Data report: bulk rock compositions of samples from the IODP Expedition 309/312 sample pool, ODP Hole 1256D¹

Natsuki Neo,² Shusaku Yamazaki,² and Sumio Miyashita²

Chapter contents

Abstract
Introduction
Methods and materials
Results
Summary
Acknowledgments5
References
Figures
Tables

Abstract

In this data report we present major and trace element abundances for 159 samples recovered from Hole 1256D during Integrated Ocean Drilling Program Expedition 309/312, determined by X-ray fluorescence and inductively coupled plasma-mass spectrometry (ICP-MS). These samples represent a large proportion of rocks taken from the Expedition 309/312 sample pool, a collaborative effort to provide comprehensive geochemical analyses of a representative suite of samples from Hole 1256D. The samples analyzed are distributed from the sheet and massive flows (~750 meters below seafloor [mbsf]), through the sheeted dike complex (1060.9-1406.6 mbsf), and to the late-stage crosscutting dike (~1500 mbsf) at the present bottom of hole underlying the two gabbro intrusions. Analytical procedures and accuracy of analysis are described and compared with shipboard analyses from Expeditions 309 and 312. There are clear compositional differences for some elements between the shipboard analyses and this study. Some of the samples collected during Expedition 312 were not completely dissolved by routine acid digestion, most probably because of the presence of zircon, resulting in low concentrations of elements hosted by zircon including Zr, Hf, Th, and U. These samples were further analyzed by ICP-MS following alkali fusion.

Most rocks sampled during Expedition 309/312 display normal mid-ocean-ridge basalt (N-MORB) signatures. However, three samples yield trace element patterns with light rare earth element enrichment patterns. The late dike recovered from the present bottom of Hole 1256D has a highly evolved N-MORB chemistry.

Introduction

Hole 1256D is in 15 Ma oceanic crust of the Cocos plate, which formed during an episode of superfast (~220 mm/y full rate; Wilson, 1996) spreading of the East Pacific Rise (Fig. F1). Following drilling operations during Ocean Drilling Program (ODP) Leg 206 (Wilson, Teagle, Acton, et al., 2003) and Integrated Ocean Drilling Program (IODP) Expedition 309/312 (see the "Expedition 309/312 summary" chapter), Hole 1256D now penetrates 1507.1 meters below seafloor (mbsf) and provides the first complete sampling of intact upper oceanic crust down to gabbros.

Four major lithologic zones were distinguished in Hole 1256D: lavas, transition zone, sheeted dike complex, and plutonic section

¹Neo, N., Yamazaki, S., and Miyashita, S., 2009. Data report: bulk rock compositions of samples from the IODP Expedition 309/312 sample pool, ODP Hole 1256D. *In* Teagle, D.A.H., Alt, J.C., Umino, S., Miyashita, S., Banerjee, N.R., Wilson, D.S., and the Expedition 309/312 Scientists, *Proc. IODP*, 309/312: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.309312.204.2009 ²Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishiku, Niigata 950-2181, Japan. Correspondence author:

f05j007a@mail.cc.niigata-u.ac.jp

Proc. IODP | Volume 309/312

(Fig. F2). The upper part of Hole 1256D consists of a thick sequence of lavas (lava pond, ~250-350.3 mbsf and inflated flows, 350.3-533.9 mbsf) and sheet and massive flows (533.9-1004.2 mbsf) separated by a 60 m thick transition zone (1004.2-1060.9 mbsf) from the underlying thin sheeted dike complex (1060.9– 1406.6 mbsf) (upper dikes, 1060.9-1348.3 mbsf and granoblastic dikes, 1348.3-1406.6 mbsf). The first gabbroic rocks were encountered at 1406.0 mbsf, and these intrusive gabbros extend to 1458.9 mbsf. Beneath these gabbros, a 24.2 m thick dike screen appears between 1458.9 and 1403.1 mbsf, which separates the upper gabbros from a second intrusive gabbro body between 1483.1 and 1495 mbsf. These lower gabbros are underlain by a further dike screen, and the lowermost rocks recovered from Hole 1256D are from a late-stage, crosscutting basaltic dike (1483.1–1507.1 mbsf) (see the "Expedition 309/312 summary" chapter).

The samples analyzed in this study are part of the Expedition 309/312 sample pool. This was a collaborative effort by shipboard scientists to ensure that a representative suite of samples were comprehensively chemically characterized for their major and trace element compositions. All samples were prepared for analysis at the National Oceanography Centre, University of Southampton, United Kingdom. Samples were cleaned by sawing and grinding to remove drilling contamination before multiple ultrasonic washes with millipore (18.2 M Ω) water to remove contamination. Samples were reduced to a coarse sand grain size using a fly press and reduced to powder by grinding in a Cr-steel shatterbox. Sample powders were then split into 0.5 to 20 g aliquots and distributed for chemical and isotopic analysis by scientists from the shipboard science party.

The pool samples of Expedition 309/312 provide a representative sample suite from the sheet and massive flows down to the late dike unit of the present bottom of hole. During the IODP Expedition 309/312, major and several trace element abundances were analyzed aboard ship by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) (see the "Expedition 309/312 summary" chapter). In this study, 159 samples from the Expedition 309/312 sample pool were analyzed at Niigata University, Japan, by X-ray fluorescence (XRF) and inductively coupled plasmamass spectrometry (ICP-MS). We report our analytical procedures and our estimates of the precision and accuracy of the analyses. Our new analyses are then compared to the shipboard data, though it should be noted that the pool samples and shipboard samples are not identical and were generally selected from a different positions. Finally, we briefly describe geochemical features of these analyses.

Methods and materials

Ten major elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, and P) were analyzed by XRF (Rigaku RIX 3000) at Niigata University following the analytical procedures of Takahashi and Shuto (1997) (Table T1). For trace element analyses (Sc, V, Cr, Co, Ni, Zn, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Ta, Pb, Th, and U), 159 samples were dissolved by HF-HNO₃ acid digestion following Takazawa et al. (2003). A total of 62 samples were also dissolved and analyzed by alkali fusion. Solutions were analyzed using an Agilent 7500a ICP-MS at Niigata University, calibrated using the reference values for BHVO-1 (basalt; Hawaii, U.S. Geological Survey [USGS]) of Eggins et al. (1997). Although we did not have enough sample powder to analyze all samples, selected trace elements (V, Cr, Ni, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th) were also determined by XRF to cross-check the ICP-MS data where possible.

This approach identified that for many samples cored during Expedition 312 and three samples cored during Expedition 309, there had not been complete dissolution during HF-HNO₃ attack, most probably because of the incomplete dissolution of acid-resistant minerals such as zircon and/or titanite. Therefore, all samples from Expedition 312 and three samples from Expedition 309 were dissolved by alkali fusion (Roser et al., 2000). In a variation of the Roser et al. (2000) method we dissolved fluxed samples in concentrated nitric acid as opposed to perchloric acid. Sample powders were dissolved in concentrated HF-HNO₃ using Pt crucibles and evaporated. Afterward, Na₂CO₃ alkali flux was added and heated in an electric furnace. The fluxed samples are dissolved in concentrated HNO₃, HCl, and ultrapure water. The samples were finally diluted ~20,000 times.

To check the accuracy of analyses, GSJ (Geological Survey of Japan) reference samples were analyzed by XRF. Major element data of JB-1a (basalt; Kitamatsuura), JB-2 (basalt; Oshima), and JB-3 (basalt; Fuji) are shown in Table T2. For trace element analyses, USGS Geochemical Reference Standard W-2 (diabase; Virginia) was dissolved and analyzed with every group of samples (Table T3). Major element and trace element abundances of shipboard standards BAS-206 and BAS-312 were also analyzed (Table T3).

For major elements, relative deviation (RD) values, an estimate of accuracy, between this study and recommended values are very low (Table T2). For trace elements, relative standard deviation (RSD) values, an estimate of precision, are <5% except for Sc, Co, Ni, Pb, and U. Trace element RD values of the aver-

age results from this study are less than $\pm 4\%$ for five sets of W-2 analyses compared to the recommended values of Eggins et al. (1997). RSD values of Zr, Hf, Th, and U that were dissolved by alkali fusion are <5%, but RD values for the recommended value (Eggins et al., 1997) are slightly higher (10%) for eight sets of sample analyses.

Table **T3** shows average (five analyses each) values of BAS-206 and BAS-312, RSD values and average standard deviation values for this study. RSD for most elements are <5% except for V, Cr, Ni, Cs, Ba, and Pb.

Sc analyses were strongly affected by a high blank of up to 8% of BHVO-1 counts per second, and therefore RSD values of Sc were high. Pb blanks were also high, possibly because of contamination by Pb from plastic solution storage vessels. The contamination of Pb from plastic vessels is demonstrated by the correlation between residence time in the plastic vessels and measured Pb abundances in the 5% HNO₃ solutions. Hence, Pb analyses also show highly dispersed results.

Results

Comparison of analyses by different dissolution procedures

Most of the elements analyzed by both dissolution methods (acid digestion and alkali fusion for ICP-MS analyses) show similar values within analytical error ranges. However, Zr, Hf, Th, and U concentrations in samples recovered during Expedition 312 show systematic differences between the two dissolution methods. Figure F3 shows a comparison of analyses of the same sample (312-1256D-184R-1, 0-8 cm) dissolved by acid digestion and following alkali fusion. It is apparent that Zr, Hf, Th, and U concentrations are higher in the sample split prepared by alkali fusion compared to that treated by acid digestion. This relationship is true for all samples from Expedition 312 treated by both methods. The discrepancy between the two dissolution methods is interpreted by the presence of acid-resistant minerals containing Zr, Hf, Th, and U, and is discussed below. On the other hand, Zn, Cs, and Pb show slightly different values between two dissolution methods. As mentioned above, procedural blanks for Pb are high even for the acid digestion method. The Pb blanks are further increased when samples are prepared by alkali fusion. Pb abundances in Hole 1256D samples are significantly affected by high blank levels, but as the Pb data from acid digestion appear to be more accurate with lower blank levels, these values are used for all samples in this study.

The most remarkable differences in Zr concentrations yielded by the two dissolution methods is encountered in samples from deeper than 1300 mbsf. The Zr values by acid digestion are much lower than the Zr values by alkali fusion for the samples from a deeper level. It is also apparent that the Zr abundances by acid digestion are much lower than those returned during shipboard analyses of samples from deeper levels than 1300 mbsf (Fig. F4). The Zr abundances by alkali fusion yield concentrations consistent with the shipboard analyses. Furthermore, they show good correlation with XRF data ($R^2 = 0.9802$) (Fig. F5). This indicates that the Zr abundances by acid digestion are incorrect because of the incomplete dissolution of acid-resistant minerals. Consequently, the Zr values by alkali fusion are regarded as correct values.

Because acid-resistant minerals such as zircon and titanite are not completely dissolved by acid digestion, the elements contained within these minerals will not be correctly analyzed in samples containing these minerals. For example, zircon contains high concentrations of Zr and Hf, so abundances of Zr and Hf are poorly analyzed by acid digestion for the samples containing zircon. Because Th and U are also highly compatible with zircon (Mahood and Hildreth, 1983), these concentrations may also be lower than the true values for zircon-bearing samples. Analyses of samples from deeper than 1300 mbsf, prepared by acid digestion only, show discernibly lower Th and U concentrations than the analyses by alkali fusion (Fig. F4). We conclude that the presence of zircon in samples deeper than 1300 mbsf has affected our ICP analyses of splits prepared by acid digestion.

The presence of titanite, another common acid-resistant mineral, may result in low abundances of heavy rare earth element (HREE) concentrations in samples prepared by acid digestion due to very high compatibility of HREE into titanite. However, rare earth element (REE) concentrations by the two dissolution methods are in good agreement with each other, suggesting that the presence of titanites has not affected the REE abundances in this study.

In conclusion, we found that three samples (309-1256D-146R-1, 30–54 cm; 146R-2, 80–88 cm; and 155R-2, 60–80 cm) at above 1300 mbsf contain acid-resistant minerals because of much lower values for splits prepared by acid digestion than the splits prepared by alkali fusion. Therefore, the solutions dissolved by alkali fusion were used for these three samples to determine Zr, Hf, Th, and U concentrations.

Therefore, we use the Zr, Hf, Th, and U analyses which were dissolved by alkali fusion for the samples

containing acid-resistant minerals. However, because the accuracy of analyses using acid digestion is generally higher than those of alkali fusion, for most trace elements we use data yielded by the standard acid digestion approach. Our preferred trace element analyses are shown in Table **T4** and variations of trace element abundances are shown in Figure **F7**.

Zircons are usually contained in felsic rocks as accessory minerals. The analyses described above suggest that zircons may be contained in the dike rocks deeper than 1300 mbsf, though zircons were not reported on board (see the "**Expedition 309/312 summary**" chapter). This may be explained by the different degrees of differentiation in the dike complex, but a systematic difference in Mg-number, where Mg# = $100 \times Mg/(Mg + Fe)$, is not recognized in samples above 1300 mbsf (Fig. F6). Higher degrees and different styles of hydrothermal alteration may be responsible for the appearance of zircon at the deeper level.

Comparison of data from this study and shipboard data

During Expedition 309/312, 10 major elements and 11 trace elements (Co, Zn, Sc, Cr, V, Cu, Zr, Y, Sr, Ba, and Ni) were analyzed by ICP-AES. Figures F6 and F7 compare the variations in major element and trace element abundances with depth using both the shipboard data and this study. For the major elements, downhole variations are generally consistent between the shipboard data and this study.

For the trace element analyses, comparison with the shipboard data is possible for the 10 trace elements analyzed on board; however, Cu, V, Cr, Ni, Zn, Y, and Zr values from this study are generally similar to the shipboard data. Sc values are significantly different between shipboard data and this study with Sc concentrations determined during Expedition 309 being much lower than our data. Co abundances determined aboard ship for samples in the vicinity of 1200 mbsf are much higher than our results. Sr abundances from Expedition 312 are in good agreement with our results, but Expedition 309 shipboard data tend to have higher Sr concentrations than those of this study. Shipboard Ba abundances from 800 to 900 mbsf tend to be higher, and those from 1100 to 1200 mbsf are lower than our results. Some of these discrepancies may be due to the different samples analyzed on board and in this study, but a significant component must be due to differences in analytical methods and analytical equipment and the difficulties of shipboard analysis. Table T5 shows results of BAS-206 and BAS-312 by shipboard and this study for major and trace elements. Major elements by shipboard and this study show generally

similar values. However, our data tend to have higher values for some trace elements.

