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Data report: semiquantitative determination 
of detrital input to ACEX sites based 

on bulk sample X-ray diffraction data1
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Abstract
This data report extends the X-ray diffraction (XRD) work re-
ported in the Expedition Reports section of this volume from
~200 samples to 1570 investigated bulk powder samples. The
unique central Arctic Ocean samples of the Integrated Ocean
Drilling Program Arctic Coring Expedition (Expedition 302), the
first mission-specific platform expedition, were collected and pre-
pared by different German groups and provided to the Central
Laboratory for Crystallography and Applied Material Sciences
(ZEKAM), Geosciences, University of Bremen. The data set re-
ported here is special because all samples were measured on the
same diffractometer using the same measurement settings, and
the diffractograms were investigated by the same person. There-
fore, the data set gives maximum continuity with the onshore
party investigation. The Neogene sediments of the Arctic Ocean
are dominated by detrital nonbiogenic material. The composition
of fine-fraction silicates (clay minerals), the different SiO2 mineral
phases, which dominate much of the Paleogene sections, and the
diagenetic overprinting in the whole cores are best deciphered by
XRD. Important paleoceanographic and diagenic information
were deduced.

Introduction
The detrital mineral content of Arctic Ocean sediments is one of
the major sources of paleoceanographic interpretations because of
the scarcity of biogenic tracers, in particular in the Neogene sedi-
ments of central Arctic Ocean cores (e.g., Moran et al., 2006; Back-
man and Moran, 2008; Darby, 2008; Krylov et al., 2008, and refer-
ences therein). The Integrated Ocean Drilling Program (IODP)
Arctic Coring Expedition (ACEX; Expedition 302) cores are situ-
ated below the confluence of the two major surface currents of
the Arctic Ocean, the Beaufort Gyre and the Transpolar Drift. In-
termediate and deep waters of the Amerasian and Eurasian Basin
are separated by the Lomonosov Ridge, which rises >3000 m
above the seafloor (Fig. F1) (Rudels et al., 2004; Jakobsson et al.,
2008). Previous work has delineated the major source rocks and
tracer mineral assemblages that are related to the diverse mineral-
ogy of the circum-Arctic source regions. Figure F1 (Vogt, 1997,
with later additions) summarizes early investigations (Belov and
Lapina, 1961; Berry and Johns, 1966; Silverberg, 1972; Naugler et
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al., 1974; Darby, 1975; Clark et al., 1980; Darby et al.,
1989; Stein et al., 1994), recent clay (Wahsner et al.,
1999; Viscosi-Shirley et al., 2003) and heavy mineral
(Behrends et al., 1999) investigations, and the first
comprehensive quantification of bulk mineral as-
semblages (Vogt, 1997).

In general, the Canadian Arctic archipelago is a ma-
jor source of detritral carbonates and the Putorana
flood basalts to the south of the eastern Kara and
Western Laptev Sea are the source of a unique smec-
tite, plagioclase, and (clino-)pyroxene mineral as-
semblage. These regions are also very significant
sources of geochemically highly differentiated Fe-ox-
ide mineral assemblages (Darby et al., 2002). Pu-
torana Plateau basalts also produce a unique signal
that is detectable in rare earth elements and radionu-
clide investigations (Eisenhauer et al., 1994, 1999;
Tütcken et al., 2002; Haley et al., 2008) as well as in
their inorganic geochemistry (Schoster et al., 2000).
Investigations of the magnetic properties also traced
a specific magnetic mineral assemblage for these ba-
saltic rocks (Kleiber and Niessen, 2000).

Here I extend the initial investigation of the offshore
science party to a much higher sample resolution
(every few centimeters in the uppermost 60 m, litho-
logic Unit 1, and between ~190 and 380 meters be-
low seafloor [mbsf], lithologic Units 1/5, 1/6, 2, and
3) (see the “Sites M0001–M0004” chapter for de-
tailed lithology). Although general trends prevailed
(cf. the Expedition Reports section of this volume),
much higher frequency changes in the mineral as-
semblage are observed in the extended data set (Fig.
F2). Despite the already high number of samples, I
hope to increase the sample resolution in the future.
I encourage every research group that possesses
ground powder samples of ACEX cores to provide us
with their sample sets. Samples would not be de-
stroyed and contamination is at a minimum at our
laboratory.

