Data report: gas hydrate structural and compositional characterization by spectroscopic analysis, IODP Expedition 311

K.C. Hester, C.A. Koh, S.F. Dec, and E.D. Sloan

Chapter contents

Abstract ... 1
Methods .. 2
Results and discussion 2
Conclusions 5
Acknowledgments 6
References 6
Figures .. 7
Table ... 13

Abstract

Two gas hydrate cores from Integrated Ocean Drilling Program Expedition 311 Site U1328 (northern Cascadia margin) were analyzed for structural and compositional characterization. Gas hydrate was present mainly as nodules surrounded by sediment. The samples were recovered from 4.5 to 8.68 meters below seafloor using a conventional nonpressurized coring technique. Quenched in liquid nitrogen upon recovery, the gas hydrates were kept at cryogenic temperatures for sampling with Raman and nuclear magnetic resonance spectroscopy. Pure structure I (sI) methane gas hydrate was found in one sample and a methane-rich sI gas hydrate containing hydrogen sulfide was found in the second sample. Small local variations in the hydrogen sulfide amounts were shown. A hydration number of 6.08 was measured for both samples, in agreement with previous work with synthetic and recovered natural gas hydrates from similar locations. A method for determining the fraction of hydrate vs. ice using a Raman peak from water is given. This approach provides a possible tool to estimate sample degradation (conversion of gas hydrate to water + gas) as a result of recovery. Quantitative agreement between the methane cage occupancy ratios was shown for the nuclear magnetic resonance and Raman spectroscopic techniques for both sample sets, comprising pure methane and a mixture of methane + hydrogen sulfide.

Introduction

Gas hydrates are crystalline inclusion compounds made of water molecules that form cages. These cages trap low-molecular weight molecules, typically at high pressure and low temperature conditions. Gas hydrates are known to proliferate in the sediments of the continental slopes and the permafrost. The majority of these natural gas hydrates are composed of methane in the structure I (sI) lattice. The sI lattice unit cell consists of 46 waters in two cage types: two pentagonal dodecahedron (5^{12}) and six tetrakaidecahedron (5^{12}6^{2}) cages. Molecules such as methane and hydrogen sulfide form this structure (Sloan and Koh, 2007).

Interest in natural gas hydrates has largely been driven by the vast quantities of methane they are estimated to contain. Current estimates of methane trapped in gas hydrate are 2.5×10^{15} to 440×10^{15} cubic meters.
10^{15} \text{ m}^3 at standard temperature and pressure (Milkov, 2004; Kluda and Sandler, 2005). In addition, the possible role of gas hydrates in climate change and as a geohazard has been the focus of numerous studies (Dickens, 2001; Kennett et al., 2003; Milkov et al., 2003). Structural and compositional characterization of natural gas hydrates is important to determine gas hydrate properties including pressure-temperature stability and thermal conductivity, both from energy recovery and geohazard aspects.

Integrated Ocean Drilling Program (IODP) Expedition 311 was performed in the northern Cascadia margin (see the “Expedition 311 summary” chapter). The goal of this program was to constrain geological models for the formation of gas hydrates. This includes both field measurements and recovery of samples for laboratory characterization. The contribution of this manuscript is to provide structural and compositional characterization with nuclear magnetic resonance (NMR) and Raman spectroscopy of two recovered gas hydrate samples. Characterization of gas hydrates from this area adds to the understanding of how these systems formed and the current state of the gas hydrates in the northern Cascadia margin.

Methods

Raman spectroscopy

For the Raman measurements, a Renishaw MK III Raman spectrometer was used, utilizing a 30 mW argon laser emitting green light at a wavelength of 514.53 nm as an excitation source. The light was transported through a 50 µm optical fiber cable to the probe and was focused on the sample using a 20× objective lens.

Backscattered light was filtered using a 2400 grooves/mm grating. The spectrometer was calibrated using the emission lines from neon, assuring an accuracy of 0.3 cm\(^{-1}\), while the spectral resolution was 4.5 cm\(^{-1}\). Raman spectra were analyzed using GRAMS/Al software from Galactic Industries Corporation. The gas hydrate was placed in a stainless steel sample holder, which was immersed in liquid nitrogen in order to keep the gas hydrate sample at 77 K.

The outer surface of the gas hydrate samples was cleaved and placed in a cryostat maintained at 77 K under liquid nitrogen. Because Raman is a local technique (with the laser spot on the order of micrometers), various areas of the gas hydrate could be measured to detect any heterogeneity. The resulting spectra were deconvoluted in the same manner for all gas hydrate spectra with a mixed Gaussian and Lorentzian peak shape (Sum et al., 1997).

