gabbroic and pyroxenitic dikes often branched out, moderately fractured</td>
</tr>
</tbody>
</table>

Alteration: serpentinized, locally oxidized

Veins: black, green, white veins

Structure: Brittle- limited brecciation from magmatic impregnation

Vein density (per meter):
- 0
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Magmatic Layering:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Foliation/Fabric intensity:
- Isotropic
- Weak
- Moderate
- Strong

Magmatic contact:
- Brittle
- Crystal plastic

Dip:
- 0
- 45
- 90

Description:
- Sequence: I
- Unit/Subunit: 39a
- Rock Name: Dunite
- Contact: Intrusive
- Igneous summary: highly serpentinized dunite, altered with dunitic patches, crosscut by gabbroic and pyroxenitic dikes often branched out, moderately fractured
- Alteration: serpentinized, locally oxidized
- Veins: black, green, white veins
- Structure: Brittle- limited brecciation from magmatic impregnation

Magnetic susceptibility (SI x 10^-5):
- 1000
- 100
- 10
- 1

Magnetic contact:
- Brittle
- Crystal plastic

Dip:
- 0
- 45
- 90

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Magmatic Layering:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Foliation/Fabric intensity:
- Isotropic
- Weak
- Moderate
- Strong

Magmatic contact:
- Brittle
- Crystal plastic

Dip:
- 0
- 45
- 90

Description:
- Sequence: I
- Unit/Subunit: 39a
- Rock Name: Dunite
- Contact: Intrusive
- Igneous summary: highly serpentinized dunite, altered with dunitic patches, crosscut by gabbroic and pyroxenitic dikes often branched out, moderately fractured
- Alteration: serpentinized, locally oxidized
- Veins: black, green, white veins
- Structure: Brittle- limited brecciation from magmatic impregnation

Vein density (per meter):
- 0
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Magmatic Layering:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Foliation/Fabric intensity:
- Isotropic
- Weak
- Moderate
- Strong

Magmatic contact:
- Brittle
- Crystal plastic

Dip:
- 0
- 45
- 90

Description:
- Sequence: I
- Unit/Subunit: 39a
- Rock Name: Dunite
- Contact: Intrusive
- Igneous summary: highly serpentinized dunite, altered with dunitic patches, crosscut by gabbroic and pyroxenitic dikes often branched out, moderately fractured
- Alteration: serpentinized, locally oxidized
- Veins: black, green, white veins
- Structure: Brittle- limited brecciation from magmatic impregnation

Vein density (per meter):
- 0
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Magmatic Layering:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Foliation/Fabric intensity:
- Isotropic
- Weak
- Moderate
- Strong

Magmatic contact:
- Brittle
- Crystal plastic

Dip:
- 0
- 45
- 90

Description:
- Sequence: I
- Unit/Subunit: 39a
- Rock Name: Dunite
- Contact: Intrusive
- Igneous summary: highly serpentinized dunite, altered with dunitic patches, crosscut by gabbroic and pyroxenitic dikes often branched out, moderately fractured
- Alteration: serpentinized, locally oxidized
- Veins: black, green, white veins
- Structure: Brittle- limited brecciation from magmatic impregnation

Vein density (per meter):
- 0
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm

Degree of deformation:
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Magmatic Layering:
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Foliation/Fabric intensity:
- Isotropic
- Weak
- Moderate
- Strong
SEQUENCE: 39a
UNIT/SUBUNIT: 39a
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE: IGNEOUS
SUMMARY: highly serpentinized dunite, altered with dunitic patches, crosscut by gabbroic and pyroxenitic dikes often branched out, moderately fractured

ALTERATION: serpentinized, locally oxidized

VEINS: black, green, white veins

STRUCTURE: Brittle- Minor faulting
Vein-
Crystal plastic-

Fabric intensity
0 1 2 3 4 5

Vein density (per meter)
0 1 2 3 4 5 6

Granite size
0 1 2 3 4 5 6 7

Magnetic susceptibility
1000 100 10 1

Lithology

Primary mineralogy (%)
100

Magmatic contact

Layering

Foliation

Discrete brittle features
0 1 2 3 4 5

Degree of deformation

Fracture/ Vein density (per meter)

Alteration intensity

Dip

Magnetic contact Brittle Crystal plastic Veins

Hole BA4A-91Z Section 1, Top of Section 245.70 (m CCD)

Core length (cm)
245.70 245.80 245.90 246.00 246.10 246.20 246.30 246.40 246.50 246.60

Depth (m CCD)
0 10 20 30 40 50 60 70 80 90

CT image

Magnetic susceptibility (SI 10^-5)

MSCL-W MSP GRA (g/cm^3)

Core length (cm)

Lithology

Sequence

Primary mineralogy

Olivine Plagioclase Clinopyroxene Orthopyroxene Amphibole Sulfide

Grain size

Degree of deformation

Fabric intensity

Fracture/ Vein density (per meter)

Alteration intensity

Dip

Magnetic contact Brittle Crystal plastic Veins

Sequence: I

Unit/subunit: 39a

Rock Name: Dunite

Contact: Continuous

Textured: Igneous

Summary: Highly serpentinized dunite, altered with dunitic patches, crosscut by gabbroic and pyroxenitic dikes often branched out, moderately fractured

Alteration: Serpentinized, locally oxidized

Veins: Black, green, white veins

Structure: Brittle- Minor faulting

Vein- Crystal plastic

Fabric intensity: 0 1 2 3 4 5

Vein density (per meter): 0 1 2 3 4 5 6

Granite size: 0 1 2 3 4 5 6 7

Magnetic susceptibility: 1000 100 10 1

Lithology

Primary mineralogy (%): 100

Magmatic contact

Layering

Foliation

Discrete brittle features: 0 1 2 3 4 5

Degree of deformation

Fracture/ Vein density (per meter)

Alteration intensity

Dip

Magnetic contact Brittle Crystal plastic Veins

Hole BA4A-91Z Section 1, Top of Section 245.70 (m CCD)
Sequence: I
Unit/Subunit: 39a
Rock Name: Dunite
Contact: Intrusive
Texture: Igneous
Summary: Highly serpentinized dunite, altered with dunitic patches, crosscut by gabbroic and pyroxenitic dikes often branched out, moderately fractured
Alteration: Serpentinized, locally oxidized
Veins: Black, green, white veins
Structure: Brittle - Single fault plane offsets dike and runs down most of section

Sequence: I
Unit/Subunit: 39b
Rock Name: Harzburgite
Contact: Modal
Texture: Granular
Igneous Summary: Serpentinized harzburgite with dunitic vertical corridor, crosscut by pyroxenitic dikes
Alteration: Serpentinized
Veins: Black vertical veins
Structure: Brittle - Veins - Crystal plastic - Pyroxene grains are moderately elongated.
SEQUENCE I
UNIT/SUBUNIT: 39a
ROCK NAME: Harzburgite
CONTACT: Continuous
TEXTURE: Granular
IGNEOUS SUMMARY: serpentinized harzburgite with dunitic vertical corridor, crosscut by pyroxenitic dikes
ALTERATION: serpentinized
VEINS: black vertical veins
STRUCTURE: Brittle-
Veins- conjugate vein sets occur
Crystal plastic- Pyroxene grains are rounded and slightly elongated.

SEQUENCE I
UNIT/SUBUNIT: 39b
ROCK NAME: Clinopyroxenite
CONTACT: Intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: offset
ALTERATION: highly altered
VEINS:
STRUCTURE: Brittle-
Veins- conjugate vein sets occur
Crystal plastic- Pyroxene grains are rounded and slightly elongated.
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size (mm)</th>
<th>Degree of deformation</th>
<th>Discrete brittle features</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Structures</th>
<th>Alteration halos</th>
<th>Vein density (per meter)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>248.70</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>248.80</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>248.90</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>248.99</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>249.00</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>249.10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>249.20</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>249.30</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>249.40</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>249.50</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>249.60</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
SEQUENCE: I
UNIT/SUBUNIT: 39c
ROCK NAME: harzburgite
CONTACT: Continuous
TEXTURE: IGNEOUS
SUMMARY: highly serpentinized harzburgite crosscut by gabbroic and pyroxenitic offeset dikes, moderately fractured
ALTERATION: highly altered, serpentinized, locally oxidized
VEINS: black, green, white veins
STRUCTURE: Brittle-
Veins-
Crystal plastic-

SEQUENCE: II
UNIT/SUBUNIT: 39c
ROCK NAME: Clinopyroxenite
CONTACT: Intrusive
TEXTURE: Granular
IGNEOUS SUMMARY: offset
ALTERATION: highly altered
VEINS: green veins
STRUCTURE: Brittle-
Veins-
Crystal plastic-

Magnetic susceptibility
MSCL-W MSP
(SI x 10^-5)
GRA (g/cm²)
Sequence
Lithology
Primary mineralogy (%)
Olivine
Plagioclase
Clinopyroxene
Orthopyroxene
Amphibole
Spinel
Sulfide
Grain size
≤ 3
15 30 50 100
> 15
Degree of deformation
Fracture/ Vein density (per meter)
Fabric intensity
Discrete brittle features

Alteration intensity
Vein density (per meter)

Description
Fault zones
Structures
Apparent offset
Alteration halos

Veins:
Magnetic contact
Brittle
Crystal plastic

Hole BA4A-92Z Section 2, Top of Section 249.67 (m CCD)
Depth (m CCD)	Core length (cm)	Shipboard samples	Stained image	Magnetic susceptibility (SI \(10^{-5}\)) MSP	GRA (g/cm³)	Sequence	Lithology	Primary mineralogy (%)	Grain size	Degree of deformation	Fracture/ Vein density (per meter)	Alteration intensity	Dip	Alteration halos	Vein density (per meter)	Alteration halos	Structures	Fracture/ Vein density (per meter)						
250.53	0																							
250.63	10																							
250.73	20																							
250.83	30																							
250.93	40																							

Hole BA4A-92Z Section 3, Top of Section 250.51 (m CCD)

Description
Hole BA4A-93Z Section 1, Top of Section 251.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>251.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

- **Sequence**: 40b
- **Unit/Subunit**: 40b
- **Rock Name**: Dunite
- **Contact**: Continuous

TEXTURE:

IGNEOUS SUMMARY: Serpentinized opx-bearing dunite

ALTERATION: serpentinized

VEINS: black veins

STRUCTURE: Brittle-

Vein density (per meter)

- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Vein crosscutting

- Magmatic
- Contact

Alteration intensity

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Dip

- Magnetic contact
- Brittle
- Crystal plastic
- Veins

Magnetic susceptability (SI x 10^-5)

- MSCL-W
- MSP

GRA (g/cm³)

- 2.77
- 2.72
- 2.67
- 2.62

Magmatic Layering

- Protogranular
- Porphyroclastic
- Strongly foliated

Foliation

- Protomylonite
- Mylonite
- Ultramylonite

Texture

- Isotropic
- Weak
- Moderate
- Strong

Magmatic Brittle Contact

- Dip

Fracture/ Vein density (per meter)

- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Fabric intensity

- 0
- 1
- 2
- 3
- 4
- 5

Fracture/ Vein

- Crosscutting

Alteration halos

- 0
- 20
- 40
- 60
- 80
- 100

Degree of deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Magmatic Layering

- Protogranular
- Porphyroclastic
- Strongly foliated

Texture

- Isotropic
- Weak
- Moderate
- Strong

Magmatic Brittle Contact

- Dip

Fracture/ Vein density (per meter)

- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Fabric intensity

- 0
- 1
- 2
- 3
- 4
- 5

Fracture/ Vein

- Crosscutting

Alteration halos

- 0
- 20
- 40
- 60
- 80
- 100

Degree of deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Magmatic Layering

- Protogranular
- Porphyroclastic
- Strongly foliated

Texture

- Isotropic
- Weak
- Moderate
- Strong

Magmatic Brittle Contact

- Dip
Sequence: I
Unit/Subunit: 40c
Rock Name: Harzburgite
Contact: Continuous
Texture: Granular
Igneous Summary: Serpentinized harzburgite with dunitic patches, crosscut by gabbroic pyroxenitic and wehrlitic dikes, weakly fractured
Alteration: Serpentinized, oxidized in dunitic zones
Veins: White veins
Structure: Brittle-Veins- Conjugate vein sets occur
Crystal plastic- Pyroxene grains are rounded and slightly elongated.

Sequence: I
Unit/Subunit: 40c
Rock Name: Clinopyroxenite
Contact: Intrusive
Texture: Granular
Igneous Summary: Rubble zone
Alteration: Highly altered
Veins: Green, white veins
Structure: Brittle-Veins- Vein crosscutting
Crystal plastic- Pyroxene grains are rounded and slightly elongated.

Description

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>252.37</td>
<td></td>
</tr>
<tr>
<td>252.47</td>
<td></td>
</tr>
<tr>
<td>252.57</td>
<td></td>
</tr>
<tr>
<td>252.67</td>
<td></td>
</tr>
<tr>
<td>252.77</td>
<td></td>
</tr>
<tr>
<td>252.87</td>
<td></td>
</tr>
<tr>
<td>252.97</td>
<td></td>
</tr>
<tr>
<td>253.07</td>
<td></td>
</tr>
<tr>
<td>253.17</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-93Z Section 3, Top of Section 253.23 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Degree of alteration</th>
<th>Vein density (per meter)</th>
<th>Discrete brittle features</th>
<th>Structures</th>
<th>Alteration intensity</th>
<th>Magnetic susceptibility</th>
<th>Magnetic contact</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>253.25</td>
<td>1</td>
<td>Harzburgite</td>
<td>Olivine, Plagioclase, Amphibole, Orthopyroxene</td>
<td>Fine (0.2–1 mm)</td>
<td>Undeformed</td>
<td>Fresh (<3%)</td>
<td>0–10 per 10 cm</td>
<td>Microcracks, brittle features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253.25</td>
<td>2</td>
<td>Wehrlite</td>
<td>Amphibole, Clinopyroxene, Spinel, Pyroxene</td>
<td>Medium (1–5 mm)</td>
<td>Minor fracturing</td>
<td>Slight (3–10%)</td>
<td>5–15 per 10 cm</td>
<td>Microcracks, brittle features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253.25</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Moderate fracturing</td>
<td>Moderate (11–30%)</td>
<td>15–20 per 10 cm</td>
<td>Microcracks, brittle features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253.25</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>Well-developed cataclasis</td>
<td>Substantial (31–60%)</td>
<td>>20 per 10 cm</td>
<td>Microcracks, brittle features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253.25</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>Ultra-mylonite</td>
<td>Extensive (61–90%)</td>
<td></td>
<td>Microcracks, brittle features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253.25</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>Ultramylonite</td>
<td>Complete (≥90%)</td>
<td></td>
<td>Microcracks, brittle features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description: Crystal plastic. Pyroxene grains are rounded and slightly elongated.
Depth (m CCD)	Core length (cm)	Shipboard samples	Stained image	CT image	Magnetic susceptibility MSCL-W MSP (SI x 10^-5)	GRA (g/cm²)	Sequence	Lithology	Primary mineralogy (%)	Grain size	Magmatic layering	Fabric intensity	Magmatic foliation	Discrete brittle features	Fissure/crystal plastic	Vein density (per meter)	Alteration intensity	Dip	Magnetic contact	Brittle crystal plastic	Structures	Drilling offset	Absent/visible/offset	Vein density (per meter)	Fracture/vein density (per meter)		
254.00																											
254.10																											
254.20																											
254.30																											
254.40																											
254.50																											
254.60																											
254.70																											
254.80																											
Hole BA4A-94Z Section 1, Top of Section 254.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Degree of deformation</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>254.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary mineralogy
- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Spinel
- Sulfide

Degree of deformation
- Fracture/ Vein density (per meter)

Magnetic susceptibility
- MSCL-W
- MSP (SI x 10^-5)
- GRA (g/cm^3)

Texture
- Protomylonite
- Mylonite
- Ultramylonite
- Porphyroclastic
- Strongly foliated

Fracture/Vein density
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Dip
- Magnetic contact
- Brittle
- Crystal plastic

Vegetation
- Protogranular
- Layering
- Foliation

Degree of alteration
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Veins
- Cut by green/orange composite frankenstein veins, dark veins and white thread veins