Methods and materials
Sediment samples were frozen, freeze-dried to re-
move water, and ground by hand with an agate mor-
tar and pestle (see the “Sites M0001–M0004” chap-
ter) or agate mills (new ZEKAM, AWI, and ICBM
Oldenburg sample sets) (see Stein et al., 2006; Sluijs
et al., 2008). A few onshore party samples were repli-
cated in the new sample sets. No significant differ-
ences in X-ray diffraction (XRD) data from differ-
ently ground samples were found. The high number
of 1570 investigated samples was only possible
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through cooperation with R. Stein (Alfred Wegener
Institute Bremerhaven, AWI) and H.-J. Brumsack (In-
stitute for Chemistry and Biology of the Sea, Univer-
sity of Oldenburg, ICBM), who provided their Paleo-
gene samples of the ACEX cores (basically between
180 and 430 meters composite depth [mcd]). The up-
per 60 mcd of the ACEX cores was sampled by the
author.

X-ray diffraction
Instrument parameters
All 1570 XRD measurements were performed at the
Crystallography Department of Geosciences, Univer-
sity of Bremen, on a Philips X’Pert Pro MD X-ray dif-
fractometer equipped with a Cu tube (Kα, λ 1.541), a
fixed divergence slit (¼°2θ), a 15-sample changer, a
secondary monochromator, and the X’Celerator de-
tector system. Samples were prepared with the stan-
dardized Philips/Panalytical backloading system,
which provides nearly random distribution of the
particles. Measurements were made from 3° to 85°2θ
with a calculated step size of 0.016°2θ. The calcu-
lated time per step was 100 s. The 1570 samples
needed ~1700 h measuring time on our XRD instru-
ment. This time would increase to at least ~5100 h
(~212 days/24 h running) on a standard XRD instru-
ment with scintillation detector, and thus consume
very much of the mean lifetime of a standard X-ray
tube.

Peak identification was done graphically through
the Apple MacIntosh program MacDiff (version 4.5)
(servermac.geologie.uni-frankfurt.de/Staff/Home
pages/Petschick/RainerE.html) (Petschick et al.,
1996). To minimize subjective influences, the base-
line has been determined automatically with
MacDiff defaults. The program also provides a
mechanism to automatically estimate the integrated
peak area intensities with given defaults (for exam-
ple, by deconvolution of nearby peaks), as many
other XRD data programs do. I do not recommend
these “black boxes” for any kind of single peak-
based investigations, as natural mixtures of mixed
elemental silicates like clay minerals, feldspars, and
so on, are too variable to be accurately identified by
these automatic routines. In particular, the peak po-
sition and ranges of a certain peak or group of peaks
are too variable in different samples even from the
same region or core (for example, between the Neo-
gene and the Paleogene section of the ACEX cores).
This means that the recognition of peaks and the
calculation of integrated peak areas is a matter of a
certain amount of subjectivity, though that can be
2
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minimized, and that is why I emphasize here that
all 1570 samples have been investigated by one per-
son.

Mineral identification and 
semiquantification

Integrated peak area intensities for the 38 investi-
gated mineral peaks were calculated by MacDiff.
Based on these areas, ratios were calculated versus
each other and versus the sum of all peak area inten-
sities. To provide an easy comparison to published
data on surface samples of the potential source re-
gions (Andersen et al., 1996; Vogt, 1997; Vogt et al.,
2001), the fixed divergence was changed to auto-
matic divergence using an algorithm integrated in
MacDiff. This point is important to note, as a fixed
divergence slit leads to a stronger radiation of the
lowest angles (Fischer, 1996). If single peaks are in-
vestigated at these low angles, the higher radiation
leads to higher peaks and to higher content percent-
ages (see Krylov et al., 2008, for a comparison of
fixed divergence and automatic divergence slit mea-
surements and the content of the smectite group of
the clay fraction). Whereas mineral content trends
stay the same over the core, absolute values differ,
and a comparison of these absolute numbers be-
tween an XRD data set measured with fixed and an-
other measured with automatic divergence slit
would lead to difficulties in comparing results.

