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Abstract
δ34S and δ18O measurements of dissolved sulfate were made from
interstitial water samples collected during Integrated Ocean Drill-
ing Program Expedition 311. δ34S and δ18O ratios of dissolved sul-
fate are modified by microbial processes involving sulfur redox
processes; therefore, they can be used to better constrain micro-
bial sulfur cycling. All Expedition 311 sites show clear evidence of
organotrophic and methanotrophic sulfate reduction. A full inter-
pretation of these results, however, requires careful reaction-trans-
port modeling, which will be given elsewhere.

Introduction
Microbial sulfate reduction is the major pathway of organic mat-
ter oxidation in coastal marine and continental shelf sediments
(Jørgensen, 1982) and is a fundamental process linking the geo-
chemical cycles of carbon, sulfur, and oxygen (e.g., Schidlowski et
al., 1983; Berner, 1982; Garrels and Lerman, 1984; Wortmann and
Chernyavsky, 2007). Sulfate-reducing microorganisms reduce
SO4

2– according to the following net reaction: 

SO4
2– + 2CH2O → H2S  + 2HCO3

–.

Microbially mediated sulfate reduction affects the isotopic com-
position of dissolved and solid sulfur species in marine sediments.
Although several details of the fractionation process remain con-
troversial, the overall process is well understood and can be de-
scribed as the sum of several mass-dependent fractionations dur-
ing the stepwise reduction of sulfate to sulfide and the ratio
between the forward and backward reactions (Rees, 1973;
Bruechert, 2004; Brunner and Bernasconi, 2005). Experiments
and field data show that the δ18OSO4 composition is also modified
in the presence of sulfate-reducing microorganisms (Mizutani and
Rafter, 1973; Böttcher et al., 1998; Brunner et al., 2005). This has
been attributed either to a kinetic isotope effect during the reduc-
tion of sulfate to sulfite or cell-internal exchange reactions be-
tween enzymatically activated sulfate (adenosine phosphosulfate
[APS]) and/or sulfite with cytoplasmic water (Mizutani and Rafter,
1973; Fritz et al., 1989; Wortmann et al., 2007) and/or between
sulfite and adenosine monophosphate during APS formation. The
isotopic fingerprint of these processes may be further modified by
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the cell-external reoxidation of sulfide to elemental
sulfur and the subsequent disproportionation to sul-
fide and sulfate or by the oxidation of sulfite to sul-
fate.

This data report offers δ34S and δ18O data which may
help to better constrain these processes. However, a
detailed interpretation is only possible using rigor-
ous reaction-transport modeling (Wortmann, 2006;
Chernyavsky and Wortmann, 2007; Wortmann et
al., 2007), which will be published elsewhere.

Methods
Interstitial water samples were taken on board the
JOIDES Resolution following procedures given in the
“Methods” chapter. Samples were treated immedi-
ately after collection by adding 100 µL of a saturated
cadmium acetate solution per 5 mL of sample to pre-
cipitate all H2S and inhibit further activity of sulfate-
reducing microorganisms. The precipitated CdS was
separated using a centrifuge, and the supernatant
was filtered through a 0.45 µm membrane filter and
acidified with HCl. The sulfate was precipitated as
BaSO4 by adding BaCl2 within 1 h of acidification.
Samples were centrifuged, washed with hot water,
and dried overnight at 60°C. 

For δ34S measurements, the sulfate samples were
weighed in Sn cups together with vanadium pentox-
ide as catalyst and measured on a Thermo Finnigan
Mat 253 stable isotope mass spectrometer in continu-
ous flow mode using the Conflo III open split inter-
face and an Eurovector 3000 elemental analyzer. SO2

reference gas was injected through the dual inlet sys-
tem. The system was calibrated by using Interna-
tional Atomic Energy Agency (IAEA)-SO-5 (0.49‰
Vienna Canyon Diablo Triolite [VCDT]) and National
Bureau of Standards (NBS)-127 (21.1‰ VCDT) inter-
national standards. Analytical reproducibility as de-
termined by a BaSO4 in-house standard (8.2‰
VCDT) is ±0.17‰. Analytical reproducibility as de-
termined by IAEA-SO-5 is ±0.08‰. Data are reported
in conventional delta notation with respect to VCDT. 

For δ18OSO4 measurements, ~135 µg BaSO4 was added to
Ag cups and pyrolyzed at 1350°C on a Hekatech HT-EA
using He as a carrier gas. The produced CO gas was
routed through an Ascarite trap, separated on a Mol-
sieve 5A column, and subsequently measured on a
Thermo Finnigan Mat 253 mass spectrometer in con-
tinuous flow mode using the Conflo III open split inter-
face. The CO reference gas was injected via the Conflo
III interface. The system was calibrated by using
U.S. Geological Survey (USGS) 32 (25.7‰ Vienna
standard mean ocean water [VSMOW]), NBS-127
(8.6‰ VSMOW), and IAEA-SO-6 (–11.34‰
VSMOW) international standards. Analytical repro-
Proc. IODP | Volume 311
ducibility of the measurements was determined by
running several replicates of NBS-127. We report the
1 σ value as ±0.12‰. The data are reported in con-
ventional delta notation with respect to VSMOW. 