Brief summary of bulk rock chemistries of the basaltic rocks of Hole 1256D

Almost all basaltic lavas from Expedition 309/312 show normal mid-ocean-ridge basalt (N-MORB) signatures with flat, light rare earth element (LREE)-depleted REE patterns (Fig. F8). Only one analysis (Sample 309-1256D-80R-2, 92-102 cm; 781.47 mbsf) from the lava succession of Hole 1256D exhibits an LREE-enriched pattern similar to an enriched MORB pattern. Most analyses of the sheeted dike complex including granoblastic dikes also yield N-MORB-like REE patterns. However, two analyses of samples from the same core (Samples 312-1256D-189R-1, 0–13 cm; and 189R-1, 71-89 cm) return LREE-enriched patterns (Fig. F8). The late-stage dike (Sample 312-1256D-234R-1, 26-29 cm) recovered in the bottommost core from Hole 1256D shows N-MORB patterns but is characterized by highly evolved features (e.g., Mg# = 39; TiO₂ = 2.2 wt%). This analysis is one of the most evolved analyses throughout Hole 1256D. It is noticed that the uppermost lava pond, suspected to have solidified some 5-10 km off-axis, also shows relatively evolved chemistry (see the "Expedition 309/312 summary" chapter). This may imply that late-stage magmatism at Site 1256, as displayed by the late dike of the bottom of hole and lava pond of the top of lava sequence, is characterized by evolved magmas.

Summary

Major and trace element concentrations of 159 pool samples from Expedition 309/312 were analyzed by XRF and ICP-MS. Accuracy of major element analyses is high. Almost all trace elements have values consistent with recommended values. Major element concentrations determined by this study are generally similar to shipboard data as shown with respect to downhole variations. Trace element abundances of Zr, Hf, Th, and U of Expedition 312 samples were analyzed by alkali fusion method because of the presence of zircon.

When compared to shipboard data, our results for trace elements, V, Cr, Ni, Zn, Y, and Zr are similar in terms of downhole variations. Other elements tend to show wholly or partially different values, may be due to differences in analytical method or differences of analyzed samples.

Almost all basaltic rocks of Expedition 309/312 show N-MORB REE patterns. However, three samples (309-1256D-80R-2, 92–102 cm; 312-1256D-189R-1, 0–13

cm; and 189R-1, 71–89 cm) show LREE-enriched patterns. Moreover, one sample (312-1256D-234R-1, 26–29 cm) from the bottom of hole has highly evolved N-MORB chemistry. It may imply that latestage magmatism as shown by the late dike and lava pond that formed the uppermost basement at Site 1256, is characterized by evolved magmas.

Acknowledgments

We thank the IODP Expedition 309/312 Science Party, the crew, and technical staff of the R/V JOIDES *Resolution* for their help. This project used samples and/or data provided by the Integrated Ocean Drilling Program (IODP). We thank Damon Teagle and his dedicated team of "rock-crushers" at the National Oceanography Centre, University of Southampton, for the preparation and distribution of Expedition 309/312 sample pool powders. Natsuki Neo, Shusaku Yamazaki, and Sumio Miyashita were supported by the Center of Deep Earth Exploration (CDEX) for travel fares. This study was supported by Grant in Aid of Ministry of Education and Science of Japan (17340162) and Grant for Promotion of Niigata University Project for Sumio Miyashita. We thank Yoshiko Adachi for discussions. This paper is greatly improved by critical review by Damon Teagle. We also thank for reviews by Susumu Umino, John MacLennan and Naoto Hirano, which improved substantially this paper.

References

- Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M., and Handler, M.R., 1997. A simple method for the precise determination of ≥40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. *Chem. Geol.*, 134(4):311–326. doi:10.1016/ S0009-2541(96)00100-3
- Expedition 309/312 Scientists, 2006. Expedition 309/312 summary. *In* Teagle, D.A.H., Alt, J.C., Umino, S., Miyashita, S., Banerjee, N.R., Wilson, D.S., and the Expedition 309/312 Scientists. *Proc. IODP*, 309/312:

Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.309312.101.2006

- Imai, N., Terashima, S., Itoh, S., and Ando, A., 1995. 1994 compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples, "igneous rock series." *Geostand. Geoanal. Res.*, 19(2):135–213. doi:10.1111/j.1751-908X.1995.tb00158.x
- Mahood, G., and Hildreth, W., 1983. Large partition coefficients for trace elements in high-silica rhyolites. *Geochim. Cosmochim. Acta*, 47(1):11–30. doi:10.1016/0016-7037(83)90087-X
- Roser, B., Kimura, J., and Hisatomi, K., 2000. Whole-rock elemental abundances in sandstones and mudrocks from the Tanabe Group, Kii Peninsula, Japan. *Shimane Diagaku Chikyu Shigen Kankyogaku Kenkyu Hokoku*, 19:101–112.
- Sun, S.-S., and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. *In* Saunders, A.D., and Norry, M.J. (Eds.), *Magmatism in the Ocean Basins*. Geol. Soc. Spec. Publ., 42:313–345.
- Takahashi, T., and Shuto, K., 1997. Major and trace element analyses of silicate rocks using X-ray fluorescence spectrometry RIX3000. *Rigaku-Denki J.*, 28:25–37. (in Japanese)
- Takazawa, E., Okayasu, T., and Satoh, K., 2003. Geochemistry and origin of the basal lherzolites from the northern Oman ophiolite (northern Fizh block). *Geochem., Geophys., Geosyst.*, 4(2):8605. doi:10.1029/2001GC000232
- Terashima, S., Taniguchi, M., Mikoshiba, M., and Imai, N., 1998. Preparation of two new GSJ geochemical reference materials: basalt JB-1b and coal fly ash JCFA-1. *Geostand. Geoanal. Res.*, 22(1):113–117. doi:10.1111/ j.1751-908X.1998.tb00550.x
- Wilson, D.S., 1996. Fastest known spreading on the Miocene Cocos–Pacific plate boundary. *Geophys. Res. Lett.*, 23(21):3003–3006. doi:10.1029/96GL02893
- Wilson, D.S., Teagle, D.A.H., Acton, G.D., et al., 2003. *Proc. ODP, Init. Repts.*, 206: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.206.2003

Initial receipt: 14 October 2008 Acceptance: 3 March 2009 Publication: 17 June 2009 MS 309312-204

Figure F1. Seafloor topography of the East Pacific Rise and eastern equatorial Pacific Ocean. Hole 1256D is on 15 Ma oceanic crust of the Cocos plate.

Figure F2. Simplified igneous stratigraphy of Hole 1256D following drilling operations on ODP Leg 206 and IODP Expedition 309/312, modified from Teagle et al. (2006).

Figure F3. Comparison of inductively coupled plasma–mass spectrometry analyses of Sample 312-1256D-184R-1, 0–8 cm, dissolved by acid digestion and following alkali fusion. Zr, Hf, Th, and U values by acid digestion are lower than those by alkali fusion, indicating the presence of acid-resistant minerals.

Figure F4. Downhole variations of Zr, Hf, Th, and U abundances of inductively coupled plasma–mass spectrometry analyses by acid digestion and alkali fusion. The discrepancy between the two dissolution methods becomes prominent in samples from deeper than ~1300 mbsf.

Figure F5. Plot of Zr values of inductively coupled plasma–mass spectrometry (ICP-MS) analyses by alkali fusion method vs. analyses of X-ray fluorescence (XRF) for the same samples. Zr values of ICP-MS analyses show higher concentrations than those of XRF analyses.

Sheeted dike Gabbro

N. Neo et al.

кр. 206	Sc (ppm)	V (ppm)	Cr (ppm)	Co (ppm)	Ni (ppm)	Zn (ppm)	Ga (ppm)	Rb (ppm)	Sr (ppm)	Y (ppm)	Zr (ppm)	Nb (ppm)	Cs (ppm)	Ba (ppm)	La (ppm)	Ce (ppm)
Depth (mbsf)	(ppm) thology 30	(ppm) 400 80 % % % % % % % % % % % % % % % % % % %	(ppm) 00 700 140	(ppm) 20 40 60 80	(ppm) 100 20 0 0 0 0 0 0 0 0 0 0 0 0 0	(ppm) 0 150 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(ppm) 15202 15204 15	(ppm) 5 2 4	(ppm) 100 150	(ppm) 0 35 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(ppm) 100 20 ••• ••• ••• ••• ••• ••• ••• ••• ••• •	(ppm) 0 5 10 0 12.6 ppm 0 12.6 ppm 0 12.6 ppm 0 12.6 ppm 1 15.4 ppm 1 15.4 ppm 1 15.4 ppm	(ppm) 0.050. 8 c.52 ppr 9 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	(ppm) 1 25 50 75 1 25 50 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(ppm) 5 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	(ppm) 10 20 0 20 0 0 0 0 0 0
	Sheet flows	Y Intru	usive contac	ts OEx	p. 309 this	study										

Gabbro

- Magmatic contacts
 - - Exp. 312 this study
 - Exp. 309 shipboard
 Exp. 312 shipboard

- Y 🕵 Breccia See Granoblastic texture

Figure F7 (continued).

206	2		Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Yb (ppm)	Lu (ppm)	Hf (ppm)	Ta (ppm)	Pb (ppm)	Th (ppm)	U (ppm)
ц Ц	<u>.</u>	Lithology	24	10 20	3 6		5 10	1 2	5 10	1.5 3	5 10		0 0.6 1.	2 2.5 5	0.5 1	0.5 1	0.5 1	0.1 0.2
	750	**** **** ****	° °	88	్థితా	ୢୖୄ	- 800 - 200 -	୍ଷ୍ଣ ଜୁନ	୍ଦ୍ର ଜୁଙ୍କ -	- °° -				°°°	°°° 28	ိစ္တစ္တ စစ္တစ္တ	°°°	80000
		ನಲ್ಲ ನಲ್ಲ ನಲ	8	8	8 0	8 0	8 0	8 0	8	- 8 - 0	8 0	8	° I	- 88 - 0 - 0	8	000 0 0	8	8
sf) 309.	200	 	- 000 000 000 000 000 000 000 000 000 00			- 炎 -	- 🍇 -	- 000000	- 💑 -	- 000000 -			- 8		0	ୢୖଢ଼ୢୖୄ	in the second se	
(mbs	3 1000		\$ \$			- 866 - - 866 -									88 88	୍ ଖି ଚୁ ଅନ୍ତୁ	8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Jepth		● 単 単 単 ・ 作 単 単 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	8	- 800 -	- 8° -	- 86 86 - 86	- 🏶 -	- & -	- 🎇 -					- 8° -		<u>୍</u> ଦ୍ଧିତ୍		- 380 - 880 -
	4050				- 000 - 000 - 000										999999 1999			
[· 1250	type as as the test	ъ. В.	- 6			- B	- 18	- 2-	- 28 -					۳ <u>6</u>	80 20	8 <u>.</u>	~~ 6
e. L) <u>;</u>		2		6	2	8		8					-	2			
ļ	1500	nor Store	5.9 ppm 5.8 ppm	29.9 ppr	n 10.1 pp n 89.9 ppr	om 3.0 ppr n 3.2 ppr	n 13.2 ppm n 12.8 ppm	2.4 ppm 2.3 ppm	15.7 p	pm 2 3.2 pp pm 3.2 pp			· 28	7.39 pp 7.97 pp			5. 5.	0.27 ppm 0.30 ppm
•	1500								L							Ē		
		Shee Pillo	et flows w lava	Magr	sive contacts natic contac	s OEx∣ ts DEx∣ ● Ex∣	p. 309 this s p. 312 this s p. 309 shipt	study study poard										
		Mas Shee	sive basalt eted dike	🗱 Breco	cia oblastic text	ure Ex	p. 312 shipt	oard										

Sheeted dike

N. Neo et al.

Figure F8. Chondrite (Sun and McDonough, 1989) normalized rare earth element (REE) abundances of the pool samples recovered from Expedition 309/312. REE patterns are shown for each sublithology. Almost all samples show normal mid-ocean-ridge basalt (N-MORB) REE patterns. However, one lava sample from the sheeted and massive flows and two samples from upper dikes show light rare earth element–enriched patterns. A late dike sample from the bottom of Hole 1256D has evolved values. Red lines = N-MORB pattern (Sun and McDonough, 1989), gray lines = REE abundances from 0° – 10° N on the East Pacific Rise (PetDB).

Table T1. Major element abundances. (See table note.) (Continued on next two pages.)

