Data report: clay mineral assemblages from the Nankai Trough accretionary prism and the Kumano Basin, IODP Expeditions 315 and 316, NanTroSEIZE Stage 1¹

Junhua Guo² and Michael B. Underwood²

Chapter contents

Abstract
ntroduction
Methods
Results
Acknowledgments5
References
-igures
Fables

Abstract

This report documents the composition of clay mineral assemblages from six sites along the Kumano transect of the Nankai Trough subduction zone offshore south-central Japan. Coring was completed during Expeditions 315 and 316 of the Integrated Ocean Drilling Program, as part of Stage 1 of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). A total of 702 samples of hemipelagic mud and mudstone were analyzed by X-ray diffraction, using oriented aggregates of the clay-size fraction (<2 µm). Smectite varies the most among the clay-size constituents, ranging in relative abundance from 6% to 66%. On average, the expandability of illite/smectite mixed-layer clay is equal to 65%, and there are no progressive changes in clay mineral diagenesis over the depths sampled. We recognize a temporal pattern in composition that is consistent with what has been documented elsewhere across the Nankai subduction margin. The detrital clays shifted gradually from a smectite-rich assemblage during the late Miocene to more illite-chlorite-rich assemblages during the Pliocene and Pleistocene. Most of the compositional differences between lithostratigraphic units can be attributed to differences in their depositional ages.

Introduction

The Nankai Trough subduction zone is the product of convergence between the Philippine Sea plate and the Eurasian plate (Fig. F1). Many sites have been drilled and cored in this region over the past four decades, including those of Deep Sea Drilling Project (DSDP) Legs 31 and 87 (Karig, Ingle, et al., 1975; Kagami, Karig, Coulbourn, et al., 1986) and Ocean Drilling Program (ODP) Legs 131, 190, and 196 (Taira et al., 1992; Moore et al., 2001, 2005). Expeditions 314, 315, and 316 of the Integrated Ocean Drilling Program (IODP) focused on a new transect—the Kumano transect-during Stage 1 of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) (see the "Expedition 314 summary," "Expedition 315 summary," and "Expedition 316 summary" chapters [Tobin et al., 2009; Ashi et al., 2009; Screaton et al., 2009]). Moore et al. (2009) have provided a summary of structural and tectono-stratigraphic framework for the six Stage 1 coring sites. The three principal domains are the Kumano forearc basin (Site C0002), the shallow megasplay fault (Sites C0001, C0004, and C0008), and the frontal fault of the accretionary prism (Sites C0006 and C0007) (Fig. F2).

¹Guo, J., and Underwood, M.B., 2012. Data report: clay mineral assemblages from the Nankai Trough accretionary prism and the Kumano Basin, IODP Expeditions 315 and 316, NanTroSEIZE Stage 1. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.202.2012 ²Department of Geological Sciences, University of Missouri, Columbia MO 65211-1380, USA. Correspondence author: UnderwoodM@missouri.edu

Previous investigations of clay minerals in the vicinity of the Nankai Trough and the Shikoku Basin demonstrated that the hemipelagic mud(stones) change in composition largely as function of depositional age (Cook et al., 1975; Chamley, 1980; Chamley et al., 1986; Fagel et al., 1992; Underwood et al., 1993a, 1993b; Steurer and Underwood, 2003; Underwood and Steurer, 2003). Miocene strata throughout the region tend to contain higher percentages of smectite, whereas Pliocene and Pleistocene deposits are more enriched in illite and chlorite. Clay diagenesis (particularly the smectite-to-illite reaction) is accentuated along the Muroto transect, where proximity to the paleospreading center of the subducting Shikoku Basin is responsible for higher heat flow (Underwood and Pickering, 1996; Masuda et al., 1996, 2001; Steurer and Underwood, 2003; Spinelli and Underwood, 2005; Saffer et al., 2008). To expand the documentation of clay composition into the Kumano transect area, we analyzed the clay mineral assemblages from 702 samples of hemipelagic mud and mudstone using X-ray diffraction (XRD). This report documents how the common clay minerals (smectite, illite, chlorite, and kaolinite) change in relative abundance as a function of depositional age, structural position, and lithostratigraphy. We also test whether or not smectite-to-illite diagenesis has progressed in a systematic pattern at shallow depths of accretionary prism.

Methods

Calculations of mineral abundance

Sediment samples can be analyzed by XRD in many ways. The presence of a specific detrital and/or authigenic mineral can be detected easily through visual recognition of characteristic peak positions. It is more problematic, however, to estimate the relative abundance of a mineral in bulk sediment or the claysize fraction with meaningful accuracy (e.g., Moore, 1968; Heath and Pisias, 1979; Johnson et al., 1985). The most common semiquantitative approach for analyzing marine clays has been to apply the Biscaye (1965) weighting factors to the peak areas of basal reflections (McManus, 1991). Errors in such data can be substantial, however, and accuracy changes significantly in response to the absolute abundance by weight of each mineral (Underwood et al., 2003). XRD results are also affected by sample disaggregation technique, chemical pretreatments, particle size separation, crystallinity and chemical composition of minerals, peak-fitting algorithms, and the degree of preferred orientation of crystallites (e.g., Moore and Reynolds, 1989; Ottner et al., 2000). Even though data reproducibility might be very good, accuracy is

usually no better than $\pm 10\%$ unless the analytical methods include calibration with internal standards, use of single-line reference intensity ratios, and some fairly elaborate sample preparation steps (Środoń et al., 2001; Omotoso et al., 2006).

Figure F3 shows representative X-ray diffractograms for three clay-size aggregates from the Nankai Trough. To obtain semiquantitative estimates of mineral abundance in the clay-size fraction, we measured the peak areas and applied a matrix of singular value decomposition (SVD) normalization factors, as documented in full detail by Underwood et al. (2003). We apply a matrix of weighting factors (Table T1) to the integrated areas of a broad smectite (001) peak centered at ~5.3°2 θ (d-value = 16.5 Å), the illite (001) peak at ~ $8.9^{\circ}2\theta$ (d-value = 9.9 Å), the chlorite (002) + kaolinite (001) peak at $12.5^{\circ}2\theta$ (d-value = 7.06 Å), and the quartz (100) peak at 20.85°20 (dvalue = 4.26 Å). The average errors for standard mineral mixtures using this method are approximately 3% for smectite, 1% for illite, 2% for chlorite, and 1.4% for quartz (Underwood et al., 2003). Because of interference between the kaolinite (001) and chlorite (002) reflections, we first calculate that relative abundance as undifferentiated chlorite + kaolinite and then solve for the proportion of each mineral using the overlapping double peak at $\sim 25^{\circ}2\theta$ (Fig. F3). The kaolinite (002) and chlorite (004) reflections are centered at ~ $24.8^{\circ}2\theta$ and ~ $25.1^{\circ}2\theta$, respectively, and we follow a refined version of the Biscaye (1964) method, as documented fully by Guo and Underwood (2011). Judging from the analysis of standard mineral mixtures, the average error for the chlorite/ kaolinite ratio is 2.6%. To provide an estimate of the abundance of individual clay minerals in the bulk mud(stone), we also multiply each relative percentage among the clay minerals (i.e., excluding quartz) by the abundance of total clay minerals as determined by shipboard bulk-powder XRD analyses of colocated "cluster" specimens (see, for example, the "Expedition 315 Site C0001" chapter [Expedition 315 Scientists, 2009a]). To facilitate comparisons with the many other published data sets from the region, we report the weighted peak area percentages for smectite, illite, chlorite, and kaolinite using both SVD normalization factors and Biscaye (1965) weighting factors. It is important to stress here that these values are relative percentages, and they should regarded as semiquantitative.

As an indicator of clay diagenesis, we use the saddle/ peak method (Rettke, 1981) to calculate the percent expandability of smectite and illite/smectite (I/S) mixed-layer clay. This method is sensitive to the proportions of discrete illite (I) versus I/S mixed-layer clay. Our calculations follow a curve established for 1:1 mixtures of I and I/S.

Sample preparation

Isolation of clay-size fractions starts with air drying and gentle hand-crushing of the mud/mudstone with mortar and pestle, after which specimens are immersed in 3% H₂O₂ for at least 24 h to digest organic matter. We then add ~250 mL of Na hexametaphosphate solution (concentration of 4 g/1000 mL distilled H₂O) and insert the beakers into an ultrasonic bath for several minutes to promote disaggregation and deflocculation. This step (and additional soaking) is repeated until visual inspection indicates complete disaggregation. Washing consists of two passes through a centrifuge (8200 revolutions per minute [rpm] for 25 min; ~6000 g) with resuspension in distilled-deionized water after each pass. After transferring the suspended sediment to a 60 mL plastic bottle, each sample is resuspended by vigorous shaking and a 2 min application of a sonic cell probe. The clay-size splits (<2 µm equivalent settling diameter) are then separated by centrifugation (1000 rpm for 2.4 min; \sim 320 g). We prepare oriented clay aggregates using the filter-peel method (Moore and Reynolds, 1989) and 0.45 µm membranes. The clay aggregates are saturated with ethylene glycol vapor for at least 24 h prior to XRD analysis, using a closed vapor chamber heated to 60°C in an oven.

X-ray diffraction parameters

The XRD laboratory at the University of Missouri (USA) utilizes a Scintag Pad V X-ray diffractometer with CuK α radiation (1.54 Å) and Ni filter. Scans of oriented clay aggregates are run at 40 kV and 30 mA over a scanning range of 3° to 26.5°2 θ , a rate of 1°2 θ /min, and a step size of 0.01°2 θ . Slits are 0.5 mm (divergence) and 0.2 mm (receiving). We process the digital data using MacDiff software (version 4.2.5) to establish a baseline of intensity, smooth counts, correct peak positions offset by misalignment of the detector (using the quartz (100) peak at 20.95°2 θ ; d-value = 4.24 Å), and calculate integrated peak areas (total counts).

Results

Nearly all of the samples analyzed in this study were selected from colocated "clusters" immediately adjacent to the whole-round samples used for shipboard analyses of interstitial water chemistry and shore-based tests of frictional, geotechnical, and hydrogeological properties. Each "cluster" includes a specimen for shipboard bulk-powder XRD analysis. All of the values of XRD peak area for the clay-size fractions are tabulated in Table **T2**. Table **T3** lists the calculated values of mineral abundance (wt%) using both SVD normalization factors and Biscaye (1965) peak-area

weighting factors. For smectite and illite, we also illustrate stratigraphic trends in the calculated values of mineral abundance in the bulk mud(stone). Brief descriptions of spatial and temporal variations in clay composition are organized below by tectonostratigraphic domain (Kumano forearc basin, shallow megasplay fault, and frontal thrust).

Kumano Basin, Site C0002

Shipboard scientists divided the stratigraphic column at Site C0002 (Kumano Basin) into four lithologic units (see the "Expedition 315 Site C0002" chapter [Expedition 315 Scientists, 2009b]). Compositional variations among lithologic units are subtle (Fig. F4). Unit I (upper forearc basin) consists of silty clay to clayey silt, sand and silt turbidites, and volcanic ash beds; the ages of these strata are younger than ~1 Ma. The most abundant clay-size mineral is illite (38% average), followed by chlorite (22% average), smectite (22% average), quartz (13% average), and kaolinite (5% average) (Table T4; Fig. F5). The dominant lithology of Unit II (lower forearc basin) is silty clay to clayey silt with comparatively fewer beds of sand, silty sand, silt, and volcanic ash; these strata range in age from ~1.6 to ~1 Ma. Illite (35% average) is still the dominant mineral in this unit, followed by smectite (25% average), chlorite (22% average), quartz (13% average), and kaolinite (5% average) (Table T4; Fig. F5). Unit III (basal starved basin) is composed of silty claystone ranging in age from ~3.8 to ~1.6 Ma. Smectite (36% average) is the most abundant mineral, followed on average by illite (35%), chlorite (16%), quartz (9%), and kaolinite (4%) (Table T4; Fig. F5). The expandability of I/S mixed-layer clay minerals does not change significantly from the top of Unit I to base of Unit III (60% average), although we note an increase in the scatter of values within Unit I (standard deviation = 5%).

The boundary between Units III and IV at Site C0002 is an angular unconformity separating the accretionary prism below from overlying forearc-basin deposits (Fig. F4). The corresponding hiatus lasted from ~5.0 to ~3.8 Ma. The primary lithology of Unit IV consists of silty claystone to clayey siltstone with sporadic interbeds of siltstone and sandstone. The maximum nannofossil age for this unit is 5.90 Ma. The dominant mineral in this unit is smectite (41% average; 60% maximum), followed in average relative abundance by illite (31%), chlorite (15%), quartz (6%), and kaolinite (5%) (Table T4; Fig. F5). Standard deviations for these abundances increase below the unconformity, particularly for values of smectite (10%). This shift toward higher contents of smectite is consistent with the late Miocene age of the accretionary prism, as documented more thoroughly elsewhere

(e.g., Underwood and Steurer, 2003). The expandability of smectite also increases abruptly across the unconformity to an average value of 69% (Tables T2, T4; Fig. F5).

Shallow megasplay fault, Sites C0001, C0004, and C0008

Site C0001 is positioned in the hanging wall of the megasplay fault (Fig. F2), and the stratigraphy there consists of two units: a slope apron facies (Unit I) separated from the upper accretionary prism (Unit II) by a major angular unconformity (see the "Expedition 315 Site C0001" chapter [Expedition 315 Scientists, 2009a]). The unconformity's hiatus lasted from ~3.79 to ~2.06 Ma. The principal lithology of Unit I is silty clay to clayey silt with sparse interbeds of volcanic ash, silt, and fine sand (Fig. F6). Illite (36%) average) dominates the clay-size fraction in this unit, followed by smectite (31% average), chlorite (19% average), quartz (9% average), and kaolinite (5% average) (Table T4; Fig. F7). Percentages of smectite gradually increase from the top to the base of Unit I, with a range of 17% to 47% of the clay-size fraction (Fig. F6). These increases are balanced by steady decreases in quartz. Below the unconformity, accreted Pliocene and uppermost Miocene strata of Unit II consist of deformed silty claystone to clayey siltstone, rare volcanic ash, siltstone, and silty sandstone, with a maximum age of 5.32 Ma (see the "Expedition 315 Site C0001" chapter [Expedition 315 Scientists, 2009a]). Illite remains the most abundant clay-size mineral below the unconformity (37% average), but there is a clear shift toward higher values (Fig. F6). Average percentages for the other minerals within Unit II are smectite (36%), chlorite (15%), kaolinite (8%), and quartz (4%) (Table T4; Fig. F7). Compared to Site C0002, this part of the accretionary prism is younger in age and contains lower percentages of smectite. There are no major differences in the expandability of I/S (63% average) at Site C0001, although expandability values are consistently lower in the top 50 m of the section (Tables T2, T4; Fig. F7).

Coring at Site C0004 successfully penetrated the megasplay fault near its updip intersection with the seafloor (Fig. F2), and shipboard scientists subdivided that section into four lithologic units (Fig. F8). The main lithology of Unit I (slope apron facies) is silty clay with a substantial component of calcareous nannofossils (as much as ~25%). Illite is the most abundant mineral within this unit (36% average), followed by average values of smectite (32%), chlorite (17%), kaolinite (6%), and quartz (7%) (Table T4; Fig. F7). The boundary between Units I and II is an unconformity, with a hiatus that lasted from ~2.0 to ~1.6 Ma (see the "Expedition 316 Site C0004"

chapter [Expedition 316 Scientists, 2009a]). Below that contact, Subunit IIA (mass transport complex) consists of synsedimentary breccia with rounded to subangular clasts of mudstone and subsidiary beds of silty clay. The average content of illite in Subunit IIA is 37%. Other relative percentages are, on average, smectite (26%), chlorite (23%), quartz (10%), and kaolinite (4%) (Table T4; Fig. F7). Thus, mineralogy changes significantly across the unconformity, particularly with respect to percent smectite. The dominant lithology of Subunit IIB (accretionary prism) is silty clay. In this unit as well, the dominant mineral is illite (38% average) followed by smectite (28% average), chlorite (21% average), quartz (7% average), and kaolinite (6% average) (Table T4; Fig. F7). Unit III is the fault-bounded package of uncertain stratigraphic origin. Its boundary with Unit II is marked by a time reversal from ~4.13 Ma above to ~2 Ma below (see the "Expedition 316 Site C0004" chapter [Expedition 316 Scientists, 2009a]). Mudstones from below the fault contain more calcite, and there are ubiquitous beds of volcanic ash. Illite (36% average) and smectite (36% average) are the two most abundant clay minerals (Fig. F8). The average content of chlorite is 18%; averages for kaolinite and quartz are 6% and 5%, respectively (Table T4; Fig. F7). This assemblage of clay minerals, with generally higher contents of smectite, is consistent with what has been documented elsewhere in the upper Shikoku Basin facies (Steurer and Underwood, 2003). The main trace of the megasplay fault forms the lower boundary of Unit III, and the footwall (Unit IV) is interpreted to be a slope-apron facies with an age of ~1.6 Ma. The dominant clay minerals in Unit IV are smectite (34% average) and illite (33% average), followed on average by chlorite (19%), quartz (9%), and kaolinite (4%) (Table T4; Fig. F7). These relative percentages are similar to what we report for Unit I, although marginally higher in percent smectite.