Vein density
- 0–10 per 10 cm
- 10–30 per 10 cm
- 30–50 per 10 cm
- 50–70 per 10 cm
- 70–90 per 10 cm
- >90 per 10 cm

Structures
- Fault zones
- Magmatic contact
- Brittle
- Crystal plastic

Vectors
- Protogranular
- Layering
- Foliation

Magmatic contact
- Dip
- Brittle
- Crystal plastic

Fabric intensity
- 0
- 1
- 2
- 3
- 4
- 5

Vein density
- 0
- 5
- 10
- 15
- 20
- 25
- 30
- 35
- 40
- 45
- 50
- 55
- 60
- 65
- 70
- 75
- 80
- 85
- 90
- 95
- 100

Alteration intensity
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

Discrete brittle features
- Brittle
- Crystal plastic

Vein crosscutting
- Brittle
- Crystal plastic

Alteration halos
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Rock Name:
- Dunite
- Harzburgite

Sequence:
- I
- 40d
- 40e

Unit/Subunit:
- 40d
- 40e

Rock Texture:
- Granular

Igneous Summary:
- Serpentinized dunite patches, crosscut by pyroxenitic and wehrlitic dikes, weakly fractured
- Serpentinized harzburgite with gabbro dykes

Alteration:
- Serpentinized

Veins:
- White veins
- Cut by green/orange composite frankenstein veins, dark veins and white thread veins

Structure:
- Brittle
- Veins
- Crystal plastic
- Pyroxene grains are strongly elongated.
SEQUENCE: 40f
UNIT/SUBUNIT: 40f
ROCK NAME: harzburgite
CONTACT: continuous
TEXTURE: Granular
IGNEOUS SUMMARY: serpentinised harzburgite with gabbro dykes
ALTERATION: serpentinised

VEINS: cut by green/white composite frankenstein veins, black white composite frankenstein veins, dark veins and white thread veins

STRUCTURE: Brittle-Vein-Crystal plastic-Pyroxene grains are moderately elongated.
Hole BA4A-94Z Section 4, Top of Section 257.29 (m CCD)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Lithology</th>
<th>Primary Mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Alteration halos</th>
<th>Structures</th>
<th>Width (cm)</th>
<th>Dip-contact alteration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>40f</td>
<td>harzburgite</td>
<td>Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Amphibole, Sulfide</td>
<td>Granular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>olivine gabbro</td>
<td>Olivine, Plagioclase, Orthopyroxene, Amphibole, Sulfide</td>
<td>Granular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lithology:
- Primary mineralogy: Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Amphibole, Sulfide.

Degree of deformation:
- Granular

Fracture/ Vein density (per meter):
- | 0 | 1 | 2 | 3 | 4 |
 - 0: 0–10 per 10 cm
 - 1: 10–30 per 10 cm
 - 2: 30–50 per 10 cm
 - 3: 50–70 per 10 cm
 - 4: 70–90 per 10 cm
 - 5: >90 per 10 cm

Alteration intensity:
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Structures:
- Brittle Veins
- Crystal plastic
- Veins

Dip-contact alteration:
- Magnetic contact

Description:
- Crystalline: Pyroxene grains are rounded and slightly elongated.
Hole BA4A-95Z Section 1, Top of Section 257.70 (m CCD)

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>harzburgite</td>
<td>olivine, clinopyroxene, orthopyroxene</td>
<td>Fabric intensity</td>
<td>Vein density (per meter)</td>
<td>Alteration intensity</td>
<td>Vein density (per meter)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gabbro</td>
<td>plagioclase, amphibole, spinel</td>
<td>Vein crosscutting</td>
<td>Alteration intensity</td>
<td>Vein density (per meter)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>harzburgite</td>
<td>olivine, clinopyroxene, orthopyroxene</td>
<td>Vein crosscutting</td>
<td>Alteration intensity</td>
<td>Vein density (per meter)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gabbro</td>
<td>plagioclase, amphibole, spinel</td>
<td>Vein crosscutting</td>
<td>Alteration intensity</td>
<td>Vein density (per meter)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lithology
- harzburgite
- gabbro
- harzburgite
- gabbro

Primary Mineralogy (%)
- olivine, clinopyroxene, orthopyroxene
- plagioclase, amphibole, spinel
- olivine, clinopyroxene, orthopyroxene
- plagioclase, amphibole, spinel

Degree of Deformation
- Fabric intensity
- Vein density (per meter)
- Alteration intensity
- Vein density (per meter)

Alteration intensity

Dip
- Magnetic contact
- Brittle
- Crystal plastic
- Veins

Sequence
- I
- I
- I
- I

Unit/Subunit
- 40f
- 40g
- 40h
- 40h

Rock Name
- harzburgite
- gabbro
- harzburgite
- gabbro

Contact
- continuous
- intrusive
- intrusive
- intrusive

Texture
- Granular
- Granular
- Granular
- Granular

Igneous Summary
- serpentinised harzburgite with gabbro dykes
- altered gabbro dyke
- highly serpentinised harzburgite
- altered gabbro dyke

Alteration
- serpentinised
- altered and pseudomorphed
- serpentinised
- altered and pseudomorphed

Veins
- cut by green/white composite frankenstein veins, black white composite frankenstein veins, dark veins and white thread veins
- white
- white thread veins, dyke halo white veins, and white veins parallel to dyke in 1 cm black zone adjacent to dyke
- white

Structure
- Brittle-Veins-Crystal plastic-Pyroxene grains are rounded and slightly elongated.
Hole BA4A-95Z Section 2, Top of Section 258.53 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI x 10^5)</th>
<th>GRA (g/cm²)</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Lithology
- **Primary mineralogy (%):**
 - Olivine
 - Plagioclase
 - Clinopyroxene
 - Orthopyroxene
 - Amphibole
 - Sulfide

Degree of deformation
- Fracture/ Vein density (per meter)
- Alteration intensity

Structures
- Vein crosscutting
- Alteration halos
- Fault zones

Fabrics
- **Fabric intensity**
- **Vein density (per meter)**
- **Fracture/ Vein density (per meter)**
- **Alteration intensity**

Veins
- **Vein**
- **Crystalline)**
- **Dip Magnetic contact**
- **Brittle**
- **Crystal plastic**

Alteration intensity
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Degree of deformation
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Isotropic
- Weak
- Moderate
- Strong

Grain size
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Hole BA4A-95Z Section 2, Top of Section 258.53 (m CCD)
Hole BA4A-95Z Section 3, Top of Section 259.07 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>259.09</td>
<td></td>
</tr>
<tr>
<td>259.19</td>
<td></td>
</tr>
<tr>
<td>259.29</td>
<td></td>
</tr>
<tr>
<td>259.39</td>
<td></td>
</tr>
<tr>
<td>259.49</td>
<td></td>
</tr>
<tr>
<td>259.59</td>
<td></td>
</tr>
<tr>
<td>259.69</td>
<td></td>
</tr>
<tr>
<td>259.79</td>
<td></td>
</tr>
<tr>
<td>259.89</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: I
UNIT/SUBUNIT: 41b
ROCK NAME: harzburgite
CONTACT: continuous
TEXTURE: Granular
IGNEOUS SUMMARY: serpentinised harzburgite mixed with gabbroic melton cm scale
ALTERATION: serpentinised
VEINS: white thread veins, dark veins
STRUCTURE: Brittle- Brecciation from magmatic impregnation

SEQUENCE: I
UNIT/SUBUNIT: 41b
ROCK NAME: olivine gabbro
CONTACT: intrusive
TEXTURE: Protogranular
IGNEOUS SUMMARY: highly altered gabbro dyke
ALTERATION: massive replacement of dyke minerals
VEINS: white veins cut dyke
STRUCTURE: Brittle- Brittle-Crystal plastic

Magnetic susceptibility (SI x 10^-5)

Sample ID: 41b

Lithology:
- Olivine
- Plagioclase
- amphibole
- orthopyroxene
- spinel
- sulfide

Primary mineralogy

Hole BA4A-95Z Section 3, Top of Section 259.07 (m CCD)

Depth (m CCD)
Core length (cm)
Shipboard samples
Stained image
Magnetic susceptibility
(10^-5)
GRA (g/cm^3)
Sequence
Unit/Subunit
Lithology
Primary mineralogy
Degree of deformation
Fracture/ Vein density (per meter)
Alteration intensity
Dip
Magnetic contact
Brittle
Crystal plastic
Veins

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>259.09</td>
<td></td>
</tr>
<tr>
<td>259.19</td>
<td></td>
</tr>
<tr>
<td>259.29</td>
<td></td>
</tr>
<tr>
<td>259.39</td>
<td></td>
</tr>
<tr>
<td>259.49</td>
<td></td>
</tr>
<tr>
<td>259.59</td>
<td></td>
</tr>
<tr>
<td>259.69</td>
<td></td>
</tr>
<tr>
<td>259.79</td>
<td></td>
</tr>
<tr>
<td>259.89</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: I
UNIT/SUBUNIT: 41b
ROCK NAME: harzburgite
CONTACT: continuous
TEXTURE: Granular
IGNEOUS SUMMARY: serpentinised harzburgite mixed with gabbroic melton cm scale
ALTERATION: serpentinised
VEINS: white thread veins, dark veins
STRUCTURE: Brittle- Brecciation from magmatic impregnation

SEQUENCE: I
UNIT/SUBUNIT: 41b
ROCK NAME: olivine gabbro
CONTACT: intrusive
TEXTURE: Protogranular
IGNEOUS SUMMARY: highly altered gabbro dyke
ALTERATION: massive replacement of dyke minerals
VEINS: white veins cut dyke
STRUCTURE: Brittle- Brittle-Crystal plastic

Magnetic susceptibility (SI x 10^-5)

Sample ID: 41b

Lithology:
- Olivine
- Plagioclase
- amphibole
- orthopyroxene
- spinel
- sulfide

Primary mineralogy

Hole BA4A-95Z Section 3, Top of Section 259.07 (m CCD)

Depth (m CCD)
Core length (cm)
Shipboard samples
Stained image
Magnetic susceptibility
(10^-5)
GRA (g/cm^3)
Sequence
Unit/Subunit
Lithology
Primary mineralogy
Degree of deformation
Fracture/ Vein density (per meter)
Alteration intensity
Dip
Magnetic contact
Brittle
Crystal plastic
Veins

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>259.09</td>
<td></td>
</tr>
<tr>
<td>259.19</td>
<td></td>
</tr>
<tr>
<td>259.29</td>
<td></td>
</tr>
<tr>
<td>259.39</td>
<td></td>
</tr>
<tr>
<td>259.49</td>
<td></td>
</tr>
<tr>
<td>259.59</td>
<td></td>
</tr>
<tr>
<td>259.69</td>
<td></td>
</tr>
<tr>
<td>259.79</td>
<td></td>
</tr>
<tr>
<td>259.89</td>
<td></td>
</tr>
</tbody>
</table>

SEQUENCE: I
UNIT/SUBUNIT: 41b
ROCK NAME: harzburgite
CONTACT: continuous
TEXTURE: Granular
IGNEOUS SUMMARY: serpentinised harzburgite mixed with gabbroic melton cm scale
ALTERATION: serpentinised
VEINS: white thread veins, dark veins
STRUCTURE: Brittle- Brecciation from magmatic impregnation

SEQUENCE: I
UNIT/SUBUNIT: 41b
ROCK NAME: olivine gabbro
CONTACT: intrusive
TEXTURE: Protogranular
IGNEOUS SUMMARY: highly altered gabbro dyke
ALTERATION: massive replacement of dyke minerals
VEINS: white veins cut dyke
STRUCTURE: Brittle- Brittle-Crystal plastic

Magnetic susceptibility (SI x 10^-5)

Sample ID: 41b

Lithology:
- Olivine
- Plagioclase
- amphibole
- orthopyroxene
- spinel
- sulfide

Primary mineralogy

Hole BA4A-95Z Section 3, Top of Section 259.07 (m CCD)

Depth (m CCD)
Core length (cm)
Shipboard samples
Stained image
Magnetic susceptibility
(10^-5)
GRA (g/cm^3)
Sequence
Unit/Subunit
Lithology
Primary mineralogy
Degree of deformation
Fracture/ Vein density (per meter)
Hole BA4A-95Z Section 4, Top of Section 259.93 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Depth (m CCD)</th>
<th>Magnetic susceptibility (SI)</th>
<th>MSCL-W MSP (SI x 10^-2)</th>
<th>GRA (g/cm²)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Unit/subunit</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Alteration intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>259.97</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>259.97</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>260.07</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>260.07</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>260.17</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>260.17</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>260.27</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>260.27</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>260.37</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>260.37</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>260.47</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>260.47</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>260.57</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>260.57</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>260.67</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>260.67</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Primary mineralogy (%)
- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Sulfide

Degree of deformation
- Fracture/ Vein density (per meter)

Magnetic susceptibility
- MSCL-W
- MSP

Fabric intensity
- Discrete brittle features

Vein density (per meter)
- 0
- 1
- 2
- 3
- 4
- 5

Alteration intensity
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Structure
- Brittle
- Veins
- Crystal plastic

Description
- **SEQUENCE: I**
- **41b**
- **42a**
- **ROCK NAME:** olivine gabbro
- **CONTACT:** continuous
- **TEXTURE:** IGNEOUS
- **SUMMARY:** highly altered gabbro dyke
- **ALTERATION:** massive replacement of dyke minerals
- **VEINS:** white veins cut dyke
- **STRUCTURE:** Brittle, shear zone at base of altered dike

Vein
- Crystal plastic
- Pyroxene grains are moderately elongated.

Sequence: II
- **43b**
- **ROCK NAME:** harzburgite
- **CONTACT:** intrusive
- **TEXTURE:** Granular
- **IGNEOUS SUMMARY:** serpentinised harzburgite with thin gabbro veins, varying degrees of opx destruction and dunitic patches
- **ALTERATION:** serpentinised
- **VEINS:** dark network veins, white/brown thread veins, plus pale green veins associated with thin gabbroic dykes
- **STRUCTURE:** Brittle, veins, crystal plastic

Sequence: III
- **44b**
- **ROCK NAME:** dunite
- **CONTACT:** contact
- **TEXTURE:** Foliated
- **IGNEOUS SUMMARY:** dunite
- **ALTERATION:** none
- **VEINS:** none
- **STRUCTURE:** None

Sequence: IV
- **45b**
- **ROCK NAME:** peridotite
- **CONTACT:** contact
- **TEXTURE:** Porphyroclastic
- **IGNEOUS SUMMARY:** peridotite
- **ALTERATION:** none
- **VEINS:** none
- **STRUCTURE:** None
Hole BA4A-96Z Section 1, Top of Section 260.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W</th>
<th>GRA (g/cm³)</th>
<th>Primary mineralogy (%)</th>
<th>Gold (%)</th>
<th>Plagioclase</th>
<th>Amphibole</th>
<th>Sulfide</th>
<th>Fabric intensity</th>
<th>Discrete brittle features</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Scanned image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>260.70</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>260.80</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>260.90</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>261.00</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>261.10</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Shipboard samples</td>
<td>Stained image</td>
<td>Magnetic susceptibility</td>
<td>Primary mineralogy</td>
<td>Degree of deformation</td>
<td>Fracture/ Vein density (per meter)</td>
<td>Alteration intensity</td>
<td>Vein density (per meter)</td>
<td>Alteration</td>
<td>Dip</td>
<td>Magnetic contact</td>
<td>Brittle</td>
<td>Crystal plastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>-----</td>
<td>-----------------</td>
<td>---------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>261.15</td>
<td></td>
</tr>
<tr>
<td>261.25</td>
<td></td>
</tr>
<tr>
<td>261.35</td>
<td></td>
</tr>
<tr>
<td>261.45</td>
<td></td>
</tr>
<tr>
<td>261.55</td>
<td></td>
</tr>
<tr>
<td>261.65</td>
<td></td>
</tr>
<tr>
<td>261.75</td>
<td></td>
</tr>
<tr>
<td>261.85</td>
<td></td>
</tr>
<tr>
<td>261.95</td>
<td></td>
</tr>
<tr>
<td>262.05</td>
<td></td>
</tr>
</tbody>
</table>

Description

SEQUENCE 1

UNIT/SUBUNIT: 42a

ROCK NAME: olivine gabbro

CONTACT: modal

TEXTURE: porphyroclastic

IGNEOUS SUMMARY: altered harzburgite with thin gabbroic veins and dunitic patches

ALTERATION: serpentinised

VEINS: dark network veins, white/brown thread veins, plus pale green veins

STRUCTURE: Brittle

Veins: Crystal plastic - Pyroxene grains are rounded and slightly elongated

Depositional Unit Name:

Subunit Name:

Core Length:

Stained Image:

Magnetic Susceptibility:

Primary Mineralogy:

Degree of Deformation:

Fracture/ Vein Density:

Alteration Intensity:

Vein Density:

Dip:

Magnetic Contact:

Brittle:

Crystal Plastic:

Voids:

Fault Zones:

Apparent Offset:
SEQUENCE: I
UNIT/SUBUNIT: 42c
ROCK NAME: harzburgite
CONTACT: continuous
TEXTURE: granular
IGNEOUS SUMMARY: opx-poor harzburgite with patchy alteration and dunitic patches
ALTERATION: serpentinised
VEINS: dark network, white thread, white-brown composite, horrible green on fractures with black selvage
STRUCTURE: Brittle- Semicohezive cataclastic fault zone
Veins-
Crystal plastic- Pyroxene grains are moderately elongated.