Core, section, interval (cm)	Depth (mbsf)	SiO ₂ (wt%)	TiO ₂ (wt%)	Al ₂ O ₃ (wt%)	Fe ₂ O ₃ (wt%)	MnO (wt%)	MgO (wt%)	CaO (wt%)	Na ₂ O (wt%)	K ₂ O (wt%)	P ₂ O ₅ (wt%)	Total	LOI (wt%)	Mg#
309-1256D-														
75R-1, 116–123	753.05	49.58	1.44	14.34	14.09	0.22	7.36	10.77	2.73	0.04	0.11	100.67	1.69	50.8
78R-1, 42–50	763.95	52.42	1.45	13.74	12.20	0.24	6.89	10.70	2.87	0.07	0.11	100.69	0.21	52.8
78R-2, 20–33	764.97	49.55	1.43	13.85	13.60	0.23	7.52	11.42	2.52	0.03	0.11	100.25	0.74	52.2
78R-3, 63–76	766.55	54.14	2.12	12.76	13.44	0.28	5.72	9.35	2.92	0.21	0.18	101.13	0.62	45.7
/8K-3,63-/6	766.55	52.50	2.11	12.83	14.93	0.32	5.//	9.38	3.15	0.37	0.18	101.55	0.33	43.3
80R-2 92-102	781 47	51.88	2.17	12.20	14.95	0.20	5.47	9.08	2 97	0.00	0.19	101.54	0.75	42.0
82R-2, 10–20	793.77	52.04	1.36	13.65	11.88	0.22	7.14	10.98	2.54	0.24	0.11	100.15	0.46	54.3
84R-2, 61-70	803.78	52.51	1.08	14.21	11.02	0.18	7.87	10.77	2.22	0.06	0.10	100.01	1.18	58.6
85R-2, 124–136	814.97	49.50	1.06	13.65	15.33	0.22	7.16	10.70	2.19	0.17	0.11	100.08	1.31	48.0
85R-2, 124–136	814.97	53.40	1.12	14.45	10.18	0.21	7.28	10.90	2.26	0.11	0.11	100.01	1.14	58.6
85R-4, 83–92	816.46	51.63	1.29	14.35	11.61	0.18	7.00	10.76	2.42	0.06	0.10	99.40	1.35	54.4
85R-5, 0–21	816.83	51.32	1.28	14.23	11.79	0.20	7.14	11.03	2.36	0.05	0.10	99.49	0.99	54.5
8/K-1, 22-35	831.06	51.12	1.32	13.66	13.06	0.20	7.55	11.35	2.34	0.05	0.10	100.52	0.63	52.6
878-2, 83-90 880-1 10 21	840.41	50.44	1.25	14.07	12.00	0.15	7.30	11.02	2.69	0.05	0.09	99.90	0.38	52 Q
88R-1, 56-64	840.68	50.67	1.31	14.15	12.98	0.12	7.35	11.40	2.36	0.05	0.10	100.71	0.50	52.8
92R-1, 102–109	869.83	50.85	1.21	14.40	10.98	0.19	8.22	11.26	2.78	0.39	0.12	100.38	0.54	59.7
97R-1, 61–70	898.37	50.12	1.11	14.91	10.94	0.17	8.37	12.14	2.26	0.07	0.09	100.16	1.15	60.2
97R-1, 102–109	898.69	49.93	1.11	14.93	10.83	0.19	8.04	12.27	2.19	0.06	0.09	99.64	1.09	59.5
99R-2, 29–37	908.97	51.33	1.22	13.86	12.21	0.18	7.77	11.12	2.53	0.08	0.10	100.38	0.49	55.7
99R-2, 101–120	909.63	50.86	1.22	13.78	12.35	0.18	7.74	11.35	2.23	0.05	0.09	99.84	0.46	55.3
100R-1, 136–144	911.71	49.93	1.22	14.03	12.47	0.18	8.18	11.75	2.12	0.03	0.10	99.99	0.74	56.5
102R-1, 17-29	926.86	50.77	1.33	13.79	12.70	0.19	7.51	11.26	2.19	0.06	0.11	99.90	0.56	53.9
102R-1, 126-137 103P-1 20 28	927.03	30.88 ⊿0.00	1.21	14.45	11.20	0.15	0.20 8.51	11.55	2.05	0.05	0.10	99.75	2.21	59.2 57.5
105R-1, 20-20 105R-1, 35-46	945.99	50.96	1.35	13.70	12.44	0.25	7 43	11.55	2.20	0.05	0.11	100.30	0.79	53.3
107R-1, 9–17	955.33	52.13	1.34	13.52	12.56	0.24	7.38	10.75	2.30	0.05	0.11	100.38	0.64	53.8
108R-1, 38–48	959.21	50.76	1.24	13.93	11.57	0.21	8.13	11.52	2.25	0.05	0.10	99.76	0.84	58.2
108R-2, 52–61	960.51	50.83	1.52	14.79	11.48	0.16	7.84	10.75	2.56	0.08	0.13	100.15	1.84	57.5
109R-1, 117–129	965.93	51.34	1.34	13.42	13.09	0.20	7.12	10.77	2.28	0.04	0.11	99.72	0.55	51.8
110R-1, 26–32	969.91	51.05	1.36	13.47	13.28	0.21	7.20	10.78	2.33	0.05	0.12	99.82	0.55	51.7
110R-1, 130–144	970.89	50.83	1.19	13.46	13.24	0.17	7.34	11.04	2.03	0.05	0.10	99.44	1.65	52.3
110R-2, 76-88	9/1./1	50.96	1.33	13.80	12.62	0.20	7.55	11.30	2.23	0.06	0.11	100.15	0.53	54.2
111R-1, 20-32 111D 1 48 55	974.00	52 24	2.55	12.27	17.32	0.28	5.60 6.67	9.71	2.02	0.08	0.21	00.20	0.50	40.1 51.7
112R-1 113-122	980.26	51 23	1.51	14 02	11.98	0.10	7 76	11 38	2.25	0.04	0.11	99.82	0.73	56.2
113R-1, 43–53	984.58	51.17	1.20	13.80	12.25	0.26	7.84	11.39	1.97	0.03	0.10	100.01	0.45	55.9
114R-1, 117–122	989.87	50.15	1.21	14.75	12.20	0.17	7.95	11.48	2.20	0.05	0.11	100.26	0.73	56.3
114R-1, 127–142	990.04	50.83	1.16	14.13	12.16	0.17	7.88	11.26	2.06	0.05	0.10	99.80	0.96	56.2
115R-1, 40–50	994.01	51.46	1.35	13.41	13.26	0.20	7.07	10.72	2.25	0.09	0.12	99.93	0.60	51.3
116R-1, 0–15	998.40	51.75	1.36	13.48	12.98	0.20	7.09	10.62	2.22	0.09	0.12	99.91	0.49	51.9
117R-1, 56–67	1003.85	51.23	1.22	13.83	12.04	0.23	8.16	11.44	2.05	0.03	0.10	100.33	0.96	57.3
11/K-1, 9/-10/	1004.17	51.05	1.15	14.12	12.22	0.16	8.23	10.61	1./2	0.04	0.10	99.40	2.45	57.1
120R-1, 46-30	1008.05	51.09	1.20	13.97	12.41	0.20	0.27 7.06	10.68	2.28	0.03	0.10	99.81	0.46	51.9
122R-1, 28-33	1027.55	55.63	1.26	9.71	16.05	0.17	6.25	5.18	2.58	0.07	0.12	96.99	5.87	43.5
122R-1, 67–79	1027.97	39.32	1.15	9.87	34.55	0.18	6.49	4.28	2.95	0.05	0.11	98.94	1.80	27.1
126R-1, 39–47	1046.95	49.93	1.47	13.41	12.97	0.20	7.40	11.39	2.13	0.03	0.12	99.05	1.37	53.0
128R-1, 80–91	1056.77	53.21	1.43	12.07	12.78	0.20	8.39	7.97	4.63	0.05	0.11	100.85	1.38	56.5
129R-1, 34–51	1061.51	50.78	1.54	13.78	12.60	0.23	7.06	11.73	2.26	0.03	0.14	100.15	1.01	52.6
129R-1, 125–139	1062.26	50.06	1.51	13.78	12.66	0.18	6.97	11.81	2.32	0.03	0.14	99.47	1.53	52.1
130R-1, 14–22	1065.84	50.81	1.32	13.20	12.95	0.20	6.79	10.95	2.45	0.04	0.12	98.82	0.77	50.9
130K-2, 21-34	1067.28	51.89	1.22	13.62	12.02	0.20	/.80	9.43	3.04	0.21	0.11	99.58	2.44	50.4
131R-1 65_79	1007.78	51.20	1.34	13.54	12.10	0.21	6.82	11.02	2.34	0.03	0.12	100 11	1 30	51.0
131R-1, 137–147	1071.86	51.44	1.32	13.48	12.94	0.20	6.88	11.22	2.27	0.04	0.12	99.93	1.28	51.3
132R-1, 0–18	1075.30	51.15	1.29	13.64	12.63	0.18	7.08	11.37	2.23	0.04	0.11	99.71	1.72	52.6
133R-1, 42–52	1082.15	50.82	1.25	14.47	11.44	0.24	8.07	12.20	2.14	0.02	0.10	100.74	1.42	58.3
133R-1, 141–148	1082.41	51.65	1.06	13.78	12.07	0.20	7.77	10.84	2.37	0.03	0.10	99.87	1.57	56.0
134R-2, 40–52	1086.54	51.87	1.58	13.61	12.78	0.29	7.63	10.26	3.20	0.10	0.14	101.45	2.04	54.2
135R-1, 54–64	1090.56	51.71	1.66	12.96	14.69	0.28	6.65	9.85	2.87	0.06	0.14	100.86	1.55	47.3
135R-1, 121–127	1090.86	55.49	1.38	11.55	15.74	0.27	6.38	6.27	2.53	0.02	0.12	99.75	4.71	44.5
136R-1, 11-10	1094.65	50.69	1.05	13.30	12.99 11 19	U.23	/./ð 0.24	10.79	3.43 3.00	0.12	0.16	101.18	1.79	54.Z
137R-1, 92-90	1100 11	52.35	1.33	13 44	12.08	0.20	7.34 8.47	9 73	3.43	0.13	0.10	101.12	2.04	58.0
138R-2, 32–41	1105.89	50.89	1.32	13.77	12.73	0.21	7.56	11.39	2.16	0.04	0.10	100.18	1.33	54.0
139R-1, 93–99	1109.83	52.05	1.62	13.44	12.92	0.34	7.87	9.41	3.26	0.08	0.15	101.12	2.79	54.7

Table T1 (continued). (Continued on next page.)

Core, section, interval (cm)	Depth (mbsf)	SiO ₂ (wt%)	TiO ₂ (wt%)	Al ₂ O ₃ (wt%)	Fe ₂ O ₃ (wt%)	MnO (wt%)	MgO (wt%)	CaO (wt%)	Na ₂ O (wt%)	K ₂ O (wt%)	P ₂ O ₅ (wt%)	Total	LOI (wt%)	Mg#
140R-1 55-65	1114 72	51.62	1 64	13.99	14.82	0.26	7 87	6.90	3 58	0.06	0.16	100.91	4 09	51.2
142R-1, 38–48	1123.75	49.98	1.37	14.32	11.19	0.20	9.06	11.74	2.32	0.12	0.13	100.91	4.45	61.6
142R-2, 40–55	1125.34	49.75	1.33	15.10	11.14	0.20	8.62	11.28	3.06	0.06	0.13	100.67	2.43	60.5
143R-1, 72-82	1128.71	50.63	1.16	13.87	12.29	0.19	8.04	11.17	2.45	0.02	0.09	99.90	1.73	56.4
143R-1, 122–123 143R-2, 40–49	1129.23	50.57	1.12	14.14	12.30	0.19	7.65	11.24	2.24	0.02	0.09	99.38 99.80	1.75	55.5
144R-2, 39–56	1134.38	50.92	1.15	14.13	12.14	0.20	7.65	11.45	2.06	0.03	0.10	99.82	1.46	55.5
145R-2, 73–89	1139.63	51.37	1.06	14.00	11.46	0.20	8.46	11.08	2.25	0.03	0.09	100.00	1.51	59.4
146R-1, 30-54 146R-2, 80, 88	1142.50	51.52	1.03	14.04	11.53	0.19	8.06 7.81	11.20	2.19	0.04	0.09	99.89	1.95	58.1 56.9
147R-1, 40–48	1145.98	50.92	1.31	13.64	13.09	0.21	7.22	10.46	3.07	0.08	0.10	100.09	2.13	52.2
149R-1, 57–63	1156.66	52.49	1.90	12.27	15.17	0.24	6.81	8.27	3.65	0.06	0.16	101.03	1.58	47.0
149R-1, 138–145	1157.33	52.59	1.85	12.48	15.15	0.28	6.73	8.82	2.73	0.05	0.15	100.83	1.83	46.8
151R-1, 119–125 153R-2, 36–47	1166.43	51.75	1.58	13.26	14.35	0.29	6.85 6.41	10.32	2.56	0.04	0.13	101.11	0.98	48.6 46.2
153R-2, 103–115	1177.28	52.02	1.54	12.98	13.61	0.26	7.11	9.94	2.80	0.06	0.12	100.44	1.37	50.8
154R-2, 30–52	1181.45	52.13	1.68	12.48	14.26	0.27	6.94	9.80	2.80	0.11	0.13	100.60	2.10	49.1
155R-2, 60-80	1186.47	51.34	1.47	13.32	13.65	0.25	7.31	10.29	2.35	0.07	0.12	100.17	1.39	51.5
156R-1, 90–100	1107.12	50.87	1.49	13.33	11.91	0.23	8.34	10.43	2.02	0.04	0.12	100.44	1.60	58.1
157R-1, 111–125	1195.29	51.52	1.78	12.90	15.00	0.25	6.25	10.07	2.46	0.04	0.14	100.41	1.49	45.2
159R-1, 3–13	1203.83	51.39	1.61	13.07	14.38	0.25	6.79	10.09	2.53	0.04	0.13	100.27	1.54	48.3
159R-1, 60-70	1204.40	52.01	1.64	11.65	14.13	0.26	7.84	10.50	2.52	0.07	0.13	100.75	3.52	52.3
160R-1, 98-110	1204.63	50.79	1.16	13.74	12.54	0.25	7.70	10.86	2.25	0.04	0.12	99.80	2.04	53.8 53.9
161R-1, 105–113	1211.15	50.44	0.98	14.39	10.52	0.19	9.77	11.50	2.80	0.41	0.07	101.07	2.74	64.8
162R-1, 37–45	1213.95	50.51	1.32	14.22	11.59	0.19	7.90	11.53	2.22	0.14	0.11	99.71	2.03	57.4
162R-2, 89–106	1215.60	50.53	1.12	14.29	11.41	0.19	8.59	11.93	1.88	0.04	0.08	100.05	1.73	59.8
164R-1, 27-50	1219.91	50.84	1.49	13.49	12.99	0.25	7.30	10.89	2.25	0.05	0.12	99.87 99.85	1.60	55.5 54.8
164R-2, 5–15	1224.49	50.58	1.40	14.18	12.12	0.20	7.37	11.92	2.12	0.03	0.11	100.09	1.43	54.5
164R-2, 101–107	1225.18	51.88	1.59	13.00	14.10	0.21	6.65	10.22	2.40	0.05	0.12	100.23	1.54	48.3
164R-3, 36–44	1225.86	51.37	1.77	13.09	14.86	0.25	6.59	10.16	2.45	0.03	0.14	100.72	1.54	46.7
165R-1, 23-33 165R-2 71_91	1228.12	52.32 51.21	1.56	12.83	13.41 14 38	0.25	7.49 6.51	9.62 10.11	2.57	0.05	0.12	100.22 99.49	1.99	52.5 47 3
165R-3, 19–30	1230.19	51.94	1.63	12.90	13.56	0.23	6.65	10.42	2.70	0.07	0.13	100.23	1.64	49.2
166R-1, 15–27	1232.87	51.81	1.64	12.69	14.12	0.24	7.43	8.89	2.85	0.06	0.14	99.85	2.04	51.0
166R-1, 126–132	1233.74	51.01	1.69	12.79	14.68	0.24	6.26	10.26	2.32	0.04	0.13	99.42	1.05	45.7
166R-2, 88-99 166R-3 49-65	1235.57	50.93	1.64	12.88	13.89	0.21	6.38	9.63	3.16	0.07	0.13	99.25 98.46	1.32	47.6 45.5
167R-1, 12–23	1236.68	50.18	1.15	14.20	11.42	0.18	8.32	12.12	1.94	0.04	0.09	99.63	1.00	59.0
167R-2, 50–70	1238.63	50.31	1.08	14.06	11.29	0.18	8.47	12.12	1.91	0.06	0.08	99.56	1.42	59.7
168R-1, 58–72	1243.18	50.56	1.54	13.31	13.37	0.21	6.87	11.24	2.14	0.03	0.12	99.39	0.75	50.4
168R-3, 23-32 168R-4 78-90	1245.16	50.80 50.89	1.52	13.52 13.40	13.13	0.21	7.04 6.86	11.46	2.15	0.04	0.12	99.97	0.95	51.5
169R-2, 40–54	1248.75	51.59	1.18	13.69	12.71	0.21	7.45	10.99	2.00	0.04	0.15	100.08	1.89	53.7
169R-3, 18–37	1249.88	53.19	1.01	12.95	11.91	0.19	8.09	9.65	2.63	0.08	0.08	99.78	2.49	57.3
170R-2, 40-48	1253.50	51.29	1.19	13.74	12.61	0.19	7.53	11.35	1.89	0.04	0.11	99.95	2.19	54.2
170R-2, 130–144 170R-3 22–40	1254.31	50.22 50.37	1.04	14.79	10.77	0.17	8.76 9.28	12.19	2.00	0.07	0.07	100.10	1.35	63.8
212 12560	123 1.00	50.57	1.01	11.52	10.11	0.17	2.20	11.25	2.77	0.55	0.07	100.15	2.01	05.0
173R-1, 0–10	1260.60	51.27	1.10	13.93	12.15	0.21	7.71	11.68	1.94	0.03	0.09	100.11	1.09	55.7
174R-1, 73–79	1266.13	51.47	1.55	12.01	14.36	0.27	6.44	8.52	2.73	0.25	0.12	97.71	1.33	47.0
175R-1, 75–83	1272.05	51.19	1.53	13.73	13.48	0.22	6.82	11.18	2.24	0.05	0.13	100.56	1.04	50.0
176R-1, 116–122	1277.27	50.54	1.76	13.07	15.06	0.31	6.30	10.32	2.36	0.08	0.14	99.94	1.42	45.3
170R-2, 42-33 181R-1, 51-56	1278.03	50.22	1.22	12.30	12.47	0.29	7.61	9.55	2.34	0.03	0.19	99.33 99.21	0.73	57.5 54.7
182R-1, 18–25	1305.09	50.60	1.22	14.03	12.67	0.21	7.55	11.37	2.26	0.07	0.09	100.06	0.28	54.1
184R-1, 0–8	1314.50	51.02	1.52	13.23	14.03	0.22	6.71	10.37	2.64	0.06	0.12	99.91	0.45	48.6
186R-1, 12–20	1320.10	51.26	1.43	13.33	12.74	0.19	7.50	10.09	3.04	0.18	0.11	99.85	0.59	53.8
10/1-2, 21-31 189R-1. 0-13	1323.88 1333.90	30.79 49.71	1.42 1.40	15.37 15.22	10.63	0.20 0.19	0.84 8.25	9.78 11.03	3.14 2.87	0.26	0.11	99.37 99.70	0.59	49.8 60.6
189R-1, 71–89	1334.61	49.00	1.41	15.57	10.43	0.19	8.39	12.12	2.45	0.08	0.14	99.77	0.64	61.4
196R-1, 16–20	1363.86	50.84	1.37	14.10	12.71	0.18	7.41	11.47	2.41	0.06	0.11	100.65	0.22	53.6
202R-1, 25-37	1373.05	50.25	1.90	12.85	15.90	0.23	6.01	9.56	2.50	0.09	0.14	99.42	0.00	42.8
203R-1, 0–4 206R-1, 8–12	1386.98	50.48	1.81 1.41	13.03	14.57	0.22	o./ð 7.11	10.44	2.19	0.05	0.14	99.69 99.73	0.43	47.9 50.9
212R-1, 4–7	1404.14	50.01	1.50	13.60	13.03	0.20	7.06	11.19	2.23	0.06	0.12	98.99	-0.17	51.7
214R-1, 26–35	1411.16	51.46	3.93	12.16	17.51	0.15	3.61	6.97	3.46	0.21	0.37	99.82	0.57	29.0