Site C0008 is located just seaward of the shallow tip of the megasplay fault (Fig. F2), and shipboard scientists divided that section into three units/subunits (see the "Expedition 316 Site C0008" chapter [Expedition 316 Scientists, 2009d]). Subunit IA (slope-apron facies) consists of silty clay with a substantial concentrations of calcareous nannofossils, thin sand/silt turbidites, and volcanic ash. Illite (35% average) is the most abundant clay mineral. Other mineral contents are smectite (29% average), chlorite (20% average), quartz (10% average), and kaolinite (6% average) (Table T4; Fig. F7). Subunit IB (mass transport complex) includes a series of interbedded mud-clast gravels and silty clay beds with an age range of ~2.9 to ~1.6 Ma. Illite (35% average) is the most abundant clay mineral in the silty clay beds, followed on average by smectite (30%), chlorite (20%), quartz (10%),

and kaolinite (5%) (Table T4; Fig. F7). We analyzed carefully separated specimens of silty clay matrix and mudstone clasts from the conglomerates to test for differences in composition. Those tests show a significant increase in the abundance of smectite in the mudstone clasts relative to clay matrix and the background of bedded hemipelagic mudstone (Fig. F9). The clasts contain approximately 43% to 52% smectite. Beneath the mass transport deposits, Unit II is interpreted as accreted trench-wedge facies (Fig. F9), but poor recovery within the sand-rich turbidites precluded our sampling and analysis of clay minerals.

Frontal thrust, Sites C0006 and C0007

The main goal of coring at Site C0006 was to cross the frontal thrust of the accretionary prism (Fig. F2), but recovery was hampered by high concentrations of unlithified sand, particularly near the bottom of the hole. The primary lithology of Unit I (trench-slope transition) is silty clay (Fig. F10) with a maximum age of ~0.44 Ma (see the "Expedition 316 Site C0006" chapter [Expedition 316 Scientists, 2009b]). The most abundant clay mineral in Unit I is illite (38% average), followed on average by smectite (25%), chlorite (24%), quartz (10%), and kaolinite (3%) (Table T4; Fig. F11). Unit II (trench-wedge facies) displays an overall upward coarsening trend accentuated by progressive increases in silt and sand turbidites; the unit ranges from ~1.5 to ~0.44 Ma in age. Illite (35% average) is the dominant clay mineral within the accreted trench-wedge deposits, followed on average by smectite (27%), chlorite (26%), quartz (8%), and kaolinite (4%) (Table T4; Fig. F11). A gradual increase in smectite content is evident downsection within this unit, from a minimum of 15% to a maximum of 43% of the clay-size fraction (Fig. F10). The boundary between Unit II and Unit III (upper Shikoku Basin facies) is an unconformity with a hiatus from ~2.87 to ~1.46 Ma (see the "Expedition 316 Site C0006" chapter [Expedition 316 Scientists, 2009b]). Below the unconformity, the age of Unit III extends into the uppermost Miocene (5.32 Ma), and the lithology consists of silty claystone with abundant interbeds of volcanic tuff (Fig. F10). The dominant clay mineral in this facies is smectite (37% average; 49% maximum), followed on average by illite (36%), chlorite (17%), kaolinite (6%), and quartz (5%) (Table T4; Fig. F11). In addition to the unit's significantly higher abundance of smectite, the expandability of I/S shifts to modestly lower values (by ~3%) across the Unit II/III boundary.

After attempts failed to core across the frontal fault at Site C0006, Site C0007 was positioned closer to the trench (Fig. F2). Unit I (trench–slope transition) is dominated by silty clay and thin, fine-grained turbidites (Fig. F12), similar in age and composition to what was recovered at Site C0006 (see the "Expedition 316 Site C0007" chapter [Expedition 316 Scientists, 2009c]). Consistent with our results from Site C0006, the most abundant clay mineral within this facies is illite (39% average), and the other average percentages are chlorite (25%), smectite (23%), quartz (10%), and kaolinite (2%) (Table T4; Fig. F11). One anomalous specimen within this unit contains unusually high amounts of smectite (66%). Unit II (accreted trench-wedge facies) displays an overall upward coarsening trend marked by progressive increases in silt, sand, and gravel turbidites (Fig. F12). That unit's age ranges from ~1.46 to ~0.4 Ma. Similar to correlative deposits at Site C0006, illite is the most abundant clay-size mineral (35% average), followed on average by smectite (25%), chlorite (25%), quartz (9%), and kaolinite (3%) (Table T4; Fig. F11). The boundary between Units II and III is an unconformity, with a hiatus that lasted from 3.65 to 2.06 or 1.46 Ma (see the "Expedition 316 Site C0007" chapter [Expedition 316 Scientists, 2009c]). Unit III (upper Shikoku Basin facies) consists of silty claystone with abundant interbeds of volcanic ash layers, including one calcite-cemented tuff. Below the boundary, Pliocene to uppermost Miocene mudstone reaches a maximum age of 5.32 Ma and possesses a total-clay-mineral content substantially higher than overlying Unit II, averaging 65% of the bulk sediment (see the "Expedition 316 Site C0007" chapter [Expedition 316 Scientists, 2009c]). Smectite increases to the most abundant clay mineral (39% average). Average percentages for the other minerals are illite (36%), chlorite (16%), quartz (6%), and kaolinite (3%) (Table T4; Fig. F11). The expandability of I/S decreases by ~3% across the boundary between accreted trench-wedge facies and upper Shikoku Basin facies (Tables T2, T4; Fig. F12). Once again, this mineral assemblage is consistent with what has been documented for the upper Shikoku Basin facies elsewhere in the Nankai Trough (Steurer and Underwood, 2003). Coring demonstrated that the age reverses to 3.65 Ma below the frontal thrust, but recovery of sandy material from Unit IV was not high enough to permit sampling for clay mineralogy.

Acknowledgments

This research used samples provided by the Integrated Ocean Drilling Program (IODP). We thank Captains Ichiyama and Onda, as well as the drilling crew, laboratory technicians, and fellow scientists aboard D/V *Chikyu* for their dedicated assistance during IODP Expeditions 315 and 316. M. Strasser provided the samples of mudstone clasts and matrix

J. Guo and M.B. Underwood

from Site C0008. Funding was granted by the Consortium for Ocean Leadership, U.S. Science Support Program (grant T315B58 to Underwood and grant T315C58 to Guo) and the National Science Foundation (grant OCE-07518190). U. Shriniwar, H. Banno, D.M. Hillix, M. Rader, and H. Wu assisted with sample preparation and data reduction. We thank Cedric John for his review of the manuscript.

References

- Ashi, J., Lallemant, S., Masago, H., and the Expedition 315 Scientists, 2009. Expedition 315 summary. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/ 316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ iodp.proc.314315316.121.2009
- Biscaye, P.E., 1964. Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction. *Am. Miner.*, 49:1281–1289.
- Biscaye, P.E., 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. *Geol. Soc. Am. Bull.*, 76(7):803–831. doi:10.1130/0016-7606(1965)76[803:MAS-ORD]2.0.CO;2
- Chamley, H., 1980. Clay sedimentation and paleoenvironment in the area of Daito Ridge (northwest Philippine Sea) since the early Eocene. *In* Klein, G. de V., Kobayashi, K., et al., *Init. Repts. DSDP*, 58: Washington, DC (U.S. Govt. Printing Office), 683–693. doi:10.2973/dsdp.proc.58.119.1980
- Chamley, H., Cadet, J.-P., and Charvet, J., 1986. Nankai Trough and Japan Trench late Cenozoic paleoenvironments deduced from clay mineralogic data. *In* Kagami, H., Karig, D.E., Coulbourn, W.T., et al., *Init. Repts. DSDP*, 87: Washington, DC (U.S. Govt. Printing Office), 633– 641. doi:10.2973/dsdp.proc.87.113.1986
- Cook, H.E., Zemmels, I., and Matti, J.C., 1975. X-ray mineralogy data, far western Pacific, Leg 31 Deep Sea Drilling Project. *In* Karig, D.E., Ingle, J.C., Jr., et al., *Init. Repts. DSDP*, 31: Washington (U.S. Govt. Printing Office), 883–895. doi:10.2973/dsdp.proc.31.app.1975
- Expedition 315 Scientists, 2009a. Expedition 315 Site C0001. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.123.2009
- Expedition 315 Scientists, 2009b. Expedition 315 Site C0002. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.124.2009

- Expedition 316 Scientists, 2009a. Expedition 316 Site C0004. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.133.2009
- Expedition 316 Scientists, 2009b. Expedition 316 Site C0006. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.134.2009
- Expedition 316 Scientists, 2009c. Expedition 316 Site C0007. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.135.2009
- Expedition 316 Scientists, 2009d. Expedition 316 Site C0008. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.136.2009
- Fagel, N., André, L., Chamley, H., Debrabant, P., and Jolivet, L., 1992. Clay sedimentation in the Japan Sea since the early Miocene: influence of source-rock and hydrothermal activity. *Sediment. Geol.*, 80(1–):27–40. doi:10.1016/0037-0738(92)90029-Q
- Guo, J., and Underwood, M.B., 2011. Data report: refined method for calculating percentages of kaolinite and chlorite from X-ray diffraction data, with application to the Nankai margin of southwest Japan. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/ 316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ iodp.proc.314315316.201.2011
- Heath, G.R., and Pisias, N.G., 1979. A method for the quantitative estimation of clay minerals in North Pacific deep-sea sediments. *Clays Clay Miner.*, 27(3):175–184. doi:10.1346/CCMN.1979.0270302
- Johnson, L.J., Chu, C.H., and Hussey, G.A., 1985. Quantitative clay mineral analysis using simultaneous linear equations. *Clays Clay Miner.*, 33(2):107–117. doi:10.1346/CCMN.1985.0330204
- Kagami, H., Karig, D.E., Coulbourn, W.T., et al., 1986. *Init. Repts. DSDP*, 87: Washington, DC (U.S. Govt. Printing Office). doi:10.2973/dsdp.proc.87.1986
- Karig, D.E., Ingle, J.C., Jr., et al., 1975. *Init. Repts. DSDP*, 31: Washington, DC (U.S. Govt. Printing Office). doi:10.2973/dsdp.proc.31.1975
- Masuda, H., O'Neil, J.R., Jiang, W.-T., and Peacor, D.R., 1996. Relation between interlayer composition of authigenic smectite, mineral assemblages, I/S reaction rate

and fluid composition in silicic ash of the Nankai Trough. *Clays Clay Miner.*, 44(4):443–459. doi:10.1346/ CCMN.1996.0440402

Masuda, H., Peacor, D.R., and Dong, H., 2001. Transmission electron microscopy study of conversion of smectite to illite in mudstones of the Nankai Trough: contrast with coeval bentonites. *Clays Clay Miner.*, 49(2):109–118. doi:10.1346/CCMN.2001.0490201

McManus, D.A., 1991. Suggestions for authors whose manuscripts include quantitative clay mineral analysis by Xray diffraction. *Mar. Geol.*, 98(1):1–5. doi:10.1016/ 0025-3227(91)90030-8

Moore, C.A., 1968. Quantitative analysis of naturally occurring multicomponent mineral systems by X-ray diffraction. *Clays Clay Miner.*, 16:325–336. doi:10.1346/ CCMN.1968.0160502

Moore, D.M., and Reynolds, R.C., Jr., 1997. *X-ray Diffraction and the Identification and Analysis of Clay Minerals* (2nd ed.): Oxford (Oxford Univ. Press).

Moore, G.F., Mikada, H., Moore, J.C., Becker, K., and Taira, A., 2005. Legs 190 and 196 synthesis: deformation and fluid flow processes in the Nankai Trough accretionary prism. *In* Mikada, H., Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.), *Proc. ODP, Sci. Results*, 190/196: College Station, TX (Ocean Drilling Program), 1–25. doi:10.2973/odp.proc.sr.190196.201.2005

Moore, G.F., Taira, A., Klaus, A., Becker, L., Boeckel, B., Cragg, B.A., Dean, A., Fergusson, C.L., Henry, P., Hirano, S., Hisamitsu, T., Hunze, S., Kastner, M., Maltman, A.J., Morgan, J.K., Murakami, Y., Saffer, D.M., Sánchez-Gómez, M., Screaton, E.J., Smith, D.C., Spivack, A.J., Steurer, J., Tobin, H.J., Ujiie, K., Underwood, M.B., and Wilson, M., 2001. New insights into deformation and fluid flow processes in the Nankai Trough accretionary prism: results of Ocean Drilling Program Leg 190. *Geochem., Geophys., Geosyst.*, 2(10):1058–1079. doi:10.1029/2001GC000166

Omotoso, O., McCarty, D.K., Hillier, S., and Kleeberg, R., 2006. Some successful approaches to quantitative mineral analysis as revealed by the 3rd Reynolds Cup contest. *Clays Clay Miner.*, 54(6):748–760. doi:10.1346/ CCMN.2006.0540609

Ottner, F., Gier, S., Kuderna, M., and Schwaighofer, B., 2000. Results of an inter-laboratory comparison of methods for quantitative clay analysis. *Appl. Clay Sci.*, 17(5–6): 223–243. doi:10.1016/S0169-1317(00)00015-6

Rettke, R.C., 1981. Probable burial diagenetic and provenance effects on Dakota Group clay mineralogy, Denver Basin. J. Sediment. Petrol., 51(2):541–551. doi:10.1306/ 212F7CCF-2B24-11D7-8648000102C1865D

Saffer, D.M., Underwood, M.B., and McKiernan, A.W., 2008. Evaluation of factors controlling smectite transformation and fluid production in subduction zones: application to the Nankai Trough. *Isl. Arc*, 17(2):208–230. doi:10.1111/j.1440-1738.2008.00614.x

Screaton, E.J., Kimura, G., Curewitz, D., and the Expedition 316 Scientists, 2009. Expedition 316 summary. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc.* *IODP*, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.131.2009

Spinelli, G.A., and Underwood, M.B., 2005. Modeling thermal history of subducting crust in Nankai Trough: constraints from in situ sediment temperature and diagenetic reaction progress. *Geophys. Res. Lett.*, 32(9):L09301. doi:10.1029/2005GL022793

Środoń, J., Drits, V.A., McCarty, D.K., Hsieh, J.C.C., and Eberl, D.D., 2001. Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations. *Clays Clay Miner.*, 49(6):514–528. http://ccm.geoscienceworld.org/cgi/content/abstract/49/6/514

Steurer, J.F., and Underwood, M.B., 2003. Clay mineralogy of mudstones from the Nankai Trough reference Sites 1173 and 1177 and frontal accretionary prism Site 1174. *In* Mikada, H., Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.), *Proc. ODP, Sci. Results*, 190/196: College Station, TX (Ocean Drilling Program), 1–37. doi:10.2973/odp.proc.sr.190196.211.2003

Taira, A., Hill, I., Firth, J., Berner, U., Brückmann, W., Byrne, T., Chabernaud, T., Fisher, A., Foucher, J.-P., Gamo, T., Gieskes, J., Hyndman, R., Karig, D., Kastner, M., Kato, Y., Lallement, S., Lu, R., Maltman, A., Moore, G., Moran, K., Olaffson, G., Owens, W., Pickering, K., Siena, F., Taylor, E., Underwood, M., Wilkinson, C., Yamano, M., and Zhang, J., 1992. Sediment deformation and hydrogeology of the Nankai Trough accretionary prism: synthesis of shipboard results of ODP Leg 131. *Earth Planet. Sci. Lett.*, 109(3–4):431–450. doi:10.1016/0012-821X(92)90104-4

Tobin, H., Kinoshita, M., Moe, K.T., and the Expedition 314 Scientists, 2009. Expedition 314 summary. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.111.2009

Underwood, M., Basu, N., Steurer, J., and Udas, S., 2003. Data report: normalization factors for semiquantitative X-ray diffraction analysis, with application to DSDP Site 297, Shikoku Basin. *In* Mikada, H., Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.), *Proc. ODP, Sci. Results*, 190/196: College Station, TX (Ocean Drilling Program), 1–28. doi:10.2973/ odp.proc.sr.190196.203.2003

Underwood, M.B., Orr, R., Pickering, K., and Taira, A., 1993a. Provenance and dispersal patterns of sediments in the turbidite wedge of Nankai Trough. *In* Hill, I.A., Taira, A., Firth, J.V., et al., *Proc. ODP, Sci. Results*, 131: College Station, TX (Ocean Drilling Program), 15–34. doi:10.2973/odp.proc.sr.131.105.1993

Underwood, M.B., and Pickering, K.T., 1996. Clay-mineral provenance, sediment dispersal patterns, and mudrock diagenesis in the Nankai accretionary prism, southwest Japan. *Clays Clay Miner.*, 44(3):339–356. doi:10.1346/ CCMN.1996.0440304

Underwood, M.B., Pickering, K., Gieskes, J.M., Kastner, M., and Orr, R., 1993b. Sediment geochemistry, clay miner-

alogy, and diagenesis: a synthesis of data from Leg 131, Nankai Trough. *In* Hill, I.A., Taira, A., Firth, J.V., et al., *Proc. ODP, Sci. Results*, 131: College Station, TX (Ocean Drilling Program), 343–363. doi:10.2973/ odp.proc.sr.131.137.1993

Underwood, M.B., and Steurer, J.F., 2003. Composition and sources of clay from the trench slope and shallow accretionary prism of Nankai Trough. *In* Mikada, H., Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.), *Proc. ODP, Sci. Results*, 190/196: College Station, TX (Ocean Drilling Program), 1–28. doi:10.2973/odp.proc.sr.190196.206.2003

Initial receipt: 10 May 2010 Acceptance: 28 July 2011 Publication: 16 January 2012 MS 314315316-202

Figure F1. Map of the Kumano transect region of the Nankai Trough with locations of NanTroSEIZE Stage 1 drill sites.