Hole BA4A-96Z Section 3, Top of Section 262.11 (m CCD)
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>CT image</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dile</th>
<th>Magnatic contact</th>
<th>Brittle Contact</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>263.01</td>
<td></td>
</tr>
<tr>
<td>263.11</td>
<td></td>
</tr>
<tr>
<td>263.21</td>
<td></td>
</tr>
<tr>
<td>263.31</td>
<td></td>
</tr>
<tr>
<td>263.41</td>
<td></td>
</tr>
<tr>
<td>263.51</td>
<td></td>
</tr>
<tr>
<td>263.61</td>
<td></td>
</tr>
<tr>
<td>263.71</td>
<td></td>
</tr>
</tbody>
</table>

Sequence: I

Unit/Subunit: 42c

Rock Name: Harzburgite

Contact: Continuous

Texture: Granular

Igneous Summary: Opx-poor harzburgite with patchy alteration and dunitic patches

Alteration: Serpentinised

Veins: Dark network, white thread, white-brown composite, horrible green on fractures with black selvage

Structure: Brittle-Fine black fracture network with offset

Sequence: I

Unit/Subunit: 42c

Rock Name: Olivine Gabbro

Contact: Intrusive

Texture: Granular

Igneous Summary: Altered olivine gabbro dyke

Alteration: Altered and pseudomorphed

Veins: White veins form a complex network around dyke

Structure: Brittle-Crystal plastic-Veins

Shipboard samples

Scanned image

Magnetic susceptibility (MSCL-w)

GRA (g/cm³)

Primary mineralogy

Degree of deformation

Fabric intensity

Discrete brittle features

Fracture/ Vein density (per meter)

Alteration intensity

Dile

Magnetic contact

Brittle Contact

Crystal plastic

Veins

Depth (m CCD)

Core length (cm)

Stained image

Magnetic susceptibility (MSCL-w)

GRA (g/cm³)

Primary mineralogy (%)

Grain size

Degree of deformation

Fracture/ Vein density (per meter)

Alteration intensity

Dile

Magnetic contact

Brittle Contact

Crystal plastic

Veins

Fabric intensity

Discrete brittle features

Fracture/ Vein density (per meter)

Alteration intensity

Dile

Magnetic contact

Brittle Contact

Crystal plastic

Veins

Fabric intensity

Discrete brittle features

Fracture/ Vein density (per meter)

Alteration intensity

Dile

Magnetic contact

Brittle Contact

Crystal plastic

Veins
SEQUENCE: I

UNIT/SUBUNIT: 42c
ROCK NAME: Harzburgite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: opx-poor harzburgite with patchy alteration and dunitic patches
ALTERATION: serpentinised
VEINS: dark network, white thread, white-brown composite, horrible green on fractures with black selvage
STRUCTURE: Brittle-

SEQUENCE: I

UNIT/SUBUNIT: 42c
ROCK NAME: Olivine gabbro
CONTACT: Intrusive
TEXTURE:
IGNEOUS SUMMARY: highly altered olivine gabbro
ALTERATION: highly altered
VEINS: fine white veins
STRUCTURE: Brittle-

SEQUENCE: I

UNIT/SUBUNIT: 42d
ROCK NAME: Dunite
CONTACT: Modal
TEXTURE:
IGNEOUS SUMMARY: serpentinized dunite
ALTERATION: serpentinized
VEINS: network of fine white and green veins
STRUCTURE: Brittle-

SEQUENCE: I

UNIT/SUBUNIT: 42e
ROCK NAME: Harzburgite
CONTACT: Modal
TEXTURE:
IGNEOUS SUMMARY: serpentinized harzburgite
ALTERATION: serpentinized
VEINS: few black veins
STRUCTURE: Brittle-

SEQUENCE: I

UNIT/SUBUNIT: 42e
ROCK NAME: Olivine gabbro
CONTACT: Intrusive
TEXTURE:
IGNEOUS SUMMARY: highly altered olivine gabbro
ALTERATION: highly altered
VEINS: fine white veins
STRUCTURE: Brittle-
Hole BA4A-97Z Section 2, Top of Section 264.56 (m CCD)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Textural Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Alteration Intensity</th>
<th>Vein Density (per meter)</th>
<th>Vein Crosscutting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>42e</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Serpentinized harzburgite</td>
<td>Serpentinized</td>
<td>Few black and white veins</td>
<td>Brittle-Plastic</td>
<td>0-10</td>
<td>0-100</td>
<td>Minor fracturing</td>
<td>Crystal-plastic: Pyroxene grains are strongly elongated.</td>
</tr>
<tr>
<td>I</td>
<td>42f</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>Highly altered olivine gabbro</td>
<td>Highly altered</td>
<td>Network of millimetric white veins</td>
<td>Brittle-Plastic</td>
<td>10-30</td>
<td>0-100</td>
<td>Moderate fracturing</td>
<td>Crystal-plastic: Pyroxene grains are moderately elongated.</td>
</tr>
<tr>
<td>I</td>
<td>42g</td>
<td>Harzburgite</td>
<td>Intrusive</td>
<td>Serpentinized harzburgite, dunitic zone</td>
<td>Serpentinized</td>
<td>Few black and white veins</td>
<td>Brittle-Plastic</td>
<td>0-10</td>
<td>0-100</td>
<td>Minor fracturing</td>
<td>Crystal-plastic: Pyroxene grains are strongly elongated.</td>
</tr>
</tbody>
</table>

Fabric Intensity

- 5: Strongly foliated
- 4: Moderately foliated
- 3: Weakly foliated
- 2: Isotropic
- 1: Weak
- 0: Strong

Grain Size

- Fine grained (<0.2 mm)
- Medium grained (0.2–1 mm)
- Coarse grained (1–5 mm)
- Pegmatitic (>5 mm)

Vein Density

- 0: None
- 1: 1-5 per 10 cm
- 2: 5-15 per 10 cm
- 3: 15-20 per 10 cm
- 4: >20 per 10 cm

Dips

- Magnetic contact
- Brittle
- Crystal plastic

Core Length (cm)

- 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | 200 | 210 | 220 | 230 | 240 | 250 | 260 | 270 | 280 | 290 | 300 |

Table

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Lithology</th>
<th>Primary Mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Grain size</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>42a</td>
<td>Harzburgite</td>
<td>Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Spinel, Sulfide</td>
<td>Brittle-Plastic</td>
<td>Fine-Grained</td>
<td>Low density</td>
<td>No alteration</td>
<td>Crystal-plastic: Pyroxene grains are strongly elongated.</td>
</tr>
<tr>
<td>I</td>
<td>42b</td>
<td>Olivine gabbro</td>
<td>Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Amphibole, Sulfide</td>
<td>Brittle-Plastic</td>
<td>Medium-Grained</td>
<td>High density</td>
<td>Moderate alteration</td>
<td>Crystal-plastic: Pyroxene grains are moderately elongated.</td>
</tr>
</tbody>
</table>

Notes:
- Sequence and Unit/Subunit are assigned to help track variations in rock properties.
- Textural Summary describes the overall texture of the rock.
- Alteration intensity is quantified with a scale from 0 (undamaged) to 100 (complete).
- Vein density is measured per 10 cm, with a range from 0 (none) to >20 (high density).
| Depth (m CCD) | Core length (cm) | Lithology | Primary mineralogy (wt %) | Degree of deformation | Fracture/ Vein density (per meter) | Alteration intensity | Dip | Magnetic contact | Brittle Crystal plastic | Veins | Structures | Vein density (per meter) | Alteration halos | Apparent offset | Alteration halos | Magnetic contact | Brittle Crystal plastic | Veins | Structures | Vein density (per meter) | Alteration halos | Apparent offset |
|---------------|------------------|-----------|---------------------------|-----------------------|-----------------------------------|---------------------|-----|------------------|---------------------|-------|-------------|------------------------|----------------|---------------|---------------------|----------------|------------------|---------------------|----------------|---------------|
| 265.49 | | | | | | | | | | | | | | | | | | | | |
| 265.59 | | | | | | | | | | | | | | | | | | | | |
| 265.69 | | | | | | | | | | | | | | | | | | | | |
| 265.79 | | | | | | | | | | | | | | | | | | | | |
| 265.89 | | | | | | | | | | | | | | | | | | | | |

Hole BA4A-97Z Section 3, Top of Section 265.45 (m CCD)

Fabric intensity

1. 0
2. 1
3. 2
4. 3
5. 4
6. 5

Vein density

1. 0
2. 1
3. 2
4. 5
5. 10
6. 30
7. 50
8. 70
9. 90
10. 100

Core length

1. 10
2. 20
3. 30
4. 40
5. 50

Grain size

1. 0.2–1 mm
2. 1–5 mm
3. 5–30 mm
4. >30 mm
5. Pegmatitic

Degree of deformation

1. Undeformed
2. Minor fracturing
3. Moderate fracturing
4. GS reduction and rotation
5. Well-developed cataclasis
6. Ultracataclastite

Unit/subunit

1. 42g
2. 43g
3. 44g

Alteration intensity

1. Fresh (<3%)
2. Slight (3–10%)
3. Moderate (11–30%)
4. Substantial (31–60%)
5. Extensive (61–90%)
6. Complete (>90%)

Primary mineralogy

1. Olivine
2. Plagioclase
3. Clinopyroxene
4. Orthopyroxene
5. Amphibole
6. Sulfide

Contact

1. Continuous
2. Intrusive

Magmatic layering

1. Discrete
2. Brittle
3. Magmatic contact

Foliation

1. Protogranular
2. Porphyroclastic
3. Strongly foliated
4. Protomylonite
5. Mylonite
6. Ultramylonite

Magnetic susceptibility

1. MSCL-W
2. MSP
3. GRA
(10^-5)

Magmatic Layering Foliation

1. Ultradeformational
2. Fabric intensity
3. Vein crosscutting

Description

- **SEQUENCE: 1**
 - **UNIT/SUBUNIT: 42g**
 - **ROCK NAME: Harzburgite**
 - **CONTACT: Continuous**
 - **TEXTURE: Igneous**
 - **SUMMARY: Serpentinized harzburgite, dunitic zone**
 - **ALTERATION: Serpentinized**
 - **VEINS: Few black and white veins**
 - **STRUCTURE: Brittle-Crystal plastic-Veins-**
 - **Crystal plastic-Pyroxene grains are moderately elongated.**

- **SEQUENCE: 1**
 - **UNIT/SUBUNIT: 43g**
 - **ROCK NAME: Clinopyroxenite**
 - **CONTACT: Intrusive**
 - **TEXTURE: Igneous**
 - **SUMMARY: Highly altered fine grained olivine bearing clinopyroxenite**
 - **ALTERATION: Highly altered**
 - **VEINS: Few thin white veins**
 - **STRUCTURE: Brittle-Crystal plastic-Veins-**
 - **Crystal plastic-Pyroxene grains are moderately elongated.**

- **SEQUENCE: 1**
 - **UNIT/SUBUNIT: 44g**
 - **ROCK NAME: Clinopyroxenite**
 - **CONTACT: Intrusive**
 - **TEXTURE: Igneous**
 - **SUMMARY: Highly altered coarse grained olivine bearing clinopyroxenite**
 - **ALTERATION: Highly altered**
 - **VEINS: Few thin white veins**
 - **STRUCTURE: Brittle-Crystal plastic-Veins-**
 - **Crystal plastic-Pyroxene grains are moderately elongated.**
Sequence: I
Unit/Subunit: 42g
Rock Name: Harzburgite
Contact: Continuous
Texture: Igneous Summary: serpentinized harzburgite, dunitic zone
Alteration: Serpentinized
Veins: Few black and white veins
Structure: Brittle-

Unit/Subunit: 42h
Rock Name: Clinopyroxenite
Contact: Intrusive
Texture: Igneous Summary: highly altered olivine bearing clinopyroxenite
Alteration: Highly altered
Veins: Network of milimetric white veins
Structure: Brittle-

Unit/Subunit: 42h
Rock Name: Clinopyroxenite
Contact: Intrusive
Texture: Igneous Summary: Highly altered and dissaminated olivine bearing clinopyroxenite
Alteration: Highly altered
Veins: Few fine white veins
Structure: Brittle-

Unit/Subunit: 42i
Rock Name: Harzburgite
Contact: Intrusive
Texture: Igneous Summary: Serpentinized harzburgite
Alteration: Serpentinized
Veins: Few fine white veins and black veins
Structure: Brittle-

Fabric intensity

<table>
<thead>
<tr>
<th>Value</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>0–10</td>
<td>10–30</td>
<td>30–50</td>
<td>50–70</td>
<td>70–90</td>
<td>>100</td>
</tr>
</tbody>
</table>

Vein density (per meter)

<table>
<thead>
<tr>
<th>Value</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>0 per 10 cm</td>
<td>1 per 10 cm</td>
<td>3-5 per 10 cm</td>
<td>>20 per 10 cm</td>
<td>5-15 per 10 cm</td>
<td>15-20 per 10 cm</td>
</tr>
</tbody>
</table>

Magnetic contact

<table>
<thead>
<tr>
<th>Value</th>
<th>0</th>
<th>45</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>0 per 10 cm</td>
<td>1 per 10 cm</td>
<td>3-5 per 10 cm</td>
</tr>
</tbody>
</table>

Crystal plastic Veins

<table>
<thead>
<tr>
<th>Value</th>
<th>0</th>
<th>45</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>0 per 10 cm</td>
<td>1 per 10 cm</td>
<td>3-5 per 10 cm</td>
</tr>
</tbody>
</table>

Core length (cm)

<table>
<thead>
<tr>
<th>Value</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>0 per 10 cm</td>
<td>1 per 10 cm</td>
<td>3-5 per 10 cm</td>
<td>>20 per 10 cm</td>
<td>5-15 per 10 cm</td>
<td>15-20 per 10 cm</td>
</tr>
</tbody>
</table>

Dip

<table>
<thead>
<tr>
<th>Value</th>
<th>0</th>
<th>45</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>0 per 10 cm</td>
<td>1 per 10 cm</td>
<td>3-5 per 10 cm</td>
</tr>
</tbody>
</table>

Alternation intensity

<table>
<thead>
<tr>
<th>Value</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>0–10</td>
<td>10–30</td>
<td>30–50</td>
<td>50–70</td>
<td>70–90</td>
<td>>100</td>
</tr>
</tbody>
</table>

Fracture/ Vein density (per meter)

<table>
<thead>
<tr>
<th>Value</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>0 per 10 cm</td>
<td>1 per 10 cm</td>
<td>3-5 per 10 cm</td>
<td>>20 per 10 cm</td>
<td>5-15 per 10 cm</td>
<td>15-20 per 10 cm</td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Stained image</td>
<td>Magnetic susceptibility</td>
<td>Primary mineralogy</td>
<td>Grain size</td>
<td>Degree of deformation</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>267.61</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267.71</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267.81</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rock Name: Olivine gabbro