Table T1 (continued).

Core, section, interval (cm)	Depth (mbsf)	SiO ₂ (wt%)	TiO ₂ (wt%)	Al ₂ O ₃ (wt%)	Fe ₂ O ₃ (wt%)	MnO (wt%)	MgO (wt%)	CaO (wt%)	Na ₂ O (wt%)	K ₂ O (wt%)	P ₂ O ₅ (wt%)	Total	LOI (wt%)	Mg#
214R-1, 26–35	1411.16	49.81	1.34	14.68	11.38	0.16	7.82	11.86	2.65	0.15	0.11	99.95	0.66	57.6
214R-1, 52–58	1411.42	52.58	3.60	12.35	16.67	0.16	3.53	6.50	3.41	0.15	0.40	99.36	1.43	29.6
214R-2, 119–129	1413.55	49.49	1.15	15.49	10.24	0.13	7.22	12.48	2.85	0.08	0.08	99.21	0.46	58.2
215R-1, 43–49	1416.13	49.70	1.18	15.59	10.74	0.14	7.38	12.03	2.70	0.07	0.08	99.60	0.47	57.6
216R-1, 49–58	1418.39	50.24	0.94	15.39	9.81	0.14	7.87	12.72	2.49	0.08	0.06	99.76	0.34	61.4
217R-1, 17–21	1421.77	49.42	0.70	15.68	8.08	0.12	9.23	13.78	2.20	0.06	0.05	99.31	0.71	69.3
217R-1, 29–33	1421.89	49.13	0.80	15.62	9.47	0.13	8.85	12.68	2.41	0.07	0.05	99.20	0.60	64.9
219R-1, 25–32	1430.26	50.48	0.98	14.96	9.40	0.16	8.37	13.33	2.19	0.09	0.08	100.02	0.34	63.8
220R-1, 92–100	1435.92	49.82	1.11	14.46	10.76	0.16	8.30	11.95	2.61	0.08	0.08	99.33	0.67	60.4
222R-2, 25–35	1446.37	48.99	0.76	15.07	8.88	0.13	9.45	12.94	2.37	0.07	0.07	98.72	0.61	67.8
223R-1, 137–144	1450.68	48.72	0.89	14.11	10.11	0.15	10.65	11.85	2.26	0.07	0.08	98.88	1.66	67.6
223R-3, 12–24	1452.40	48.22	0.65	15.07	9.59	0.13	9.52	12.86	2.22	0.06	0.05	98.38	0.60	66.3
227R-1, 50–61	1469.00	49.44	1.41	13.36	14.09	0.20	7.49	10.92	2.54	0.05	0.10	99.59	0.25	51.3
227R-1, 80–86	1469.30	48.74	1.55	13.83	14.32	0.21	7.13	11.69	2.48	0.06	0.09	100.11	0.93	49.6
227R-1, 113–126	1469.63	50.19	1.36	13.52	12.67	0.15	7.64	11.16	2.87	0.07	0.12	99.73	0.45	54.4
230R-1, 72-83	1483.72	47.45	1.72	13.12	15.21	0.18	7.23	11.04	2.50	0.06	0.06	98.56	0.15	48.5
230R-2, 49–61	1484.99	49.47	1.12	14.43	10.69	0.16	8.52	12.60	2.29	0.07	0.06	99.39	0.68	61.2
231R-1, 90–100	1488.80	49.14	1.30	14.06	10.94	0.16	8.36	12.57	2.34	0.06	0.07	98.99	0.86	60.2
231R-3, 80–98	1491.36	49.39	1.29	14.10	11.15	0.17	8.59	12.56	2.40	0.06	0.05	99.75	0.51	60.4
232R-1, 66–81	1493.56	49.43	1.17	14.31	11.17	0.16	8.64	12.35	2.33	0.06	0.06	99.67	0.62	60.5
232R-2, 35–50	1494.33	48.90	1.26	14.01	11.46	0.15	8.05	11.99	2.34	0.05	0.08	98.28	0.84	58.2
233R-1, 14–19	1497.64	50.31	0.97	14.15	11.03	0.15	8.41	11.94	2.61	0.05	0.06	99.68	1.03	60.2
234R-1, 26–29	1502.76	49.46	2.17	12.49	16.35	0.29	5.26	10.61	2.79	0.09	0.19	99.70	2.19	38.9

Note: LOI = loss on ignition, $Mg\# = 100 \times Mg/(Mg + Fe)$.

Table T2. Measured major element contents and recommended values for reference samples. (See table notes.)

Element		JB-1b			JB-2		_	JB-3	
oxide (wt%)	RV (wt%)	This study (wt%)	RD (%)	RV (wt%)	This study (wt%)	RD (%)	RV (wt%)	This study (wt%)	RD (%)
SiO ₂	52.23	52.26	0.07	52.96	53.02	0.12	50.71	50.62	-0.18
TiO ₂	1.29	1.29	0.13	1.18	1.17	-0.80	1.44	1.45	0.28
Al_2O_3	14.69	14.51	-1.27	14.56	14.50	-0.38	17.16	17.10	-0.41
Fe ₂ O ₃	9.22	9.18	-0.42	14.17	14.11	-0.41	11.81	11.82	0.07
MnO	0.15	0.15	-3.09	0.22	0.21	-1.54	0.18	0.18	-0.76
MgO	8.32	8.37	0.67	4.59	4.61	0.36	5.14	4.98	-3.24
CaO	9.81	9.81	-0.00	9.77	9.78	0.10	9.76	9.72	-0.43
Na ₂ O	2.69	2.65	-1.28	2.03	1.99	-1.72	2.69	2.71	0.76
K ₂ O	1.35	1.35	0.08	0.42	0.41	-0.90	0.79	0.78	-2.01
P_2O_5	0.26	0.27	1.38	0.10	0.10	-4.67	0.30	0.30	-1.42
Total:	100.00	100.96		100.00	101.07		100.00	100.93	

Notes: Recommended values (RV) for Geological Survey of Japan reference samples. Relative deviation (RD) values, an estimate of accuracy, are calculated between RV and values from this study. RV of JB-1b from Terashima et al. (1998), RV of JB-2 and JB-3 from Imai et al. (1995).

Table T3. Measured trace element abundances and recommended values for reference samples. (See table notes.)

		W–2			BAS-2	06	BAS-3	12
Element	RV (ppm)	This study (ppm)	RSD (%)	RD (%)	This study (ppm)	RSD (%)	This study (ppm)	RSD (%)
Sc	36.2	33.7	12.2	-6.8	51.7	4.7	45.8	1.6
V	270	272	2.5	0.7	465	6.3	321	4.3
Cr	92	91.3	3.1	-0.7	84.6	9.1	252	6.2
Co	46	43.2	6.8	-6.1	55.1	2.4	46.7	1.8
Ni	74	75.0	6.5	1.4	50.7	3.8	88.9	5.2
Zn	77	74.6	3.2	-3.2	133	2.4	89.3	2.2
Ga	17.4	16.7	3.9	-3.9	19.2	2.5	16.5	1.4
Rb	20.1	19.7	3.4	-2.2	2.0	4.0	0.47	1.5
Sr	191.8	188.0	3.4	-2.0	102	1.4	101	1.2
Y	22.8	22.8	2.3	-0.01	50.2	1.7	30.8	1.5
Zr	92.0	93.0	2.4	1.1	128	1.2	79.2	2.1
Zr*		101	2.4	10.1				
Nb	7.76	7.67	2.2	-1.2	4.7	1.4	3.33	1.2
Cs	0.916	0.913	3.2	-0.3	0.1	4.4	0.02	5.7
Ва	171	169	1.7	-1.2	42.2	5.5	12.2	3.0
La	10.59	10.4	1.4	-1.5	4.7	1.0	3.03	1.0
Ce	23.08	22.8	1.5	-1.1	13.9	1.6	8.63	1.4
Pr	3.03	3.02	1.6	-0.3	2.4	1.6	1.44	2.4
Nd	12.95	12.9	2.4	-0.0	13.2	1.3	7.83	2.9
Sm	3.31	3.24	2.8	-2.2	4.7	2.2	2.80	2.8
Eu	1.093	1.05	4.5	-3.8	1.6	0.8	1.03	3.4
Gd	3.69	3.65	2.6	-1.1	6.5	1.7	3.90	2.0
Tb	0.622	0.61	3.0	-1.4	1.2	2.3	0.71	2.3
Dy	3.79	3.77	3.1	-0.6	7.9	1.0	4.81	0.8
Ho	0.798	0.78	2.1	-2.6	1.8	1.9	1.06	2.9
Er	2.26	2.22	3.6	-1.6	5.2	1.3	3.11	2.1
Yb	2.03	2.04	2.9	0.3	4.7	1.5	3.07	2.2
Lu	0.299	0.304	3.8	1.8	0.71	1.1	0.47	1.3
Hf	2.30	2.33	2.3	1.3	3.3	2.5	2.02	1.7
Hf*		2.43	4.0	5.7				
Та	0.483	0.47	4.0	-3.4	0.5	1.1	0.28	1.2
Pb	7.81	7.63	9.2	-2.3	0.6	25.2	0.23	4.4
Th	2.21	2.28	3.2	3.2	0.3	3.6	0.23	1.7
Th*		2.24	4.6	1.32				
U	0.497	0.509	5.4	2.4	0.316	3.4	0.101	1.6
U*		0.502	2.7	0.92				

Notes: Recommended values (RV) of W–2 standard are from Eggins et al. (1997). Abundances of Zr, Hr, Th, and U of W–2 following alkali fusion are also shown. Relative deviation (RD) values calculated between RV, values from this study, and relative standard deviation (RSD) values, an estimate of precision. For all reference samples n = 5 except where denoted by *, where n = 8.

Table T4. Trace element abundances. (See table notes.) (Continued on next four pages.)