Figure F2. 3-D seismic in-line section showing locations of IODP Sites C0001, C0002, C0004, C0006, C0007, and C0008.

J. Guo and M.B. Underwood

Figure F3. Representative examples of X-ray diffractograms showing peaks for smectite, illite, chlorite, kaolinite, and quartz. Values of relative mineral abundance (wt%) were calculated using the singular value decomposition (SVD) normalization factors of Underwood et al. (2003) and the following peak areas: smectite (001), illite (001), chlorite (002) + kaolinite (001), and quartz (100). The proportion of kaolinite to chlorite was calculated using the equations of **Guo and Underwood** (2011).

Figure F4. Lithostratigraphy of Site C0002 with relative abundances (wt%) of smectite, illite, chlorite, kaolinite, and quartz in clay-size fractions of mud(stone). Calculations were made using singular value decomposition (SVD) normalization factors. Also shown are values of expandability (%) of illite/smectite (I/S) mixed-layer clays.

Figure F5. Maximum, minimum, and average values of relative mineral abundances (wt%) for lithologic units at Site C0002 (Kumano Basin). Solid symbols represent the average, and bars extend from minimum to maximum values. I/S = illite/smectite.

J. Guo and M.B. Underwood

Figure F6. Lithostratigraphy of Site C0001 with relative abundances (wt%) of smectite, illite, chlorite, kaolinite, and quartz in clay-size fractions of mud(stone). Calculations were made using singular value decomposition (SVD) normalization factors. Also shown are values of expandability (%) of illite/smectite (I/S) mixed-layer clays.

Figure F7. Maximum, minimum, and average values of relative mineral abundances (wt%) for different lithologic units in the shallow megasplay domain (Sites C0001, C0004, and C0008). Solid symbols represent the average, and bars extend from minimum to maximum values. I/S = illite/smectite.

Figure F8. Lithostratigraphy of Site C0004 with relative abundances (wt%) of smectite, illite, chlorite, kaolinite, and quartz in clay-size fractions of mud(stone). Calculations were made using singular value decomposition (SVD) normalization factors. Also shown are values of expandability (%) of illite/smectite (I/S) mixed-layer clays.

J. Guo and M.B. Underwood

Figure F9. Lithostratigraphy of Site C0008 with relative abundances of smectite, illite, chlorite, kaolinite, and quartz in clay-size fractions of mud(stone). Calculations were made using singular value decomposition (SVD) normalization factors. Also shown are values of expandability (%) of illite/smectite (I/S) mixed-layer clays and detailed comparisons between mudstone clasts, silty clay matrix, and background hemipelagic mud from Subunit IIB (mass transport deposits). MTD = mass transit deposit.

Figure F10. Lithostratigraphy of Site C0006 with relative abundances (wt%) of smectite, illite, chlorite, kaolinite, and quartz in clay-size fractions of mud(stone). Calculations were made using singular value decomposition (SVD) normalization factors. Also shown are values of expandability (%) of illite/smectite (I/S) mixed-layer clays.

Figure F11. Maximum, minimum, and average values of relative mineral abundances (wt%) for lithologic units in the frontal thrust domain (Sites C0006 and C0007). Solid symbols represent the average, and bars extend from minimum to maximum values. I/S = illite/smectite.

Figure F12. Lithostratigraphy of Site C0007 with relative abundances (wt%) of smectite, illite, chlorite, kaolinite, and quartz in clay-size fractions of mud(stone). Calculations were made using singular value decomposition (SVD) normalization factors. Also shown are values of expandability (%) of illite/smectite (I/S) mixed-layer clays.

Table T1. Singular value decomposition (SVD) normalization factors (from Underwood et al., 2003) used to calculate relative mineral abundances in clay-size aggregates (<2 µm fraction), Sites C0001, C0002, C0004, C0006, C0007, and C0008.

Influencing	Affected mineral standard mixture									
mineral	Smectite	Illite	Chlorite	Quartz						
Smectite Illite Chlorite	3.7398559E-04 4.2720105E-05 -6.7662186E-05	-2.8994615E-05 1.2499784E-03 -2.0084190E-07	-3.4377535E-05 -2.8363880E-05 7.6974847E-04	-7.4421238E-05 3.3838456E-05 5.2408810E-05						

Table T2. Results of X-ray diffraction for clay-size fraction (<2 μm), Sites C0001, C0002, C0004, C0006, C0007, and C0008. (Continued on next 10 pages.)

	Sample location					I/S mixed-layer clay				
Unit	Core, section, interval (cm)	Depth CSF (m)	Smectite (001)	lllite (001)	Chlorite (002) + Kaolinite (001)	Quartz (100)	Half chlorite (004)	Chlorite (004) + Kaolinite (002)	Saddle:peak (intensity ratio)	Expandability (%)
	315-C0001E-									
	1H-3, 100	2.59	6,400	4,666	5,316	805	1,894	3,853	0.83	56
	1H-4, 19	3.07	7,051	8,487	10,798	1,155	3,651	8,741	0.82	57
	1H-6, 0	3.80	40,540	10,227	9,461	814	3,391	8,080	0.57	68
	1H-7, 0	4.03	17,716	12,107	11,582	717	3,764	9,036	0.77	59
	2H-3, 34	7.45	8,885	6,313	7,766	845	2,740	6,920	0.84	55
	2H-4, 10	8.73	5,396	4,945	6,067	904	2,377	5,479	0.90	51
	2H-5, 132	10.17	10,103	6,884	6,759	913	1,662	4,000	0.85	54
	2H-6, 140	11.76	13,877	8,221	8,472	983	2,818	6,237	0.80	57
	4H-2, 52	25.55	24,740	11,096	11,579	1,022	3,651	8,110	0.74	61
	4H-2, 95	25.98	9,616	4,/11	5,725	923	2,218	4,912	0.83	56
	4H-4, 0	27.41	13,379	8,169	9,283	1,1/8	3,215	7,558	0.79	58
	5H-3, 54	36.18	7,203	8,313	8,083	1,001	2,896	6,545	0.90	51
	5H-4, 0	36.93	22,850	14,979	13,453	1,280	4,885	9,993	0.69	63
	2H-0, 00	39.33	23,039	0 711	14,740	1,213	4,007	0.247	0.78	59
	0H-1,95	45.05	10,004	9,711	2 991	1,112	4,240	9,307	0.76	60 61
	0H-3, 30	43.22	15,437	0,407	0,001	1,099	2 700	4,001	0.74	50
	011-4, U	40.12	10,095	0,094	10,512	1,143	3,700	7,904	0.78	59
	011-0, 23	40.02	19,065	9,092	0.120	000	3,038	7,002	0.78	59
	011-0,49 711-2,20	40.20	14,497	0,0U3 14 072	9,139	9/0	2,//1	7,079	0.78	59
	711-2,20	55.20	32,373 25 657	0 0 5 2	10,045	1,201	2,035	9.240	0.66	64
	7H-4,0	56.02	23,037	0,000	11,105	910	3,323 2,452	0,000	0.68	63
1	/⊓-3, 8 7U 7 70	50.02	30,023	7 0 5 1	13,633	1,129	3,43Z	10,451	0.00	64
	2 2 2 2 2 0 0	20.27	10,994	11 105	0,737	1,010	2,034	0,470	0.72	62
	011-3,90 0114 0	04.04 25 12	24,190	11,103	12,300	1 201	2,003	0,470	0.69	64
	011-4, U 811 7 25	67.26	23,923	5 420	6 281	1,201	1 404	9,300 3 704	0.03	50
	011-7, 55	72.50	13,900	0 007	10 722	007	1,494	5,704	0.78	39
	911-2,49 011 2 1 20	72.30	24,333	0,007	10,725	907	2,942	7,174	0.70	65
	911-2, 129 0H / 0	73.30	21 084	0.056	10 506	1 1 / 0	3,102	8 207	0.03	63
	911-4, 0 0H_5 132	76.32	19 8/6	10 977	13,008	1,149	3,730	10 365	0.08	63
	01 9 1 1 9	80.40	21 027	11 227	10.063	1,109	2,073	6 0 2 2	0.09	62
	10H_3 20	83.24	21,027	10 222	10,905	038	2,703	8 276	0.70	64
	1011-3, 20	85 / 2	29,773	10,222	12,609	1 266	3,227	0,270	0.00	63
	10H-7_0	87.17	20,052	14 392	20 762	1 1 7 8	5 975	15 816	0.00	63
	11H-1 100	90.60	22 561	10 160	12 452	1 1 1 1 4	4 167	9 4 7 4	0.69	63
	11H-4 19	93.80	26 477	11 972	15 210	1 162	3 944	11 444	0.60	66
	11H-5 115	94 98	21 202	11 056	14 466	1 277	4 4 9 9	12 077	0.62	63
	12H-3, 130	103.20	16.668	9.026	11,632	953	4,119	9.512	0.70	62
	12H-4, 23	103.55	22 497	10.044	11.080	1.001	3,191	8,188	0.69	63
	12H-5.0	104.51	25.580	10.244	11.864	1.054	3.441	8.827	0.63	65
	13H-4	112.67	21,832	10.940	12.312	1.027	3,712	8,919	0.68	63
	13H-6, 50	114.86	24,519	8.932	10,470	1.075	3,813	8.208	0.74	61
	13H-8, 109	118.37	19,499	7,786	9,716	779	2,982	7,743	0.63	65
	215 C00015									
	1U 1 10	100 10	21 724	14 072	17 492	1 247	6 460	14 222	0.66	61
	10-1, 10	111 00	51,754 14560	6 6 2 0	7 905	1,247	0,400	5 040	0.00	64
	1 III-4, U-1 2 II 2 2 2 2	120.65	14,300	0,030	10.075	1,104	2,343	3,900	0.00	64
	211-3, 33	120.03	23,631	9,009	10,973	1,000	2,900	7,314	0.64	63
	211-3,0	122.94	20,909	7,000	0 763	063	3,030	9,233	0.00	50
	311-1, 130	120.30	18 047	7,333	9,703	903	2,107	6 100	0.78	57
	JII-2, 80	129.22	20 116	11 095	12 250	1 261	2,020	0,199	0.72	65
	411-3, 0	139.10	22,110	12 160	14,350	1 2 2 5	4,211	10.636	0.02	65
	4H-3, 89 4H-7 82	141.01	20 262	7 5 4 7	9 / 38	1,323	4,373	7 3 2 2	0.03	64
	5H_1 50	146.59	30 336	9 / 25	10 822	1,024	3 /8/	7,322	0.07	68
ı	5H-2 15	147 50	28 872	נצ ר , כ 11 672	13 038	1 1 5 5	2,704 2,102	9 N86	0.57	66
1	5H-4 0	149.88	48 876	13 40/	14 425	976	4 963	11 556	0.59	67
	6H-4 20	158 64	27 254	9 755	10 589	1 015	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8 021	0.52	65
	6H-5_0	158.66	14 420	5 996	6 807	1 096	2 016	5 051	0.65	64
	6H-6 120	161 08	27 222	10 481	11 950	1 016	4 059	8 719	0.65	65
	7H-12 20	168 14	28 474	11 798	13,362	1,298	4 016	10 417	0.67	64
	8H-1 0	170.98	25,777	9 1 8 2	10 962	1 021	2 627	8 11 2	0.67	64
	8H-1 130	172.28	46 135	18 050	19 467	1 568	6 635	14 308	0.63	65
	8H-2, 65	173.04	35 072	11 940	13,575	1,358	4 466	9,891	0.62	66
	8H-6, 50	177.26	23 775	9 905	11,527	1,160	3 671	8 506	0.65	65
	9H-1, 118	180.92	33 209	12 720	14 406	1,224	4 941	11,238	0.64	65
	211 1, 110	100.72	53,207	12,720	1,100	1,447	9271	,200	0.04	

	Sample lo	cation			Integrated peak	area (tota	l counts)		I/S mixed	xed-layer clay	
Ur	Core, section, nit interval (cm)	Depth CSF (m)	Smectite (001)	lllite (001)	Chlorite (002) + Kaolinite (001)	Quartz (100)	Half chlorite (004)	Chlorite (004) + Kaolinite (002)	Saddle:peak (intensity ratio)	Expandability (%)	
	9H-3, 78	183.48	32,086	11,401	12,943	1,238	3,673	9,095	0.65	64	
	9H-4, 0	183.89	41,517	12,825	14,508	1,071	4,452	9,835	0.55	69	
	10H-10, 0	193.25	40,615	12,422	14,675	1,165	5,098	11,359	0.60	66	
	10H-11, 13	193.60	33,802	11,804	13,940	1,073	4,162	10,267	0.60	66	
	10H-11, 128	194.75	41,927	10,663	12,583	892	3,821	9,442	0.57	68	
	13H-1, 0	202.37	38,989	12,059	12,889	887	3,347	9,066	0.63	65	
	14H-1, 50	207.67	49,563	12,403	14,678	1,338	4,216	10,434	0.68	63	
	140-2, 34	209.12	34,033	12 121	15,656	1,049	4,430	10,479	0.65	64 63	
	14H-3, 90	210.91	37,273	13,121	16,492	1,200	5,355	13,124	0.89	62	
	15H-2, 10	214.81	23.864	8.367	10,281	1,058	2,964	7,489	0.72	62	
	15H-2, 44	215.15	28,264	9,941	12,596	1,080	3,687	9,281	0.71	62	
	15H-4, 0	217.19	54,663	15,042	15,517	1,218	5,463	12,676	0.66	64	
1	18H-4, 20	222.82	51,532	18,193	19,343	1,353	5,525	14,282	0.63	65	
	18H-6, 62	224.89	57,289	17,646	20,013	1,210	6,079	14,810	0.60	66	
	18H-6, 108	225.35	68,213	20,645	20,898	1,477	6,054	15,514	0.63	65	
	19H-4, 0	228.45	50,251	23,545	22,422	1,299	7,221	16,573	0.69	63	
	19H-4, 18	228.64	58,871	20,062	19,891	1,220	5,291	15,394	0.67	64	
	20X-5, 0	235.21	40,074	16,/64	16,630	1,194	4,878	12,293	0.68	63	
	217-4, 0	243.27	56,119	20,801	21,905	1,200	4,004	15,500	0.67	03	
	315-C0001H-										
	1R-3, 0	230.00	31,217	13,267	13,082	1,025	3,390	10,027	0.75	60	
	1R-4, 95	233.79	72,514	24,410	24,019	1,189	6,898	16,925	0.59	67	
	2R-2, 128	242.12	58,746	17,980	18,356	1,026	4,198	12,202	0.64	65	
	2R-3, 103	243.37	30,807 40,805	15 266	17,310	1,020	4,827	13,/33	0.71	62	
	3R-4 0	257.40	38 106	15,300	15,052	1 093	4 238	11 152	0.00	61	
	4R-4, 0	262.33	48,955	21.721	23,866	1,271	6,666	17.963	0.64	65	
	4R-6, 61	264.78	48,495	17,637	19,407	1,180	5,343	14,439	0.69	63	
	5R-2, 75	270.17	49,402	17,549	18,146	956	4,461	13,658	0.66	64	
	5R-3, 0	270.42	53,963	18,923	20,904	1,106	6,496	17,352	0.64	65	
	6R-1, 50	278.00	54,619	20,101	21,562	1,121	5,005	15,063	0.53	69	
	6R-2, 0	278.49	42,157	14,633	15,857	1,092	4,922	11,857	0.66	64	
	/R-2, 66	289.07	51,/32	19,54/	21,/18	1,184	5,940	16,302	0.67	64	
	7R-3, 20 7R-3, 38	290.05	33 203	17,379	18,378	1,262	5,527	13,930	0.08	61	
	7R-4 39	290.23	40 798	19 735	21 045	1,203	7 026	17 468	0.73	62	
	7R-6, 29	292.98	59,791	20.918	22,856	1,176	6,568	18.229	0.63	65	
	8R-1, 55	297.05	47,239	15,663	17,289	1,099	4,186	13,595	0.68	63	
	8R-4, 20	301.12	46,621	14,119	17,000	989	4,462	12,772	0.59	67	
	10R-3, 28	315.14	48,999	25,772	25,517	1,235	7,092	19,914	0.70	62	
	10R-4, 0	315.86	39,756	21,710	21,608	1,104	5,500	16,053	0.70	62	
	10R-7, 5	319.18	56,497	15,028	15,624	897	4,571	10,903	0.54	69	
I	I IIR-2, 20	323.12	41,954	15,/14	17,908	1,303	4,672	13,/12	0.66	64	
	17R-4, 0 12P-2 104	323.34	41,634	15 259	21,024	1 210	3,870	10,940	0.72	64	
	12R-4, 0	333.48	38,763	14,341	16 098	1,210	5.010	12,815	0.68	63	
	12R-5, 97	336.24	39,670	14,258	16,919	1,177	5,395	12,854	0.68	63	
	13R-5, 0	345.74	36,101	14,439	15,748	1,193	4,527	12,299	0.69	63	
	13R-6, 59	346.75	39,837	13,842	14,985	1,005	3,425	9,897	0.65	64	
	14R-3, 59	353.42	52,435	16,159	15,750	800	4,564	12,814	0.66	64	
	14R-4, 0	353.83	64,135	17,746	18,235	929	4,743	12,988	0.59	67	
	14R-6, 76	356.42	38,811	16,570	16,311	1,000	4,515	11,461	0.71	62	
	15R-1, 95	360.45	43,885	13,849	13,890	916	2,906	8,723	0.62	66	
	15K-1, 11Z	360.62	42,593	12,691	13,149	1,074	3,333	9,35Z	0.62	66	
	16R-3, 84	372 67	39,709	15,194	17 010	1 283	5 351	14 447	0.00	61	
	16R-4. 0	372.83	28.674	11.991	13.282	1.025	4.460	10.442	0.70	62	
	17R-2, 74	380.65	46,494	16,460	17,975	1,073	4,482	14,150	0.68	63	
	18R-1, 44	388.44	50,306	16,406	17,652	1,090	4,953	12,670	0.65	64	
	18R-3, 22	390.65	24,548	11,888	13,674	1,007	3,919	10,148	0.65	64	
	19R-2, 65	399.57	56,212	14,993	15,218	1,050	3,701	9,512	0.58	67	
	19R-2, 76	399.68	46,664	17,873	19,767	1,289	5,667	15,354	0.65	65	
	19R-3, 39	400.30	46,258	13,144	13,168	1,117	3,761	10,691	0.65	64	
	19K-4, 15 21D 2 44	400.48	37,514	14.026	11,836	1,005	3,139	/,8/6 12/25	0.63	63 64	
	∠1R-2,00 21R-3 0	414.37	37 968	18 238	10,274 19 285	1,03/	5,020 5,594	14 286	0.07	61	
	2		5.,200	. 5,255	, 200	.,	5,571	,_00	J./ L	~.	