Contact: Continuous

Texture:

Igneous Summary: Highly altered olivine gabbro

Alteration: Highly altered olivine gabbro

Veins: White veins

Structure: Brittle

Rock Name: Harzburgite

Contact: Intrusive

Texture:

Igneous Summary: Serpentinized harzburgite with patches of dunite

Alteration: Serpentinized harzburgite with patches of dunite

Veins: Network of fine white veins

Structure: Brittle

Rock Name: Clinopyroxenite

Contact: Intrusive

Texture:

Igneous Summary: Highly altered and dissaminated olivine bearing clinopyroxenite

Alteration: Highly altered and dissaminated olivine bearing clinopyroxenite

Veins: No veins

Structure: Brittle
Hole BA4A-98Z Section 3, Top of Section 267.88 (m CCD)

| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | CT image | Magnetic susceptibility | MSCL-W | MSP (SI x 10^-6) | GRA (g/cm^3) | Sequence | Unit/subunit | Lithology | Degree of deformation | Fracture/ Vein density (per meter) | Alteration intensity | Dip | Magnatic contact | Brittle | Crystal plastic | Veins | Structures | Abnormal heating | Vein crosscutting | Alteration halos | Apparent offset | Fault zones | Alteration halos | Description |
|--------------|------------------|-------------------|---------------|-----------|------------------------|-------|-------------------|-------------|----------|----------------|-----------|------------------|-----------------------|------------------|-----|----------------|--------|------------------|------|------------|-----------|---------------|--------|-----------|-------------|----------------|
| 267.90 | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 268.00 | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 268.10 | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 268.20 | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 268.30 | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 268.40 | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 268.50 | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 268.60 | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 268.70 | | | | | | | | | | | | | | | | | | | | | | | | | | |

SEQUECE 1: 42k
- **ROCK NAME:** Harzburgite
- **CONTACT:** Continuous
- **KOREAUS SUMMARY:** Serpentinized harzburgite with patches of dunite
- **ALTERATION:** Serpentinized harzburgite with patches of dunite
- **VESi:** Network of fine white veins
- **STRUCTURE:** Brittle-vein

SEQUECE 2: 43a
- **ROCK NAME:** Olivine gabbro
- **CONTACT:** Intrusive
- **KOREAUS SUMMARY:** Highly altered olivine gabbro
- **ALTERATION:** Highly altered olivine gabbro
- **VESi:** Few fine white veins
- **STRUCTURE:** Brittle-crystal plastic

SEQUECE 3: 43a
- **ROCK NAME:** Dunite
- **CONTACT:** Modal
- **KOREAUS SUMMARY:** Serpentinized highly fractured dunite
- **ALTERATION:** Serpentinized highly fractured dunite
- **VESi:** Few fine white veins, brown veins, gray veins
- **STRUCTURE:** Brittle-crystal plastic

VEINS: Network of fine white veins occur in crystal plastic.
SEQUENCE: 43a
ROCK NAME: Dunite
CONTACT: Continuous

TEXTURE: Igneous
SUMMARY: Serpentinized highly fractured dunite

ALTERATION: Serpentinized highly fractured dunite

VEINS: Few fine white veins, brown veins, grey veins

STRUCTURE: Brittle- Wide fault zone of significant fracturing with planar fabric
Veins- Crystal plastic-

Fabric intensity: 5
Vein density (per meter): 10

Degree of deformation: 5
Fracture/ Vein density (per meter): 10

Vein crosscutting: 5
Alteration intensity: 100

MSCL-W MSP (SI × 10^−5): 1000
MSP: 100

Depth (m CCD): 268.80
Core length (cm): 10
Sampled section: 4

Magmatic contact:
** Brittle:**
Crystal plastic:
Veins:

Description:

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Sampled section</th>
<th>Magmatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Alteration intensity</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Vein crosscutting</th>
<th>Magmatic contact (SI × 10^−5)</th>
<th>Alteration intensity (SI × 10^−5)</th>
<th>Core length (cm)</th>
<th>Sampled section</th>
<th>Magmatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Alteration intensity</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Vein crosscutting</th>
<th>Magmatic contact (SI × 10^−5)</th>
<th>Alteration intensity (SI × 10^−5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>268.80</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Lithology</td>
<td>Magmatic contact</td>
<td>Discrete brittle features</td>
<td>Alteration intensity</td>
<td>Dip</td>
<td>Vein density (per meter)</td>
<td>Vein crosscutting</td>
<td>Alteration halos</td>
<td>Structures</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>--------------------</td>
<td>-----</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>100</td>
<td>Complete (≥ 90%)</td>
<td>0</td>
<td>15-20 per 10 cm</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>100</td>
<td>Complete (≥ 90%)</td>
<td>0</td>
<td>15-20 per 10 cm</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>100</td>
<td>Complete (≥ 90%)</td>
<td>0</td>
<td>15-20 per 10 cm</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>100</td>
<td>Complete (≥ 90%)</td>
<td>0</td>
<td>15-20 per 10 cm</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>100</td>
<td>Complete (≥ 90%)</td>
<td>0</td>
<td>15-20 per 10 cm</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>100</td>
<td>Complete (≥ 90%)</td>
<td>0</td>
<td>15-20 per 10 cm</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>100</td>
<td>Complete (≥ 90%)</td>
<td>0</td>
<td>15-20 per 10 cm</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>Olivine gabbro</td>
<td>Intrusive</td>
<td>100</td>
<td>Complete (≥ 90%)</td>
<td>0</td>
<td>15-20 per 10 cm</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table and diagram provide detailed information on the lithology, alteration, vein density, and other geological features of the sequence 1, unit/subunit 43a rock intervals. The sequence includes various rock types such as Dunite, Olivine gabbro, and features like contact, texture, igneous summary, alteration, veins, and structure. The diagram illustrates the CT image, magnetic susceptibility, and other geological parameters.
Hole BA4A-99Z Section 2, Top of Section 270.53 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnitic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Apparent offset</th>
<th>Alteration halos</th>
<th>Vein density (per meter)</th>
<th>Core length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>270.53</td>
<td></td>
</tr>
<tr>
<td>270.67</td>
<td></td>
</tr>
<tr>
<td>270.77</td>
<td></td>
</tr>
<tr>
<td>270.97</td>
<td></td>
</tr>
<tr>
<td>271.17</td>
<td></td>
</tr>
</tbody>
</table>

Description

SEQUENCE: 43a
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE: IGNEOUS SUMMARY: serpentinized highly fracture dunite

SEQUENCE: 43a
ROCK NAME: Clinopyroxenite
CONTACT: Intrusive
TEXTURE: IGNEOUS SUMMARY: highly altered and dissaminated olivine bearing clinopyroxenite

Magnetic contact
- ** Brittle**
- **Crystal plastic**
- **Veins**
- **Structures**
- **Apparent offset**
- **Alteration halos**
- **Vein density (per meter)**
- **Core length (cm)**

Depth (m CCD)
- 0
- 15
- 30
- 45
- 60
- 75
- 90
- 105
- 120
- 135
- 150
- 165
- 180
- 195
- 210
- 225
- 240
- 255
- 270

Magmatic contact
- **Brittle**
- **Crystal plastic**
- **Veins**
- **Structures**
- **Apparent offset**
- **Alteration halos**
- **Vein density (per meter)**
- **Core length (cm)**
| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | CT image | Magnetic susceptibility | MSCL-W | MSP (SI x 10^5) | GRA (g/cm³) | Sequence | Lithology | Unit/subunit | Degree of deformation | Fracture/ Vein density (per meter) | Alteration intensity | Dip | Magnetic contact | Brittle | Crystal plastic | Vents |
|--------------|------------------|-------------------|---------------|---------|--------------------------|--------|--------------------|------------|----------|-----------|-------------|-----------------------|-----------------------|----------|-----------------|---------|----------------|------|
| 272.25 | | | | | | | | | | I | 44a | | | | | | | |

ROCK NAME: gabbro

CONTACT: intrusive

TEXTURE:

IGNEOUS SUMMARY: fractured gabbroic dike

ALTERATION: serpentinized

VEINS: grey veins, grey-green veins, white veins

STRUCTURE:

| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | CT image | Magnetic susceptibility | MSCL-W | MSP (SI x 10^5) | GRA (g/cm³) | Sequence | Lithology | Unit/subunit | Degree of deformation | Fracture/ Vein density (per meter) | Alteration intensity | Dip | Magnetic contact | Brittle | Crystal plastic | Vents |
|--------------|------------------|-------------------|---------------|---------|--------------------------|--------|--------------------|------------|----------|-----------|-------------|-----------------------|-----------------------|----------|-----------------|---------|----------------|------|
| 272.35 | | | | | | | | | | I | 44a | | | | | | | |

ROCK NAME: harzburgite

CONTACT: intrusive

TEXTURE:

IGNEOUS SUMMARY: serpentinized harzburgite crosscut by sheared olivine gabbro and gabbro dikes

ALTERATION: serpentinized

VEINS: white veins, brown veins, black veins

STRUCTURE:

| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | CT image | Magnetic susceptibility | MSCL-W | MSP (SI x 10^5) | GRA (g/cm³) | Sequence | Lithology | Unit/subunit | Degree of deformation | Fracture/ Vein density (per meter) | Alteration intensity | Dip | Magnetic contact | Brittle | Crystal plastic | Vents |
|--------------|------------------|-------------------|---------------|---------|--------------------------|--------|--------------------|------------|----------|-----------|-------------|-----------------------|-----------------------|----------|-----------------|---------|----------------|------|
| 272.45 | | | | | | | | | | I | 44a | | | | | | | |

ROCK NAME: gabbro

CONTACT: intrusive

TEXTURE: granular

IGNEOUS SUMMARY: sheared gabbroic dike

ALTERATION:

VEINS: grey veins, grey-green veins, white veins

STRUCTURE:

| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | CT image | Magnetic susceptibility | MSCL-W | MSP (SI x 10^5) | GRA (g/cm³) | Sequence | Lithology | Unit/subunit | Degree of deformation | Fracture/ Vein density (per meter) | Alteration intensity | Dip | Magnetic contact | Brittle | Crystal plastic | Vents |
|--------------|------------------|-------------------|---------------|---------|--------------------------|--------|--------------------|------------|----------|-----------|-------------|-----------------------|-----------------------|----------|-----------------|---------|----------------|------|
| 272.55 | | | | | | | | | | I | 44a | | | | | | | |

| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | CT image | Magnetic susceptibility | MSCL-W | MSP (SI x 10^5) | GRA (g/cm³) | Sequence | Lithology | Unit/subunit | Degree of deformation | Fracture/ Vein density (per meter) | Alteration intensity | Dip | Magnetic contact | Brittle | Crystal plastic | Vents |
|--------------|------------------|-------------------|---------------|---------|--------------------------|--------|--------------------|------------|----------|-----------|-------------|-----------------------|-----------------------|----------|-----------------|---------|----------------|------|
| 272.65 | | | | | | | | | | I | 44a | | | | | | | |

| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | CT image | Magnetic susceptibility | MSCL-W | MSP (SI x 10^5) | GRA (g/cm³) | Sequence | Lithology | Unit/subunit | Degree of deformation | Fracture/ Vein density (per meter) | Alteration intensity | Dip | Magnetic contact | Brittle | Crystal plastic | Vents |
|--------------|------------------|-------------------|---------------|---------|--------------------------|--------|--------------------|------------|----------|-----------|-------------|-----------------------|-----------------------|----------|-----------------|---------|----------------|------|
| 272.75 | | | | | | | | | | I | 44a | | | | | | | |

Sequence: 1

Unit/Subunit: 44a

Rock Name: gabbro

Contact: intrusive

Texture: granular

Igneous Summary: sheared gabbroic dike

Alteration:

Veins: grey veins, grey-green veins, white veins

Structure:

Hole BA4A-100Z Section 1, Top of Section 272.70 (m CCD)

SEQUENCE: I
UNIT/SUBUNIT: 44a
ROCK NAME: harzburgite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: serpentinized harzburgite crosscut by sheared olivine gabro and gabbro dikes
ALTERATION: serpentinized
VEINS: white veins, brown veins, black veins
STRUCTURE: Brittle-
**Veins-
Crystal plastic-

SEQUENCE: I
UNIT/SUBUNIT: 44a
ROCK NAME: gabbro
CONTACT: intrusive
TEXTURE:
IGNEOUS SUMMARY: gabbroic dike
ALTERATION:
VEINS: GREY VEINS, WHITE VEINS
STRUCTURE: Brittle-
Veins-
Crystal plastic-

Depth (m CCD)
Core length (cm)
Shipboard samples
Stained image
Magnetic susceptibility
MSCL-W
MSP
(SI \times 10^{-5})
GRA (g/cm²)
Sequence
Lithology
Unit/subunit
Primary mineralogy (%):
- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Sulfide
Degree of deformation:
- Fabric intensity
 - 5
 - 4
 - 3
 - 2
 - 1
 - 0
- Vein crosscutting
- Alteration intensity
 - 100
 - 80
 - 60
 - 40
 - 20
 - 0
Vein density (per meter):
- 6
 - 5
 - 4
 - 3
 - 2
 - 1
 - 0
Grain size:
- 6
 - 5
 - 4
 - 3
 - 2
 - 1
 - 0
Hole BA4A-100Z Section 1, Top of Section 272.70 (m CCD)

Description
- Magnetic contact
- Brittle
- Crystal plastic
- Veins

Magmatic layering
- Discrete
 - Brittle
 - Magmatic
Contact
- Dip
 - Magnetic
 - Contact
Dip
- 45°
- 90°

Fault zones
Structures
Apparent offset
Alteration halos

CT image
Sulfide
- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine

Degree of deformation
- Fracture/
Vein density (per meter)
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Magmatic layering
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Contact
- Dip
- Crystal plastic
- Veins

Vein crosscutting
- Alteration intensity
- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Vein density (per meter):
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100

Degree of deformation
- Fracture/
Vein density (per meter)
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Degree of deformation
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Degree of deformation
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Degree of deformation
- Glassy
- Cryptocrystalline (<0.1 mm)
- Microcrystalline (0.1–0.2 mm)

Degree of deformation
- Isotropic
- Weak
- Moderate
- Strong

Degree of deformation
- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >100
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy</th>
<th>Grain size (%)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>273.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>273.16</td>
<td>50</td>
<td>Sequence 1: I 44a</td>
<td>ROCK NAME: harzburgite</td>
<td>CONTACT: Continuous</td>
<td>KINEMATIC SUMMARY: serpentinized harzburgite crosscut by sheared dunite dikes and gabbro dikes</td>
<td>ALTERATION: VEINS: black veins, grey veins, white veins</td>
<td>STRUCTURE: Brittle</td>
<td></td>
<td>Crystal plastic</td>
<td>Veins: Crystal plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sequence 4: I 45a</td>
<td>ROCK NAME: olivine gabbro</td>
<td>CONTACT: intrusive</td>
<td>KINEMATIC SUMMARY: olivine gabbro dike</td>
<td>ALTERATION: VEINS: grey veins, black veins</td>
<td>STRUCTURE: Brittle</td>
<td></td>
<td>Crystal plastic</td>
<td>Veins: Crystal plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sequence 5: I 45a</td>
<td>ROCK NAME: dunite</td>
<td>CONTACT: modal Contact</td>
<td>KINEMATIC SUMMARY: mildly fractured, serpentinized dunite with minor hand specimen core and cross-cutting gabbro dikes</td>
<td>ALTERATION: serpentinization</td>
<td>VEINS: grey veins, black veins</td>
<td>STRUCTURE: Brittle</td>
<td>Crystal plastic</td>
<td>Veins: Crystal plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Shipboard samples</td>
<td>Stained image</td>
<td>Magnetic susceptibility</td>
<td>MSCL-W MSP (SI x 10^-5)</td>
<td>GRA (g/cm^2)</td>
<td>Lithology</td>
<td>Primary mineralogy (%)</td>
<td>Degree of deformation</td>
<td>Alteration intensity</td>
<td>Dip</td>
<td>Magnetic contact</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>274.00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>274.10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>274.20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>274.30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>274.40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>274.50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>274.60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>274.70</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>274.80</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-100Z Section 4, Top of Section 274.87 (m CCD)