Core, section,	Depth (mbsf)	Sc (ppm)	V (nnm)	Cr (ppm)	Co (npm)	Ni (nnm)	Zn (nnm)	Ga (ppm)	Rb (nnm)	Sr (ppm)	Y (ppm)	Zr (ppm)	Nb (ppm)	Cs (ppm)	Ba (ppm)	La (ppm)	Ce (ppm)
	(11631)	(ppin)	(ppin)	(ppin)	(ppin)	(ppin)	(ppiii)	(ppin)	(ppin)	(ppin)	(ppiii)	(ppiii)	(ppin)	(ppin)	(ppin)	(ppin)	(ppiii)
309-1256D- 75R-1, 116-123	753.05	48.2	388	72.6	51.4	56.0	106	17.8	0.09	78.4	37.5	76.5	2.25	0.006	5.05	2.40	7.54
78R-1, 42–50	763.95	47.8	360	186	43.5	54.8	102	16.8	0.29	74.8	38.3	87.1	3.08	0.013	12.7	2.84	8.74
78R-2, 20–33	764.97	47.6	385	206	46.4	58.6	101	16.4	0.09	75.6	37.8	82.1	2.97	0.000	8.14	3.12	8.91
78R-3, 63-76	766.55	47.5	415	27.8	42.1	25.9	143	20.6	3.05	103	52.2	138	6.60 6.36	0.045	18.8	5.38	16.7
79R-1, 98–107	770.72	40.3	465	24.5	49.3 50.4	31.6	120	20.3	12.72	102	48.1	134	6.60	0.113	19.6	5.16	14.3
80R-2, 92–102	781.47	47.0	376	67.4	33.3	39.5	96.5	18.2	23.47	148	37.1	129	12.6	0.525	43.6	8.40	20.0
82R-2, 10–20	793.77	48.4	360	151	45.1	67.4	100	17.0	5.11	85.2	33.9	81.8	3.53	0.060	10.6	3.00	9.22
84R-2, 61-/0 85R-2 124-136	803.78 814.97	45./	330 296	260 241	48./ 37.4	93.6 75.5	/9.0 73.1	15.0 14.7	0.36	82.8	27.7	61.2 57.5	3.95	0.007	17.3	2.71	7.59
85R-2, 124–136	814.97	39.4	308	253	47.7	108	83.7	15.6	1.00	80.1	23.4	61.2	3.93	0.002	21.1	2.61	7.28
85R-4, 83–92	816.46	41.5	323	108	50.6	53.5	83.3	16.2	0.52	81.2	29.0	72.1	2.11	0.014	8.05	2.27	7.19
85R-5, 0–21	816.83	47.6	344	114	49.2	49.6	96.2	16.5	0.61	87.2	31.5	75.7	2.16	0.015	8.19	2.29	7.19
87R-1, 22-35 87R-2, 83-90	831.06	49.2 43.7	350 296	97.9	48.3	52.0	93.1 77.4	16.5	0.45	85.0 84.0	33./ 31.2	77.0 65.2	2.20	0.021	7.06 6.47	2.33	7.08
88R-1, 10–21	840.41	40.7	322	112	43.7	51.6	89.4	15.2	0.71	80.6	31.3	69.9	2.03	0.019	8.29	2.41	7.12
88R-1, 56–64	840.68	41.5	334	97.9	45.5	46.1	93.0	16.5	0.66	81.2	33.1	73.2	2.10	0.014	8.55	2.55	7.74
92R-1, 102–109	869.83	42.7	275	348	44.1	85.4	80.4	14.8	2.19	103	27.6	76.3	4.73	0.007	57.9	3.65	9.35
97R-1, 01-70 97R-1, 102-109	898.69	36.6	267	299	45.1	113	74.4	14.0	0.87	87.7	26.7	63.0	2.10	0.077	0.00 9.26	2.17	6.81
99R-2, 29–37	908.97	49.0	325	145	48.1	64.6	94.1	16.7	0.73	79.5	31.1	66.2	2.13	0.013	8.93	2.15	6.98
99R-2, 101–120	909.63	48.6	321	156	48.2	67.0	95.3	16.3	0.42	79.7	31.0	66.8	2.13	0.013	7.59	2.22	6.73
100R-1, 136–14	4 911.71	47.4	333	214	47.2	74.5	89.3	16.3	0.28	76.7	31.2	63.9 75.3	2.07	0.019	4.68	2.12	6.59
102R-1, 17-29	920.80	45.0	333	178	49.2	80.4	91.8	15.1	0.02	75.8	31.5	65.8	2.28	0.024	5.35	2.42	7.00
103R-1, 20–28	936.21	50.6	364	203	49.5	78.6	99.3	16.5	0.13	77.3	34.3	73.8	2.32	0.002	6.82	2.21	7.50
105R-1, 35–46	945.99	45.0	361	180	45.4	77.9	96.4	16.3	0.55	78.7	34.2	76.0	2.52	0.015	10.4	2.55	7.94
10/R-1, 9–17 108R-1 38–48	955.33	49.0	357	78.1 163	47.6 47.1	54.4 69.0	99.2 91.5	16.4 15.8	0.45	82.7 89.7	34.1 30.7	79.0 70.4	2.86	0.013	9.09	2.73	7.91
108R-2, 52–61	960.51	46.2	353	220	46.3	86.4	97.2	17.0	0.31	100	37.7	91.5	2.99	0.009	18.5	3.27	9.58
109R-1, 117–12	9 965.93	52.8	357	69.1	49.2	49.4	100	17.1	0.47	83.8	34.8	79.7	2.97	0.012	10.3	2.84	8.35
110R-1, 26–32	969.91	50.1	351	74.0	48.5	48.2	114	16.8	0.42	83.1	34.6	79.9	2.91	0.011	10.4	2.83	8.23
110R-1, 130–14 110R-2 76–88	4 970.89 971.71	45.8 45.4	324 349	205 186	46.0 47.8	75.9 75.5	87.8 106	15.6	0.46	76.8 78.7	30.4 34.2	65./ 74 1	2.06	0.015	7.97 9.08	2.28 2.44	6.86 7.62
111R-1, 26–32	974.68	50.0	492	28.3	52.0	32.8	150	20.9	0.58	96.3	57.7	148	5.74	0.023	17.7	5.24	15.7
111R-1, 48–55	974.92	47.3	330	69.7	46.8	46.8	97.6	16.1	0.27	82.6	32.8	75.0	2.77	0.009	9.48	2.74	8.06
112R-1, 113–12	2 980.26	48.2	306	228	49.2	77.1	88.2	15.6	0.23	77.7	28.0	62.5	3.22	0.005	11.3	2.57	7.32
113R-1, 43–33 114R-1, 117–12	989.87	47.3	319	276	48.0 51.5	258	168	16.2	0.27	85.6	29.5	69.1	3.36	0.003	10.9	2.67	7.58
114R-1, 127–14	2 990.04	46.5	308	274	51.4	103	140	15.4	0.27	80.5	27.9	52.6	3.13	0.005	14.5	2.58	7.19
115R-1, 40–50	994.01	51.7	331	75.7	50.5	51.3	99.8	16.7	0.89	87.8	33.8	79.8	3.88	0.013	16.6	3.17	9.42
116R-1, 0–15 117P-1 56 67	998.40	50.8	341	76.1 104	50.3	54.0 74.2	99.3 134	17.5	0.89	8/.8	33.4 31.0	81.8 68.2	3.97	0.011	17.7	3.24	9.08
117R-1, 97–107	1003.03	47.6	315	287	48.7	96.0	114	15.6	0.20	73.2	28.0	61.7	3.34	0.005	9.32	2.70	7.08
118R-1, 48–56	1008.63	49.3	322	270	51.4	101	101	15.6	0.20	74.4	29.9	66.4	2.99	0.005	8.11	2.47	7.23
120R-1, 95–105	1018.42	50.3	354	81.5	50.6	51.9	99.6	16.7	0.57	87.6	33.5	81.9	3.85	0.005	15.6	3.20	9.36
122R-1, 28-33 122R-1 67-79	1027.55	32.4	290	95.0 68.5	36.8 32.2	28.7	18,140 142	11.6	0.29	61./ 36.4	28.5 25.2	68.9 59.2	2.39	0.005	15.5	2.57	7.09
126R-1, 39–47	1046.95	39.1	365	63.0	45.0	53.1	97.6	15.4	0.11	83.8	35.2	84.6	3.19	0.002	9.67	3.29	9.35
128R-1, 80–91	1056.77	44.8	361	164	44.4	70.1	93.1	10.4	0.26	101	37.1	83.5	2.44	0.002	13.2	2.95	8.62
129R-1, 34–51	1061.51	43.6	336	174	43.6	73.3	88.2	16.5	0.15	84.8	37.9	99.0	3.26	0.004	7.44	3.49	10.6
129R-1, 125-13 130R-1, 14-22	1062.26	43.1	339	75.1	43.0 47.0	76.5 50.5	94.4 92.8	16.1	0.14	81.2	37.4	97.6 82.1	3.15	0.004	13.6	3.48 3.34	10.4 9.21
130R-2, 21–34	1067.28	48.0	308	81.3	45.3	54.4	81.0	15.4	1.73	75.3	30.9	71.4	3.42	0.006	40.7	3.01	8.13
130R-2, 79–88	1067.78	45.5	327	74.4	46.4	48.8	91.7	16.0	0.20	81.0	33.1	80.1	3.80	0.004	12.4	3.30	9.24
131R-1, 65–79	1071.24	43.0	337	93.1	44.9	52.8	96.9	15.8	0.15	80.0	31.8	77.7	3.86	0.004	12.3	3.33	9.08
132R-1, 137-14	1071.86	44.2	333	97.4 111	43.7	58.3	96.1 95.4	15.7	0.25	78.0	31.5	73.1	3.74	0.003	12.4	3.23	0.00 8.45
133R-1, 42–52	1082.15	43.3	315	301	44.5	95.4	90.3	15.7	0.10	76.3	30.5	68.3	2.53	0.003	7.01	2.53	7.72
133R-1, 141–14	8 1082.41	43.7	309	257	45.8	90.8	83.9	14.2	0.17	80.1	26.3	59.3	3.85	0.002	10.3	2.83	7.43
134K-2, 40–52	1086.54	45.8 47.8	369 ∡∩a	195	44.3 47 3	/8.0 41 5	122	15.7 174	1.01	98.1 82 2	38.1 40 1	98.2 87 1	3.29 3.20	0.010	1/.1 8 25	3.41 3 2 7	10.5
135R-1, 121–12	1090.36	44.9	347	64.6	66.8	40.1	311	20.1	0.12	17.1	33.8	55.6	2.81	0.002	1.73	2.54	7.71
136R-1, 11–16	1094.65	50.1	368	233	47.5	70.1	115	15.3	0.90	98.7	40.0	112	3.60	0.005	16.5	3.61	11.7
136R-1, 82–90	1095.36	48.8	287	356	50.1	125	119	16.2	0.91	86.1	30.5	56.7	1.72	0.007	13.3	1.85	5.87
13/K-1, 92-99	1100.11	48.0 50 7	351 347	255 182	44.8 48 1	/4.2 70.5	150	15.0 17 8	0.90	92.9 7⊿ 5	33.7 34 0	/5.0 74 1	2.49	0.006	18.1	2.46 2.54	7.68 7.71
139R-1, 93–99	1109.83	53.6	348	224	49.9	69.5	1,342	16.2	0.68	97.6	39.6	106	3.50	0.004	9.97	3.69	11.5
,																	

Table T4 (continued). (Continued on next page.)