	Sample loo	cation	Integrated peak area (total counts)						I/S mixed-layer clay		
	Core, section,	Depth	Smectite	Illite	Chlorite (002)	Quartz	Half chlorite	Chlorite (004)	Saddle:peak	Expandability	
Unit	interval (cm)	CSF (m)	(001)	(001)	+ Kaolinite (001)	(100)	(004)	+ Kaolinite (002)	(intensity ratio)	(%)	
	210 4 71	416.06	42 441	15 (22	17.077	1 002	4 5 7 2	11 090	0.50	(7	
	21R-4, /1 22P-2 02	410.00	42,441	10,020	20.057	1,095	4,572	11,969	0.59	63	
	22R-2, 92 23R-2 0	421.04	55 658	16 223	18 904	930	5 541	13,706	0.08	64	
	238-2,0	430.93	52,058	16 647	17 747	1 038	4 776	12/188	0.00	65	
	24R-1 36	438.86	33 804	12 270	13 603	051	3 3 5 2	8 069	0.67	64	
11	248-1, 50	130.00	32 644	12,277	13,005	1 044	3,552	0,002	0.07	62	
	24R-2, 0 24R-3 19	440 54	34 916	12,205	13,731	947	3,531	10 166	0.71	62	
	25R-1 69	447.89	35 776	12,542	13,906	1 203	4 225	10,100	0.70	63	
	25R-1 100	448 20	50 270	16 855	20.865	1 217	5 668	14 697	0.63	65	
	25R-2.9	448.70	44,621	13,232	15.824	1.038	3,628	9,906	0.61	66	
			,021	. 5/252	10/021	.,	5,020	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.01		
	315-C0002D-	2 (2	11 126	7 0 2 0	7 2 7 1	1 240	1.01/	4 (21	0.01	r 7	
	10-5, 100	2.03	0 202	7,920	7,371	1,249	1,910	4,021	0.81	57	
	20-3, 37	20.50	9,302	11 102	12 400	1,194	2,001	3,037	0.69	52	
	30-3, 63 AU 5 25	20.30	14,271	7 905	7 455	1,440	2,432 2,417	9,249	0.75	50	
	4n-3, 23	29.30	9,690	8 046	7,433 8 706	1,040	2,417	4,047	0.80	52	
	3H-3, ZI 6H 6 77	50.20	9,337	0,040	0,790	1,130	2,000	5,910	0.87	33 61	
	7H-5 23	58.08	12,270	9,127	10 019	1,172	2,770	6 6 9 5	0.74	57	
1	8H-5 8	67 11	14 397	12 552	12 642	1 382	4 048	9 460	0.00	74	
•	9H-6_35	78.56	19,956	14,598	15,278	1,552	5.062	10.567	0.13	59	
	10H-5, 55	86.86	14,163	10.846	12,212	1.396	3,326	7,778	0.74	61	
	11H-4, 43	95.84	12,402	5.955	6.702	1.097	1.903	4.088	0.76	60	
	12H-4, 64	105.74	11.050	8,116	9,568	1,101	2,869	6.358	0.75	60	
	13H-4, 49	114.98	9,610	15,849	22,645	1,473	7,504	17,969	0.84	55	
	14H-4, 46	123.69	8,506	16,530	18,843	1,456	6,279	15,089	0.83	56	
	15X-4, 8	132.55	24,642	10,793	16,751	1,322	5,077	12,751	0.68	63	
	16H-4, 12	154.33	19,157	18,661	29,569	1,450	9,793	22,160	0.75	60	
Ш	17X-3, 8	159.69	10,866	19,972	28,899	1,416	10,015	22,134	0.79	58	
	18H-4, 23	202.27	23,155	12,642	18,478	1,589	5,830	14,207	0.76	60	
	315-C0002B-										
	1R-2. 0	476.42	28,493	14.825	17.551	1,345	4.307	12.508	0.68	63	
	4R-1, 84	504.34	19,446	14,264	22,366	1,549	7,160	17,928	0.70	62	
	4R-2, 0	504.60	16,044	12,124	19,428	1,513	7,091	15,680	0.79	58	
	8R-2, 0	534.41	19,441	, 11,489	18,488	1,387	5,430	14,311	0.72	62	
	8R-3, 73	535.46	25,154	13,348	17,752	1,524	5,681	14,076	0.70	62	
	9R-3, 0	544.99	21,880	11,276	18,901	1,451	6,299	14,936	0.67	63	
	9R-4, 123	546.54	27,760	13,689	22,771	1,316	6,893	18,187	0.65	64	
	10R-2, 0	553.41	27,847	10,758	18,401	1,343	6,538	14,930	0.70	62	
	10R-3, 23	553.95	14,506	8,570	15,208	1,578	6,216	13,291	0.80	58	
	11R-3, 0	564.32	32,354	11,700	18,413	1,539	5,241	13,855	0.71	62	
	11R-4, 84	565.47	17,837	10,673	14,763	1,494	4,281	10,692	0.69	63	
	12R-2, 65	573.06	25,982	11,195	17,805	1,476	4,475	12,480	0.61	66	
	13R-2, 0	581.91	25,147	12,834	19,925	1,508	6,707	16,677	0.73	61	
	13R-3, 24	582.47	20,002	10,950	16,111	1,275	4,706	12,202	0.77	59	
	15R-3, 32	602.65	26,670	16,516	27,651	1,125	9,919	24,304	0.62	65	
	16R-3, 0	611.41	20,171	14,932	17,996	2,028	5,653	12,495	0.71	62	
	16R-4, 9	611.91	15,605	11,644	14,783	1,/61	4,785	11,198	0.75	60	
	16R-4, 12/	613.09	20,249	12,565	16,108	1,940	5,211	10,560	0.70	63	
11	1/K-4, 2/	623.00	15,724	12,251	14,697	1,/51	5,120	10,231	0.81	57	
	19R-2, 127	640.18	26,378	10,209	21,378	1,950	7,442	17,817	0.68	63	
	19K-5, U	640.51	26 200	10,970	29,963	1,340	2 2 7 5	24,301	0.37	65	
	19K-4, 07	640.67	20,399	10,052	13,007	2 5 6 1	3,373	0,047	0.03	50	
	20R-2, 125	650.40	20 688	8 /07	10.953	1 758	3 364	8 6 4 5	0.70	63	
	20R-3, 37 21R-2 43	658 34	14 149	8 3 2 1	11 412	1,750	3,999	8 827	0.02	59	
	21R-2, 45	658.90	12 653	9 8 2 6	13 686	1 723	4 679	10 798	0.77	60	
	21R-4. 28	659.59	13.032	8.026	9.994	1.284	3.216	7.115	0.80	58	
	23R-2.66	677.07	13.673	11.406	14,752	2,004	5.224	11,144	0.78	59	
	23R-3.0	677.82	16.241	13.971	15,812	1,511	5.533	12,486	0.72	62	
	24R-2. 0	685.91	11.080	10.209	12,622	1,939	4.628	9,775	0.82	56	
	24R-3, 71	687.04	19,971	13,092	14,211	1,885	3,607	8,978	0.75	60	
	27R-2, 0	714.11	19,427	14,497	17,484	1,933	4,959	11,820	0.80	57	
	28R-2, 30	724.21	20,275	12,991	14,806	1,420	4,801	10,192	0.76	60	
	29R-2, 0	733.41	16,033	10,219	11,743	1,508	3,592	8,454	0.78	59	
	30R-1, 124	742.74	20,930	13,378	15,345	1,463	4,563	9,955	0.77	59	
	30R-2, 0	742.91	18,928	11,993	14,626	1,549	4,393	10,067	0.76	60	
	31R-1, 127	752.27	15,937	8,627	10,531	1,680	3,540	7,716	0.70	62	

	Sample lo	cation	Integrated peak area (total counts)						I/S mixed	-layer clay
Unit	Core, section, interval (cm)	Depth CSF (m)	Smectite (001)	Illite (001)	Chlorite (002) + Kaolinite (001)	Quartz (100)	Half chlorite (004)	Chlorite (004) + Kaolinite (002)	Saddle:peak (intensity ratio)	Expandability (%)
	32R-2, 67	762.58	15.500	12.312	14.855	2.416	4,486	10.245	0.77	59
	32R-2, 89	762.80	17,817	11,155	13,588	2,078	4,001	9,298	0.75	60
	32R-5, 0	764.29	17,583	12,482	13,980	2,146	4,440	9,508	0.81	57
п	33R-1, 85	770.85	17,256	12,105	14,181	1,154	3,921	8,622	0.74	61
	33R-2, 40	771.39	17,644	13,302	16,198	1,614	5,446	11,146	0.78	59
	37R-2, 0	806.91	25,917	13,280	14,209	1,966	3,796	8,320	0.74	61
	38R-3, 0	817.82	19,631	11,968	12,886	1,449	3,918	7,856	0.79	58
	38R-4, 13	818.37	25,274	13,013	15,151	1,904	4,315	9,140	0.69	63
	40R-2, 0	835.41	18,297	9,863	12,497	1,/12	4,049	8,484	0.80	58
	40K-3, 98	836.81	21,709	12,000	12,369	1,/85	3,807	7,700	0.74	61
	41R-5, 40 11P-1 8	846.82	27,204	10,099	10.286	1,009	2,618	6 5 4 6	0.00	62
	42R-1 16	853 16	26,006	12 827	12 058	1,168	3 028	7 149	0.70	59
	42R-1, 31	853.31	38.898	8.742	7.373	1,250	2.073	4.160	0.68	63
	43R-1, 17	862.67	27,096	10,368	9,811	1,078	2,696	5,527	0.73	61
	43R-1, 40	862.90	25,669	10,797	9,992	1,011	2,571	5,688	0.75	60
	43R-5, 40	868.15	16,387	6,741	6,702	1,005	1,451	3,628	0.77	59
	44R-1, 124	873.24	28,516	11,035	11,198	918	2,463	6,691	0.68	63
	44R-2, 48	873.89	25,500	8,934	8,840	1,310	2,328	5,592	0.74	61
	44R-4, 125	877.48	24,953	8,809	9,348	855	2,668	5,882	0.64	65
111	45R-1, 44	881.94	26,166	7,755	7,999	977	2,034	4,776	0.74	61
	46K-3, 8	893.91	19,103	8,308	8,917	/80	Z,///	5,593	0.69	63 61
	40K-4, U	094.01 806.16	23,807	0,100	0,137 10,410	1 000	1,000	5,130 7 271	0.74	67
	47R-1 37	900.87	22,726	8 376	9 101	1,002	2 356	5 931	0.77	59
	47R-1, 57	901.11	22,506	8.423	8.375	777	2,148	5.310	0.72	62
	47R-3, 38	903.70	23,551	8,067	8,709	1,138	2,363	6,193	0.75	60
	48R-2, 35	911.76	18,069	6,306	7,044	, 979	2,121	4,471	0.76	60
	48R-5, 0	915.24	23,204	8,523	9,075	1,308	2,266	5,706	0.77	59
	48R-6, 65	916.31	34,224	9,647	10,011	1,293	2,734	6,778	0.63	65
	48R-6, 89	916.55	27,553	7,689	6,955	1,253	2,236	4,612	0.68	63
	49R-1, 96	920.46	21,392	8,196	7,232	1,221	1,930	4,833	0.71	62
	49R-1, 121	920.71	28,893	9,013	8,780	1,408	2,501	5,759	0.69	63
	49R-3, 0	921.90	18,526	7,603	7,503	1,01/	1,418	4,540	0.75	60
	51R-1, 54	930.04	114 326	20 690	20 365	1,4/4	5 301	4,072	0.71	02 74
	51R-6 26	944 38	39 149	13 255	15 238	1,707	5 051	11 989	0.59	67
	51R-6, 51	944.63	40.274	7.344	8.471	949	2.145	5.862	0.57	68
	58R-1, 46	1005.46	10,461	7,167	11,324	1,613	3,469	9,153	0.65	64
	59R-1, 121	1010.71	36,430	12,974	18,871	1,267	5,969	12,272	0.47	73
	59R-2, 0	1010.91	66,214	18,644	18,896	2,091	5,564	13,573	0.55	69
	59R-3, 23	1011.56	82,916	14,203	19,753	2,002	5,000	14,517	0.39	77
IV	60R-1, 69	1014.69	121,683	17,000	20,638	2,148	4,755	13,916	0.39	77
	61R-2, 121	1021.12	108,021	21,360	21,706	1,745	4,948	13,975	0.44	74
	61R-3, 0	1021.32	69,816	18,554	16,076	1,754	4,737	11,111	0.47	73
	61R-4, 22	1021.96	23,831	8,170	13,856	1,100	5,041	12,277	0.60	66 75
	62R-1, 30	1023.30	/3,033	13,307	14,209	1,505	4,022	9,200	0.42	68
	63R-1, 120	1033.70	50,954	17,357	17,008	1,570	5,225	12,961	0.53	70
	64R-1, 39	1042.39	46.964	12.026	12.536	1.535	3,605	8.649	0.58	67
	64R-2, 0	1043.00	37,411	9,474	10,730	1,127	2,575	7,099	0.67	64
	65R-1, 105	1047.55	29,384	10,878	10,580	1,558	2,961	6,441	0.75	60
	65R-2, 125	1049.17	34,118	10,518	11,247	1,144	2,966	7,784	0.56	68
	316-C0004C-									
	1H-2, 119	2.61	24,868	9,573	9,385	966	3,050	6,944	0.72	61
	1H-5, 92	5.17	23,377	17,430	17,861	1,383	4,495	13,350	0.69	63
	1H-5, 117	5.41	23,191	14,549	15,289	1,093	5,219	12,071	0.72	62
	2H-4, 0	9.20	32,116	12,736	13,934	1,673	3,888	8,899	0.64	65
	2H-5, 35	10.98	36,077	15,513	15,930	1,366	4,133	11,199	0.61	66
-	2H-6, 119	13.26	19,509	9,255	11,026	1,203	4,170	8,963	0.77	59
I	3H-2, 25	17.54	32,060	12,319	12,704	1,039	3,923	9,207	0.67	64
	3H-8, 20	22.96	22,540	14,11/	13,132	1,286	4,252	10,/81	0.65	64 68
	411-1, 30 4H_4 - 20	20.97 20.61	∠7,300 <u>∕</u> 0 072	7,300 15 127	7,/42 17,/45	0/9 1 388	2,772 5 821	0,/00	0.50	69
	5H-1 63	35 51	49 287	22 509	27,398	1,505	8 377	21,754	0.55	65
	5H-4, 0	39.07	16.336	7,583	10,344	2,382	2.939	7,797	0.74	61
	6H-2, 63	46.44	23,259	9,985	11,948	1,290	, 3,865	9,265	0.63	65