I also did not multiply the peak area data by any
kind of factor (e.g., Schultz, 1964; Griffin, 1971;
Ramm, 1991), as (1) the chemistry and mineralogy
of Arctic Ocean sediments are different from the
rocks investigated by these authors and the factors
might be completely wrong, (2) a comparative work
similar to Schultz (1964) for Arctic Ocean source re-
gion materials is pending (see Forsberg et al., 1999),
and (3) the use of different factors in various publica-
tions leads to content percentages that cannot be
compared to each other at all. In general, single peak
data produce the highest quantification error, as can
be seen by interlaboratory comparisons (cf. Omotoso
et al., 2006, and references therein).

The latest point is illustrated by Figure F3. Vogt
(1997) used the calculation factors of the four differ-
ent popular ways of calculating the clay mineral as-
semblage composition in Arctic Ocean sediments.
Massive differences appear, particularly in the con-
tent of kaolinite and chlorite, because the peak in-
tensities selected for chlorite depend directly on the
Fe content in the chlorites (illustrated by the peak
intensity ratio 4.72/3.54 Å in Fig. F3) (see Brown and
Brindley, 1980). At this point even the trends in clay
mineral group contents differ. Comparison of such
different initial data could lead to a misinterpreta-
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tion, particularly in overview articles that do not
check for the initial semiquantification technique
(e.g., Dethleff, 2005).

Absolute intensities also depend on the general XRD in-
strument configuration, the radiation source, and the
sample preparation methodology. Therefore, d-values
and ratios of intensities for the investigated peaks versus
the total intensity of the investigated samples are given
in the results table in the PANGAEA/WDC Mare data-
base (doi.pangaea.de/10.1594/PANGAEA.705057). I
propose that these ratios are easier to compare between
different XRD instruments. I recommend Kahle et al.
(2002) along with Moore and Reynolds (1997) for fur-
ther reading about the use of single peak intensities for
semiquantification.

In our laboratory we also use the Philips/Panalytical
software X’Pert HighScore for fast identification of
mineral phases. Based on a vast reference database,
the software also gives a semiquantitative estimate
for each identified mineral on the basis of the rela-
tive intensity ratio (R.I.R.) values. These R.I.R. values
are calculated as intensity ratio of the most intense
reflex of a specific mineral phase to the intensity of
the most intense reflex of pure corundum (I/Ic) refer-
ring to the “matrix-flushing method” after Chung
(1974). Therefore, the availability of suitable refer-
ences in the database with correct R.I.R. is crucial.
Hence, only two examples are shown here (Figs. F4,
F5), although most of the samples have already been
investigated with HighScore.

Results
On all 1570 samples, peaks for 38 minerals were
identified and quantified on XRD traces. The sum of
all peak areas was calculated as a “total peak area”
(TPA) (Fig. F2). Data are presented in the same man-
ner as in the “Sites M0001–M0004” chapter. Pre-
senting the ratio of a given mineral peak versus TPA
also excludes the dilution of the noncrystalline ma-
terials, which produces a diffuse bulb in the back-
ground of the diffractogram (compare Fig. F4 and
Fig. F5). In the Paleogene sequence, particularly in
lithologic Units 2 and 3 of the ACEX cores (see the
“Sites M0001–M0004” chapter), this is represented
by noncrystalline opal-A and partially crystalline
opal-CT. The reduction in TPA is here directly related
to opal contents up to 60%–70% (Ogawa et al., 2008,
submitted). In the Neogene section of the ACEX
cores, small amounts of amorphous Fe- and Mn-ox-
ides can be assumed, as outlined by the inorganic
geochemistry data (see the “Methods” chapter).

The Expedition 302 scientists (see the “Sites M0001–
M0004” chapter) already chose some very indicative
intensity peak ratios, such as the ratios of plagioclase
3
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and K-feldspar and of kaolinites and chlorites for
tracing wet or dry, warm or cold chemical (wet and
warm = more kaolinite and less feldspars, less K-feld-
spar), and strong or weak physical weathering (Grif-
fin et al., 1968; Tucker, 1988). Both ratios have a
clear maximum during the warmer phases of the Pa-
leogene sequence (Fig. F2).

Primary or nondiagenetic carbonate minerals (espe-
cially calcite) occur predominantly in the upper 200
m of the combined ACEX core sequence and are al-
ways a minor component in the Lomonosov Ridge
sediment sequence. Nevertheless, in the uppermost
60 m (~4 Ma according to O’Regan et al., 2008b) car-
bonate minerals continuously increase, with high-
frequency changes occurring in the dolomite con-
tent (Fig. F6). It is possible that the intensification of
the Northern Hemisphere glaciation is reflected by
these data. St. John (2008) proposes such intensifica-
tion based on an increase in ice-rafted debris and
coarse fraction content. However, this is only a hy-
pothesis because a full quantification of the mineral
content and its integration with grain size, ice-rafted
debris, and physical property data is pending (see
O’Regan et al., 2008a, for a first glance at such an ef-
fort).