Core, section, interval (cm)	Depth (mbsf)	Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Yb (ppm)	Lu (ppm)	Hf (ppm)	Ta (ppm)	Pb (ppm)	Th (ppm)	U (ppm)
309-1256D-																	
75R-1, 116–123	753.05	1.44	7.90	3.01	1.13	4.40	0.86	5.58	1.30	3.82	3.76	0.58	2.10	0.13	0.15	0.14	0.062
78R-1, 42–50	763.95	1.62	8.54	3.14	1.19	4.54	0.86	5.75	1.36	3.93	3.83	0.59	2.27	0.19	0.38	0.22	0.061
78R-2, 20–33	764.97	1.58	8.80	3.28	1.19	4.64	0.90	5.86	1.38	4.12	3.88	0.60	2.24	0.20	0.28	0.19	0.089
78R-3, 63–76	766.55	2.68	14.5	4.88	1.71	6.80	1.23	8.07	1.82	5.26	4.87	0.75	3.51	0.40	0.34	0.43	0.144
/8K-3,63-/6 70P-1 08 107	770 72	2.49	12.7	4.4Z	1.58	6.45 6.04	1.19	7.59	1./1	5.04 4.82	4.71	0.70	3.40	0.38	0.59	0.41	0.116
80R-2 92-102	781 47	2.42	13.0	4.47	1.00	5 10	0.94	5.84	1.71	3.67	3 30	0.08	3.07	0.41	0.55	0.41	0.103
82R-2, 10-20	793.77	1.53	8.33	3.08	1.13	4.36	0.85	5.22	1.16	3.44	3.24	0.49	2.14	0.21	0.36	0.22	0.111
84R-2, 61–70	803.78	1.20	6.56	2.28	0.82	3.26	0.64	4.16	0.94	2.90	2.70	0.43	1.67	0.25	0.10	0.28	0.081
85R-2, 124–136	814.97	1.28	6.77	2.33	0.87	3.41	0.63	4.05	0.95	2.76	2.63	0.40	1.56	0.23	0.15	0.28	0.151
85R-2, 124–136	814.97	1.21	6.22	2.25	0.85	3.19	0.58	3.90	0.85	2.53	2.45	0.38	1.66	0.25	0.52	0.28	0.103
85R-4, 83–92	816.46	1.30	6.95	2.57	0.97	3.63	0.70	4.64	1.03	3.04	2.95	0.45	1.89	0.14	0.17	0.14	0.085
85K-5, 0-21	816.83	1.30	6.90	2.57	0.99	3.84	0.76	4.78	1.08	3.3/	3.14	0.48	1.90	0.13	0.25	0.15	0.058
87R-2 83_90	832.90	1.37	7.39	2.70	0.99	4.00	0.77	4.94	1.11	3.40	5.20 2.92	0.31	2.00	0.14	0.17	0.14	0.032
88R-1, 10-21	840.41	1.25	7.36	2.63	1.02	3.94	0.73	4.93	1.11	3.33	3.22	0.49	1.88	0.12	0.31	0.13	0.048
88R-1, 56–64	840.68	1.38	7.58	2.81	1.03	3.91	0.75	5.04	1.11	3.38	3.26	0.50	1.99	0.13	0.44	0.15	0.046
92R-1, 102–109	869.83	1.54	7.86	2.71	0.98	3.61	0.65	4.32	0.97	2.78	2.66	0.40	1.89	0.28	0.31	0.31	0.105
97R-1, 61–70	898.37	1.19	6.39	2.49	0.91	3.40	0.62	4.18	0.95	2.78	2.63	0.39	1.58	0.13	0.23	0.15	0.052
97R-1, 102–109	898.69	1.24	6.59	2.35	0.90	3.39	0.67	4.21	0.95	2.74	2.68	0.41	1.60	0.13	0.46	0.15	0.055
99R-2, 29–37	908.97	1.24	6.76	2.61	0.94	3.82	0.71	4.83	1.08	3.19	3.10	0.46	1.77	0.12	0.22	0.13	0.085
99R-2, 101-120	909.63	1.25	6.86	2.54	0.95	3.//	0.73	4.79	1.05	3.14	3.11	0.47	1.85	0.13	0.22	0.14	0.043
100R-1, 130-144 102P-1 17 29	911.71	1.22	0./9	2.52	0.98	5.09 4.08	0.71	4.70	1.05	3.11	3.05	0.40	2.00	0.15	0.25	0.14	0.049
102R-1, 17-29	920.00	1.30	6 89	2.03	0.97	3 76	0.78	3.33 4.86	1.10	3.45	3.08	0.31	2.00	0.14	0.18	0.13	0.033
103R-1, 20–28	936.21	1.36	7.29	2.78	1.00	4.07	0.72	5.13	1.17	3.45	3.35	0.51	2.00	0.12	0.13	0.14	0.047
105R-1, 35–46	945.99	1.42	7.64	2.89	1.05	4.21	0.80	5.40	1.21	3.53	3.37	0.51	2.02	0.16	0.52	0.17	0.052
107R-1, 9–17	955.33	1.43	7.73	2.87	1.05	4.12	0.77	5.15	1.18	3.42	3.33	0.50	2.02	0.17	0.12	0.19	0.055
108R-1, 38–48	959.21	1.32	7.26	2.58	0.99	3.87	0.71	4.77	1.09	3.12	3.04	0.46	1.81	0.16	0.10	0.17	0.056
108R-2, 52–61	960.51	1.68	9.35	3.34	1.26	4.58	0.86	5.82	1.34	3.82	3.67	0.56	2.36	0.19	0.56	0.19	0.119
109R-1, 117–129	965.93	1.41	7.94	2.82	1.06	4.18	0.81	5.21	1.20	3.51	3.42	0.51	2.06	0.18	0.25	0.19	0.056
110R-1, 26–32	969.91	1.38	7.92	2.90	1.06	4.20	0.78	5.17	1.20	3.51	3.43	0.51	1.99	0.18	0.81	0.19	0.058
110K-1, 150-144	970.89	1.10	0./0	2.39	0.95	5.0Z	0.70	4.05	1.05	2 1 2	2 2 2 2	0.44	1.72	0.14	0.28	0.14	0.050
111R-1 26-32	974.68	2.65	14.2	5 11	1.03	7 34	1 36	4.90 8.99	2.02	5.45	5.33	0.49	3.81	0.15	0.28	0.15	0.032
111R-1, 48–55	974.92	1.38	7.65	2.75	0.98	4.00	0.74	4.92	1.12	3.34	3.22	0.48	1.97	0.16	0.35	0.18	0.078
112R-1, 113–122	980.26	1.18	6.46	2.37	0.87	3.40	0.65	4.17	0.94	2.85	2.73	0.41	1.67	0.19	0.28	0.22	0.064
113R-1, 43–53	984.58	1.27	6.84	2.51	0.91	3.59	0.69	4.61	1.05	3.14	2.91	0.44	1.79	0.18	0.61	0.20	0.059
114R-1, 117–122	989.87	1.27	6.82	2.56	0.97	3.66	0.69	4.50	1.00	3.10	2.93	0.43	1.80	0.19	1.18	0.24	0.080
114R-1, 127–142	990.04	1.20	6.40	2.51	0.90	3.51	0.66	4.31	0.95	2.88	2.73	0.41	1.60	0.19	0.71	0.19	0.068
115R-1, 40–50	994.01	1.56	8.04	2.92	1.09	4.13	0.77	5.08	1.13	3.37	3.19	0.48	2.08	0.23	0.42	0.25	0.076
110K-1, U-15 117D 1 56 67	998.40	1.50	8.1Z	3.05	1.06	4.1Z	0.79	5.04 4 70	1.14	3.38	3.28	0.49	2.1Z	0.23	0.37	0.26	0.075
117R-1, 30-07	1003.85	1.23	6.50	2.39	0.92	3.40	0.74	4.79	0.95	2.30	2.65	0.47	1.76	0.14	0.70	0.10	0.043
118R-1, 48–56	1008.63	1.27	6.37	2.51	0.94	3.55	0.70	4.40	1.00	2.93	2.81	0.44	1.67	0.17	0.45	0.19	0.056
120R-1, 95–105	1018.42	1.53	8.40	2.95	1.08	4.26	0.79	5.09	1.17	3.52	3.30	0.50	2.15	0.25	0.75	0.25	0.075
122R-1, 28–33	1027.55	1.22	6.69	2.44	0.92	3.53	0.66	4.28	0.95	2.82	2.80	0.42	1.76	0.15	7.39	0.16	2.705
122R-1, 67–79	1027.97	1.15	6.15	2.25	0.97	3.27	0.59	3.90	0.90	2.65	2.51	0.38	1.61	0.13	11.0	0.15	1.603
126R-1, 39–47	1046.95	1.62	8.65	3.13	1.21	4.42	0.85	5.59	1.22	3.62	3.50	0.52	2.26	0.21	0.17	0.22	0.065
128R-1, 80–91	1056.77	1.49	8.25	3.17	1.06	4.56	0.86	5.83	1.30	3.78	3.71	0.56	2.26	0.15	0.51	0.17	0.051
129K-1, 34-31 120P 1 125 120	1061.51	1.82	9.76	3.53	1.21	4./1	0.89	5.94	1.32	3.80	3./3	0.56	2.48	0.20	0.26	0.22	0.069
130R-1 14-22	1065.84	1.70	8 33	2.96	1.20	4.07	0.91	5.20	1.51	3.90	3 34	0.50	2.45	0.20	0.37	0.20	0.004
130R-2, 21–34	1067.28	1.33	7.54	2.59	1.03	3.81	0.70	4.84	1.08	3.08	2.99	0.45	1.84	0.22	0.14	0.23	0.066
130R-2, 79-88	1067.78	1.53	8.16	2.97	1.10	4.22	0.78	5.19	1.17	3.41	3.28	0.50	2.12	0.23	0.27	0.25	0.075
131R-1, 65–79	1071.24	1.44	7.91	2.86	1.06	4.07	0.75	4.97	1.13	3.42	3.17	0.49	1.99	0.24	0.28	0.27	0.074
131R-1, 137–147	1071.86	1.47	7.96	2.79	1.00	4.11	0.75	4.94	1.13	3.33	3.18	0.49	2.04	0.24	0.29	0.25	0.075
132R-1, 0–18	1075.30	1.46	7.94	2.64	1.00	4.03	0.74	4.80	1.10	3.27	3.12	0.47	1.96	0.23	0.23	0.25	0.069
133R-1, 42–52	1082.15	1.30	7.31	2.77	0.98	3.90	0.72	4.76	1.11	3.20	3.05	0.46	1.83	0.15	0.28	0.17	0.049
133K-1, 141-148	1082.41	1.23 1.01	6.42 0.02	2.28	U.86	5.22 1 01	0.62	4.09	0.94 1.25	2.71	2.5/	0.40	1.59	0.24	0.28	0.26	0.0/2
134R-2, 40-32	1000.34	1.01 1.78	9.72 9.75	3.55	1.22	+.04 5 1 R	0.91	5.90 6.28	1.55	4.05	3.73	0.58	2.32 2.24	0.20	0.39	0.21 0.21	0.004
135R-1, 121–127	1090.86	1.37	7.73	2.95	0.94	4.25	0.78	5.00	1.13	3.27	3.11	0.48	1.61	0.17	1.36	0.16	0.087
136R-1, 11–16	1094.65	1.97	10.7	3.71	1.30	5.24	0.97	6.10	1.41	4.00	3.87	0.60	2.86	0.23	0.35	0.23	0.076
136R-1, 82–90	1095.36	1.04	5.96	2.39	0.91	3.50	0.69	4.48	1.04	3.04	2.97	0.46	1.50	0.11	0.17	0.10	0.029
137R-1, 92–99	1100.11	1.37	7.71	2.86	1.04	4.16	0.78	5.12	1.17	3.36	3.24	0.49	1.92	0.16	0.58	0.16	0.051
138R-2, 32–41	1105.89	1.32	7.51	2.81	1.04	4.15	0.79	5.15	1.16	3.37	3.26	0.50	1.95	0.16	0.30	0.16	0.051
139R-1, 93–99	1109.83	1.92	10.5	3.65	1.25	5.09	0.95	5.96	1.38	3.97	3.75	0.57	2.73	0.23	0.33	0.22	0.070

Table T4 (continued). (Continued on next page.)

Core, section, interval (cm)	Depth (mbsf)	Sc (ppm)	V (ppm)	Cr (ppm)	Co (ppm)	Ni (ppm)	Zn (ppm)	Ga (ppm)	Rb (ppm)	Sr (ppm)	Y (ppm)	Zr (ppm)	Nb (ppm)	Cs (ppm)	Ba (ppm)	La (ppm)	Ce (ppm)
140R-1, 55–65	1114.72	55.3	349	233	58.8	72.4	118	15.4	0.46	81.5	39.9	108	3.53	0.007	9.46	3.53	11.3
142R-1, 38–48 142R-2 40–55	1123.75 1125 34	50.2 46 5	296 284	334 318	44.9 46 1	120 113	134 104	14.5 16.7	1.48	89.3 99.0	31.0 32.2	81.5 86.3	2.86 2.93	0.016	20.7	3.16 3.37	9.68 10.2
143R-1, 72–82	1128.71	54.1	330	194	49.0	69.5	80.9	16.1	0.14	79.8	30.0	71.7	2.01	0.003	5.59	2.15	6.30
143R-1, 122–125	1129.23	51.8	341	198	48.6	71.2	85.2	16.8	0.13	77.9	31.1	64.1	2.12	0.003	5.95	2.24	6.82
143R-2, 40-49	1129.64	44.8 45.0	314 327	194 100	45.7 45.9	66.1 73.8	92.3	15.5	0.18	74.6	28.6	61.6	2.87	0.005	8.72	2.50	6.96 7 1 9
145R-2, 73–89	1139.63	44.5	299	276	42.9	82.2	105	14.4	0.27	77.9	25.4	53.4	3.00	0.004	9.44	2.44	6.85
146R-1, 30–54	1142.50	43.5	292	303	43.6	83.0	109	14.3	0.33	74.3	24.9	*58.1	2.95	0.004	9.48	2.39	6.73
146R-2, 80-88	1143.86	45.3	304	302	46.8	87.2	115	14.6	0.32	75.0	25.9	*61.5	3.10	0.002	10.4	2.65	7.09
149R-1, 57–63	1145.98	48.5	444	77.2	41.6	45.1	74.2	15.2	0.72	97.1	46.8	112	4.08	0.003	11.0	3.90	12.0
149R-1, 138–145	1157.33	46.5	440	94.8	50.1	44.1	195	17.3	0.20	88.8	45.2	110	3.88	0.005	9.79	3.78	11.4
151R-1, 119–125	1166.43	47.0	399	84.4	48.7	50.3	111	17.3	0.10	82.6	39.8	94.0	3.52	0.002	9.37	3.38	9.89
153R-2, 36-47 153R-2, 103-115	1176.70	47.4 47.2	414 399	110	47.8 41.0	41.1 50.7	245	17.6	0.11	85.9	41.7 38.1	94.7 87.2	3.44 3.10	0.002	6.29 9.88	5.40 2.95	9.16
154R-2, 30–52	1181.45	46.6	431	95.3	47.3	50.0	207	15.7	0.91	94.7	40.6	95.8	3.50	0.004	18.8	3.32	9.82
155R-2, 60-80	1186.47	43.6	388	102	45.3	54.4	131	16.2	0.56	77.2	33.9	*86.1	3.12	0.003	15.2	2.95	8.59
155R-3, 0-10 156R-1, 90-100	1187.12	43.9	387 327	99.3 222	46.0 44.7	51.1 75.5	91.7	16.4 14.9	0.11	69.4 76.1	34.8 28.2	61.3	3.09	0.003	8.21	2.93	9.04 6.68
157R-1, 111–125	1195.29	43.4	424	68.9	45.9	44.5	171	17.6	0.19	79.1	42.9	106	3.67	0.002	9.90	3.65	11.0
159R-1, 3–13	1203.83	43.2	409	85.0	46.1	46.3	144	17.2	0.16	81.2	39.4	90.9	3.25	0.004	9.48	3.18	9.74
159R-1, 60-70 159R-1 98-110	1204.40	46.1 423	418 371	81.9 163	38.3 45.0	49.9 71.2	156 84.2	13.6 16.3	0.56	65.5 79.2	39.4 35.8	92.5 86.7	3.31	0.004	11.2	3.07	9.50 9.21
160R-1, 85–100	1209.69	42.0	332	127	45.5	72.1	104	14.7	0.10	77.9	28.6	63.7	3.50	0.005	15.0	2.81	7.64
161R-1, 105–113	1211.15	39.9	295	426	41.3	132	63.4	13.1	3.79	93.2	25.2	50.5	1.56	0.004	55.9	1.52	5.10
162R-1, 37-45	1213.95	42.3	337	284	41.7	85.8 107	88.0 82.1	15.7	1.33	83.8	32.3	80.1	3.02	0.002	25.8	2.89	8.51
163R-2, 55–63	1213.60	42.1	372	185	45.8	71.5	106	16.7	0.34	80.3	28.0 37.0	86.7	3.11	0.002	9.37	3.18	9.52
164R-1, 27–50	1223.80	43.1	342	278	44.1	88.3	82.8	16.1	0.31	84.6	33.6	83.8	3.19	0.002	9.84	2.98	9.14
164R-2, 5–15	1224.49	46.2	328	260	46.6	80.5	92.0	16.8	0.13	83.5	34.0	84.8	3.25	0.003	7.96	3.15	9.22
164R-2, 101–107 164R-3, 36–44	1225.18	46.7 45.1	383 418	75.5	46.7 45.9	44.0 42.3	67.8	16.9	0.31	81.8	39.1 42.8	80.9 104	3.28 3.67	0.004	9.36	3.32 3.59	9.74 10.9
165R-1, 23–33	1228.12	46.6	395	78.4	33.0	41.9	143	16.0	0.25	85.8	38.0	85.3	3.13	0.002	9.39	3.02	9.17
165R-2, 71–91	1230.17	45.2	394	72.6	45.2	43.8	132	17.2	0.15	79.8	39.6	92.0	3.31	0.002	8.62	3.26	9.80
165R-3, 19-30 166R-1 15-27	1230.19	47.1 44.8	396 373	59.4 42.0	39.4 38.4	40.7	93.9	16.1 16.1	0.13	87.1 91.4	40.1 38.8	94.0 76.7	3.34 4 32	0.002	9.53	3.12 3.74	9.78 10.6
166R-1, 126–132	1233.74	42.6	376	63.5	41.7	43.4	138	15.8	0.13	71.9	38.4	89.0	3.09	0.002	8.40	3.15	9.58
166R-2, 88–99	1235.57	44.8	399	86.5	38.4	44.5	113	16.1	0.29	105	40.1	97.2	3.34	0.002	12.4	3.00	9.36
166R-3, 49-65 167R-1 12-23	1235./5	44.3 39.8	397	66.9 271	45.4 40.2	46.3 96.4	136	16.8 15.1	0.63	84.5 67.8	41.9 28.8	95.4 63.4	3.40	0.002	16.1 10.9	3.51	10.7
167R-2, 50–70	1238.63	43.3	320	291	45.2	115	78.3	14.7	0.45	69.1	27.5	57.7	2.02	0.002	11.4	1.99	5.93
168R-1, 58–72	1243.18	43.0	355	107	45.9	58.6	97.9	16.7	0.15	81.1	37.6	92.2	3.50	0.002	9.95	3.46	10.3
168R-3, 23-32	1245.16	42.7	353	119 101	44.2	65.4 54.2	95.1	16.4 16.7	0.21	81.3 82.0	36.3	88.7	3.43	0.001	10.0	3.34	9.75 10.1
169R-2, 40–54	1247.03	43.0	316	214	46.6	71.2	90.1	14.8	0.21	76.2	29.0	69.4	3.73	0.002	10.7	2.96	8.02
169R-3, 18–37	1249.88	41.4	289	231	38.8	76.4	88.6	12.4	0.65	93.3	24.3	53.6	3.01	0.005	14.3	2.33	6.40
170R-2, 40-48	1253.50	42.6	323	253	45.3	78.8	84.7	15.0	0.16	71.2	28.9	57.1	3.77	0.003	9.73	3.05	7.97
170R-2, 130–144 170R-3, 22–40	1254.68	50.5	265	365	48.0	122	80.6	15.3	3.15	95.2	26.2	49.9	1.64	0.002	40.7	1.76	5.42
312-1256D-																	
173R-1, 0–10	1260.60	45.7	346	251	47.1	81.0	89.6	15.1	0.13	72.6	28.0	66.3	3.11	0.003	7.92	2.56	7.27
174R-1, 73–79	1266.13	46.4	435	76.9	47.4	46.3	166	16.4	2.39	86.4	37.8	91.4	3.02	0.005	60.3	3.09	9.01
1/5K-1, /5-83 176R-1 116-122	1272.05	46.3 46.5	395 484	95.5	47.0 41.7	60.4 55.1	110 191	16./ 17.2	0.21	82.2 80.1	36.5 41 2		3.91	0.003	11.0 14.5	3.30 3.61	9.97 10.8
176R-2, 42–55	1278.03	46.2	488	55.4	48.9	36.2	148	19.3	0.11	86.9	52.7	141	5.41	0.001	12.2	5.03	14.6
181R-1, 51–56	1300.61	44.5	345	255	47.2	81.9	73.0	15.4	0.61	74.7	29.8		2.00	0.002	14.3	2.06	6.35
182R-1, 18-25	1305.09	44.3 47.3	359 427	267	48.2	79.8	74.1	15.2	0.40	77.3	30.5	83.2	1.95	0.001	11.3	2.15	6.46 8.84
186R-1, 12–20	1320.10	47.3	392	103	42.5	56.5	37.0	15.3	1.53	98.8	34.5	83.0	2.90	0.001	19.4	2.46	7.96
187R-2, 21–31	1325.88	46.7	393	105	43.3	53.6	38.1	16.5	2.67	88.7	35.0	82.4	2.85	0.001	33.4	3.04	8.73
189R-1, 0-13 189R-1 71 80	1333.90 1334.61	37.5	261	320 332	41.1 42.0	131 133	39.2	15.7 15 9	2.92	122 110	29.6 29.0	96.7 91 0	7.03 7.13	0.003	93.0 21.0	4.99 4 87	12.7 13.0
196R-1, 16–20	1363.86	44.2	346	179	45.3	70.2	48.7	16.4	0.52	79.6	33.9	76.7	2.61	0.002	7.32	2.77	8.10
202R-1, 25-37	1373.05	47.6	443	70.2	51.4	41.6	45.6	18.2	0.54	82.9	43.9		3.88	0.002	14.4	3.82	11.2
205R-1, 0-4	1382.10	46.4	458 381	131 149	48.0	57.6	85.3	18.0 16.6	0.27	80.8 82 7	43.8		3.15	0.003	10.2	3.41	10.2
212R-1, 4-7	1404.14	45.5	352	202	40.0 45.0	55.9 59.4	40./ 77.6	17.3	0.13	₀∠./ 90.5	34.9 35.9		∠.07 3.56	0.003	0.34 11.7	2.95 3.39	0.52 9.72
214R-1, 26-35	1411.16	40.5	277	88.1	36.1	38.9	33.0	18.3	1.86	97.1	94.3	298	14.6	0.005	35.7	11.6	35.8