	Sample loo	cation	_		Integrated peak	area (tota	l counts)		I/S mixed	ixed-layer clay		
Unit	Core, section, interval (cm)	Depth CSF (m)	Smectite (001)	lllite (001)	Chlorite (002) + Kaolinite (001)	Quartz (100)	Half chlorite (004)	Chlorite (004) + Kaolinite (002)	Saddle:peak (intensity ratio)	Expandability (%)		
	6H-4, 0	48.48	28,350	11,724	10,189	839	2,497	6,188	0.60	66		
	6H-7, 15	51.76	39,403	9,681	12,065	791	3,566	8,481	0.58	67		
	7H-6, 0	59.34	44,962	16,069	18,673	1,623	5,601	13,991	0.59	67		
	7H-7, 129	60.85	31,907	14,947	16,935	1,363	6,323	14,141	0.65	65		
I.	7H-9, 15	62.52	40,074	13,210	15,377	1,187	4,262	10,697	0.55	68		
•	8H-2, 68	65.46	28,428	11,903	11,843	1,255	2,974	7,630	0.63	65		
	8H-4, 0	67.63	40,337	14,851	16,731	1,185	5,322	11,937	0.61	66		
	8H-5, 91	68.76	30,326	10,911	12,487	1,364	3,467	8,368	0.55	68		
	9H-2, 68	/4.9/	27,107	10,503	12,794	2,236	4,028	10,255	0.57	68		
	9H-4, 0	//.14	55,126	18,984	23,422	1,368	7,600	17,203	0.48	/2		
	1011-2, 103	03.31	29,234	12,320	19,697	1,212	7,307	10,200	0.73	61		
	1111 1 110	03.47 85.01	26 514	10,900	20,037	1,403	5 2 2 0	13,371	0.03	62		
	111-1, 110	86.24	20,314	14 750	17 011	1 3 2 7	5,320 6 21 7	12,494	0.70	63		
	128-6 0	94 99	23,204	17 359	22 486	1,527	9 236	20 017	0.69	63		
IIA	12X-8,64	97 32	13 988	9 665	9 615	2 300	2 779	6 801	0.02	61		
	13X-3.0	101.27	34.898	19.451	23.573	1.304	7.562	18.152	0.64	65		
	13X-8, 10	107.28	17,540	12,187	15,740	1,284	6,574	13,387	0.73	61		
	14X-5, 0	113.58	20,393	14,487	17,927	1,688	6,861	15,349	0.71	62		
	14X-8, 15	116.82	22,095	12,072	15,791	1,595	5,608	12,446	0.71	62		
	15X-2, 0	119.13	28,048	10,970	12,734	1,398	4,575	10,153	0.65	64		
IIB	15X-7, 0	125.91	30,987	17,929	22,170	1,348	6,942	17,100	0.75	60		
	316-C0004D-											
	4R-2 0	129.07	35 441	13 380	16 278	1 051	4 793	10 990	0.61	66		
	5R-3 0	139 54	44 125	20 658	26 314	1 532	8 496	19 380	0.58	67		
	7R-2.0	152.91	23.839	13.144	15.010	1.008	4.099	10.326	0.67	64		
IIB	13R-2, 14	179.54	47,116	20.220	22,668	1,459	7,271	15,945	0.70	62		
	16R-2, 13	203.26	45,492	12,369	15,173	950	4,631	10,701	0.58	67		
	19R-2, 1	226.67	40,670	11,129	12,969	1,006	3,802	10,263	0.57	68		
	23R-1, 97	247.97	31,812	10,718	11,513	1,209	3,819	8,765	0.63	65		
	26R-3, 0	262.59	33,554	13,173	14,433	1,186	5,083	11,054	0.64	65		
	27R-2, 95	267.37	52,425	19,769	21,630	1,140	6,603	16,065	0.56	68		
	28R-1, 43	269.94	57,507	18,947	22,138	1,139	5,400	14,697	0.56	68		
	28R-2, 80	271.71	39,594	12,214	13,096	958	3,977	8,965	0.65	64		
	29R-1, 120	275.20	42,421	15,910	16,877	1,263	5,186	11,791	0.64	65		
	29R-CC, 18	277.14	51,082	15,019	17,795	1,325	5,091	12,931	0.56	68		
Ш	30R-1, 117	279.67	37,658	13,870	17,983	1,066	5,699	12,400	0.63	65		
	30R-2, 53	280.44	37,933	14,673	17,982	1,041	4,707	11,851	0.58	67		
	30R-2, 88	280.79	45,729	14,515	17,159	1,104	4,482	12,524	0.65	64		
	30R-3, 29	281.61	49,680	17,376	21,581	1,560	1,113	17,430	0.59	6/		
	30R-3, 76	282.08	35,202	16 222	15,565	1,036	4,845	12,049	0.60	6/		
	32K-2, 12U	290.11	45,859	10,233	16 705	1,191	4,470	10,127	0.57	65		
	34R-1, 13	290.03	43,930	14,451	16,795	1,049	4,214	10,932	0.64	67		
		310 59	52 722	18 782	21 036	1 354	6 6 7 5	16 384	0.52	69		
	39R-2 8	320.18	27 707	11 520	14 643	1 4 2 5	5 380	11 451	0.54	67		
	39R-3, 79	321.19	30,266	12,386	14.376	1,662	5,216	11,630	0.58	67		
	41R-2, 20	329.60	48.002	15,466	16.880	1,668	5,806	12.316	0.53	70		
	44R-2, 71	343.61	27,900	9,122	11,203	1,346	3,835	8.279	0.54	69		
	44R-3, 0	344.09	34,749	12,422	14,777	1,897	4,899	11,521	0.55	68		
	46R-2, 28	352.20	33,085	, 12,439	14,657	1,532	4,214	10,339	0.60	66		
	48R-1, 37	359.87	29,977	11,720	13,712	1,336	4,861	10,579	0.56	68		
	48R-2, 17	361.07	30,965	12,972	15,036	1,557	6,491	13,578	0.58	67		
	49R-1, 111	365.11	36,565	13,060	16,270	1,615	5,742	12,551	0.52	70		
	49R-2, 30	365.72	36,429	12,505	14,398	1,815	4,914	11,639	0.52	70		
IV	49R-3, 79	367.61	38,924	15,060	17,176	1,804	5,218	13,314	0.59	67		
	51R-1, 90	373.91	30,858	10,738	12,033	1,332	3,219	8,707	0.58	67		
	51R-2, 50	374.92	44,915	13,906	16,630	1,403	4,802	11,847	0.56	68		
	51R-2, 103	375.45	24,613	11,712	14,272	1,721	4,508	11,588	0.58	67		
	52R-1, 10	377.60	29,861	11,607	14,794	1,243	4,166	11,472	0.63	65		
	52R-2, 79	379.69	22,210	9,138	11,884	1,480	3,557	8,132	0.60	66		
	52R-3, 18	380.49	31,599	11,751	15,943	1,658	5,732	12,990	0.61	66		
	52R-3, 76	381.07	35,659	10,763	14,934	1,262	4,736	9,793	0.54	69		
	52R-3, 110	381.41	45,915	12,257	15,319	974	3,831	9,161	0.53	70		
	53R-2, 51	383.92	46,236	11,649	14,507	1,694	5,225	11,620	0.49	71		
	54K-1, 107	387.58	35,531	10,526	12,548	1,546	3,787	9,329	0.60	67		
	54R-2, 11	388.02	28,713	8,288	10,297	959	3,239	7,669	0.61	66		

	Sample lo	cation	Integrated peak area (total counts)				I/S mixed-layer clay			
Unit	Core, section, interval (cm)	Depth CSF (m)	Smectite (001)	Illite (001)	Chlorite (002) + Kaolinite (001)	Quartz (100)	Half chlorite (004)	Chlorite (004) + Kaolinite (002)	Saddle:peak (intensity ratio)	Expandability (%)
	54R-2, 116	389.06	22,600	6,539	8,066	953	2,804	5,756	0.64	65
	54R-3, 0	389.31	20,591	7,367	8,727	823	2,823	7,133	0.66	64
IV	54R-3, 44	389.75	22,861	9,544	11,618	1,364	3,456	8,451	0.63	65
1.	54R-3, 77	390.09	39,889	11,605	15,966	1,191	4,884	12,081	0.56	68
	55R-1, 36	391.36	30,476	10,007	11,791	1,925	3,977	8,875	0.53	70
	55R-2, 97	393.38	24,045	11,670	14,256	1,323	4,662	10,655	0.62	65
	316-C0006C-	1 27	22 020	10 500	12 061	1 1 2 1	1 5 2 5	10.000	0.64	65
I	111-2, 0 1H-6, 0	5.97	38.822	13.006	17,741	1,121	6.200	13.973	0.57	68
	316-C0006D-		/	,	,.	-,	-,			
	1H-2, 0	1.21	19,686	11,518	13,740	1,022	4,093	9,209	0.69	63
I.	1H-2, 20	1.41	26,725	15,329	15,709	1,014	4,651	10,521	0.68	63
	1H-5, 0	4.04	10,622	10,403	10,167	1,356	3,114	6,591	0.77	59
	316-C0006E-									
	1H-2, 0	1.21	25,123	19,355	21,971	1,292	7,229	15,185	0.66	64
	1H-4, 69	3.53	21,110	14,680	17,636	1,536	6,889	14,707	0.72	62
	1H-5, 0	4.24	16,091	13,256	14,537	1,159	5,036	10,729	0.76	60
	1H-6, 49	4.97	19,894	10,568	13,380	1,062	4,859	9,936	0.60	66
	2H-3, U	7.79	19,359	17,342	22,271 11.096	1,391	7,957	18,327	0.73	61
1	2H-4, 113 2H-7 0	9.10 12.00	14,605	0,040	15 993	1,120	5,912	0,040	0.64	62
	3H-3 0	17 29	25 403	17 384	19 851	1,243	6 5 2 3	13,327	0.71	63
	3H-6, 55	20.98	21,451	9,733	13.061	1.063	3.508	9.085	0.58	67
	3H-6, 95	20.98	24,905	14,530	17,838	1,593	6,078	12,904	0.64	65
	3H-7, 0	21.66	37,760	13,154	17,002	1,000	4,976	12,340	0.59	67
	4H-4, 29	29.92	27,855	21,372	25,316	1,527	7,546	17,763	0.70	63
	4H-5, 0	29.92	29,276	19,833	26,526	1,207	8,689	17,236	0.61	66
	5H-1, 126	34.49	24,713	10,935	16,456	1,329	5,895	12,255	0.59	67
	5H-3, 0	35.84	22,046	16,425	18,776	870	4,698	12,674	0.66	64
	5H-4, 20	36.26	18,693	10,217	15,926	1,083	5,193	11,769	0.59	67
	5H-5, 70	38.20	15,112	14,576	19,530	932	5,535	14,012	0.64	65
	7H-2, 115	41.25	20,638	12,931	19,928	1,343	7,008	14,975	0.58	6/
	7H-4, 0 7H-4, 20	42.92	47 898	19 346	21 275	897	5,710	11 343	0.04	73
	8H-1, 55	48.74	9,229	7.308	9,807	1.058	2 827	7.420	0.75	60
	8H-2, 86	50.45	14.892	13.818	16.836	629	3,816	9,549	0.69	63
	8H-4, 0	51.79	17,688	9,541	13,489	822	4,466	9,278	0.60	66
	9H-2, 93	60.04	34,951	13,119	20,745	1,158	6,770	13,814	0.49	71
	9H-5, 0	62.41	16,986	14,053	18,617	903	4,892	12,037	0.64	65
	10H-8, 0	64.51	8,712	7,185	7,986	716	2,249	5,217	0.75	60
	11H-1, 79	65.46	32,865	11,543	17,510	1,350	5,421	12,745	0.55	68
	11H-4, 0	67.70	13,589	15,002	17,828	785	4,867	12,398	0.68	63
	12H-6, 0	76.31	27,836	13,058	21,080	1,196	6,547	14,965	0.51	70
	167-1,96	89.80	23,263	16 960	20,254	1,037	7,173	10,400	0.66	64 60
ш	172-1 115	90.11 00.40	33,705	13 309	24,004	1,411	5 165	13,017	0.54	68
	17X-3 0	100.30	22 396	14 998	20,799	922	5 297	12 683	0.57	67
	17X-5, 27	101.45	26.655	13.681	20,382	1.090	6.522	14,981	0.55	69
	19X-3, 113	118.40	24,790	13,205	20,279	1,305	6,445	13,641	0.57	68
	19X-4, 95	119.62	36,387	20,091	27,627	1,245	8,234	17,377	0.54	69
	19X-5, 0	119.76	14,358	12,374	16,569	1,409	5,872	12,808	0.72	62
	19X-6, 39	120.47	18,340	8,910	14,323	1,141	4,591	10,808	0.62	66
	20X-1, 38	125.72	21,693	13,318	17,793	959	5,519	12,416	0.60	67
	20X-1, 118	126.52	40,727	10,220	16,569	1,212	4,646	10,452	0.45	74
	20X-2, 121	127.96	22,284	20,032	24,619	2,062	8,624	18,484	0.66	64
	20X-3, 0	128.16	26,892	29,542	33,693	1,708	9,625	19,380	0.65	64
	20X-5, 33	131.34	26,045	11,013	16,6/4	1,538	5,/55	12,032	0.57	68 60
	207-3, 108 208-7-0	132.09	20,3/1 26 790	11,943	19,0/3	1,33/	0,834 1 860	14,460	0.55	65
	201-7,0	132.03	20,109 46 153	18 225	32 151	1 010	4,000 8 330	10,709	0.04	71
	278-2,0	146 07	26 732	14 103	21,421	1.848	7 552	18 115	0.49	67
	22X-3.0	146.83	23.487	13.501	22,231	1,215	8.749	18,318	0.61	66
	22X-4, 30	147.48	22,123	16,548	24,102	1,404	8,947	18,783	0.67	64
	22X-4, 115	148.33	38,204	23,189	34,104	1,203	10,256	21,139	0.53	70
	22X-6, 20	150.20	26,503	14,167	23,874	1,217	8,673	18,813	0.55	68
	22X-6, 66	150.66	18,661	17,816	26,418	1,185	8,510	21,340	0.64	65