Sequence: I
Unit/Subunit: 45a
Rock Name: dunite
Contact: tectonic
Texture:
Igneous Summary: mildly fractured, serpentinized dunite with minor harzburgitic zones and cross-cutting gabbroic dikes
Alteration: serpentinized
Veins: grey veins, brown veins, white veins
Structure: Brittle-

Sequence: I
Unit/Subunit: 45a
Rock Name: gabbro
Contact: intrusive
Texture: granular
Igneous Summary: fractured gabbroic dike
Alteration:
Veins: white veins, grey veins
Structure: Brittle-

Fabric Intensity
- 5
- 4
- 3
- 2
- 1
- 0

Vein Density (per meter)
- 6
- 5
- 4
- 3
- 2
- 1
- 0

Grain Size
- 6
- 5
- 4
- 3
- 2
- 1
- 0

Magnetic susceptibility
- MSCL-W
- (SI x 10^-5)
- GRA
- (g/cm^2)

Core Length (cm)

Depth (m CCD)

Core Samples

Shipboard Samples

Scanned Image

Description

- **Fault zones**
- **Stratigraphic units**
- **Layering**
- **Foliation**
- **Discrete brittle features**
- **Degree of deformation**
- **Vein crosscutting**
- **Alteration intensity**
- **Magnetic contact**
- **Brittle**
- **Crystal plastic**
- **Spots**
Hole BA4A-101Z Section 1, Top of Section 275.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size (%)</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>45a</td>
<td>100</td>
<td>45a</td>
<td>5</td>
<td>0-100</td>
</tr>
<tr>
<td>275.73</td>
<td></td>
<td>dunite</td>
<td>75</td>
<td>10</td>
<td>3</td>
<td>0-100</td>
</tr>
<tr>
<td>275.83</td>
<td></td>
<td>olivine gabbro</td>
<td>50</td>
<td>15</td>
<td>2</td>
<td>0-100</td>
</tr>
<tr>
<td>275.93</td>
<td></td>
<td>olivine gabbro</td>
<td>25</td>
<td>5</td>
<td>1</td>
<td>0-100</td>
</tr>
<tr>
<td>276.03</td>
<td></td>
<td>olivine gabbro</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0-100</td>
</tr>
</tbody>
</table>

Fabric intensity and Vein density

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Vein density</th>
</tr>
</thead>
<tbody>
<tr>
<td>275.73</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>275.83</td>
<td></td>
<td>3-5</td>
</tr>
<tr>
<td>275.93</td>
<td></td>
<td>>20</td>
</tr>
</tbody>
</table>

Magnetic susceptibility

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Magnetic susceptibility (SI 10^-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>275.73</td>
<td></td>
<td>0-10</td>
</tr>
<tr>
<td>275.83</td>
<td></td>
<td>0-10</td>
</tr>
<tr>
<td>275.93</td>
<td></td>
<td>0-10</td>
</tr>
<tr>
<td>276.03</td>
<td></td>
<td>0-10</td>
</tr>
<tr>
<td>276.13</td>
<td></td>
<td>0-10</td>
</tr>
<tr>
<td>276.23</td>
<td></td>
<td>0-10</td>
</tr>
<tr>
<td>276.33</td>
<td></td>
<td>0-10</td>
</tr>
<tr>
<td>276.43</td>
<td></td>
<td>0-10</td>
</tr>
<tr>
<td>276.53</td>
<td></td>
<td>0-10</td>
</tr>
</tbody>
</table>

Degree of deformation

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Degree of deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>275.73</td>
<td></td>
<td>Undeformed</td>
</tr>
<tr>
<td>275.83</td>
<td></td>
<td>Minor fracturing</td>
</tr>
<tr>
<td>275.93</td>
<td></td>
<td>Moderate fracturing</td>
</tr>
<tr>
<td>276.03</td>
<td></td>
<td>GS reduction and rotation</td>
</tr>
<tr>
<td>276.13</td>
<td></td>
<td>Well-developed cataclasis</td>
</tr>
<tr>
<td>276.23</td>
<td></td>
<td>Ultracataclastite</td>
</tr>
<tr>
<td>276.33</td>
<td></td>
<td>Protogranular</td>
</tr>
<tr>
<td>276.43</td>
<td></td>
<td>Porphyroclastic</td>
</tr>
<tr>
<td>276.53</td>
<td></td>
<td>Strongly foliated</td>
</tr>
</tbody>
</table>

Structure

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>275.73</td>
<td></td>
<td>Brittle</td>
</tr>
<tr>
<td>275.83</td>
<td></td>
<td>Brittle</td>
</tr>
<tr>
<td>275.93</td>
<td></td>
<td>Brittle</td>
</tr>
<tr>
<td>276.03</td>
<td></td>
<td>Brittle</td>
</tr>
<tr>
<td>276.13</td>
<td></td>
<td>Brittle</td>
</tr>
<tr>
<td>276.23</td>
<td></td>
<td>Brittle</td>
</tr>
<tr>
<td>276.33</td>
<td></td>
<td>Brittle</td>
</tr>
<tr>
<td>276.43</td>
<td></td>
<td>Brittle</td>
</tr>
<tr>
<td>276.53</td>
<td></td>
<td>Brittle</td>
</tr>
</tbody>
</table>

Sulfides

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Sulfide</th>
</tr>
</thead>
<tbody>
<tr>
<td>275.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>276.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>276.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>276.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>276.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>276.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>276.53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alteration

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>275.73</td>
<td></td>
<td>Fresh (<3%)</td>
</tr>
<tr>
<td>275.83</td>
<td></td>
<td>Slight (3–10%)</td>
</tr>
<tr>
<td>275.93</td>
<td></td>
<td>Moderate (11–30%)</td>
</tr>
<tr>
<td>276.03</td>
<td></td>
<td>Substantial (31–60%)</td>
</tr>
<tr>
<td>276.13</td>
<td></td>
<td>Extensive (61–90%)</td>
</tr>
<tr>
<td>276.23</td>
<td></td>
<td>Complete (≥90%)</td>
</tr>
</tbody>
</table>

Other properties

- **GRA (g/cm³)**: 2.82, 2.72, 2.62, 2.52
- **Degree of deformation**: Brittle, Magmatic contact, Dip
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Vein density (per meter)</th>
<th>Alteration</th>
<th>Degree of deformation</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>277.44</td>
<td>0</td>
<td>Pulv 46e</td>
<td>Olivine</td>
<td>100</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plagioclase</td>
<td>75</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinopyroxene</td>
<td>50</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>25</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfide</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td>277.54</td>
<td>10</td>
<td>Pulv 46d</td>
<td>Olivine</td>
<td>100</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plagioclase</td>
<td>75</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinopyroxene</td>
<td>50</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>25</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfide</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td>277.64</td>
<td>20</td>
<td>Pulv 46e</td>
<td>Olivine</td>
<td>100</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plagioclase</td>
<td>75</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinopyroxene</td>
<td>50</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>25</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfide</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td>277.74</td>
<td>30</td>
<td>Pulv 46e</td>
<td>Olivine</td>
<td>100</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plagioclase</td>
<td>75</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinopyroxene</td>
<td>50</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>25</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfide</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td>277.84</td>
<td>40</td>
<td>Pulv 46e</td>
<td>Olivine</td>
<td>100</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plagioclase</td>
<td>75</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinopyroxene</td>
<td>50</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>25</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfide</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td>277.94</td>
<td>50</td>
<td>Pulv 46e</td>
<td>Olivine</td>
<td>100</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plagioclase</td>
<td>75</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinopyroxene</td>
<td>50</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>25</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfide</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td>278.04</td>
<td>60</td>
<td>Pulv 46e</td>
<td>Olivine</td>
<td>100</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plagioclase</td>
<td>75</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinopyroxene</td>
<td>50</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>25</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfide</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td>278.14</td>
<td>70</td>
<td>Pulv 46e</td>
<td>Olivine</td>
<td>100</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plagioclase</td>
<td>75</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clinopyroxene</td>
<td>50</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphibole</td>
<td>25</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfide</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Undeformed</td>
<td>0</td>
</tr>
</tbody>
</table>

Sequences:
- 46c: Serpentinitized harzburgite cross-cut by gabbroic dikes.
- 46d: Serpentinitized olivine gabbro dike.
- 46e: Serpentinitized harzburgite with black veins.

Contact:
- Continuous
- Intrusive

Texture:
- Granular
- Brittle

Igneous Summary:
- Serpentinitized harzburgite
- Fractured olivine gabbro dike
- Fresh fractured serpentized harzburgite

Alteration:
- Serpentinized
- Fresh

Veins:
- Grey veins
- Black veins
- White veins
- Grey-green veins

Structure:
- Brittle features
- Crystal plastic features
- Pyroxene grains are moderately elongated.

Description:
- Crystal plastic features are present in the rock.
- Pyroxene grains are rounded and slightly elongated.
SEQNCE: I
UNIT/SUBUNIT: 46e
ROCK NAME: harzburgite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: relatively fresh fractured serpentized harzburgite
ALTERATION: serpentinized
VEINS: black veins, white veins
STRUCTURE: Brittle-
Veins-
Crystal plastic- Pyroxene grains are rounded and slightly elongated.
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>MSCL-W</th>
<th>GRA (g/m²)</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Fabric intensity</th>
<th>Alteration intensity</th>
<th>Dip (°)</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Magneto</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Vents</th>
</tr>
</thead>
<tbody>
<tr>
<td>279.41</td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
<td>1.1</td>
<td>1.8</td>
<td>1.3</td>
<td>1</td>
<td>1.8</td>
<td>1.8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>279.51</td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>1.2</td>
<td>1.9</td>
<td>1.4</td>
<td>1</td>
<td>1.6</td>
<td>1.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>279.61</td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>1.2</td>
<td>1.9</td>
<td>1.4</td>
<td>1</td>
<td>1.6</td>
<td>1.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>279.71</td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>1.2</td>
<td>1.9</td>
<td>1.4</td>
<td>1</td>
<td>1.6</td>
<td>1.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>279.81</td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>1.2</td>
<td>1.9</td>
<td>1.4</td>
<td>1</td>
<td>1.6</td>
<td>1.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>279.91</td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>1.2</td>
<td>1.9</td>
<td>1.4</td>
<td>1</td>
<td>1.6</td>
<td>1.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280.01</td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>1.2</td>
<td>1.9</td>
<td>1.4</td>
<td>1</td>
<td>1.6</td>
<td>1.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

- **Sequences**
 - **I**
 - **Lithology**
 - **Unit/SUBUNIT:** 47a
 - **Rock Name:** dunite
 - **Contact:** Continuous
 - **Texture:** Igneous
 - **Summary:** Serpentinized, fractured dunite with an ear-harzburgitic zone and cross-cutting olivine gabbro dikes
 - **Alteration:** Serpentinized
 - **Veins:** Brown veins, grey-green veins, black veins
 - **Structure:** Brittle-Narrow cataclastic fault zone

- **Sequences**
 - **I**
 - **Lithology**
 - **Unit/SUBUNIT:** 47a
 - **Rock Name:** olivine gabbro
 - **Contact:** Intrusive
 - **Texture:** Granular
 - **Igneous Summary:** Dark olivine gabbro dike
 - **Alteration:**
 - **Veins:** Black veins
 - **Structure:** Brittle

- **Sequences**
 - **I**
 - **Lithology**
 - **Unit/SUBUNIT:** 47a
 - **Rock Name:** olivine gabbro
 - **Contact:** Intrusive
 - **Texture:** Granular
 - **Igneous Summary:** Dark olivine gabbro dike
 - **Alteration:**
 - **Veins:** Black veins, Grey veins
 - **Structure:** Brittle

- **Sequences**
 - **I**
 - **Lithology**
 - **Unit/SUBUNIT:** 47a
 - **Rock Name:** gabbro
 - **Contact:** Intrusive
 - **Texture:** Granular
 - **Igneous Summary:** Olivine gabbro dike
 - **Alteration:**
 - **Veins:** Grey veins, Grey-green veins
 - **Structure:** Brittle

Fabric Intensity

<table>
<thead>
<tr>
<th>Degree of deformation</th>
<th>Fabric intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture/ Vein density (per meter)</td>
<td></td>
</tr>
</tbody>
</table>

Vein Crosscutting

- **Alteration Halos**
 - **Intensity:** Complete (≥90%), Substantial (31–60%), Extensive (61–90%), Moderate (11–30%), Slight (3–10%), Fresh (<3%)

Discrete brittle features

- **Density:** 0–1 per 10 cm, 1–3 per 10 cm, 3–5 per 10 cm, >20 per 10 cm, 5–15 per 10 cm, 15–20 per 10 cm

Degree of deformation

- **Structures**
 - **Alteration:** Serpentinized, Fractured
 - **Veins:** Brown, Grey-green
 - **Veins:** Black, Grey
 - **Veins:** Black, Grey-green

Vein Crosscutting

- **Density:** 0–1 per 10 cm, 1–3 per 10 cm, 3–5 per 10 cm, >20 per 10 cm, 5–15 per 10 cm, 15–20 per 10 cm

Brittle

- **Magmatic contact**
 - **Density:** 0–1 per 10 cm, 1–3 per 10 cm, 3–5 per 10 cm, >20 per 10 cm, 5–15 per 10 cm, 15–20 per 10 cm

Crystal plastic

- **Density:** 0–1 per 10 cm, 1–3 per 10 cm, 3–5 per 10 cm, >20 per 10 cm, 5–15 per 10 cm, 15–20 per 10 cm

Vents

- **Density:** 0–1 per 10 cm, 1–3 per 10 cm, 3–5 per 10 cm, >20 per 10 cm, 5–15 per 10 cm, 15–20 per 10 cm
| Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | Magnetic susceptibility | MSCL-W MSP (SI x 10^-5) | GRA (g/cm³) | Sequence | Unit/subunit | Lithology | Primary mineralogy (%) | Magmatic layering | Foliation | Fabric intensity | Discrete brittle features | Fracture/ Vein density (per meter) | Vein density (per meter) | Alteration intensity | Dip | Magnetic contact | Brittle | Crystal plastic | Vents |
|--------------|-----------------|-------------------|--------------|-----------------------|--------------------------|----------------|----------|-------------|-----------|-----------------------|----------------|-----------|----------------|--------------------------|-------------------|---------------------|------|-----------------|--------|--------------|-------|
| 280.00 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.05 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.10 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.15 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.20 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.25 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.30 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.35 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.40 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.45 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.50 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.55 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.60 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.65 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.70 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.75 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.80 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.85 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.90 | 0 | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | | | | |
| 280.95 | 0 | | | | | | | | | | | | | | | | | | | | |
Hole BA4A-102Z Section 4, Top of Section 280.97 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary Mineralogy (%)</th>
<th>Grain Size</th>
<th>Degree of Deformation</th>
<th>Alteration</th>
<th>Vein Density (per meter)</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>281.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fabric Intensity

- 0
- 1
- 2
- 3
- 4
- 5

Vein Density

- 0–1
- 1–3
- 3–5
- >5

Dip

- 0
- 45
- 90

Degree of Deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Alteration

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Core Processing

- Sequence: I, 47c
- Rock Name: dunite
- Contact: tectonic
- Texture: igneous
- Summary: serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, moderately fractured
- Alteration: serpentinized and high oxidation
- Veins: green, white, vertical black veins
- Structure: Brittle-Crystal plastic
- Dip: Magnetic contact
- Brittle-Crystal plastic

Lithology

- Gabbro
- Dunite

Primary Mineralogy

- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Sulfide

Grain Size

- 0.2–1 mm
- 1–5 mm
- 5–30 mm
- >30 mm

Degree of Deformation

- Fracture/ Vein density (per meter)

- Fabric intensity

Vein Density

- 0–1 per 10 cm
- 1–3 per 10 cm
- >5 per 10 cm
- 3–5 per 10 cm
- 5–15 per 10 cm
- 15–20 per 10 cm
- >20 per 10 cm