Table T4 (continued). (Continued on next page.)

Core, section,	Depth	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Та	Pb	Th	U
interval (cm)	(mbst)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1400 1 55 65	1114 70	1.02	10.2	2.64	1 1 2	5.05	0.07	(1)	1.24	2.05	2.76	0.50	2.50	0.22	0.64	0.21	0.070
140K-1, 55-65	1114./2	1.93	10.3	3.64	1.13	5.05	0.96	6.1Z	1.34	3.95	3.76	0.58	2.59	0.23	0.64	0.21	0.070
142R-1, 38-48	1125.75	1.0/	8.69	3.01	1.05	4.12	0.76	4.84	1.05	3.03	2.87	0.44	2.00	0.18	0.11	0.16	0.048
142R-2, 40-33	1123.34	1.70	9.14	3.09	1.09	4.ZZ	0.77	4.64	1.10	2.10	2.90	0.40	2.11	0.10	0.17	0.17	0.037
143K-1, /2-02	1120.71	1.12	0.21	2.40	0.69	5.50 2.01	0.00	4.4/	1.01	5.00 2.10	2.90	0.45	1.05	0.15	0.10	0.15	0.040
143K-1, 122-123	1129.23	1.17	0.72	2.49	0.96	2.01	0.75	4.70	1.07	2.10	5.10 2.75	0.49	1.75	0.15	0.21	0.14	0.040
145R-2, 40-49	1129.04	1.22	6.39	2.44	0.00	2 49	0.00	4.40	1.00	2.90	2.73	0.45	1.00	0.10	0.15	0.19	0.055
144R-2, 39-30	1124.20	1.24	6.77	2.37	0.90	2.00	0.00	2.04	0.00	3.00	2.01	0.44	1.70	0.17	0.27	0.19	0.055
143R-2,75-69	1139.03	1.10	5 90	2.20	0.00	2.12	0.60	2.90	0.09	2.70	2.47	0.36	1.43	0.10	0.21	*0.20	*0.055
140K-1, 30-34	1142.30	1.15	2.69	2.20	0.76	3.1Z	0.57	3.83	0.87	2.50	2.51	0.30	"1.33 *1.57	0.10	0.17	*0.20	*0.06
140K-2, 60-68	1145.00	1.10	0.27	2.25	0.64	3.27	0.05	4.0Z	0.92	2.04	2.52	0.50	1.00	0.19	0.22	0.21	0.06
14/K-1, 40-48	1145.96	1.29	7.05	2.07	0.99	5.90	0.74	3.13 7.21	1.17	5.40 4 9 2	3.20 4.61	0.50	1.00	0.10	0.10	0.17	0.051
149R-1, 37-03	1157.00	2.00	10.7	4.12	1.55	5.90	1.00	6.04	1.05	4.05	4.01	0.70	2.90	0.20	0.24	0.27	0.065
149R-1, 130-145	1166 42	1.70	0.27	2 15	1.37	J.00	0.01	6.07	1.30	4.51	2 02	0.00	2.05	0.25	0.43	0.20	0.077
1520 2 26 47	1176 70	1.72	9.27	2 20	1.20	5 22	0.91	6.48	1.37	4.05	1.08	0.59	2.41	0.22	0.37	0.23	0.007
153R-2, 30-47 153R-2, 103, 115	1177 28	1.79	9.02	3.32	1.20	J.ZZ	0.97	5.97	1.43	4.10	3.81	0.02	2.33	0.21	0.29	0.23	0.008
154R-2 30 52	1181 45	1.57	0.55	3.43	1.10	1.05 ∕ 08	0.21	6.40	1.52	4.02	1 07	0.57	2.57	0.12	0.12	0.20	0.050
155R-2 60_80	1186.47	1.72	8 31	2 99	1.25	4.70	0.27	5 38	1.16	3 41	3.40	0.05	*2.33	0.22	0.20	*0.21	*0.07
155R-2,00-00 155R-3 0-10	1187 12	1.55	8 4 9	3.02	1.14	4 51	0.02	5.30	1.10	3 54	3.40	0.52	2.21	0.20	0.21	0.21	0.07
156R-1 90_100	1190 51	1.50	6.18	2 37	0.89	3 40	0.66	4 31	0.97	2.87	2.76	0.32	1.63	0.15	0.13	0.16	0.055
157P-1 111 125	1105 20	1.15	10.10	2.37	1 30	5.53	1 01	6.65	1.46	1 36	1 24	0.42	2 70	0.15	0.15	0.10	0.031
150P-1 3 13	1203.83	1.75	0.3	3./8	1.32	5 11	0.00	6.08	1.36	4.30 4.10	3.01	0.05	2.70	0.22	0.25	0.27	0.070
150R-1 60 70	1203.03	1.71	8 00	3.56	1.25	1 80	0.20	6.27	1.30	4.10	3.24	0.57	2.45	0.20	0.10	0.22	0.000
150P-1 08 110	1204.40	1.05	8.83	3.30	1.00	1.52	0.72	5.64	1.30	3 76	3.55	0.00	2.77	0.21	0.14	0.21	0.005
160P-1 85 100	1204.05	1.32	6 99	2.17	0.92	3 5 2	0.67	1 50	0.98	2.85	2.55	0.33	1 76	0.12	0.20	0.12	0.001
161P-1 105 113	1202.02	0.01	5 38	2.77	0.72	2.02	0.07	3.85	0.20	2.05	2.05	0.38	1.70	0.21	0.21	0.24	0.000
162P-1 37 45	1211.15	1 / 0	7.86	2.17	1.06	1.08	0.50	1 98	1 11	2.30	2.47	0.30	2.00	0.09	0.11	0.11	0.001
162R-7, 37-45	1215.25	1.12	6.22	2.05	0.89	3 51	0.70	4 35	1.00	2 90	2.81	0.40	1.62	0.12	0.12	0.21	0.002
163R-2, 55-63	1219.00	1.12	8 75	3 23	1 16	4.61	0.05	5 73	1.00	3.88	3.63	0.42	2 30	0.15	0.12	0.15	0.044
164R-1 27-50	1273.80	1.05	8 35	2.98	1.10	4.23	0.00	5 27	1.27	3.50	3 30	0.30	2.50	0.19	0.20	0.20	0.057
164R-2 5-15	1223.00	1.51	8 54	3 10	1.00	4 25	0.78	5 31	1.12	3 54	3 30	0.42	2.14	0.12	0.25	0.21	0.063
164R-2, 101-107	1225.18	1.61	9.23	3 4 5	1.10	4 93	0.70	6.01	1.10	4 06	3 78	0.51	2.02	0.20	0.10	0.21	0.005
164R-3 36-44	1225.10	1.85	10.3	3 77	1 33	5 4 3	1 00	6 74	1.57	4 47	4 29	0.67	2.20	0.23	0.18	0.24	0.075
165R-1 23-33	1228.00	1.60	9.01	3.26	1.33	4 71	0.89	5.88	1.32	4 04	3.76	0.57	2.00	0.20	0.10	0.20	0.065
165R-2 71-91	1230 17	1.05	9.36	3 41	1.13	5.06	0.92	6 1 1	1 39	4 1 5	3.94	0.60	2 39	0.20	0.13	0.23	0.065
165R-3 19-30	1230.19	1.70	9.18	3.42	1.21	5.05	0.95	6 4 7	1.32	4 20	4 04	0.60	2.37	0.22	0.15	0.22	0.069
166R-1 15-27	1232.87	1.81	9.67	3 54	1.21	4 94	0.91	6.09	1 35	3.96	3 73	0.57	2 32	0.22	0.14	0.22	0.082
166R-1 126-132	1232.07	1.69	9.28	3 36	1.18	4 72	0.89	6.05	1.33	3.95	3.85	0.58	2.52	0.20	0.18	0.20	0.062
166R-2 88-99	1235.57	1.69	9.64	3 5 2	1.10	5.08	0.93	6 3 3	1.31	4 16	4 04	0.50	2.63	0.20	0.17	0.23	0.066
166R-3 49-65	1235.57	1.80	10.1	3.82	1.22	5.00	0.98	6.77	1.40	4 27	4 19	0.64	2.05	0.22	0.15	0.23	0.068
167R-1 12-23	1236.68	1.00	6.26	2 48	0.89	3.57	0.50	4 57	1.47	3.00	2 91	0.04	1 73	0.21	0.10	0.15	0.000
167R-2 50-70	1238.63	1.17	5 78	2.40	0.85	3.26	0.60	4 23	0.96	2.85	2.51	0.44	1.75	0.14	0.10	0.13	0.047
168R-1 58-72	1230.05	1.00	9 31	3 50	1 25	4 81	0.82	5.93	1 32	3.85	3 74	0.42	2 4 2	0.12	0.10	0.14	0.070
168R-3 23-32	1245.16	1.75	8.88	3 24	1.25	4 66	0.86	5.83	1.52	3.77	3 59	0.50	2.42	0.21	0.31	0.22	0.070
168R-4, 78-90	1247.03	1.72	9.08	3.37	1.23	4.77	0.89	5.90	1.33	3.78	3.71	0.55	2.30	0.22	0.36	0.22	0.065
169R-2, 40–54	1248.75	1.34	7.13	2.57	0.91	3.69	0.68	4.53	1.03	3.00	2.88	0.33	1.74	0.23	0.18	0.26	0.074
169R-3, 18-37	1249.88	1.04	5.53	2.09	0.78	3.02	0.58	3.71	0.84	2.53	2.43	0.37	1.45	0.18	0.11	0.20	0.060
170R-2, 40-48	1253.50	1.33	7.14	2.52	0.89	3.71	0.69	4.53	0.98	2.99	2.82	0.43	1.72	0.23	0.11	0.25	0.068
170R-2, 130–144	1254.31	1.00	5.70	2.23	0.84	3.21	0.61	4.14	0.93	2.79	2.56	0.40	1.43	0.10	0.16	0.10	0.034
170R-3, 22-40	1254.68	1.00	5.51	2.15	0.79	3.14	0.59	3.95	0.88	2.72	2.52	0.38	1.42	0.10	0.15	0.10	0.033
	.20		0.01	2	0177	5	0.07	5170	0.00	2.7 2	2.02	0.50		00	0.1.0	0110	0.055
312-1256D-				- · -						4	o / -						
1/3R-1, 0–10	1260.60	1.22	6.36	2.45	0.84	3.31	0.65	4.36	0.94	2.71	2.67	0.42	1.60	0.19	0.09	0.20	0.059
1/4R-1, /3–/9	1266.13	1.56	8.68	3.25	1.26	4.65	0.89	5.//	1.26	3.//	3.50	0.55	2.27	0.20	0.07	0.20	0.06/
1/5K-1, /5-83	12/2.05	1./1	9.30	3.33	1.15	4.59	0.83	5./5	1.26	3.55	3.45	0.53		0.23	0.17		
176R-1, 116-122	12//.2/	1.89	9.87	3.78	1.24	5.25	1.01	6.61	1.43	4.16	3.94	0.61	2.50	0.23	0.13	0.24	0 1 0 7
176R-2, 42-55	12/8.03	2.52	13.5	4.97	1.67	6.72	1.31	8.33	1.84	5.09	5.03	0.79	3.50	0.33	0.28	0.36	0.107
181R-1, 51-56	1300.61	1.17	6.37	2.60	0.90	3.75	0.71	4.60	1.01	2.97	2.92	0.45		0.11	0.13		
182K-1, 18-25	1305.09	1.22	6.63	2.61	0.95	3./2	0.70	4.61	1.03	2.94	2.92	0.46	2.24	0.12	0.32	0.20	0.050
184K-1, 0-8	1314.50	1.60	8./1	3.29	1.16	4.59	0.8/	5.//	1.26	3.5/	3.5/	0.55	2.24	0.19	0.15	0.20	0.059
186K-1, 12-20	1320.10	1.49	/./3	2.99	1.03	4.12	0.79	5.32	1.15	3.32	3.19	0.50	2.20	0.17	0.14	0.20	0.061
18/R-2, 21-31	1325.88	1.47	8.04	2.99	1.08	4.31	0.81	5.50	1.21	3.48	5.53	0.51	2.17	0.17	0.09	0.21	0.071
189K-1, 0-13	1333.90	1.95	9.86	3.14	1.04	4.04	0.69	4.68	0.96	2.79	2.63	0.40	2.30	0.41	0.10	0.49	0.122
189K-1, /1-89	1334.61	2.05	9.75	3.16	1.13	4.00	0./1	4.65	1.02	2.78	2.64	0.40	2.18	0.43	0.13	0.46	0.137
196K-1, 16-20	1363.86	1.37	/.90	2.91	0.99	4.03	0.75	5.26	1.15	3.50	3.22	0.50	2.03	0.17	0.06	0.17	0.053
202K-1, 25-3/	13/3.05	1.97	10.5	3.84	1.3/	5.5/	1.01	6.97	1.48	4.44	4.21	0.63		0.24	0.05		
205K-1, 0-4	1382.10	1.89	10.4	3.86	1.29	5.34	0.98	6.92	1.40	4.44	4.13	0.64		0.21	0.20		
206K-1, 8-12	1386.98	1.45	8.21	3.04	1.08	4.18	0.81	5.49	1.18	3.58	3.39	0.51		0.18	0.08		
212K-1, 4-/	1404.14	1.6/	9.01	3.39	1.16	4./0	0.86	5./6	1.21	3.66	5.38	0.52	7 20	0.22	0.28	0.70	0.270
214R-1, 26-35	1411.16	5.89	30.7	10.1	3.00	13.2	2.39	15.7	3.20	9.75	8.27	1.18	7.39	0.87	0.05	0.79	0.269