NMR spectroscopy

All \(^{13}\text{C}\) magic angle spinning (MAS) NMR spectra were recorded on a Chemagnetics Infinity 400 NMR spectrometer operating at 100.5 MHz for \(^{13}\text{C}\). A single-pulse \(^{13}\text{C}\) MAS experiment with a pulse delay of 60 s was used to measure the sample. To verify this was sufficient for quantification, the same experiment was performed with a 120 s pulse delay, and the cage occupancies were in agreement with the 60 s pulse delay case. This verified the pulse rate was sufficiently slow to record quantitative spectra. Proton decoupling of ~50 kHz was used during acquisition of the \(^{13}\text{C}\) NMR signal.

The samples were cold-loaded into 7.5 mm ZrO\(_2\) sleeves as powder and placed in the NMR Chemagnetics variable temperature (VT) probe at ~248 K. The samples were then cooled in ~10 s intervals to ~165 K. MAS between 2 and 4 kHz was used. A 90° pulse of 5 µs was measured for the power settings used.

Cage occupancy ratio calculation

The gas hydrate cage occupancy ratio is defined as \(\theta_i/\theta_p\), where \(\theta\) is the absolute occupancy of a particular gas hydrate cage type and the subscripts \(L\) and \(S\) indicate the large and small cages, respectively (\(L = \frac{5^{12}}{2}\) for \(SL\), \(S = 5^{12}\)). This occupancy ratio can be determined from the Raman or NMR spectrum by using \(\theta_i/\theta_p = (A_i/3)/A_p\), where \(A\) is the area of the peak corresponding to the given cage type. \(A_i\) is divided by 3 to account for the \(SL\) cage distribution.

Results and discussion

Site U1328: Sample 311-U1328B-2H-HydCC (Hester, 2007)

The first gas hydrate core (Sample 311-U1328B-2H-HydCC, designated hereafter as Sample H1) was cored at IODP Hole U1328B in a water depth of 1267.8 m. At this location, widespread carbonate deposits were observed on the seafloor (see the “Site U1328” chapter). The core, 1.7 m in length, was taken using a piston core, a conventional nonpresurized core, at a top depth of 4.5 meters below seafloor (mbsf) in Hole U1328B. Soupy sediment, likely because of gas hydrate dissociation during recovery, was observed upon recovery (see the “Site U1328” chapter). The core was recovered as pieces of sediment, mainly dark gray to greenish gray clay containing gas hydrate nodules (on the order of centimeters in size). Samples of the void headspace gas from the core were found to be primarily methane with 23,470 parts per million (ppm) H\(_2\)S and 4,375 ppm CO\(_2\) (see the “Site U1328” chapter). With the
bottom water temperature around 276.65 K and a local geothermal gradient of 53.6 ± 0.4 K/km, the in situ gas hydrate conditions for Sample H1 were around 276.9 K and 12.87 MPa. The approximate interstitial water salinity was determined to be 33.5.

For Raman analysis, six separate gas hydrate pieces (all on the order of 1 cm³) were chosen from Sample H1. Of each of these gas hydrate pieces, between two and four different spots were measured, resulting in 17 total Raman spectra collected. All spectra were collected for 50 s each. Figure F1 shows the spectral regions of interest. Only methane in the sI lattice was detected in all measurements of Sample H1. The main ν₁ peaks for methane are present at 2900 cm⁻¹ (CH₄ in the sI 5₁²6₂) and 2912 cm⁻¹ (CH₄ in the sI 5₁²) with two minor peaks at 2570 and 3045 cm⁻¹, indicating methane in a gas hydrate phase (Sum et al., 1997; Hester et al., 2007). It should be noted that although the ν₁ peaks are shifted to lower wavenumbers by 3–4 cm⁻¹ and the 3045 peak downshifted 9 cm⁻¹ at 77 K versus 298 K, there is no apparent temperature-induced shift of the 2570 cm⁻¹ peak.

Using the peaks for methane at 2900 and 2912 cm⁻¹, the relative composition in the gas hydrate can be determined. The methane occupancy ratio was found to be consistent throughout the Sample H1 core. Over 17 measurements, an average occupancy ratio was found to be 1.13 ± 0.04.

NMR spectroscopy on Sample H1 was also performed. Being a bulk technique versus the local nature of the Raman measurements, only one sample was measured (Fig. F2). As with the Raman work, only peaks for methane in the sI were measured at chemical shifts of −6.2 ppm (CH₄ in the sI 5₁²6₂) and −4.1 ppm (CH₄ in the sI 5₁²) (Ripmeester and Ratcliffe, 1988). The methane occupancy ratio of 1.13 ± 0.02 was in excellent agreement with the Raman work.