	Sample location Integrated peak area (total counts)						I/S mixed-layer clay			
Unit	Core, section,	Depth CSE (m)	Smectite	Illite (001)	Chlorite (002) + Kaolinite (001)	Quartz (100)	Half chlorite	Chlorite (004) + Kaolinite (002)	Saddle:peak	Expandability
	232-1 65	154.48	25 256	12 422	10.380	1 1/3	6.016	12 //3	0.54	69
	23X-1, 05	154.84	29,769	16,126	24,161	1,143	7,350	16.312	0.54	69
	23X-3, 26	156.91	32.058	14,120	22,285	1,089	7,280	14,739	0.50	71
	23X-3, 67	157.32	13,513	9,889	14,092	1,275	5,441	11,475	0.67	64
	23X-4, 0	157.74	26,207	13,044	19,056	1,501	6,802	13,790	0.58	67
	23X-5, 90	158.98	31,306	12,629	21,198	1,246	6,995	15,541	0.54	69
	25X-6, 25	180.12	33,535	15,564	24,613	1,292	7,871	17,142	0.50	71
	25X-7, 0	180.79	21,424	17,261	27,390	1,052	8,640	18,924	0.65	64
	26X-1, 147	183.81	36,267	13,641	22,516	1,512	7,361	16,643	0.46	73
	26X-4, 0	186.65	36,723	17,113	24,360	1,348	7,258	15,475	0.50	71
	26X-8, 94	191.82	42,178	16,029	24,979	1,812	9,110	18,294	0.48	72
	27X-1, 60	192.43	25,114	11,659	19,482	1,158	6,735	14,456	0.59	67
	27X-5, 16	197.65	25,560	15,930	24,730	1,104	8,137	17,386	0.56	68
	2/X-8, 30	200.62	33,044	14,950	21,406	926	5,563	12,937	0.53	70
	287-1, 31	201.64	32,662	16,539	24,111	1,643	6,623	14,576	0.47	/3
	201-1,91	202.24	30,338	14,490	22,095	1,270	7,007	16,005	0.55	09 73
	28X-3, 0 28X-4 75	203.01	43,037	14 551	24,470	1,334	6 91 4	15 352	0.40	73
	298-2 84	204.72	37 138	19 207	29 374	1,203	10 172	22 475	0.58	67
	29X-7, 0	219.04	40,891	16.889	28,859	1,474	9,000	21.042	0.54	69
	30X-1, 107	221.40	36.235	14,582	23,494	1,331	7,993	16.509	0.51	70
	30X-3, 0	223.16	27,752	13,793	20,041	1,438	6,178	15,224	0.57	68
	30X-8, 80	229.63	29,079	12,292	15,776	, 1,459	4,815	10,491	0.61	66
	31X-3, 0	232.32	17,383	8,724	16,617	901	4,931	11,051	0.54	69
	31X-4, 65	233.34	38,734	14,019	19,628	871	6,075	12,996	0.53	70
	32X-4, 0	243.21	23,453	9,606	16,362	1,149	5,561	11,646	0.62	66
	32X-5, 23	243.82	22,306	14,420	21,751	1,534	7,101	15,516	0.58	67
	32X-5, 91	244.51	25,944	12,649	18,893	1,276	5,631	13,628	0.55	68
	32X-6, 18	245.19	39,203	15,549	25,551	1,327	7,518	16,703	0.55	69
	34X-3, 94	262.09	53,575	17,327	23,924	1,450	7,364	16,141	0.51	71
	34X-4, 44	263.01	29,355	10,317	16,318	1,204	5,915	12,363	0.53	69
п	347-3,0	203.02	41,224	12,303	17,017	021	5,478	13,302	0.36	00 74
	358-2,0	200.09	41,411 51 254	10,070	21,734	1 618	0,308	14,031	0.44	74
	35X-4 10	270.24	28 105	10,210	16 914	1 375	6 183	13 370	0.45	68
	36X-1, 100	278.33	33.836	21.322	30.249	1,490	9,907	21.496	0.62	66
	36X-4, 0	281.56	25.978	9,980	14.381	1,565	4.870	10.788	0.56	68
	37X-2, 78	289.03	19,349	7,059	10,642	1,548	3,283	7,759	0.57	68
	37X-4, 18	291.25	24,200	8,588	11,607	1,173	3,716	7,934	0.62	66
	37X-4, 58	291.65	22,375	9,562	13,792	1,280	5,030	11,155	0.59	67
	37X-5, 0	292.12	55,839	31,758	50,545	1,806	15,186	33,211	0.51	71
	38X-2, 0	296.70	44,900	16,208	23,226	1,582	6,926	16,219	0.51	70
	39X-3, 71	309.36	28,330	13,243	21,072	1,368	7,244	15,061	0.56	68
	39X-4, 0	309.69	27,617	11,712	18,862	1,138	5,509	13,067	0.60	67
	39X-CC, 31	315.66	24,124	8,695	13,912	1,336	4,561	9,767	0.57	68
	40X-7, 0	322.01	32,363	13,522	18,374	1,835	6,309	13,232	0.59	6/
	40X-8, 60	323.01	29,742	9,701	13,650	1,123	4,487	9,960	0.55	69 70
	417-4, 0	220.02	34,430	12,308	20,303	1,520	0,920	15,450	0.51	70
	427-3, 0	3/3 36	31 428	10 715	12 203	1 3 2 2	3,430	7,554	0.02	64
	43X-5 0	349 11	53 074	16 156	22 474	1,501	7 601	16 743	0.50	71
	44X-5, 0	358.99	30,619	17,583	29.095	1,002	7,883	18,163	0.58	67
	45X-1, 37	363.21	19.457	7.896	13.815	1,191	4,191	9.681	0.60	66
	45X-3, 63	366.27	32,391	11,706	19,822	1,325	6,196	14,244	0.54	69
	45X-3, 81	366.45	30,726	13,819	19,923	1,424	5,546	14,054	0.60	67
	45X-4, 0	366.66	23,123	12,772	21,692	1,423	7,351	16,987	0.60	66
	46X-3, 138	376.55	37,333	11,978	18,148	977	6,018	12,782	0.50	71
	46X-5, 0	377.60	32,955	14,373	20,378	1,576	5,705	12,838	0.61	66
	47X-3, 93	385.58	16,606	5,673	8,587	1,127	2,374	6,052	0.60	66
	47X-4, 14	386.20	25,447	6,262	8,024	796	2,350	4,955	0.55	69
	47X-5, 0	386.72	27,187	8,565	12,640	1,322	4,269	8,771	0.56	68
	48X-5, 0	396.98	37,341	8,282	12,454	971	3,048	8,124	0.47	/3
	498-4, 0	404.68	23,272	10,379	25,/00	1,320	7,331	17,015	0.59	6/
	316-C0006F-									
	2R-2, 0	405.52	34,891	11,510	18,426	1,288	6,039	13,559	0.46	73
Ш	3R-1, 0	414.00	29,662	10,466	10,757	1,240	3,286	7,399	0.60	67
	4R-2, 33	425.24	32,816	10,386	13,622	1,152	4,379	9,946	0.56	68

	Sample lo	cation	on Integrated peak area (total counts)						I/S mixed-layer clay		
Unit	Core, section, interval (cm)	Depth CSF (m)	Smectite (001)	lllite (001)	Chlorite (002) + Kaolinite (001)	Quartz (100)	Half chlorite (004)	Chlorite (004) + Kaolinite (002)	Saddle:peak (intensity ratio)	Expandability (%)	
	5R-1, 117	434.17	24,160	8,377	13,657	1,020	4,951	11,041	0.57	68	
Ш	6R-1, 120	439.20	15,885	6,082	6,379	948	2,046	5,252	0.71	62	
	7R-1, 90	448.40	26,169	8,222	9,773	830	3,237	7,224	0.64	65	
	8R-1, 12	457.13	44,379	17,816	18,046	1,002	4,486	10,588	0.72	61	
	8R-1, 103	458.03	40,867	14,602	17,370	967	4,917	13,537	0.65	65	
	8R-2, 42	458.84	29,395	8,009	9,914	897	2,848	6,935	0.65	64	
	9R-1, 53	467.04	44,304	13,197	14,134	1,022	3,742	9,146	0.62	65	
	9R-1, 105	467.56	36,865	9,680	10,984	941	2,855	7,624	0.61	66	
	9K-2,41	468.42	47,537	10,195	17,879	/30	3,383	0 1 8 5	0.65	65	
	10R-1, 27 10R-1, 124	470.20	42,195	13 137	12,000	1 034	3,032 4 272	9,105	0.05	64	
	11R-1, 60	486.10	45,167	12,240	13,188	1,054	3,753	9.065	0.65	64	
	11R-2, 46	487.48	34,753	11,119	11,354	867	3,031	7,445	0.63	65	
	11R-CC, 19	488.01	38,087	12,264	12,998	1,192	3,840	9,382	0.68	63	
	12R-1, 62	495.63	51,799	15,648	15,268	1,420	4,546	11,499	0.65	65	
	12R-2, 0	496.44	67,686	20,055	18,202	1,454	5,286	13,337	0.58	67	
	13R-1, 119	505.69	42,435	15,211	15,459	1,026	3,618	10,096	0.71	62	
	13R-2, 20	506.10	37,548	11,962	11,438	899	2,608	7,175	0.70	62	
	13R-2, 86	506.76	27,443	11,093	12,371	891	3,721	9,525	0.72	61	
III	14R-1, 104	515.04	29,097	10,316	11,391	1,142	3,825	9,423	0.71	62	
	14R-2, U 14D 2 37	515.01	40,954	12,309	15,369	925	3,074	6,902 10 801	0.58	67	
	14R-2, 37	517.24	26 859	9 3 9 4	11 143	807	3 485	9 4 5 9	0.68	63	
	1.5R-1. 0	523.50	46.226	17.403	17,703	1.157	5,248	12.859	0.67	64	
	15R-1, 121	524.71	55,171	13,947	15,285	838	4,287	11,090	0.54	69	
	15R-2, 57	525.57	61,506	20,402	19,115	1,159	7,868	16,728	0.57	68	
	16R-1, 100	534.00	20,766	11,031	10,180	789	4,022	8,550	0.72	62	
	17R-1, 15	542.65	39,276	12,678	13,212	1,028	3,694	8,976	0.64	65	
	18R-1, 113	553.13	33,397	12,130	13,341	901	4,626	11,598	0.66	64	
	19R-1, 122	562.73	55,016	18,944	18,865	1,279	5,586	13,930	0.53	69	
	19R-2, 78	563.69	56,800	24,616	23,254	1,961	6,983	17,129	0.53	70 71	
	19R-3, 0 19R-3 43	564.51	62,923 77 915	23,003	16 625	896	4 832	13,307	0.30	71	
	19R-CC 13	567.84	30,640	10,500	10,590	927	2,299	6.621	0.72	61	
	20R-1, 0	571.00	47,537	22,063	20,823	1,538	5,834	16,853	0.58	67	
	22R-1, 0	590.00	29,962	8,445	8,992	736	2,522	6,473	0.66	64	
	23R-1, 49	593.99	32,772	9,787	10,115	879	2,775	6,622	0.67	64	
	316-C0007A-										
	1H-2, 0	1.42	19,006	14,446	16,416	1,141	6,148	13,635	0.71	62	
I.	1H-4, 0	2.73	27,871	14,757	17,323	1,474	5,846	12,207	0.60	66	
	1H-CC, 14	3.01	32,512	15,015	16,746	1,491	5,261	12,117	0.62	66	
	316-C0007B-										
	1H-1, 66	3.80	30,161	13,765	15,843	1,504	5,208	10,655	0.53	69	
	1H-3, 0	5.73	23,932	2,439	3,909	374	1,146	2,376	0.40	77	
	1H-6, 15	8.92	7,459	12,797	13,775	2,397	3,759	8,872	0.87	53	
	1H-7, 0	9.77	24,959	15,653	19,801	1,700	7,564	15,701	0.71	62	
	316-C0007C-										
	1H-1, 60	13.24	18,793	23,647	28,401	2,087	8,720	19,084	0.70	62	
	1H-2, 0	14.05	12,700	17,498	22,549	1,990	9,223	18,665	0.75	60	
	1H-5, 0	16.89	28,403	28,363	28,124	1,430	8,390	17,438	0.71	62	
I	3H-Z, U	31.50	10,201	10,049	19,008	1,292	5,916	12,387	0.74	6 I 5 0	
	3H-7 0	32.70	21 863	25 600	25 961	1,303	7 907	13,727	0.77	59	
	3H-5, 0	33.00	34,259	23,070	30,439	1,807	10,197	20 413	0.62	66	
	6X-2, 75	54.75	19.297	11.911	16.963	1,318	6.644	13.965	0.62	66	
	6X-3, 0	55.18	17,433	10,550	17,341	1,318	7,359	15,131	0.57	68	
	6X-4, 55	55.95	24,238	20,173	24,460	1,274	8,144	19,186	0.67	63	
	6X-CC, 22	56.47	25,992	15,970	21,984	1,762	7,410	15,427	0.55	69	
	7X-1, 95	63.04	38,475	23,162	29,751	922	9,986	20,860	0.52	70	
Ш	7X-3, 0	64.68	22,233	16,421	21,898	1,579	7,605	15,495	0.58	67	
	/X-4, 39	65.30	20,660	14,236	21,/14	1,507	/,938	1/,180	0.65	64 66	
	/ ۸-3, 102 88.2 15	0/.54 72 14	∠3,380 11 020	14,/3/	12,33/	1,449 1 059	0,541 8 072	14,09/ 17 670	0.62	00 61	
	8X-3.0	74.42	29 043	28.768	31.679	1,050	10.186	21.246	0.56	68	
	8X-5, 64	76.48	22.675	8,305	14,107	1,275	5.203	10,426	0.52	70	
	9X-1, 65	81.74	11,425	9,899	14,491	1,688	5,429	11,706	0.69	63	

_

	Sample loo	ation Integrated peak area (total counts)				I/S mixed-layer clay				
Unit	Core, section, interval (cm)	Depth CSF (m)	Smectite (001)	lllite (001)	Chlorite (002) + Kaolinite (001)	Quartz (100)	Half chlorite (004)	Chlorite (004) + Kaolinite (002)	Saddle:peak (intensity ratio)	Expandability (%)
	9X-5, 0	86.52	13,884	8,307	11,663	1,104	3,698	8,449	0.63	65
	9X-6, 40	87.14	23,851	, 12,756	16,588	1,299	5,573	12,316	0.62	66
	10X-1, 111	91.70	28,072	22,732	29,408	1,452	10,503	21,226	0.55	69
	10X-2.0	92.00	16.569	16.670	22.241	1.375	8.631	18.639	0.69	63
	10X-CC. 6	94.31	5.172	14.887	16.231	1.024	6.552	13.306	0.83	56
	11X-1 22	100.32	40 420	15 988	27 785	1 615	8 71 2	19 302	0.47	72
11	11X-2 56	102.07	17 424	17 179	21 441	1,013	7 284	16 306	0.67	64
	11X-2, 50	102.07	8 91 2	23 /60	23 658	1,000	7,204	16 31 5	0.87	56
	11X-4 67	102.70	8 295	1/ 012	14 760	707	7,754 7,694	10,515	0.02	60
	118 CC 21	103.01	5 6 4 1	22 512	22 1 70	1 201	0 2 4 0	21 192	0.70	54
	148.2.0	103.83	21 862	22 806	30,210	1 3 6 0	9,349	21,102	0.80	57 67
	147-2,0	129.75	21,002	23,090	28 1 27	772	9,007 6,671	15 314	0.70	65
	316-C0007D-	149.00	51,250	24,045	20,127	// 5	0,071	13,314	0.05	05
	3R-2, 0	191.42	37,495	18,633	24,177	3,008	8,068	17,874	0.58	67
	3R-3, 69	192.45	26,338	14,390	20,604	1,502	6,988	17,084	0.65	64
	4R-1, 37	199.87	57.893	22,413	32,333	1.293	10,760	23,965	0.55	69
	5R-1, 0	209.00	23,443	9,432	14,150	1,500	4,940	11.048	0.63	65
	6R-3, 98	221.44	21,782	9,635	13,608	1,610	4,369	10,081	0.61	66
	7R-1, 98	228.99	39.067	9,139	14,484	1.765	4,989	10.028	0.50	71
	8R-1, 90	238.40	31.953	9,250	13.904	1.514	4,747	10.973	0.53	69
	9R-2, 23	248.65	53.646	13.967	19.038	1.643	5.678	12,185	0.48	72
	9R-2, 77	249.20	32.332	11.018	15.974	1.540	6.475	13.038	0.53	69
	10R-1.50	257.00	39.001	14.723	18.863	1.487	5.230	12.652	0.55	69
11	15R-1, 85	304.35	30.943	9.401	13.398	1.677	4.807	9.922	0.56	68
	16R-1, 95	313.95	30.362	11.044	16.071	1.872	5.559	13.373	0.57	68
	16R-2, 100	315.42	27.162	8.847	11.983	1.432	4,110	9.273	0.54	69
	17R-3.0	325.30	48.177	14.967	21.168	1.878	7.893	15.788	0.46	73
	17R-CC. 10	327.12	37.510	13.979	18.593	1.605	6.631	14.103	0.57	68
	18R-1, 24	332.24	39.094	11.046	12.018	1.888	3.831	8.140	0.57	67
	18R-1, 62	332.62	15.296	5.599	6.887	1.264	2.297	5.500	0.69	63
	19R-1, 31	341.81	49.052	15,122	21,178	1,783	6.845	14.874	0.53	70
	20R-1, 84	351.85	37.990	12.111	14.163	1.523	4.784	11.045	0.54	69
	21R-1, 57	361.07	40.922	15,989	14.922	1.010	5,909	12.078	0.72	61
		370.47	54,789	16,934	18.264	1.292	5,746	13,641	0.69	63
	22R-2, 78	372.19	50,839	10,658	13,166	701	4,087	8,722	0.60	66
	22R-3, 97	373.79	70,087	18,487	20,303	1,236	6,540	14,995	0.60	67
	23R-2, 23	381.14	66,435	18,157	19,499	1,307	5,666	14,159	0.58	67
	23R-2, 113	382.04	75,279	23,640	22,144	1,490	6,217	15,519	0.66	64
	23R-3, 62	382.96	61,091	21,901	23,712	1,283	6,855	18,084	0.64	65
	23R-4, 14	383.89	47,685	17,667	18,613	1,213	5,607	13,289	0.60	66
	24R-1, 16	389.17	71,855	22,359	23,252	961	7,406	16,243	0.56	68
	24R-2, 105	391.47	41,457	14,587	15,277	1,337	4,427	11,708	0.66	64
	24R-3, 66	392.51	68,748	21,875	22,049	1,378	6,007	15,077	0.58	67
111	24R-3, 98	392.83	44,752	18,123	19,775	1,344	5,970	14,066	0.71	62
	24R-5, 42	395.09	67,641	20,090	19,872	1,305	5,564	14,033	0.61	66
	25R-2, 80	400.73	38,467	12,003	13,929	1,168	3,522	9,809	0.58	67
	25R-3, 50	401.87	30,287	13,990	15,515	1,237	5,002	10,579	0.55	69
	26R-1, 0	408.00	55,996	19,778	18,590	1,243	4,394	12,885	0.60	67
	26R-1, 133	409.34	56,105	21,989	20,733	1,253	5,206	13,969	0.62	66
	27R-1, 24	417.74	44,049	15,224	15,152	1,127	3,848	10,900	0.73	61
	28R-4, 12	431.37	57,070	20,408	19,533	1,464	6,411	16,371	0.59	67
	29R-1, 31	436.81	58,174	18,308	18,234	1,119	5,077	13,600	0.60	66
	29R-2, 77	438.68	66,315	16,516	17,499	1,347	5,388	13,404	0.56	68
	316-C0008A-									
	1H-3, 0	1.64	11,589	7,723	9,094	776	3,358	8,013	0.81	57
	1H-7, 0	5.43	16,640	9,249	11,579	1,414	4,323	9,625	0.74	60
	2H-2, 0	8.35	11,079	5,338	5,498	1,339	1,802	3,993	0.80	58
	2H-8, 0	15.43	25,218	11,094	12,427	1,129	4,231	8,508	0.69	63
	3H-1, 55	16.05	25,073	14,823	16,478	1,782	5,805	13,085	0.64	65
	3H-3, 0	18.41	25,781	11,022	11,423	1,549	3,509	8,428	0.59	67
IA	3H-8, 0	22.98	21,820	8,940	10,799	1,206	3,360	7,794	0.61	66
	3H-10, 98	25.40	31,857	13,425	16,052	1,588	4,968	13,222	0.57	68
	4H-4, 0	29.18	30,048	11,567	13,235	1,245	3,503	9,263	0.57	68
	4H-6, 32	30.89	34,478	11,064	13,631	1,267	4,620	9,855	0.62	65
	4H-9, 59	35.20	20,096	14,322	17,749	1,247	4,517	12,865	0.69	63
	5H-4, 0	38.72	25,862	15,646	19,063	1,469	7,075	15,469	0.63	65
	5H-6, 72	40.76	25,260	8,661	8,897	1,048	2,763	6,409	0.57	68