Table T4 (continued).

Core, section, interval (cm)	Depth (mbsf)	Sc (ppm)	V (ppm)	Cr (ppm)	Co (ppm)	Ni (ppm)	Zn (ppm)	Ga (ppm)	Rb (ppm)	Sr (ppm)	Y (ppm)	Zr (ppm)	Nb (ppm)	Cs (ppm)	Ba (ppm)	La (ppm)	Ce (ppm)
214R-1, 26–35	1411.16	72.8	175	196	58.8	53.1	56.9	25.6	2.37	149	52.5	95.3	4.45	0.006	42.6	4.80	14.9
214R-1, 52–58	1411.42	43.5	186	49.5	38.5	29.9	40.8	18.1	1.37	86.6	93.2	336	15.4	0.007	21.3	11.7	36.3
214R-2, 119–129	1413.55	42.1	276	325	37.1	82.3	34.1	15.9	0.46	94.1	27.9	66.7	2.24	0.002	10.1	2.52	7.32
215R-1, 43-49	1416.13	40.5	260	227	38.3	85.5	36.4	15.9	0.34	95.5	26.1	60.1	2.18	0.003	9.02	2.30	6.89
216R-1, 49–58	1418.39	44.4	219	313	38.7	75.4	34.4	14.6	0.38	94.3	22.5	49.0	1.59	0.002	11.9	2.39	6.30
217R-1, 17–21	1421.77	42.3	244	1126	36.7	147	25.6	13.1	0.32	79.6	16.0	29.9	1.04	0.000	8.38	1.61	4.78
217R-1, 29–33	1421.89	41.9	251	652	40.4	127	30.4	14.5	0.30	88.2	20.8	36.0	1.44	0.001	8.15	2.13	6.60
219R-1, 25–32	1430.26	46.2	283	672	42.3	117	45.6	14.3	0.63	87.5	22.8	53.5	2.00	0.003	14.7	2.42	6.24
220R-1, 92–100	1435.92	42.9	318	508	47.1	118	38.9	15.9	0.41	90.2	26.3	56.9	2.14	0.000	18.1	2.43	7.06
222R-2, 25–35	1446.37	40.9	231	856	43.2	163	34.4	13.7	0.45	86.7	22.2	41.1	1.84	0.001	7.72	2.01	5.97
223R-1, 137–144	1450.68	41.0	295	418	54.1	233	38.7	13.9	0.29	79.9	24.0	49.5	1.94	0.001	7.21	1.88	5.60
223R-3, 12–24	1452.40	40.4	203	549	65.6	389	44.6	13.6	0.32	88.8	18.7	35.8	1.27	0.002	6.55	1.62	4.68
227R-1, 50–61	1469.00	45.0	481	136	46.3	68.1	64.3	17.1	0.17	80.5	32.0	70.4	2.73	0.002	6.69	2.65	8.13
227R-1, 80–86	1469.30	47.7	438	152	50.2	69.1	66.7	17.9	0.12	76.4	33.9	72.1	2.67	0.003	6.71	2.54	7.96
227R-1, 113–126	1469.63	44.5	471	162	44.1	75.0	38.4	17.0	0.38	85.6	34.5	86.3	3.18	0.001	7.44	3.22	10.1
230R-1, 72–83	1483.72	49.1	637	172	58.2	74.3	64.5	18.6	0.22	85.5	28.4	53.1	1.92	0.001	6.46	2.07	5.91
230R-2, 49–61	1484.99	45.7	262	419	42.7	88.9	47.2	15.1	0.27	89.2	27.0	45.4	1.52	0.003	7.86	1.69	5.38
231R-1, 90–100	1488.80	46.6	281	472	42.6	98.6	46.2	15.2	0.18	87.9	28.9	52.1	1.79	0.001	7.12	1.91	5.96
231R-3, 80–98	1491.36	46.5	359	588	47.1	109	50.9	15.4	0.24	91.7	24.9	47.2	1.40	0.002	7.38	1.51	4.57
232R-1, 66–81	1493.56	45.4	329	487	48.0	115	52.0	15.8	0.31	92.3	27.9	45.4	1.57	0.003	8.94	1.71	5.51
232R-2, 35–50	1494.33	45.5	315	450	44.6	97.5	44.6	15.5	0.15	89.6	31.0	65.5	2.25	0.002	7.39	2.23	7.23
233R-1, 14–19	1497.64	45.9	335	254	44.6	80.7	46.6	15.2	0.16	74.0	23.9	43.8	1.34	0.004	5.24	1.57	4.50
234R-1, 26–29	1502.76	45.8	467	47	49.8	42.2	88.4	18.7	0.30	79.7	56.6	149.1	5.22	0.002	8.08	4.91	14.6

Notes: Most elements analyzed by ICP-MS using acid digestion. Zr, Hf, Th, and U abundances of three samples from Expedition 309 (*) and all samples from Expedition 312 were analyzed using the alkali fusion method.

Core, section, interval (cm)	Depth (mbsf)	Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Yb (ppm)	Lu (ppm)	Hf (ppm)	Ta (ppm)	Pb (ppm)	Th (ppm)	U (ppm)
214R-1, 26-35	1411.16	2.53	14.2	5.09	1.83	6.90	1.32	8.54	1.81	5.52	5.05	0.74	2.53	0.34	0.16	0.24	0.084
214R-1, 52–58	1411.42	5.84	29.9	9.91	3.17	12.8	2.33	15.1	3.19	9.40	8.37	1.17	7.97	0.95	0.04	0.83	0.298
214R-2, 119–129	1413.55	1.22	6.83	2.66	1.03	3.65	0.67	4.57	0.97	2.87	2.61	0.39	1.68	0.14	0.12	0.14	0.047
215R-1, 43–49	1416.13	1.16	6.47	2.26	1.07	3.34	0.62	3.93	0.89	2.63	2.49	0.36	1.55	0.14	0.10	0.13	0.047
216R-1, 49–58	1418.39	1.12	5.76	2.03	0.93	2.79	0.54	3.49	0.77	2.26	2.15	0.31	1.21	0.10	0.10	0.11	0.042
217R-1, 17–21	1421.77	0.80	4.11	1.54	0.73	2.12	0.40	2.75	0.60	1.69	1.55	0.23	0.85	0.06	0.10	0.07	0.027
217R-1, 29–33	1421.89	1.20	5.92	2.09	0.88	2.77	0.53	3.41	0.74	2.15	2.01	0.30	1.02	0.09	0.10	0.10	0.034
219R-1, 25–32	1430.26	1.02	5.61	2.02	0.82	2.95	0.54	3.61	0.81	2.38	2.13	0.33	1.37	0.11	0.13	0.12	0.036
220R-1, 92–100	1435.92	1.17	6.31	2.59	0.94	3.42	0.65	4.18	0.93	2.66	2.53	0.40	1.53	0.14	0.14	0.14	0.047
222R-2, 25–35	1446.37	1.00	5.77	2.03	0.77	2.84	0.56	3.64	0.77	2.27	2.10	0.33	1.09	0.12	0.07	0.10	0.029
223R-1, 137–144	1450.68	1.05	5.68	2.14	0.75	2.95	0.58	3.81	0.84	2.35	2.24	0.35	1.29	0.12	0.16	0.13	0.039
223R-3, 12–24	1452.40	0.85	4.33	1.71	0.69	2.32	0.44	2.94	0.65	1.86	1.75	0.27	0.98	0.08	0.10	0.09	0.026
227R-1, 50-61	1469.00	1.42	7.95	2.89	1.05	3.92	0.78	5.12	1.12	3.22	3.13	0.48	1.90	0.18	0.04	0.20	0.052
227R-1, 80-86	1469.30	1.38	7.73	2.97	1.07	4.19	0.79	5.34	1.16	3.34	3.25	0.51	1.93	0.17	0.05	0.16	0.064
227R-1, 113–126	1469.63	1.66	8.78	3.10	1.05	4.24	0.80	5.35	1.21	3.51	3.28	0.51	2.11	0.19	0.08	0.22	0.065
230R-1, 72-83	1483.72	1.04	5.98	2.39	0.95	3.40	0.65	4.37	1.00	2.64	2.73	0.42	1.40	0.11	0.02	0.11	0.035
230R-2, 49–61	1484.99	0.96	5.83	2.24	0.94	3.27	0.64	4.25	0.95	2.74	2.58	0.39	1.28	0.09	0.10	0.10	0.028
231R-1, 90–100	1488.80	1.15	6.59	2.52	0.99	3.52	0.70	4.56	1.02	2.97	2.69	0.42	1.48	0.12	0.08	0.13	0.037
231R-3, 80–98	1491.36	0.85	4.80	1.98	0.90	3.05	0.60	3.92	0.86	2.51	2.43	0.36	1.31	0.09	0.08	0.10	0.034
232R-1, 66–81	1493.56	1.01	5.88	2.27	1.00	3.37	0.66	4.32	0.97	2.80	2.63	0.41	1.31	0.10	0.11	0.10	0.032
232R-2, 35–50	1494.33	1.25	7.37	2.77	1.03	3.85	0.73	4.91	1.09	3.12	2.94	0.44	1.80	0.13	0.09	0.16	0.049
233R-1, 14–19	1497.64	0.88	4.96	2.07	0.79	2.90	0.54	3.61	0.82	2.42	2.30	0.35	1.23	0.09	0.04	0.07	0.029
234R-1, 26–29	1502.76	2.48	13.9	5.04	1.61	7.09	1.35	8.77	1.97	5.78	5.67	0.85	3.91	0.31	0.08	0.36	0.116

Table T5. Comparisons of trace element abundances. (See table note.)

	BAS-	206	BAS-312							
	Expedition 312 (avg.)	This study (avg.)	Expedition 312 (avg.)	This study (avg.)						
Element ox	ide (wt%):									
SiO ₂	49.35	49.24	49.86	49.5						
TiO ₂	2.09	2.10	1.33	1.336						
AI_2O_3	13.87	13.86	15.41	15.445						
Fe ₂ O ₃	14.58	14.73	10.77	10.877						
MnO	0.26	0.26	0.18	0.184						
MgO	6.73	6.71	7.79	7.752						
CaO	9.92	9.79	11.89	11.819						
Na ₂ O	2.83	2.71	2.44	2.351						
K ₂ O	0.18	0.20	0.05	0.077						
P_2O_5	0.19	0.17	0.09	0.11						
Total	: 100.00	99.76	99.83	99.45						
Element (ppm):										
Sc	42.59	51.7	39.99	45.8						
V	421.96	465.1	295.38	321.3						
Cr	73.28	84.6	259.03	252.2						
Co	50.78	55.1	44.27	46.7						
Ni	45.50	50.7	88.12	88.9						
Zn	99.29	133.0	82.75	89.3						
Sr	99.16	101.9	98.85	101.1						
Y	34.14	50.2	24.65	30.8						
Zr	111.19	128.5	71.43	79.2						
Ва	42.75	42.2	9.54	12.2						

Note: Average (avg.) values from Expedition 312 from Teagle et al. (2006).