This data report can only give a brief insight into the
plentifulness of significant changes of the bulk min-
eral assemblage. Data are stored in the Pangaea WDC
Mare Database (doi.pangaea.de/10.1594/PAN-
GAEA.705057) in the same manner data were tabu-
lated in the site chapter (Table T42 in the “Sites
M0001–M0004”chapter). Normalizing the single
peak data to the TPA allows for a good interlabora-
tory comparability and reliable semiquantification of
XRD data as long as the configuration of the instru-
ments is similar (i.e., same radiation, same diver-
gence slits, and similar detector). We will complete
full quantification of mineral contents for geochemi-
cal and paleoceanographic purposes using the QUAX
full-pattern analysis software (cf. Vogt et al., 2002).
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C. Vogt Data report: semiquantitative determination of detrital input
Figure F1. Provenance of minerals and mineral groups based on ~2000 surface samples quantified with the
same XRD measurements and subsequent QUAX determination after Vogt (1997) and Vogt et al. (2002). Qz =
dominant, s = subdominant. Star = approximate ACEX site position. See the “Sites M0001–M0004” chapter for
detailed core positions, bathymetry and oceanography. White arrows = downslope sediment transport mainly
through troughs. Alm = almandin, C(Fe) = Fe-rich chlorite, D = dolomite, Hbl = hornblende/amphibole, I = illite/
mica, blue K = calcite, red K = kaolinite, Kfs = K-feldspar, Mg = Mg-rich calcite, OLEM = mixed-layer clay, Plg =
Plagioclase, Pyx = pyroxene, Qz = quartz, S = smectite, Sid = siderite. BG = Beaufort Gyre, EGC = East Greenland
Current, Lomo = Lomonosov Ridge, TD = Transpolar Drift, TDsib = Siberian branch, WSC = Westspitzbergen
Current.
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C. Vogt Data report: semiquantitative determination of detrital input
Figure F2. Peak area ratios of quartz (Qz), K-feldspar (Kfs), plagioclase (Plg), kaolinite (K), chlorite (C), and py-
rite (4.26, 3.24, 3.21, 3.58, 3.54, and 2.71 Å, respectively). Fsp = sum of feldspar. Pyrite peak area is plotted vs.
bulk peak area intensity of 38 investigated XRD peaks (cf. the Expedition Reports section of this volume). Pyrite
is predominantly of diagenetic origin. Data available from the Pangaea database (doi.pangaea.de/10.1594/
PANGAEA.705057). Revised depth scale (rmcd) of the combined ACEX cores from O’Reagan et al. (2008a). For
a detailed description of the lithologic units 1/1 to 1/6, 2, 3, and 4, see the “Sites M0001–M0004” chapter. A
26 Ma hiatus exists at ~198 rmcd (cf. Sangiorgi et al., 2008).
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C. Vogt Data report: semiquantitative determination of detrital input
Figure F3. Comparison of four frequently used semiquantitative determinations for the clay mineral assem-
blages based on single peak intensities (PS2206-4 Gakkel-Ridge, water depth = 2993 m). Calculation by Vogt
(1997) is based on Biscaye’s factors and XRD pattern analysis techniques (1964, 1965). Systematic decrease in
illite mineral group content calculated after Pearson and Small (1988) is due to the determination of a fifth
mineral group, the mixed-layered clays, which is basically deducted from the illite group. MIS = marine isotope
stage. 
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C. Vogt Data report: semiquantitative determination of detrital input
Figure F5. Typical Paleogene X-ray pattern (Sample 302-M0004A-11X-2, 14 cm) with high amounts (~40%) of
X-ray amorphous opal (see bulb below green background line between 20° and 30°2θ). Plots, mineral identifi-
cation, and semiquantitative estimation of mineral content done with the Philips/Panalytical HighScore soft-
ware.
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C. Vogt Data report: semiquantitative determination of detrital input
Figure F6. Peak intensity ratios of calcite, dolomite/ankerite, and siderite/magnesite. TPA = total peak area.
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