Structures

- Fault zones
- Veins
- Discrete brittle features

Alteration Halos

- 0–10
- 10–30
- 30–50
- 50–70
- 70–90
- >90

Degree of Deformation

- 0–1
- 1–3
- 3–5
- >5

Structures

- Breccia
- Alteration halos
- Veins
- Fault zones

Core Processing

- Sequence: I, 47c
- Rock Name: dunite
- Contact: tectonic
- Texture: igneous
- Summary: serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, moderately fractured
- Alteration: serpentinized and high oxidation
- Veins: green, white, vertical black veins
- Structure: Brittle-Crystal plastic
- Dip: Magnetic contact
- Brittle-Crystal plastic
Hole BA4A-103Z Section 1, Top of Section 281.70 (m CCD)

Sequence: I
Unit/Subunit: 47c
Rock Name: dunite
Contact: Continuous
Texture: Igneous
Summary: Serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, moderately fractured
Alteration: Serpentinized and high oxidation
Veins: Green, white, vertical black veins
Structure: Brittle-

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility (SI 10^-5)</th>
<th>Primary mineralogy (%)</th>
<th>Grain size (µm)</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>281.73</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>281.83</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>281.93</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>282.03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>282.13</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Description
- **Vein crosscut:**
- **Alteration:** Serpentinized and high oxidation
- **Veins:** Green, white, vertical black veins
- **Structure:** Brittle-

Note: The table and diagram provide a detailed view of the rock characteristics and their spatial distribution along the section.
Sequence I: 47c
- **Rock Name:** dunite
- **Contact:** Continuous
- **Texture:** igneous
- **Summary:** Serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, moderately fractured
- **Alteration:** Serpentinized and high oxidation
- **Veins:** Green, white, vertical black veins
- **Structure:** Brittle, Veins, conjugate vein sets occur

Sequence I: 47c
- **Rock Name:** gabbro
- **Contact:** Intrusive
- **Texture:** igneous
- **Summary:** Fractured gabbroic dike
- **Alteration:**
- **Veins:** Grey veins, white veins
- **Structure:** Brittle, Veins

Sequence I: 47c
- **Rock Name:** Olivine gabbro
- **Contact:** Intrusive
- **Texture:** Granular
- **Summary:** Olivine gabbro dike
- **Alteration:**
- **Veins:** Grey-green veins, white veins, grey veins
- **Structure:** Brittle

Fabric Intensity

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Core length (cm)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
</table>

MAGNETIC SUSCEPTIBILITY
- **MSCL-W (SI x 10^-5):**
 - 1 x 10^-5
 - 2 x 10^-5
 - 3 x 10^-5
 - 4 x 10^-5
 - 5 x 10^-5

GRA (g/cm^3)
- **Depth (m CCD):**
 - 0.00
 - 0.05
 - 0.10
 - 0.15
 - 0.20

Primary Mineralogy
- **Olivine**
- **Plagioclase**
- **Orthopyroxene**
- **Amphibole**
- **Sulfide**

Degree of Deformation
- **Fracture/ Vein density (per meter):**
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5

Alteration Intensity
- **Veins:**
 - Green, white, vertical black veins

Structure
- **Brittle, Veins:**
 - Conjugate vein sets occur

Description
- **Fault zones:**
 - Brittle plastic features

Lithology
- **Primary Mineralogy (%):**
 - 100%
 - 75%
 - 50%
 - 25%
 - 0%

Text
- **Unit/Subunit:**
 - 47c

Alteration
- **Intensity:**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (> 90%)

Degree of Deformation
- **Veins:**
 - Conjugate vein sets occur

Vein Features
- **Density:**
 - 0–10 per 10 cm
 - 10–30 per 10 cm
 - 30–50 per 10 cm
 - 50–70 per 10 cm
 - 70–90 per 10 cm
 - >100 per 10 cm
SEQUENCE: 47c
UNIT/SUBUNIT: 47c
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE: Igneous
SUMMARY: serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, moderately fractured
ALTERATION: serpentinized and high oxidation
VEINS: green, white, vertical black veins
STRUCTURE: Brittle-Veins- conjugate vein sets are common
Crystal plastic-Fabric intensity: 5
Vein density (per meter): 3-5 per 10 cm
Grain size:*

Hole BA4A-103Z Section 3, Top of Section 283.15 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Alteration halos</th>
<th>Fault zones</th>
<th>Apparent offset</th>
<th>Description</th>
</tr>
</thead>
</table>
Hole BA4A-103Z Section 4, Top of Section 283.99 (m CCD)

SEQUENCE: 47c

UNIT/SUBUNIT: 47c

ROCK NAME: Dunite

CONTACT: Continuous

TEXTURE:

IGNEOUS SUMMARY: serpentinitized dunite, crosscut by gabbroic and pyroxenitic dikes, moderately fractured

ALTERATION: serpentinitized and high oxidation

VEINS: green, white, vertical black veins

STRUCTURE: Glassy

Depth (m CCD) | **Core length (cm)** | **Shipboard samples** | **Stained image** | **Magnetic susceptibility** (SI x 10^-5) | **MSCL-W** | **GRA (g/cm^2)** | **Sequence** | **Unit/subunit** | ** PRIMARY MINERALOGY (%)** | **Degree of deformation** | **Fracture/Vein density (per meter)** | **Alteration intensity** | **Dip** | **Magnetic contact** |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>284.01</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>284.11</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>284.21</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>284.31</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>284.41</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>284.51</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>284.61</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>284.71</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **Vein density (per meter):**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (≥90%)

- **Fracture/Vein density (per meter):**
 - 0
 - 0–10
 - 10–30
 - 30–50
 - 50–70
 - 70–90
 - >100

- **Alteration intensity:**
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
 - GS reduction and rotation
 - Well-developed cataclasis
 - Ultracataclastite

- **Structures**
 - Fault zones
 - Vein crosscutting

- **Degree of deformation**
 - Protomylonite
 - Mylonite
 - Ultramylonite

- **Lithology**
 - Magnetite
 - Oxidation
 - Foliation

- **Grain size**
 - 0–10
 - 10–30
 - 30–50
 - 50–70
 - 70–90
 - >100

- **Texture**
 - Protogranular
 - Porphyroclastic
 - Strongly foliated

- **Alteration halos**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (≥90%)

- **Magmatic contact**
 - Brittle
 - Crystal plastic

- **Crystal plasticity**
 - Glassy
 - Cryptocrystalline (<0.1 mm)
 - Microcrystalline (0.1–0.2 mm)

- **Granulite (g/cm^3):**
 - 2.3
 - 1.8

- **Mineralogy**
 - Olivine
 - Plagioclase
 - Clinopyroxene
 - Orthopyroxene
 - Amphibole
 - Sulfide
SEQUENCE: I
UNIT/SUBUNIT: 47c
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: Serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, moderately fractured
ALTERATION: Serpentinized and high oxidation
VEINS: Green, white, vertical black veins
STRUCTURE: Brittle Brecciation from magmatic impregnation
Vein crosscutting

Depth (m CCD) | Core length (cm) | Shipboard samples | Stained image | Magnetic susceptibility (SI) | MSCL-W | MSP (SI x 10^-5) | GRA (g/cm^3) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>284.70</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>284.80</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>284.90</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285.00</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285.10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285.20</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285.30</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285.40</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285.50</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description:
- SEQUENCE: I
- UNIT/SUBUNIT: 47c
- ROCK NAME: Dunite
- CONTACT: Continuous
- TEXTURE:
- IGNEOUS SUMMARY: Serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, moderately fractured
- ALTERATION: Serpentinized and high oxidation
- VEINS: Green, white, vertical black veins
- STRUCTURE: Brittle Brecciation from magmatic impregnation
Vein crosscutting
Hole BA4A-104Z Section 2, Top of Section 285.59 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnatic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
<th>Structures</th>
<th>Alteration halos</th>
<th>Vein crosscutting</th>
</tr>
</thead>
<tbody>
<tr>
<td>285.63</td>
<td></td>
</tr>
<tr>
<td>285.73</td>
<td></td>
</tr>
<tr>
<td>285.83</td>
<td></td>
</tr>
<tr>
<td>285.93</td>
<td></td>
</tr>
</tbody>
</table>

Sequence: I 47c

Unit/Subunit: 47c

Rock Name: Dunite

Contact: Continuous

Texture:

Igneous Summary: serpentinized dunite, crosscut by gabbroic and pyroxenitic dikes, moderately fractured

Alteration: serpentinized and high oxidation

Veins: green, white, vertical black veins

Structure: Brittle-

Sequence: I 48a

Unit/Subunit: 48a

Rock Name: Olivine gabbro

Contact: Intrusive

Texture:

Igneous Summary: rodingitised

Alteration: highly altered

Veins:

Structure: Brittle- Crystal plastic or semi-brittle deformation mostly contained within dike, with several anastamosing brittle slip planes

Sequence: I 48a

Unit/Subunit: 48a

Rock Name: Harzburgite

Contact: Intrusive

Texture: Granular

Igneous Summary: serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes, moderately fractured, dunitic zones

Alteration: serpentinized

Veins: white veins

Structure: Brittle-

Fabric intensity

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0

Vein density (per meter)

1 per 10 cm

3-5 per 10 cm

>20 per 10 cm

5-15 per 10 cm

15-20 per 10 cm

Degree of deformation

Vein crosscutting

Alteration intensity

Dip

Magnetic contact

Brittle

Crystal plastic

Veins

Structures

Altered halos

Fault zones

Magmatic contact

Brittle

Crystal plastic

Veins

Description
Hole BA4A-104Z Section 3, Top of Section 285.96 (m CCD)

Sequence: 1

Unit/Subunit: 48a

Rock Name: Harzburgite

Contact: Intrusive

Texture: Granular

Igneous Summary: Serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes, moderately fractured, dunitic zones

Alteration: Serpentinized

Veins: White veins

Structure: Brittle-

Crystal plastic: Pyroxene grains are rounded and slightly elongated.

Fabric intensity:

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Serginson image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>286.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (m CCD)</td>
<td>Core length (cm)</td>
<td>Shipboard samples</td>
<td>Stained image</td>
<td>CT image</td>
<td>Magnetic susceptibility</td>
<td>Primary mineralogy (%)</td>
<td>Grain size</td>
<td>Degree of deformation</td>
<td>Fracture/ Vein density (per meter)</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>---------------</td>
<td>----------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>287.73</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>287.83</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>287.93</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288.03</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288.13</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288.23</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288.33</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hole BA4A-105Z Section 1, Top of Section 287.70 (m CCD)
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Fabric Intensity</th>
<th>Vein Density (per meter)</th>
<th>Degree of Deformation</th>
<th>Fault Zones</th>
<th>Adjacent Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>48d</td>
<td></td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes from thick to thin</td>
<td>Serpentinized</td>
<td>Black, White</td>
<td>5</td>
<td>6</td>
<td>Brittle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magnetic Susceptibility

- Hole BA4A-105Z Section 3, Top of Section 289.05 (m CCD)

Lithology

- MBIO

Primary Mineralogy

- Olivine
- Plagioclase
- Clinopyroxene
- Orthopyroxene
- Amphibole
- Sulfide

Grain Size

- Small (S)
- Medium (M)
- Large (L)

Degree of Deformation

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Vein Crosscutting

- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Alteration Intensity

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)

Structures

- Fault zones
- Discrete brittle features

Vein Density (per meter)

- 0
- 1–10 per 10 cm
- 10–30 per 10 cm
- 30–50 per 10 cm
- 50–70 per 10 cm
- 70–90 per 10 cm
- >90 per 10 cm

Core Length (cm)

- 80

Measurements

- Magnetic susceptibility (SI × 10⁻⁵)
- GRA (g/cm³)
- Fabric intensity
- Vein density (per meter)
- Degree of deformation

Note: Crystal plastic: Pyroxene grains are rounded and slightly elongated.
Hole BA4A-105Z Section 4, Top of Section 289.89 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Sequence</th>
<th>Unit/subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Veins</th>
<th>Structure</th>
<th>Brittle Fracture</th>
<th>Vein Crosscutting</th>
<th>Alteration Intensity</th>
<th>Vein Density (per meter)</th>
<th>Dip</th>
<th>Magnetic Contact</th>
<th>Brittle</th>
<th>Crystal Plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>289.93</td>
<td></td>
<td>1</td>
<td>48d</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>Serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes from thick to thin</td>
<td>Serpentinized</td>
<td>Black, white veins</td>
<td>Brittle- Brecciation from magmatic impregnation</td>
<td>Veins-</td>
<td>Crystal plastic-</td>
<td>Pyroxene grains are rounded and slightly elongated,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289.03</td>
<td></td>
<td>1</td>
<td>48d</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>Serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes from thick to thin</td>
<td>Serpentinized</td>
<td>Black, white veins</td>
<td>Brittle- Brecciation from magmatic impregnation</td>
<td>Veins-</td>
<td>Crystal plastic-</td>
<td>Pyroxene grains are rounded and slightly elongated,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289.13</td>
<td></td>
<td>1</td>
<td>48d</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>Serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes from thick to thin</td>
<td>Serpentinized</td>
<td>Black, white veins</td>
<td>Brittle- Brecciation from magmatic impregnation</td>
<td>Veins-</td>
<td>Crystal plastic-</td>
<td>Pyroxene grains are rounded and slightly elongated,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289.23</td>
<td></td>
<td>1</td>
<td>48d</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>Serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes from thick to thin</td>
<td>Serpentinized</td>
<td>Black, white veins</td>
<td>Brittle- Brecciation from magmatic impregnation</td>
<td>Veins-</td>
<td>Crystal plastic-</td>
<td>Pyroxene grains are rounded and slightly elongated,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289.33</td>
<td></td>
<td>1</td>
<td>48d</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>Serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes from thick to thin</td>
<td>Serpentinized</td>
<td>Black, white veins</td>
<td>Brittle- Brecciation from magmatic impregnation</td>
<td>Veins-</td>
<td>Crystal plastic-</td>
<td>Pyroxene grains are rounded and slightly elongated,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289.43</td>
<td></td>
<td>1</td>
<td>48d</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>Serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes from thick to thin</td>
<td>Serpentinized</td>
<td>Black, white veins</td>
<td>Brittle- Brecciation from magmatic impregnation</td>
<td>Veins-</td>
<td>Crystal plastic-</td>
<td>Pyroxene grains are rounded and slightly elongated,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289.53</td>
<td></td>
<td>1</td>
<td>48d</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>Serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes from thick to thin</td>
<td>Serpentinized</td>
<td>Black, white veins</td>
<td>Brittle- Brecciation from magmatic impregnation</td>
<td>Veins-</td>
<td>Crystal plastic-</td>
<td>Pyroxene grains are rounded and slightly elongated,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289.63</td>
<td></td>
<td>1</td>
<td>48d</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>Serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes from thick to thin</td>
<td>Serpentinized</td>
<td>Black, white veins</td>
<td>Brittle- Brecciation from magmatic impregnation</td>
<td>Veins-</td>
<td>Crystal plastic-</td>
<td>Pyroxene grains are rounded and slightly elongated,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289.73</td>
<td></td>
<td>1</td>
<td>48d</td>
<td>Harzburgite</td>
<td>Continuous</td>
<td>Granular</td>
<td>Serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes from thick to thin</td>
<td>Serpentinized</td>
<td>Black, white veins</td>
<td>Brittle- Brecciation from magmatic impregnation</td>
<td>Veins-</td>
<td>Crystal plastic-</td>
<td>Pyroxene grains are rounded and slightly elongated,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-106Z Section 1, Top of Section 290.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%</th>
<th>Magnetic susceptibility (SI x 10^-5)</th>
<th>Vein density (per meter)</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>290.70</td>
<td></td>
<td>Sequence</td>
<td>Unit/substrate: I</td>
<td>48d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290.83</td>
<td></td>
<td>Sequence</td>
<td>Unit/substrate: 48d</td>
<td>49a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lithology:
- **Rock Name:** Harzburgite
- **Contact:** Continuous
- **Texture:** Granular
- **Igneous Summary:** Serpentinized harzburgite, crosscut by gabbroic and pyroxenitic dikes from thick to thin
- **Alteration:** Serpentinized
- **Veins:** Black, white veins
- **Structure:** Brittle