Results
Several δ18O measurements have no matching δ34S
result. This is caused by the different linearity re-
sponse of the elemental analyzer/mass spectrometer
combination when measuring CO versus SO2 gas.
We were generally able to obtain a linear response
for CO with signal sizes to 1 V, whereas linear SO2

measurements were only obtained with signals >2 V.
We therefore excluded all δ34S values where the sig-
nal was <2 V. 

Hole U1325B yielded results to 5.15 meters below
seafloor (mbsf), whereas shipboard data indicate that
sulfate was consumed at 2.15 mbsf. I suspect that
this was caused by mislabeling samples from Hole
U1325D, where sulfate depletion does not occur
above 4–5 mbsf. However, we list the results here as
recorded in the Integrated Ocean Drilling Program
(IODP) database. The data are reported in Tables T1,
T2, T3, T4, and T5 and shown in Figures F1, F2, F3,
F4, F5, and F6.
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Figure F1. Dissolved sulfate and isotope values, Site U1325. VCDT = Vienna Canyon Diablo Triolite, VSMOW
= Vienna standard mean ocean water. 
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Figure F2. Dissolved sulfate and isotope values, Site U1326. VCDT = Vienna Canyon Diablo Triolite, VSMOW
= Vienna standard mean ocean water.
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Figure F3. Dissolved sulfate and isotope values, Site U1327. VCDT = Vienna Canyon Diablo Triolite, VSMOW
= Vienna standard mean ocean water.
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Figure F4. Dissolved sulfate and isotope values, Site U1328. VCDT = Vienna Canyon Diablo Triolite, VSMOW
= Vienna standard mean ocean water.
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Figure F5. Dissolved sulfate and isotope values, Site U1329. VCDT = Vienna Canyon Diablo Triolite, VSMOW
= Vienna standard mean ocean water.
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Figure F6. Cross-plot of oxygen and sulfur isotopes. VCDT = Vienna Canyon Diablo Triolite, VSMOW = Vienna
standard mean ocean water.
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Table T1. Sulfate and isotope data, Site U1325. (See table notes.) 

Notes: VCDT = Vienna Canyon Diablo Triolite, VSMOW = Vienna standard mean ocean water. — = not applicable.

Table T2. Sulfate and isotope data, Site U1326. (See table notes.) 

Notes: VCDT = Vienna Canyon Diablo Triolite, VSMOW = Vienna standard mean ocean water. — = not applicable.

Core, section, 
interval (cm)

Depth 
(mbsf)

SO4
2–

(mM)
δ34SSO4

2–

(‰ VCDT)
δ18OSO4

2–

(‰ VSMOW)

311-U1325B-
1H-1, 65–80 0.65 14.9 30.8 18.9
1H-1, 65–80 0.65 14.9 30.4 18.9
1H-1, 65–80 0.65 14.9 30.8 18.0
1H-1, 65–80 0.65 14.9 30.4 18.0
1H-1, 135–150 1.35 1.1 — 18.6
1H-2, 65–80 2.15 0.1 — 17.8
1H-3, 135–150 4.35 0.1 — 21.3
1H-3, 135–150 4.35 0.0 — 21.3
1H-4, 65–80 5.15 0.0 — 27.0

311-U1325D-
1H-1, 140–150 1.4 19.6 29.0 19.7
1H-2, 140–150 2.9 10.9 37.5 23.5
1H-2, 140–150 2.9 10.9 38.3 23.5
1H-3, 140–150 4.4 2.0 68.4 24.6

Core, section, 
interval (cm)

Depth 
(mbsf)

SO4
2–

(mM)
δ34SSO4

2–

(‰ VCDT)
δ18OSO4

2–

(‰ VSMOW)

311-U1326B-
1H-1, 65–80 0.65 21.4 23.2 11.1
1H-1, 65–80 0.65 21.4 23.2 11.6
1H-1, 135–150 1.35 13.1 29.5 13.8
1H-2, 65–80 2.15 3.4 51.4 20.1
1H-2, 135–150 2.85 0.0 23.3 13.1
2H-1, 60–75 4.5 7.6 30.9 14.2
2H-1, 135–150 5.25 0.3 — 13.5
2H-1, 135–150 5.25 0.3 — 13.5
2H-3, 60–75 7.5 0.2 — 12.2
2H-3, 60–75 7.5 0.2 — 12.1
Proc. IODP | Volume 311 10
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Table T3. Sulfate and isotope data, Site U1327. (See table notes.) 

Notes: VCDT = Vienna Canyon Diablo Triolite, VSMOW = Vienna standard mean ocean water. — = not applicable.