	Sample location Integrated peak area (total counts)						I/S mixed-layer clay			
Unit	Core, section, interval (cm)	Depth CSF (m)	Smectite (001)	lllite (001)	Chlorite (002) + Kaolinite (001)	Quartz (100)	Half chlorite (004)	Chlorite (004) + Kaolinite (002)	Saddle:peak (intensity ratio)	Expandability (%)
	6H-3, 59	47.35	28,835	15,281	22,635	1,526	7,415	18,659	0.62	66
	6H-5, 0	49.27	34,270	15,027	25,418	1,171	7,534	20,667	0.60	67
	6H-6, 100	50.50	24,800	8,371	11,493	1,350	3,638	8,576	0.58	67
	7H-3, 28	56.46	18,602	11,625	17,805	1,350	6,350	15,961	0.66	64
	/H-5,0	58.63	11,896	15 161	9,746	1,/11 011	3,/88	8,952	0.72	6 I 6 1
	7⊓-6,115 8H_4_72	67.66	25,295	12,101	10,/3/ 23 10/	1 360	5,051 7 /07	12,347	0.73	65
	8H-5, 0	68.25	23,902	12,004	18.088	1,002	6 653	14,705	0.66	64
	9H-3, 107	76.19	25,228	13,497	22,302	1,499	5,529	16,407	0.71	62
	9H-5, 0	77.56	16,223	12,023	19,089	1,839	7,696	18,326	0.75	60
	10H-6, 0	87.23	32,588	17,753	26,147	1,300	10,126	23,695	0.59	67
	10H-7, 31	87.83	28,476	11,967	14,705	1,243	4,456	11,617	0.60	67
	10H-8, 125	90.17	19,285	7,859	8,438	790	2,551	6,519	0.84	55
	11H-4, 0	94./3	19,657	9,223	14,475	1,957	5,305	12,626	0.69	63
	11H-5, 49	95.50	34,440 17 738	9 810	10,905	1,122	2,004 1 313	15,541	0.61	63
	11H-7, 31	98.02	35,740	15.362	17,385	1,550	5,691	14,240	0.57	68
	12H-5, 0	104.92	24,922	18,357	26,919	1,083	8,690	20,741	0.73	61
	12H-6, 98	106.18	32,290	13,193	16,724	1,275	6,390	14,072	0.56	68
	13H-5, 0	114.79	23,759	12,232	13,846	1,652	4,472	10,539	0.62	66
	15H-2, 0	120.14	23,045	11,935	19,611	1,269	6,184	16,187	0.76	60
	16H-4, 0	128.82	32,475	12,124	13,082	1,798	3,636	8,773	0.59	67
	16H-5, 33	129.44	22,518	13,083	15,078	1,366	4,929	12,144	0.62	66
	17H-0,0	136.14	32,700	22,370	20,992	1,422	9,802 0 101	23,233	0.68	65
	17H-8, 23	137.97	26,212	13,375	15.851	1,194	5,508	13,589	0.67	63
IA	18H-3, 0	143.02	22,652	12,038	17,778	1,153	7,456	16,323	0.61	66
	18H-3, 25	143.27	14,394	8,635	13,119	1,550	5,592	12,286	0.69	63
	19H-2, 0	151.38	30,260	10,290	11,472	1,522	3,792	8,489	0.53	69
	20H-3, 0	155.11	21,350	9,089	11,266	1,321	3,975	9,912	0.68	63
	20H-4, 94	156.33	15,539	6,476	7,603	1,319	2,671	6,589	0.71	62
	20H-5, 34	162.34	29,021	9,337	11,243	1,793	4,203	8,740	0.59	6/ 67
	2111-3, 80 21H-4 48	163.42	24,077	12 244	12,033	1,393	5 641	11 530	0.58	66
	21H-5, 26	164.38	33,814	14,055	16,214	1,311	5,292	13,712	0.58	67
	22H-5, 68	173.19	23,248	,727	10,850	1,308	3,709	8,747	0.55	69
	22H-6, 0	173.62	29,747	13,620	15,434	1,127	5,130	13,094	0.55	69
	23H-3, 40	180.75	17,041	8,227	10,373	1,638	4,123	9,235	0.57	68
	23H-5, 0	182.04	28,963	9,479	10,592	1,863	3,751	7,854	0.61	66
	24H-2, 23	187.92	30,579	16,592	21,423	1,917	6,159	15,897	0.56	68 67
	24H-6 0	191.14	54 924	18 772	19 894	1,337	2,908	10 689	0.59	71
	25H-2, 0	198.21	35.621	15,978	19,002	1,395	7.927	17.047	0.67	63
	26H-2, 0	202.21	58,509	21,236	22,965	1,343	6,700	13,875	0.50	71
	27H-1, 68	211.07	15,506	9,274	10,843	2,001	4,162	8,926	0.70	62
	27H-2, 35	212.05	24,243	8,643	11,916	1,195	4,089	9,888	0.73	61
	27H-5, 0	215.64	14,141	8,985	10,649	1,807	3,311	8,966	0.72	62
	28H-1, 88	220.78	36,101	12,078	13,3//	1,494	3,/68	9,309	0.55	68
	28H-2, 3BG	221.25	29,185	9,747	11,455	1,492	4,130	6,716 13.010	0.60	67
	28H-3, 0	222.03	18.842	9.521	10.273	1,450	3.640	7.821	0.69	63
	28H-4, 51	223.03	20,745	9,379	8,919	1,243	3,514	7,372	0.62	65
	29X-5, 0	229.25	29,150	9,745	11,133	1,187	3,134	7,517	0.58	67
	30X-7, 0	240.16	49,799	16,035	17,372	1,170	5,633	12,463	0.49	72
	31X-2, 55M	245.53	21,785	7,873	10,528	1,355	4,440	9,450	0.60	66
	31X-6, 0	249.92	38,947	14,409	15,515	1,694	5,002	11,893	0.55	69
	32X-1, 118C	254.45	69,255	14,308	14,552	914 012	3,655	9,548 11.045	0.56	68 66
IR	32A-2, 3BL 32X-2 3C	254.55 254 53	57,879 48 798	13 071	12,022	915 946	4,890 4 600	10 501	0.00	64
10	32X-2, 54C	255.04	48.665	9,857	11,126	900	4.045	8,963	0.58	67
	32X-2, 54M	255.04	34,562	11,796	13,748	1,439	4,044	9,808	0.61	66
	32X-7, 0	260.72	19,037	6,492	11,468	1,314	3,421	8,621	0.82	56
	33X-4, 0	266.70	55,418	16,304	19,056	1,048	5,987	13,047	0.52	70
	33X-5, 51M	267.54	29,277	10,331	15,526	1,286	4,668	11,098	0.67	64
	316-C0008B-									
IA	1H-5, 0	5.65	13,701	6,201	6,572	932	2,407	5,121	0.76	60

Table T2 (continued).

	Sample loc	ation			Integrated peak	area (tota	l counts)		I/S mixed	-layer clay
	Core, section,	Depth	Smectite	Illite	Chlorite (002)	Quartz	Half chlorite	Chlorite (004)	Saddle:peak	Expandability
Unit	interval (cm)	CSF (m)	(001)	(001)	+ Kaolinite (001)	(100)	(004)	+ Kaolinite (002)	(intensity ratio)	(%)
	217 C0008C									
	14 2 0	1 / 2	18 526	6 5 2 2	7 21 4	811	2 0 8 2	6 470	0.71	62
	111-2,0	1.45	5 205	0,323	5 740	677	2,905	4 730	0.71	52
	211-3, 0	4.27	14 621	7 2 4 6	7 1 2 2	1 22/	2,035	4,730	0.09	50
	211-2, 0	12.10	17.031	7,540	2 1 7 2	961	2,343	5.861	0.78	55 61
	211-7,0	12.19	17,934	20 620	28 242	1 202	2,303	22 015	0.74	67
	211-3,0	12.75	22 814	16 052	10 / 71	1,373	6 2 7 5	15 276	0.59	63
	211-4,20	10.20	23,014	10,035	12,471	1,030	4 2 2 1	10,270	0.00	63
	3H-3, 33	19.33	26 720	0 5 2 5	0.022	1,700	4,221	7 0 4 9	0.75	61
	2H 10 45	21.94	20,750	9,323 12 314	9,902	1,200	2,417	10 262	0.00	64
	30-10, 03	23.24	37,414 16 220	10.052	12,171	1,714	3,933	0 1 6 2	0.55	62
	411-5, 0	29.39	10,339	10,052	12,235	1,070	4,104	9,102	0.69	03
	411-0, 24 511 0 10	29.03	21,020	12 1 4 2	16,700	1,439	3,302	12,/32	0.60	64
	511 4 20	34.38	21,040	13,143	10,200	1,192	0,307	13,403	0.00	04
	511-4, 20	30.91	40,449	12,011	17,454	1,309	5,501	15,020	0.58	67
	S⊓-S, U	38.0Z	32,334	0 471	10,319	1,004	3,/01	10,223	0.58	67
	6H-2, 100	45.81	23,084	9,471	13,062	1,1/3	4,827	10,123	0.62	66
	6H-3, 50	46.80	29,098	9,500	12,315	1,4/5	3,926	9,643	0.60	6/
	6H-4, 0	47.73	23,949	6,079	7,602	1,193	2,509	5,999	0.64	65
	7H-4, 0	55.8/	11,704	13,647	16,688	2,052	6,303	15,802	0.78	59
	7H-8, 129	61.11	55,060	25,702	29,832	1,194	8,533	23,090	0.55	69
	7H-9, 15	61.27	22,672	11,907	16,879	980	6,016	13,646	0.62	66
	9H-3, 58	69.87	44,/11	21,053	31,021	1,440	10,358	26,449	0.63	65
	9H-4, 0	70.71	34,159	14,704	18,456	1,486	6,/64	15,845	0.60	6/
IA	9H-5, 70	/1.64	19,991	14,/43	18,293	1,299	7,636	15,965	0.68	63
	10H-9, 0	83.30	29,070	12,653	16,16/	1,2/5	5,625	13,631	0.59	6/
	10H-10, 45	83.98	25,/52	12,031	17,234	967	5,/16	12,958	0.56	68
	11H-3, 12	83.08	15,030	5,969	6,914	1,195	2,638	5,308	0.72	62
	11H-8, 113	86.58	15,655	9,146	11,520	1,549	3,340	7,901	0.75	60
	11H-10, 0	88.10	20,538	9,068	9,964	2,068	3,318	7,492	0.64	65
	13H-7, 48	94.25	24,981	14,081	19,248	954	5,581	13,170	0.53	70
	13H-7, 91	94.68	23,574	14,379	16,820	1,/33	5,491	12,688	0.61	66
	13H-8, 0	94.88	22,204	13,008	15,850	1,328	4,490	12,423	0.63	65
	14H-6, 0	102.71	22,299	11,450	13,030	1,141	4,058	9,364	0.62	66
	15H-5, 0	103.32	27,915	8,854	10,875	1,462	4,368	8,919	0.60	66
	16H-5, U	112.35	38,805	16,626	18,301	1,349	7,245	15,211	0.59	6/
	18H-1, 35	120.25	46,373	16,705	19,009	1,516	6,033	14,/24	0.58	6/
	18H-4, 42	124.27	27,251	12,016	14,555	1,682	5,706	11,657	0.57	68
	18H-6, 0	126.23	33,836	12,635	15,531	1,628	5,247	12,426	0.54	69
	19H-Z, ZBG	126.41	37,576	15,100	16,660	1,481	5,541	12,834	0.53	69
	21H-4, 39	133.95	39,171	14,803	15,607	1,522	5,066	12,314	0.54	69
	21H-5, 0	134.40	37,771	10,733	17,965	1,691	5,835	13,319	0.58	6/
	228-5,0	144.08	23,554	10,518	11,600	1,213	3,839	8,222	0.63	65
	23X-4, 0	150.38	17,557	11,36/	15,014	1,284	5,149	12,740	0.66	64
	23X-6, 107	152.78	30,699	10,331	12,078	997	3,/68	8,530	0.60	66
	248-3, 97	160.63	30,648	13,592	14,793	1,430	4,//3	12,213	0.55	69
	24X-4, U	160.96	37,871	14.541	14,293	1,232	4,611	11,011	0.54	69
·	24X-10, 20	166.46	33,//5	14,584	15,881	1,504	4,8/0	11,454	0.64	65
	25X-/, 22C	169.18	58,/33	14,290	14,224	954	4,178	9,338	0.61	66
	25X-/, 22M	169.18	31,69/	11,568	13,617	1,454	4,845	11,353	0.58	6/
10	25X-9, U	171.59	38,496	10,066	12,802	1,048	3,685	9,289	0.53	/0
IR	25X-10, 25C	172.17	43,842	10,659	11,802	1,083	3,702	8,384	0.57	68
	25X-10, 25M	172.17	29,013	8,844	10,684	1,16/	4,052	8,919	0.57	68
	25X-10, 30	172.23	39,426	13,881	14,2/3	1,338	4,414	10,288	0.59	6/
	25X-11, 94	1/3.86	32,211	12,587	13,656	1,258	4,368	9,574	0.60	66

I/S = illite/smectite. BG = background mudstone, M = matrix, C = clasts, BL = bulk sample.

Table T3. Calculated mineral abundances from X-ray diffraction analysis of clay-size fraction (<2 μm), Sites C0001, C0002, C0004, C0006, C0007, and C0008. (Continued on next 10 pages.)