Vein Crosscutting Features:
- **Vein Density:**
 - 0–1 per 10 cm
 - 1 per 10 cm
 - 2–5 per 10 cm
 - >20 per 10 cm
- **Vein Width:**
 - 0–1 per 10 cm
 - 1 per 10 cm

Discrete Brittle Features:
- **Fabric Intensity:**
 - 0–1 per 10 cm
 - 1 per 10 cm
 - 2–5 per 10 cm
 - >20 per 10 cm
- **Fracture/发育密度 (per meter):**
 - 0–1 per 10 cm
 - 1 per 10 cm
 - 2–5 per 10 cm
 - >20 per 10 cm

Alteration Intensity:
- **Alteration Halos:**
 - Fresh (<3%)
 - Slight (3–10%)
 - Moderate (11–30%)
 - Substantial (31–60%)
 - Extensive (61–90%)
 - Complete (>90%)

Degree of Deformation:
- **Magmatic Layering:**
 - Undeformed
 - Minor fracturing
 - Moderate fracturing
 - GS Reduction and Rotation
 - Well-Developed Cataclasis
- **Foliation:**
 - Protomylonite
 - Mylonite
 - Ultramylonite
- **Protogranular:**
 - Strongly Foliated
- **Porphyroclastic:**
 - Isotropic
 - Weak
 - Moderate
 - Strong
- **Ropey:**
 - Coarse Grained (5–30 mm)
 - Fine Grained (0.2–1 mm)
 - Pegmatitic (>30 mm)
- **Glassy:**
 - Cryptocrystalline (<0.1 mm)
 - Microcrystalline (0.1–0.2 mm)

Magnetic Susceptibility:
- **MSCL-W MSP:**
 - (SI x 10^-5)
SEQUENCE: I
UNIT/SUBUNIT: 49a
ROCK NAME: Dunite
CONTACT: Continuous
TEXTURE:
IGNEOUS SUMMARY: Highly serpentinized dunite, harzburgitic patches, crosscut by gabboric and pyroxenitic dikes, several thick fractured filled by green mineral
ALTERATION: Serpentinized and high oxidation
VEINS: Green, white veins
STRUCTURE: Brittle- Brecciation from magmatic impregnation - Veins- Crystal plastic-

<table>
<thead>
<tr>
<th>Fabric intensity</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vein density (per meter)</td>
<td>0</td>
<td>1 per 10 cm</td>
<td>3-5 per 10 cm</td>
<td>>20 per 10 cm</td>
<td>5-15 per 10 cm</td>
<td>15-20 per 10 cm</td>
<td>20-25 per 10 cm</td>
<td>25-30 per 10 cm</td>
<td>30-40 per 10 cm</td>
<td>40-50 per 10 cm</td>
<td>50-60 per 10 cm</td>
</tr>
</tbody>
</table>

GRA: (g/cm³)
- 3.04
- 2.84
- 2.64
- 2.44

Magnetic susceptibility (SI x 10⁻⁵)
- 1000
- 100
- 10
- 1

Magnetic contact
- Brittle
- Crystal plastic
- Veins

Discrete brittle features
- 0-10
- 10-30
- 30-50
- 50-70
- 70-90
- >90

Vein density (per meter)
- 0
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm

Alteration intensity
- 0-10
- 10-30
- 30-50
- 50-70
- 70-90
- >90

Degree of deformation
- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Lithology
- Primary mineralogy (%)
 - 100
 - 75
 - 50
 - 25
 - 0

Magmatic layering
- Protogranular
- Porphyroclastic
- Strongly foliated
- Protomylonite
- Mylonite
- Ultramylonite

Texture
- Isotropic
- Weak
- Moderate
- Strong

Grain size
- Fine grained (0.2–1 mm)
- Medium grained (1–5 mm)
- Coarse grained (5–30 mm)
- Pegmatitic (>30 mm)

Hole BA4A-106Z Section 2, Top of Section 291.34 (m CCD)

Description
- Fault zones
- Structures
- Alteration halos
- Sulfide
- Amphibole
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine
Hole BA4A-106Z Section 4, Top of Section 293.11 (m CCD)

Description

- **SEQUENCE**: I 50a
- **ROCK NAME**: Harzburgite
- **CONTACT**: Continuous
- **TEXTURE**: Granular
- **IGNEOUS SUMMARY**: Serpentinised harzburgite with gabbroic dykes and patchy opx destruction
- **ALTERATION**: Serpentinised
- **VEINS**: Cut by white veins, green veins, dark vein networks, white-brown composite thread veins, horrible green veins on highly altered dykes, white veins on less altered dykes, en-echelon veins, ladder veins on faults that offset dykes, complex white-green and frankenstein veins
- **STRUCTURE**: Brittle-Veins-Crystal plastic
- **Crystal plastic**: Pyroxene grains are rounded and slightly elongated

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Degree of deformation</th>
<th>Discrete brittle features</th>
<th>Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>293.13</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0-10</td>
<td></td>
</tr>
<tr>
<td>293.23</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>10-30</td>
<td></td>
</tr>
<tr>
<td>293.33</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>30-50</td>
<td></td>
</tr>
<tr>
<td>293.43</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>50-70</td>
<td></td>
</tr>
<tr>
<td>293.53</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>70-90</td>
<td></td>
</tr>
<tr>
<td>293.63</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>90-100</td>
<td></td>
</tr>
<tr>
<td>293.73</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>>100</td>
<td></td>
</tr>
</tbody>
</table>

Magnetic susceptibility (MSCL-W)

- **GRA (g/cm³)**:
 - 0.2
 - 0.4
 - 0.6
 - 0.8
 - 1.0

Degree of deformation

- **Vein crosscutting**
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5

Alteration intensity

- **Sulfide**: Fresh (<3%)
- **Amphibole**: Slight (3–10%)
- **Spinel**: Moderate (11–30%)
- **Orthopyroxene**: Substantial (31–60%)
- **Clinopyroxene**: Extensive (61–90%)
- **Plagioclase**: Complete (>90%)

Grain size

- **Coarse grained (5–30 mm)**
- **Medium grained (1–5 mm)**
- **Fine grained (0.2–1 mm)**
- **Pegmatitic (>30 mm)**

Fabric intensity

- **Isotropic**: 0
- **Weak**: 1
- **Moderate**: 2
- **Strong**: 3

Mineralogy

- **Olivine**
- **Plagioclase**
- **Orthopyroxene**
- **Spinel**
- **Sulfide**

Dip

- **Contact angle**: 0°
- **Biotite**: 45°
- **Crystal plastic**: 90°
SEQUENCE: I
UNIT/SUBUNIT: 50a
ROCK NAME: harzburgite
CONTACT: continuous
TEXTURE: Granular

IGNEOUS SUMMARY: serpentinised harzburgite with gabbroic dykes and patchy opx destruction

ALTERATION: serpentinised

VEINS: cut by white veins, green veins, dark vein networks, white-brown composite thread veins, horrible green veins on highly altered dykes, white veins on less altered dykes, en-echelon veins, ladder veins on faults that offset dykes, complex white-green and frankenstein veins

STRUCTURE: Brittle-

Veins: conjugate vein sets occur
Crystal plastic: Pyroxene grains are strongly elongated.

Hole BA4A-107Z Section 1, Top of Section 293.70 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Sampled image</th>
<th>Magnetic susceptibility (SI × 10^{-5})</th>
<th>GRA (g/cm³)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>293.70</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>293.80</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>293.90</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>294.00</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>294.10</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>294.20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>294.30</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>294.40</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>294.50</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>294.60</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Core:
- **Core image:**
- **MSCL-W MSP:**
- **GRA:**
- **GRA:**

Crust:
- **GRA:**
- **GRA:**

Fabric intensity:
- **Granular:**
- **Granular:**

Structure:
- **Brittle:**
- **Brittle:**

Veins:
- **Veins:**
- **Veins:**

Alteration:
- **Alteration:**
- **Alteration:**

Degree of deformation:
- **Degree of deformation:**
- **Degree of deformation:**

Fracture/ Vein density:
- **Fracture/ Vein density:**
- **Fracture/ Vein density:**

Vein density:
- **Vein density:**
- **Vein density:**

Alteration intensity:
- **Alteration intensity:**
- **Alteration intensity:**

Dip:
- **Dip:**
- **Dip:**

Magnetic contact:
- **Magnetic contact:**
- **Magnetic contact:**

Brittle:
- **Brittle:**
- **Brittle:**

Crystal plastic:
- **Crystal plastic:**
- **Crystal plastic:**

Veins:
- **Veins:**
- **Veins:**
Hole BA4A-107Z Section 2, Top of Section 294.67 (m CCD)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Unit/Subunit</th>
<th>Rock Name</th>
<th>Contact</th>
<th>Texture</th>
<th>Igneous Summary</th>
<th>Alteration</th>
<th>Vein density (per meter)</th>
<th>Alteration halos</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Dip Magnetic contact Brittle Crystal plastic</th>
<th>Veins</th>
<th>(\text{Depth (m CCD)})</th>
<th>Core length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>50a</td>
<td>continuous</td>
<td>Granular</td>
<td>altered and pseudomorphed</td>
<td>altered and pseudomorphed</td>
<td>dense white veins cut dyke</td>
<td>not logged</td>
<td>not logged</td>
<td>0.45-0.90</td>
<td>0</td>
<td>294.70-294.80</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>50a</td>
<td>modal</td>
<td>Granular</td>
<td>altered and pseudomorphed</td>
<td>altered and pseudomorphed</td>
<td>dark veins cut dyke</td>
<td>not logged</td>
<td>not logged</td>
<td>0.45-0.90</td>
<td>0</td>
<td>294.90-295.00</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>50b</td>
<td>intrusive</td>
<td>Granular</td>
<td>altered and pseudomorphed</td>
<td>altered and pseudomorphed</td>
<td>dark veins cut dyke</td>
<td>not logged</td>
<td>not logged</td>
<td>0.45-0.90</td>
<td>0</td>
<td>295.10-295.20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>50b</td>
<td>intrusive</td>
<td>Granular</td>
<td>altered and pseudomorphed</td>
<td>altered and pseudomorphed</td>
<td>dark veins cut dyke</td>
<td>not logged</td>
<td>not logged</td>
<td>0.45-0.90</td>
<td>0</td>
<td>295.30-295.40</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>50c</td>
<td>intrusive</td>
<td>Granular</td>
<td>altered and pseudomorphed</td>
<td>altered and pseudomorphed</td>
<td>dark veins cut dyke</td>
<td>not logged</td>
<td>not logged</td>
<td>0.45-0.90</td>
<td>0</td>
<td>295.50-295.60</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>50d</td>
<td>modal</td>
<td>Granular</td>
<td>altered and pseudomorphed</td>
<td>altered and pseudomorphed</td>
<td>dark veins cut dyke</td>
<td>not logged</td>
<td>not logged</td>
<td>0.45-0.90</td>
<td>0</td>
<td>295.70-295.80</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **ROCK NAME**: harzburgite
- **CONTACT**: continuous
- **TEXTURE**: Granular
- **IGNEOUS SUMMARY**: serpentinised harzburgite with gabbroic dykes and patchy opx destruction
- **ALTERATION**: serpentinised
- **VEINS**: cut by white veins, green veins, dark vein networks, white-brown composite thread veins, horrible green veins on highly altered dykes, white veins in less altered dykes, en-echelon veins, ladder veins on faults that either cut, complex white-green and hornfelsen vein
- **STRUCTURE**: Brittle
- **Crystal plastic**: Pyroxene grains are rounded and slightly elongated.

...
Hole BA4A-107Z Section 3, Top of Section 295.65 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Alteration intensity</th>
<th>Vein density (per meter)</th>
<th>Structure</th>
<th>Alteration halos</th>
<th>Vein crosscutting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>295.69</td>
<td></td>
</tr>
<tr>
<td>295.79</td>
<td></td>
</tr>
<tr>
<td>295.89</td>
<td></td>
</tr>
<tr>
<td>295.99</td>
<td></td>
</tr>
<tr>
<td>296.09</td>
<td></td>
</tr>
<tr>
<td>296.19</td>
<td></td>
</tr>
<tr>
<td>296.29</td>
<td></td>
</tr>
</tbody>
</table>

Description

SEQUENCE: I Unit
ROCK NAME: dunite
CONTACT: continuous
TEXTURE: Granular
IGNEOUS SUMMARY: serpentinised dunite with gabbroic dykes
ALTERATION: serpentinised
VEINS: cut by white veins, green veins, dark vein networks, white-brown composite thread veins, horrible green veins on highly altered dykes, white veins on less altered dykes, en-echelon veins, ladder veins on faults that offset dykes, complex white-green and frankenstein veins
STRUCTURE: Brittle

...
Hole BA4A-108Z Section 1, Top of Section 296.70 (m CCD)

Depth (m CCD)	Core length (cm)	Shipboard samples	Stained image	Magnetic susceptibility	MSCL-W MSP (SI x 10^-5)	GRA (g/cm²)	Sequence	Lithology	Degree of deformation	Fracture/ Vein density (per meter)	Alteration intensity	Dip	Magnetic contact	Brittle	Crystal plastic	Veins	Structures	Alteration halos	Vein density (per meter)	Description		
296.73																						
296.83																						
296.93																						
297.03																						
297.13																						
297.23																						
297.33																						
297.43																						

Sequence: 1

Rock Name: dunite

Contact: continuous

Texture: Granular

Igneous Summary: serpentinised dunite with gabbroic dykes

Alteration: serpentinised

Veins: cut by white veins, green veins, dark vein networks, white-brown composite thread veins, horrible green veins on highly altered dykes, white veins on less altered dykes, en-echelon veins, ladder veins on faults that offset dykes, complex white-green and hematite vein veins

Structure: Brittle

Veins: Complex white-green and hematite vein veins

Vein density: (per meter)

- 0
- 1 per 10 cm
- 2–5 per 10 cm
- >20 per 10 cm
- 15–20 per 10 cm
- 5–15 per 10 cm
- 3–5 per 10 cm
- >100 per 10 cm

Degree of deformation:

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Lithology:

- Plagioclase
- Amphibole

Primary mineralogy:

- Olivine
- Plagioclase
- Clinopyroxene

Other minerals:

- Orthopyroxene
- Sulfide
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine
- Sulfide
- Spinel
- Orthopyroxene
- Clinopyroxene
- Plagioclase
- Olivine

Alteration intensity:

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (>90%)

Degree of deformation:

- Undeformed
- Minor fracturing
- Moderate fracturing
- GS reduction and rotation
- Well-developed cataclasis
- Ultracataclastite

Sequence: 1

Alteration: serpentinised

Veins: cut by white veins, green veins, dark vein networks, white-brown composite thread veins, horrible green veins on highly altered dykes

Structure: Brittle

Veins: Complex white-green and hematite vein veins

Vein density: (per meter)

- 0
- 1 per 10 cm
- 2–5 per 10 cm
- >20 per 10 cm
- 15–20 per 10 cm
- 5–15 per 10 cm
- 3–5 per 10 cm
- >100 per 10 cm
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>GRA (g/cm²)</th>
<th>MSCL-W (SI x 10⁻⁵)</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Vein density (per meter)</th>
<th>Alteration halos</th>
<th>Structures</th>
<th>Vein crosscutting</th>
<th>Alteration</th>
<th>Fault zones</th>
<th>Apparent offset</th>
</tr>
</thead>
</table>
Hole BA4A-108Z Section 3, Top of Section 298.13 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Alteration</th>
<th>Dip</th>
<th>Contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>298.17</td>
<td>10.0</td>
<td></td>
<td></td>
<td>298.17</td>
</tr>
<tr>
<td>298.27</td>
<td>20.0</td>
<td></td>
<td></td>
<td>298.27</td>
</tr>
<tr>
<td>298.37</td>
<td>30.0</td>
<td></td>
<td></td>
<td>298.37</td>
</tr>
<tr>
<td>298.47</td>
<td>40.0</td>
<td></td>
<td></td>
<td>298.47</td>
</tr>
<tr>
<td>298.57</td>
<td>50.0</td>
<td></td>
<td></td>
<td>298.57</td>
</tr>
<tr>
<td>298.67</td>
<td>60.0</td>
<td></td>
<td></td>
<td>298.67</td>
</tr>
<tr>
<td>298.77</td>
<td>70.0</td>
<td></td>
<td></td>
<td>298.77</td>
</tr>
</tbody>
</table>