Site U1328: Sample 311-U1328E-2X-Hyd17

The second gas hydrate core (Sample 311-U1328E-2X-Hyd17, designated hereafter as Sample H2) was cored at IODP Hole U1328E in a water depth of 1264.7 m (see the “Site U1328” chapter). The core, 2.39 m in length, was taken using the extended core barrel at a top depth of 6.5 mbsf. Soupy sediments were also observed in this core along with a medium temperature anomaly, both indicating gas hydrate dissociation (see the “Site U1328” chapter). The core was recovered as a whole-round core with mainly dark gray to greenish gray clay sediment containing gas hydrate nodules (on the order of centimeters in size). The presence of H₂S was also detected upon the core recovery in the headspace gas using gas chromato-
the gas hydrate statistical mechanics model originally developed by van der Waals and Platteeuw (1959). The statistical mechanics model was derived assuming gas hydrates were an ideal solid solution, in which guest occupancy of the cages lowers the gas hydrate chemical potential. If the water lattice is not distorted and guest-guest interactions are negligible, the chemical potential of the Si gas hydrate ($\Delta \mu_{\text{WH}}$) can be given as

$$\Delta \mu_{\text{WH}} - \Delta \mu_{\text{WH}} = \frac{RT}{23} [3\ln(1 + \sum \theta_{L,i}) + \ln(1 - \sum \theta_{S,i})],$$

where

$$\theta_{L,i} = \text{occupancy of the large cage by component (i)},$$

$$\theta_{S,i} = \text{occupancy of the small cage by component (i), and}$$

$$\Delta \mu_{\text{WH}} = \text{chemical potential of the hypothetical empty lattice. A generally accepted value for } \Delta \mu_{\text{WH}} \text{ is 1297 J/mol (Handa and Tse, 1986).}$$

By combining the experimentally determined occupancy ratios and Equation 1, it is possible to solve for absolute cage occupancies. These can be used to solve for the hydration number, n, such that

$$n = \frac{23}{3 \sum \theta_{L,i} + \sum \theta_{S,i}},$$

which gives the ratio of water molecules to guest molecules in the gas hydrate. These experimentally determined cage occupancies and hydration numbers can then be compared with predictions from gas hydrate prediction programs, in this case CSMGem, which incorporates Gibbs energy minimization to eliminate the assumptions in the original van der Waals and Platteeuw model (Ballard and Sloan, 2002).

To solve for occupancies in Equation 1, quantitative experimental occupancy ratios are needed. Although NMR is inherently quantitative, Raman intensities rely on polarizability theory with parameters that are not trivial to determine (Placzek, 1934), leading to a more qualitative nature. However, cross-calibration with NMR has shown quantitative Raman methane cage occupancy ratios for pure methane gas hydrate (Subramanian, 2002; Wilson et al., 2002; Hester, 2007) and, in this study, with small amounts of H_2S present.

For Sample H1, only methane was detected. The experimentally determined occupancy ratio from Raman was 1.13 ± 0.04, in agreement with NMR (1.13 ± 0.02). The 512cage was almost fully occupied (0.974) and the 512cage had an occupancy of 0.862; this resulted in a hydration number of 6.08 ± 0.04. Using the in situ conditions (276.9 K, 12.78 MPa, $S = 33.5$), the results of a flash calculation performed with CSMGem yields large and small cage occupancies of 0.961 and 0.873, respectively, and a hydration number of 6.13; these values are in good agreement with the experiment.

For Sample H2, both methane and hydrogen sulfide were present. To experimentally determine absolute cage occupancies and hydration numbers, the assumption that RNDRS cross sections can be used to estimate the gas hydrate composition was used. The mole fraction H_2S determined using this method for the six samples measured and absolute cage occupancies and hydration numbers calculated using Equations 1 and 2 are listed in Table T1. CSMGem calculations using the in situ conditions (277.0 K, 12.83 MPa, $S = 34.5$) are also summarized in Table T1. Even with the assumptions made, both experimentally determined occupancies and the calculations agreed well. It should be noted that H_2S has a greater occupancy in the 512cage (2.9%–3.8%) versus the 512cage (1.5%–1.9%), both experimentally and calculated, possibly because of its greater stabilizing effect of the 512cage over methane.