Core, section, 
interval (cm)

Depth 
(mbsf)

SO4
2–

(mM)
δ34SSO4

2–

(‰ VCDT)
δ18OSO4

2–

(‰ VSMOW)

311-U1327C-
1H-1, 140–150 1.4 27.4 21.9 13.4
1H-1, 140–150 1.4 27.4 22.2 13.4
1H-3, 140–150 4.4 15.6 25.0 17.9
13X-2, 115–150 105.15 0.2 20.3 12.2
13X-6, 110–150 110.56 0.3 21.0 10.0
2H-1, 140–150 7.5 1.5 32.4 23.4

311-U1327D-
1H-1, 25–40 0.25 28.9 — 11.0
1H-1, 55–70 0.55 28.8 21.7 11.9
1H-1, 55–70 0.55 28.8 21.7 11.4
1H-1, 80–95 0.8 28.9 21.9 11.8
1H-1, 135–150 1.35 28.1 22.2 14.0
1H-2, 25–40 1.75 27.8 22.6 14.3
1H-2, 55–70 2.05 24.8 23.1 15.6
1H-2, 55–70 2.05 24.8 23.1 15.9
1H-2, 80–95 2.3 23.2 23.9 16.4
1H-2, 80–95 2.3 23.2 23.1 16.4
1H-2, 135–150 2.85 21.4 23.8 17.2
1H-3, 10–25 3.1 20.1 24.0 17.7
1H-3, 40–55 3.4 19.5 24.1 17.9
1H-3, 65–80 3.65 17.9 24.4 18.3
1H-4, 25–40 4.75 14.1 25.3 20.0
1H-4, 55–70 5.05 12.9 26.0 20.4
1H-4, 80–95 5.3 11.1 26.0 19.8
1H-4, 135–150 5.85 9.7 26.7 21.3
2H-1, 55–70 7.45 0.2 21.2 10.2
2H-1, 55–70 7.45 0.2 21.2 10.9

311-U1327E-
1H-1, 25–40 3.25 16.0 24.1 17.8
1H-1, 25–40 3.25 16.0 24.1 17.6
1H-1, 55–70 3.55 14.9 24.3 18.7
1H-1, 55–70 3.55 14.9 24.3 18.7
1H-1, 80–95 3.8 14.2 25.5 18.9
1H-1, 135–150 4.35 11.5 25.1 19.4
1H-1, 135–150 4.35 11.5 25.5 19.4
1H-2, 25–40 4.75 10.0 26.4 20.0
1H-2, 55–70 5.05 9.6 26.7 20.2
1H-2, 80–95 5.3 8.9 26.9 19.3
1H-2, 135–150 5.85 6.5 27.5 21.4
1H-3, 25–40 6.25 7.4 26.6 20.2
1H-3, 55–70 6.55 5.0 28.1 21.7
1H-3, 55–70 6.55 5.0 28.1 22.5
1H-3, 80–95 6.8 5.0 28.5 21.6
1H-3, 135–150 7.35 4.2 27.8 18.6
1H-4, 25–40 7.75 5.3 29.0 16.7
1H-4, 55–70 8.05 2.1 22.1 12.9
1H-4, 80–95 8.3 3.2 22.3 13.2
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Table T4. Sulfate and isotope data, Site U1328. (See table note.) 

Note: VCDT = Vienna Canyon Diablo Triolite, VSMOW = Vienna standard mean ocean water.

Table T5. Sulfate and isotope data, Site U1329. (See table note.) 

Note: VCDT = Vienna Canyon Diablo Triolite, VSMOW = Vienna standard mean ocean water.

Core, section, 
interval (cm)

Depth 
(mbsf)

SO4
2–

(mM)
δ34SSO4

2–

(‰ VCDT)
δ18OSO4

2–

(‰ VSMOW)

311-U1328B-
1H-1, 40–50 0.4 29.3 21.2 10.6
1H-1, 40–50 0.4 29.3 21.0 10.6
1H-1, 40–50 0.4 29.3 21.2 10.4
1H-1, 40–50 0.4 29.3 21.0 10.4
1H-1, 140–150 1.4 27.2 21.6 10.4

311-U1328C-
26X-4, 0–30 288.2 0.8 21.4 24.7

311-U1328D-
1X-5, 135–150 7.35 4.8 22.3 11.4
1X-5, 135–150 7.35 4.8 22.3 11.9

Core, section, 
interval (cm)

Depth 
(mbsf)

SO4
2–

(mM)
δ34SSO4

2–

(‰ VCDT)
δ18OSO4

2–

(‰ VSMOW)

311-U1329C-
1H-1, 140–150 1.4 16.9 23.9 17.4
1H-3, 140–150 4.4 3.8 28.3 22.6
1H-5, 140–150 7.4 2.9 36.7 26.4

311-U1329E-
1H-1, 140–150 1.4 22.0 24.3 18.7
1H-1, 140–150 1.4 22.0 24.1 18.7
1H-2, 140–150 2.9 21.9 25.5 20.4
1H-3, 140–150 4.4 18.4 27.9 22.6
1H-3, 140–150 4.4 18.4 27.9 22.6
2H-1, 135–150 6.35 10.9 34.2 24.8
2H-2, 135–150 7.85 6.9 40.9 27.1
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