Description

- **SEQUENCE:** I
- **UNIT/SUBUNIT:** 50d
- **ROCK NAME:** dunite
- **CONTACT:** intrusive
- **TEXTURE:** Granular
- **IGNEOUS SUMMARY:** serpentinised dunite with gabbroic dykes
- **ALTERATION:** serpentinised
- **VEINS:** cut by white veins, green veins, dark vein networks, white-brown composite thread veins, horrible green veins on highly altered dykes, white veins on less altered dykes, en-echelon veins, ladder veins on faults that offset dykes, complex white-green and frankenstein veins
- **STRUCTURE:** Brittle
- **Vein crosscutting:** conjugate vein sets are common

- **SEQUENCE:** I
- **UNIT/SUBUNIT:** 50d
- **ROCK NAME:** olivine gabbro
- **CONTACT:** intrusive
- **TEXTURE:** Granular
- **IGNEOUS SUMMARY:** altered olivine gabbro dyke
- **ALTERATION:** altered and pseudomorphed
- **VEINS:**
- **STRUCTURE:** Brittle

- **SEQUENCE:** I
- **UNIT/SUBUNIT:** 50e
- **ROCK NAME:** dunite
- **CONTACT:** intrusive
- **TEXTURE:**
- **IGNEOUS SUMMARY:** serpentinised dunite
- **ALTERATION:** serpentinised
- **VEINS:** white, white/brown composite, plus pale green with selvage veins are common
- **STRUCTURE:** Brittle
- **Vein crosscutting:** conjugate vein sets are common

Table Notes

- **Magnetic contact:** Brittle
- **Crystal plastic:** Veins

Vein density (per meter):

- 0
- 1 per 10 cm
- 3-5 per 10 cm
- >20 per 10 cm
- 5-15 per 10 cm
- 15-20 per 10 cm

Alteration intensity:

- Fresh (<3%)
- Slight (3–10%)
- Moderate (11–30%)
- Substantial (31–60%)
- Extensive (61–90%)
- Complete (≥90%)
| Depth (m CCD) | Core length (cm) | Lithology | Contact | Texture | Igneous Summary | Alteration | Vein Name | Vein density (per meter) | Vein intensity | Vein density (per meter) | Vein intensity | Structures | Vein contexts | Vein cutting | Description | | | | | |
|---|
| 298.93 | 0 | dunite | intrusive | Granular| Serpentinised dunite | Serpentinised | White, white/brown composite, plus pale green with selvage veins | Undeformed | Brittle-Veins | ≥20 per 10 cm | 60% | Brittle | Veins cut dyke | Brittle | Brittle | Brittle | Brittle | Brittle | Brittle | Serpentinite |
| 299.03 | 10 | Clinopyroxenite | intrusive | Porphyroclastic | Altered and recrystallised clinopyroxene dyke | Recrystallised | White veins cut dyke | Brittle | Brittle-Veins | ≥3-5 per 10 cm | 30% | Brittle | Brittle cut dyke | Brittle | Brittle | Brittle | Brittle | Brittle | Brittle | Clinopyroxene |
| 299.13 | 20 | dunite | intrusive | Granular | Serpentinised dunite, highly fractured and veined | Serpentinised | White, white/brown and dark veins | Brittle | Brittle-Veins | ≥3-5 per 10 cm | 50% | Brittle | Brittle cut dyke | Brittle | Brittle | Brittle | Brittle | Brittle | Brittle | Dunite |
| 299.23 | 30 | dunite | intrusive | Granular | Serpentinised dunite, highly fractured and veined | Serpentinised | White, white/brown and dark veins | Brittle | Brittle-Veins | ≥3-5 per 10 cm | 50% | Brittle | Brittle cut dyke | Brittle | Brittle | Brittle | Brittle | Brittle | Brittle | Dunite |
| 299.33 | 40 | gabbro | intrusive | Granular | Altered gabbro dyke | Original textures and mineralogy completely destroyed | White and pale green veins cut dyke | Brittle | Brittle-Veins | ≥3-5 per 10 cm | 50% | Brittle | Brittle cut dyke | Brittle | Brittle | Brittle | Brittle | Brittle | Brittle | Gabbro |
| 299.43 | 50 | gabbro | intrusive | Granular | Altered gabbro dyke | Original textures and mineralogy completely destroyed | White and pale green veins cut dyke | Brittle | Brittle-Veins | ≥3-5 per 10 cm | 50% | Brittle | Brittle cut dyke | Brittle | Brittle | Brittle | Brittle | Brittle | Brittle | Gabbro |
| 299.53 | 60 | gabbro | intrusive | Granular | Altered gabbro dyke | Original textures and mineralogy completely destroyed | White and pale green veins cut dyke | Brittle | Brittle-Veins | ≥3-5 per 10 cm | 50% | Brittle | Brittle cut dyke | Brittle | Brittle | Brittle | Brittle | Brittle | Brittle | Gabbro |
| 299.63 | 70 | gabbro | intrusive | Granular | Altered gabbro dyke | Altered and pseudomorphed olivine gabbro | Dark veins cut dyke | Brittle | Brittle-Veins | ≥3-5 per 10 cm | 50% | Brittle | Brittle cut dyke | Brittle | Brittle | Brittle | Brittle | Brittle | Brittle | Gabbro |
| 299.73 | 80 | olivine gabbro | intrusive | Granular | Altered olivine gabbro dyke | Altered gabbro dyke | Network of narrow fault planes cut several dikes | Brittle | Brittle-Veins | ≥3-5 per 10 cm | 50% | Brittle | Brittle cut dyke | Brittle | Brittle | Brittle | Brittle | Brittle | Brittle | Gabbro |

Description:
- **Sequence I:** Unit Subunit 50e
 - Rock Name: dunite
 - Contact: continuous
 - Texture: Granular
 - Igneous Summary: Serpentinised dunite
 - Alteration: Serpentinised
 - Veins: White, white/brown composite, plus pale green with selvage veins
 - Structure: Brittle

- **Sequence I:** Unit Subunit 50f
 - Rock Name: Clinopyroxenite
 - Contact: Intrusive
 - Texture: Porphyroclastic
 - Igneous Summary: Altered and recrystallised clinopyroxene dyke
 - Alteration: Recrystallised
 - Veins: White veins cut dyke
 - Structure: Brittle

- **Sequence I:** Unit Subunit 50g
 - Rock Name: Dunite
 - Contact: Intrusive
 - Texture: Granular
 - Igneous Summary: Serpentinised dunite, highly fractured and veined
 - Alteration: Serpentinised
 - Veins: White, white/brown and dark veins
 - Structure: Brittle

- **Sequence I:** Unit Subunit 50h
 - Rock Name: Gabbro
 - Contact: Intrusive
 - Texture: Granular
 - Igneous Summary: Altered gabbro dyke
 - Alteration: Original textures and mineralogy completely destroyed
 - Veins: White and pale green veins cut dyke
 - Structure: Brittle

- **Sequence I:** Unit Subunit 50i
 - Rock Name: Gabbro
 - Contact: Intrusive
 - Texture: Granular
 - Igneous Summary: Altered gabbro dyke
 - Alteration: Original textures and mineralogy completely destroyed
 - Veins: White and pale green veins cut dyke
 - Structure: Brittle

- **Sequence I:** Unit Subunit 50j
 - Rock Name: Gabbro
 - Contact: Intrusive
 - Texture: Granular
 - Igneous Summary: Altered gabbro dyke
 - Alteration: Original textures and mineralogy completely destroyed
 - Veins: White and pale green veins cut dyke
 - Structure: Brittle
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Voins</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>299.70</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>299.80</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>299.90</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>300.00</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>300.10</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Hole BA4A-109Z Section 1, Top of Section 299.70 (m CCD)

Sequencing

- **SEQUENCE 1:** 50g
- **SEQUENCE 2:** 70g

Unit/Subunit: 50g

Lithology:
- dunite
- olivine gabbro

CONTACT:
- continuous
- intrusive

Texture:
- Granular

Igneous Summary:
- serpentinised dunite, highly fractured and veined
- altered olivine gabbro dyke

Alteration:
- serpentinised
- altered and pseudomorphed
- altered and pseudomorphed, texture obliterated in places

Veins:
- white, white/brown and dark veins
- green veins cut dyke
- dark veins cut dyke

Structure:
- Brittle
- Brittle-
- Crystal plastic

Fabric intensity

Vein density

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip</th>
<th>Magnetic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Voins</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>299.70</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>299.80</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>299.90</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>300.00</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>300.10</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
Hole BA4A-109Z Section 2, Top of Section 300.14 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Dip Magnitic contact</th>
<th>Brittle</th>
<th>Crystal plastic</th>
<th>Veins</th>
</tr>
</thead>
<tbody>
<tr>
<td>300.17</td>
<td></td>
</tr>
<tr>
<td>300.27</td>
<td></td>
</tr>
<tr>
<td>300.37</td>
<td></td>
</tr>
<tr>
<td>300.47</td>
<td></td>
</tr>
<tr>
<td>300.57</td>
<td></td>
</tr>
<tr>
<td>300.67</td>
<td></td>
</tr>
<tr>
<td>300.77</td>
<td></td>
</tr>
<tr>
<td>300.87</td>
<td></td>
</tr>
</tbody>
</table>

Description

- **SEQUENCE I**: 50g
 - **ROCK NAME**: dunite
 - **CONTACT**: intrusive
 - **TEXTURE**: granular
 - **IGNEOUS SUMMARY**: serpentinised dunite, highly fractured and veined
 - **ALTERATION**: serpentinised
 - **VEINS**: white, white/brown and dark veins
 - **STRUCTURE**: Brittle- Significant fracturing on vertical shear planes

- **SEQUENCE II**: 50h
 - **ROCK NAME**: dunite
 - **CONTACT**: intrusive
 - **TEXTURE**: granular
 - **IGNEOUS SUMMARY**: serpentinised dunite
 - **ALTERATION**: serpentinised
 - **VEINS**: cut by white, white/brown, dark, and pale green veins
 - **STRUCTURE**: Brittle- Significant fracturing on vertical shear planes

- **SEQUENCE III**: 50i
 - **ROCK NAME**: dunite
 - **CONTACT**: intrusive
 - **TEXTURE**: granular
 - **IGNEOUS SUMMARY**: dunite
 - **ALTERATION**: serpentinised
 - **VEINS**: white, pale green, and dark veins
 - **STRUCTURE**: Brittle- Significant fracturing on vertical shear planes

Additional Data

- **Fabric intensity**: 5
- **Vein density (per meter)**: 6
- **Grain size**: 6
- **Hole BA4A-109Z Section 2, Top of Section 300.14 (m CCD)**
- **Core length (cm)**
- **Stained image**
- **Magnetic susceptibility**
- **Primary mineralogy (%)**
- **Grain size**
- **Degree of deformation**
- **Fracture/ Vein density (per meter)**
- **Alteration intensity**
- **Dip Magnitic contact**
- **Brittle**
- **Crystal plastic**
- **Veins**
<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shiptboard samples</th>
<th>Stained image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm^3)</th>
<th>Sequence</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture/ Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Alteration</th>
<th>Dip</th>
<th>Structures</th>
<th>Vein density (per meter)</th>
<th>Alteration halos</th>
<th>Abnormal heating</th>
<th>Veins</th>
<th>Vein crosscutting</th>
<th>Alteration halos</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>300.95</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>300.15</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>300.25</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>300.35</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>300.45</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>300.55</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>300.65</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>300.75</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Sequence: I
Unit/Subunit: 50i
Rock Name: dunite
Contact: continuous
Texture: granular
Igneous Summary: serpentinised dunite
Alteration: serpentinised
Veins: cut by white, white/brown, dark, and pale green veins
Structure: Brittle

Sequence: I
Unit/Subunit: 51a
Rock Name: harzburgite
Contact: tectonic
Texture: granular
Igneous Summary: serpentinised harzburgite
Alteration: serpentinised
Veins: cut by dark and white veins
Structure: Brittle-Semi brittle shearing and possible melt impregnation

Fabric intensity

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td>60</td>
<td>75</td>
</tr>
</tbody>
</table>

Vein density

<table>
<thead>
<tr>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

Degree of deformation

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

Alteration intensity

<table>
<thead>
<tr>
<th>100</th>
<th>80</th>
<th>60</th>
<th>40</th>
<th>20</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

Magmatic contact

Brittle Crystal plastic

Voros

Description

- **Fault zones:** Discrete brittle features
- **Structures:** Brittle, Crystal plastic
- **Veins:** Cut by white, white/brown, dark, and pale green veins
- **Textural features:** Brittle, Crystal plastic
- **Hole BA4A-109Z Section 3, Top of Section 300.93 (m CCD)**

Surface properties

- **Magnetic susceptibility:** MSCL-W MSP (SI x 10^-5)
- **Grain size:** GRA (g/cm^3)
- **Sequence:** I
- **Lithology:** Dunite
- **Primary mineralogy:** Olivine, Plagioclase, Clinopyroxene, Orthopyroxene, Amphibole, Sulfide
- **Degree of deformation:** Brittle
- **Fabric intensity:** 5
- **Vein density (per meter):** 6
- **Core length (cm):** 10
- **Shiptboard samples:** 1
- **Stained image:** 2
- **Depth (m CCD):** 300.95
- **CT image:** 4
- **Magnetic contact:** Brittle, Crystal plastic
- **Surface properties:** Voros

Alteration halos

- **Superficial alteration:** Fresh (<3%)
- **Moderate alteration:** Slight (3–10%)
- **Substantial alteration:** Moderate (11–30%)
- **Extensive alteration:** Substantial (31–60%)
- **Complete alteration:** Extensive (61–90%)
- **Ultracataclastite:** Complete (>90%)

Magmatic contact detonation

- **Brittle Crystal plastic**
- **Voros**

Textural features

- **Brittle:** Brittle, Crystal plastic
- **Magmatic contact:** Brittle, Crystal plastic
- **Dip:** 0-45°
- **Voros:** Crystal plastic
Hole BA4A-109Z Section 4, Top of Section 301.83 (m CCD)

<table>
<thead>
<tr>
<th>Depth (m CCD)</th>
<th>Core length (cm)</th>
<th>Shipboard samples</th>
<th>Stained image</th>
<th>CT image</th>
<th>Magnetic susceptibility</th>
<th>MSCL-W MSP (SI x 10^-5)</th>
<th>GRA (g/cm^3)</th>
<th>Unaffected</th>
<th>Lithology</th>
<th>Primary mineralogy (%)</th>
<th>Grain size</th>
<th>Degree of deformation</th>
<th>Fracture Vein density (per meter)</th>
<th>Alteration intensity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>301.85</td>
<td></td>
</tr>
<tr>
<td>301.95</td>
<td></td>
</tr>
<tr>
<td>302.05</td>
<td></td>
</tr>
<tr>
<td>302.15</td>
<td></td>
</tr>
<tr>
<td>302.25</td>
<td></td>
</tr>
<tr>
<td>302.35</td>
<td></td>
</tr>
<tr>
<td>302.45</td>
<td></td>
</tr>
<tr>
<td>302.55</td>
<td></td>
</tr>
<tr>
<td>302.65</td>
<td></td>
</tr>
<tr>
<td>302.75</td>
<td></td>
</tr>
</tbody>
</table>

Description:
- **SEQUENCE:** 1
- **UNIT/SUBUNIT:** 1a
- **ROCK NAME:** olivine gabbro
- **CONTACT:** intrusive
- **TEXTURE:** granular
- **ANOMALOUS FEATURES:** serpentinised gabbro dyke
- **ALTERATION:** altered and pseudomorphed
- **VEINS:** cut by white and dark veins
- **STRUCTURE:** Brittle

CRYSTAL PLASTIC: M-1033-2