For Samples H1 and H2, the average hydration number was 6.08 ± 0.04 and 6.08 ± 0.02, respectively. Recent work on recovered northern Cascadia margin gas hydrates (Lu et al., 2005) yielded a hydration number of 6.1 ± 0.1, very similar to the results of this work. Laboratory work using the combination of spectroscopic occupancy ratios and statistical mechanics have obtained values including 6.05 ± 0.06 (Ripmeester and Ratcliffe, 1988), 6.04 ± 0.03 (Sum et al., 1997), and 6.2 ± 0.3 (Uchida et al., 1999) for synthetic and natural methane gas hydrates. Careful direct laboratory hydration number measurements of synthetic methane gas hydrate have shown values of 5.99 ± 0.07 (Circone et al., 2005) and 6.00 ± 0.01 (Handa, 1986). The results from the synthetic samples are in good agreement with the recovered natural samples.

With known formation conditions, natural methane gas hydrates are structural and compositional analogs to laboratory samples as expected from thermodynamics. In addition, current statistical mechanics methods are able to predict the composition of these gas hydrates very well. However, multicomponent natural gas hydrates, such as those from thermogenic sources, still pose challenges, such as sample heterogeneity with mixed structures and varying compositions, and warrant future study.

Presence of H_2S

It was indicated by the shipboard party that H_2S was detected in association with Samples H1 and H2. The spectroscopic measurements on the samples show...
that only Sample H2 contained H2S. It was noted that in the upper part of Hole U1328B (from which Sample H1 was recovered) dangerous levels of H2S were detected (see the “Site U1328” chapter). Because some sample dissociation occurred during recovery, this work is inconclusive as to whether H2S was present in situ in the gas hydrate from Sample H1.

Estimates of sample degradation due to recovery

Because these gas hydrate samples were from areas where temperatures would not allow for water ice, measurement of ice in quenched samples under liquid nitrogen can be attributed to the dissociation of gas hydrate or other sources, such as surrounding pore waters. Indication of gas hydrate dissociation was present with observation of a “soupy” texture in the recovered core. Raman measurements of the water phase could possibly be used to distinguish between gas hydrate and ice phases and assess sample degradation.

Figure F4 shows the Raman spectra for water in a synthetic sl gas hydrate and the ice phase at 77 K. The most intense O-H stretching peak for water is found at 3076 cm\(^{-1}\) for sl gas hydrate, whereas it is shifted 8 cm\(^{-1}\) to 3084 cm\(^{-1}\) for ice. A smaller shift between sl gas hydrate and ice was observed for the weaker water peak (3207 versus 3210 cm\(^{-1}\)). For further analysis, the peak at 3076 cm\(^{-1}\) for sl and 3084 cm\(^{-1}\) for ice were used because they showed the greatest shift between phases. The shift of this peak can be used to determine if ice is present along with gas hydrate. When comparing the area of the C-H methane peaks to the O-H water peak, Figure F5A shows that the ratio of water to methane can vary significantly. The most probable explanations could be either (1) the water peak was a mixture of sl and ice (caused by degradation during recovery and/or frozen pore water during quenching) or (2) the hydration number (ratio of water to gas hydrate guest) of the gas hydrate was variable. Figure F5B shows that for the gas hydrate spectra with a greater water-to-methane ratio, the O-H stretching peak actually shifted to 3078 cm\(^{-1}\). This indicates that a mixture of sl and ice was the cause of the variation in the water-to-methane ratio, not a significant difference in the hydration number.

For these measurements at 77 K, the most intense Raman peak for pure ice was at 3084 cm\(^{-1}\) with a full width at half maximum (FWHM) of 26.5 cm\(^{-1}\) and 3076 cm\(^{-1}\) with a FWHM of 29.8 cm\(^{-1}\) for pure sl methane gas hydrate. Both peaks were best fit with a Lorentzian peak shape. In order to estimate the fraction of ice present, two Lorentzian peaks with the Raman peak characteristics (peak position and FWHM) of ice and the sl methane gas hydrate, respectively, were calculated and their relative intensities were varied. Summing the intensities of these two peaks over 3000–3150 cm\(^{-1}\) resulted in a single peak with a Raman shift between 3076 and 3084 cm\(^{-1}\), based on the relative peak intensities. If the RNDRS cross sections for water as ice and sl gas hydrate were assumed to be similar, this resulted in a correlation between the Raman shift of the water peak and the mole percent sl gas hydrate measured as shown in Figure F6.

To evaluate this approach of using the Raman shift to determine the amount of sl gas hydrate measured, the water peak in spectra of the IODP gas hydrates was fit between 3000 and 3150 cm\(^{-1}\) with two Lorentzian peaks constraining the wavenumber and FWHM width based on pure sl methane gas hydrate and ice. The resulting peak areas were then used to estimate the molar percentage of gas hydrate measured. As shown in Figure F6, good agreement was obtained with the two-Lorentzian technique described above. This approach allows for a very straightforward estimate of the sample degradation for recovered sl methane gas hydrate. In addition, this approach could be applied to laboratory samples for a rapid estimate of gas hydrate conversion. However, in the natural samples, it needs to be recognized that the water ice present in the quenched samples could have come from other sources, such as frozen pore waters.

Conclusions

Gas hydrates from two cores at Expedition 311 Site U1328 were measured with Raman and NMR spectroscopy. Both samples were sl methane gas hydrate with one containing small amounts of H2S. Interestingly, in both cases, H2S was detected in the void gas headspace of the recovered core. It is not clear why H2S was present in only one of the samples.

Cage occupancies and hydration numbers compared well with predictions from a statistical thermodynamic gas hydrate program and other measurements on natural methane gas hydrates. Raman spectroscopy has been shown to give quantitative methane cage occupancies even when a small amount of a second component is present in the gas hydrate. In addition, water Raman peaks were used to provide a possible estimate to the degree of sample degradation resulting from unstable conditions during recovery.
Acknowledgments

We thank the Integrated Ocean Drilling Program and all involved in Expedition 311, especially Michael Riedel and Tim Collett, for making these samples available to us. The authors thank H. Lu for his helpful review of this work. K. Hester was supported through National Undersea Research Program grant UAF03-0098.

References

Initial receipt: 6 July 2007
Acceptance: 30 October 2007
Publication: 6 March 2008
MS 311-202
Figure F1. Representative Raman spectrum of hydrate collected from Sample 311-U1328B-2H-HydCC (Sample H1) at 77 K for 50 s (5 s × 10).
Figure F2. Representative NMR spectrum of hydrate collected from Sample 311-U1328B-2H-HydCC (Sample H1).
Figure F3. Representative Raman spectrum of hydrate collected from Sample 311-U1328E-2X-Hyd17 (Sample H2) at 77 K for 50 s (5 s × 10).
Figure F4. Raman spectra of synthetic sI methane hydrate and water ice collected at 77 K. * = vibrational modes from methane.
Figure F5. Raman spectra from Sample 311-U1328B-2H-HydCC (Sample H1). A. Two spectra normalized to methane peaks. B. Water stretching peak for two hydrate spectra and water ice.
Figure F6. Molar percentage sI methane hydrate as a function of the wavenumber of the most intense Raman peak of water at 77 K. Line = method of combining two Lorentzian peaks, squares = experimental deconvolution of Raman water peak using two Lorentzian peaks with characteristics of pure sI hydrate and ice phases.
Table T1. Experimentally determined absolute occupancies and hydration numbers, Sample 311-U1328E-2X-Hyd17 (Sample H2).

<table>
<thead>
<tr>
<th>CH₄ (mol%)</th>
<th>Methane</th>
<th>Hydrogen sulfide</th>
<th>Hydration number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exp. (\theta_i/\theta_j)</td>
<td>(\theta_i)</td>
<td>(\theta_j)</td>
</tr>
<tr>
<td>Raman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.53</td>
<td>1.14</td>
<td>0.954</td>
<td>0.839</td>
</tr>
<tr>
<td>97.69</td>
<td>1.19</td>
<td>0.958</td>
<td>0.806</td>
</tr>
<tr>
<td>97.83</td>
<td>1.15</td>
<td>0.957</td>
<td>0.833</td>
</tr>
<tr>
<td>97.84</td>
<td>1.17</td>
<td>0.958</td>
<td>0.818</td>
</tr>
<tr>
<td>98.01</td>
<td>1.13</td>
<td>0.958</td>
<td>0.848</td>
</tr>
<tr>
<td>98.06</td>
<td>1.15</td>
<td>0.959</td>
<td>0.833</td>
</tr>
<tr>
<td>CSMGem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.53</td>
<td>0.945</td>
<td>0.837</td>
<td></td>
</tr>
<tr>
<td>97.69</td>
<td>0.946</td>
<td>0.839</td>
<td></td>
</tr>
<tr>
<td>97.83</td>
<td>0.948</td>
<td>0.843</td>
<td></td>
</tr>
<tr>
<td>97.84</td>
<td>0.949</td>
<td>0.846</td>
<td></td>
</tr>
<tr>
<td>98.01</td>
<td>0.949</td>
<td>0.847</td>
<td></td>
</tr>
<tr>
<td>98.06</td>
<td>0.949</td>
<td>0.847</td>
<td></td>
</tr>
</tbody>
</table>

Note: CSMGem calculations are from in situ conditions.