	Sample lo	cation			Relative I	mineral at	oundance	in clay-size	fracti	on		Relati	ive minera	ıl abur	ndance in	bulk
	Core section	Depth	SVD	norm	alization fa	actors (wt	:%)	Bisc	aye fa	ctors (area	%)	mu	d(stone),	SVD fa	actors (wt	%)
Unit	interval (cm)	CSF (m)	Smectite	Illite	Kaolinite	Chlorite	Quartz	Smectite	Illite	Kaolinite	Chlorite	Total clay	Smectite	Illite	Kaolinite	Chlorite
	24.5.00004.5															
	315-C0001E-	2 50	22	26	1	24	16	10	50	1	20	27	10	16	0	11
	1H-3, 100 1H-4 19	2.39	23 17	38	7	24	15	10	54	8	29	30	8	10	3	11
	1H-6, 0	3.80	47	34	4	13	2	40	41	4	15	40	19	14	2	5
	1H-7, 0	4.03	24	45	6	19	7	20	54	6	20	41	10	20	3	8
	2H-3, 34	7.45	22	37	8	19	14	18	51	9	22	31	8	13	3	7
	2H-4, 10	8.73	21	35	5	21	18	14	53	6	27	31	8	13	2	8
	2H-5, 132	10.17	25	39	5	18	14	20	54	6	20	28	8	13	2	6
	2H-6, 140	11.76	26	38	3	20	12	22	52	4	23	28	8	12	1	7
	4H-2, 52	25.55	31	38	3	20	8	27	48	4	22	39	13	16	1	8
	4H-2, 95	25.98	28	32	3	20	16	24	47	4	25	43	14	16	2	10
	4H-4, 0	27.41	25	36	5	20	14	21	51	6	23	43	12	18	3	10
	5H-3, 54	36.18	19	42	4	21	15	13	59	5	24	43	9	21	2	11
	5H-4, 0	36.93	28	36	1	25	10	24	47	1	28	45	14	18	0	12
	5H-6, 60	39.33	27	40	5	19	9	23	50	6	21	48	14	21	3	10
	6H-1, 95	43.05	26	38	3	22	11	21	50	4	25	45	13	19	2	11
	6H-3, 30	45.22	32	33	6	16	14	28	4/	/	18	36	13	14	2	6
	6H-4, U	46.1Z	20	3/	2	23 10	12	22	50 ∡ø	3	20 10	30	10	15	1	9
	017-0, 23	48.0Z	29	20	7	10	9 11	23	40 51	/ 0	19	20 41	11	12	2	/ 9
	7H_2 20	48.20 53.20	20	20	/	20	7	22	18	0	21	30	12	16	2	8
	7H-4 0	55.73	34	34	5	19	7	31	42	т 6	21	34	13	12	2	7
Т	7H-5.8	56.02	33	35	11	14	7	29	44	12	15	41	14	15	5	6
	7H-7, 70	58.27	32	35	6	17	11	28	46	7	19	39	14	15	3	7
	8H-3, 90	64.84	30	38	10	15	8	26	48	10	16	43	14	18	4	7
	8H-4, 0	65.16	31	35	5	19	10	27	46	6	21	41	14	16	2	9
	8H-7, 35	67.36	35	32	6	16	12	32	43	7	18	43	17	15	3	8
	9H-2, 49	72.50	34	34	6	18	8	30	43	7	20	45	17	17	3	9
	9H-2, 129	73.30	40	34	6	15	5	35	42	7	16	42	18	15	3	7
	9H-4, 0	74.78	31	35	4	20	11	27	46	4	23	41	14	16	2	9
	9H-5, 132	76.32	26	38	9	18	10	22	49	10	19	42	12	17	4	8
	9H-8, 118	80.49	28	40	7	16	9	24	51	7	18	37	11	16	3	6
	10H-3, 20	83.24	37	36	7	15	6	32	44	7	16	41	16	16	3	7
	10H-5, 90	85.42	33	35	/	17	9	29	45	/	18	48	18	18	4	9
	10H-7, 0	8/.1/	21	38	11	22	9	18	48		23	4/	15	19	6	11
	1111 4 10	90.60	29	20 26	4	21 12	9	20	40	12	24 17	40	15	10	2	11
	1111-4, 19	95.00	29	36	10	10	0 11	23	40	12	20	30 45	10	19	5	9
	12H-3 130	103.20	20	41	6	25	10	22	47	6	20	50	14	20	3	13
	12H-4, 23	103.55	30	37	7	17	9	27	47	8	18	42	14	17	3	8
	12H-5, 0	104.51	32	36	7	17	8	28	45	8	18	44	15	17	3	8
	13H-4	112.67	28	38	6	19	9	24	49	6	21	55	17	23	4	12
	13H-6, 50	114.86	34	34	2	21	9	30	44	3	23	43	16	16	1	10
	13H-8, 109	118.37	31	35	8	18	8	28	44	9	19	46	16	18	4	9
	315-C0001E-															
	1H-1, 10	108.10	29	38	4	22	7	25	47	4	24	45	14	18	2	11
	1H-4, 0	111.99	30	33	5	19	14	26	47	6	22	41	14	16	2	9
	2H-3, 33	120.65	34	34	6	18	8	31	43	7	19	43	16	16	3	8
	2H-5, 0	122.94	34	35	11	13	7	30	44	12	14	39	14	15	5	6
	3H-1, 130	128.30	36	33	4	19	8	32	42	5	21	39	15	14	2	8
	3H-2, 80	129.22	32	34	5	19	10	28	45	6	21	40	14	15	2	8
	4H-3, 0	139.10	34	35	4	19	9	30	45	4	21	47	17	18	2	10
	4H-5, 89	141.61	33	36	6	18	8	29	46	6	19	47	17	18	3	9
	4H-7, 82	144.45	33	33	2	22	10	29	44	2	25	40	14	15	1	10
Т	5H-1, 59	146.59	38	33	1	21	8	34	42	1	23	43	18	15	1	10
	5H-2, 15	147.50	39	34	9	13	6	35	42	9	14	52	22	18	5	7
	5H-4, 0	149.88	43	34	4	17	3	37	41	4	18	46	20	16	2	8
	6H-4, 20	158.64	35	35	6	16	7	31	45	6	18	4/	18	18	3	8
	оп-э, U	128.66	31 22	≾∠ >∠	6	16	14	28	46 45	/	19	5∠ ∡7	19 17	20 19	4	10
	011-0, 120 7H_12 20	168.17	22 22	30 36	2 7	21 16	/ 0	29 28	43 46	2	25 18	4/ 51	17 19	10 20	I ⊿	0
	8H-1 0	170.98	32 34	34	/ 2	20	2 8	20	44	0 4	22	45	17	20 17	7	10
	8H-1, 130	172.28	33	37	2	20	7	29	46	т 3	22	54	19	21	1	12
	8H-2, 65	173.04	36	34	3	19	8	32	43	3	21	50	20	 19	2	11
	8H-6, 50	177.26	31	35	5	19	10	28	46	5	22	46	16	18	2	10

	Sample loc	ation			Relative I	mineral at	oundance	in clay-size	fracti	on		Relat	ive minera	ıl abur	ndance in l	bulk
	Core section	Depth	SVD	norm	alization fa	actors (wt	%)	Bisc	aye fa	ctors (area	%)	mu	ud(stone),	SVD fa	ctors (wt%	6)
Unit	interval (cm)	CSF (m)	Smectite	Illite	Kaolinite	Chlorite	Quartz	Smectite	Illite	Kaolinite	Chlorite	Total clay	Smectite	Illite	Kaolinite	Chlorite
	9H-1, 118	180.92	33	36	4	20	7	29	45	4	21	49	18	19	2	10
	9H-3, 78	183.48	35	35	6	17	8	31	44	7	18	44	17	16	3	8
	9H-4, 0	183.89	39	34	3	19	5	34	42	3	21	46	19	17	1	9
I	10H-10, 0	193.25	38	34	3	20	5	34	42	4	21	46	18	16	2	9
	10H-11, 13	193.60	35	35	6	18	6	31	43	7	19	54	20	20	4	10
	10H-11, 128	194.75	43	32	6	16	3	38	39	6	17	44	20	15	3	7
	13H-1, 0	202.37	39	35	8	14	4	35	43	8	15	36	15	13	3	5
	14H-1, 50	207.67	43	31	6	15	5	39	39	6	17	61	28	20	4	10
	14H-2, 54	209.12	35	35	5	19	6	31	44	5	20	50	19	19	3	10
	14H-3, 90	210.91	34	34	5	20	7	30	43	6	21	58	21	21	3	12
	14H-4, 0	211.21	34	35	3	21	6	31	43	4	22	60	22	22	2	13
	15H-2, 10	214.81	34	33	/	17	9	31	43	8	19	53	20	19	4	10
	15H-2, 44	215.15	34 42	34 24	/	18	8	30	43	8	19	20	21	20	4	10
II	1914,0	217.19	43	24 27	4	10	5	3/	41	4	17	60	20	21	2	10
	18H-6 62	222.02	30	37	6	10	3	3Z 34	43 12	6	10	61	24	24	3	10
	18H-6 108	224.07	رد 1	36	6	14	3	35	43	6	15	65	27	24	ч 4	10
	19H-4, 0	223.35	31	42	4	19	4	27	50	4	19	63	20	28	3	12
	19H-4, 18	228.64	38	38	. 9	12	3	33	45	9	13	66	26	26	6	8
	20X-5, 0	235.21	33	39	6	16	5	29	48	7	17	58	20	24	4	10
	21X-4, 0	243.27	36	38	12	11	3	31	45	12	11	64	24	25	8	7
	215 C00014															
	10 2 0	220.00	22	20	10	12	6	20	10	10	14	60	21	25	6	o
	1R-5, 0 1D / 05	230.00	20	20	5	15	0	20	40	10	14	64	21	25	0	0 10
	2R-2 128	233.79	29 21	37	9	10	2	35	43	9	10	62	25	23	4	8
	2R-2, 120 2P-3 105	242.12	37	40	8	12	2	33	43	8	13	63	20	25	5	8
	3P-2 107	251 48	40	36	6	12	1	35	47 //3	7	15	62	24	20	1	0
	3R-4 0	257.40	34	39	7	15	5	29	47	, 8	16	61	20	25	5	10
	4R-4.0	262.33	31	40	, 9	16	5	27	47	9	17	63	20	26	6	11
	4R-6, 61	264.78	35	37	8	15	4	31	45	9	16	60	22	23	5	10
	5R-2, 75	270.17	37	38	10	12	3	32	45	11	13	62	23	24	7	8
	5R-3, 0	270.42	36	37	8	16	3	31	44	8	16	68	25	26	6	11
	6R-1, 50	278.00	35	38	10	13	3	31	45	11	13	64	23	25	7	9
	6R-2, 0	278.49	36	36	5	17	5	32	44	6	18	64	24	25	4	12
	7R-2, 66	289.07	34	38	9	15	4	30	45	9	16	64	23	25	6	10
	7R-3, 20	290.05	30	39	7	17	6	26	48	7	18	64	21	27	5	12
	7R-3, 38	290.23	27	41	9	16	7	23	51	9	17	60	18	27	6	10
	7R-4, 39	291.24	29	40	7	18	5	25	49	7	19	61	19	26	4	12
	7R-6, 29	292.98	36	38	9	15	3	32	44	9	15	63	24	24	6	10
	8R-1, 55	297.05	37	36	11	11	4	33	43	12	12	65	25	25	8	8
	8R-4, 20	301.12	39	34	10	14	3	34	41	10	15	65	26	23	6	10
	10R-3, 28	315.14	28	43	9	15	4	24	51	10	15	60	18	27	6	10
	10R-4, 0	315.86	27	43	10	14	5	23	51	11	15	63	18	28	7	10
	10R-7, 5	319.18	44	35	4	16	1	38	41	5	16	61	27	22	3	10
II	11R-2, 20	323.12	34	36	10	14	6	30	45	11	15	65	23	25	7	10
	11R-4, 0	325.34	28	43	10	15	4	24	51	10	15	62	18	28	6	9
	12R-2, 104	333.45	36	3/	/	14	5	32	45	8	15	63	24	24	5	9
	12R-4, U	333.48	34 24	3/	/	1/	5	30	45		18	62	22	24	2	11
	12R-5, 97	336.24	34	36	5	19	6	30	44	6	20	63	23	24	4	13
	13R-3, U	343.74	22	3/ 27	0	13	0	29	40	9	10	60 29	21	24	3 7	10
	1 JR-0, 39	252 42	20 11	20	9	12	4	25	44	10	14	67	20	20	5	9
	14R-3, 39	353.42	/3	36	7	13	0	35	44 1	8	14	66	20	20	5	9
	14R-4, 0 14R-6 76	356.42	33	40	7	16	4	28	41	7	14	67	23	24	5	11
	15R-1 95	360.45	40	37	9	10	7	35	40	10	12	62	25	23	6	7
	15R-1, 25	360.43	41	35	8	13	4	36	42	8	14	65	23	23	5	, 9
	15R-5.8	363.92	36	36	6	16	6	32	44	7	17	64	25	25	4	11
	16R-3, 84	372.67	33	37	8	15	6	29	46	9	16	59	21	23	5	10
	16R-4. 0	372.83	32	37	5	19	7	28	46	5	21	62	21	25	3	13
	17R-2, 74	380.65	36	37	11	12	4	31	44	12	13	62	23	24	7	8
	18R-1, 44	388.44	38	36	7	16	3	33	43	7	16	66	26	25	5	11
	18R-3, 22	390.65	28	38	8	18	8	25	48	9	19	64	20	27	6	12
	19R-2, 65	399.57	44	34	6	14	2	38	41	6	14	62	28	22	4	9
	19R-2, 76	399.68	34	37	8	15	5	30	45	9	16	64	23	25	6	10
	19R-3, 39	400.30	42	34	8	12	4	37	42	8	13	57	25	21	5	7
	19R-4, 15	400.48	39	36	5	15	5	35	44	6	16	64	26	24	4	10
	21R-2, 66	414.57	31	37	7	20	5	27	45	7	20	61	20	24	4	13

	Sample loo	ation			Relative I	mineral at	oundance	in clay-size	fracti	on		Relat	ive minera	al abur	idance in l	oulk
	Coro costion	Donth	SVD	norm	alization fa	actors (wt	%)	Bisc	aye fa	ctors (area	%)	m	ud(stone),	SVD fa	ctors (wt%	6)
Unit	interval (cm)	CSF (m)	Smectite	Illite	Kaolinite	Chlorite	Quartz	Smectite	Illite	Kaolinite	Chlorite	Total clay	Smectite	Illite	Kaolinite	Chlorite
	21R-3 0	414 89	29	40	7	17	7	25	49	8	18	62	19	26	5	11
	21R-4 71	416.06	35	37	, 8	16	4	31	45	8	17	61	22	24	5	10
	22R-2, 92	421.84	36	40	8	14	2	31	46	8	14	65	24	26	5	9
	23R-2 0	430.42	40	35	6	17	2	35	41	6	18	66	27	23	4	11
	23R-3 20	430.93	39	37	7	15	3	34	43	7	16	63	25	24	5	10
ш	24R-1 36	438.86	35	37	5	18	5	31	45	6	10	64	23	25	4	10
	24R-1, 50 24R-2 0	430.00	3/	37	9	14	6	30	45	Q	15	61	23	24	6	0
	24R-2, 0 24P-3, 10	430.54	36	36	o	14	5	31	4J 44	10	15	69	26	24	7	10
	250 1 60	440.54	36	25	6	17	7	21	11	6	19	61	20	20	1	11
	25R-1, 09 25P 1 100	447.09	36	25	0 0	17	/	22	44	0 0	10	67	25	23	-	12
	23R-1, 100	446.20	20	27	0	17	4	22	4Z 41	0	10	61	23	24	5	12
	ZJK-2, 9	440.70	39	54	0	15	4	33	41	2	10	04	20	22	0	10
	315-C0002D-															
	1H-3, 100	2.63	25	38	5	16	16	19	55	6	20					
	2H-5, 37	10.50	23	37	2	22	16	17	55	2	26					
	3H-5, 85	20.50	22	38	9	17	14	17	53	10	19					
	4H-5, 25	29.56	23	40	0	23	14	18	56	0	26					
	5H-5, 21	39.03	21	38	4	22	15	16	54	4	26					
	6H-6, 77	50.30	30	36	4	18	11	26	49	5	21					
	7H-5, 23	58.08	22	40	4	21	13	18	55	4	24					
I	8H-5, 8	67.11	21	41	5	20	13	16	56	6	23					
	9H-6, 35	78.56	23	40	1	23	12	18	54	2	26					
	10H-5, 55	86.86	22	38	5	21	14	17	53	6	24					
	11H-4, 43	95.84	29	33	2	20	15	25	48	3	24					
	12H-4, 64	105.74	22	37	4	23	14	18	52	4	26					
	13H-4, 49	114.98	12	41	8	27	13	.0	54	9	30					
	14H-4 46	123.69	13	44	7	23	13	8	59	8	26					
	158-4 8	132.55	27	33	, 8	22	10	24	43	9	20					
	16H_4 12	154.33	15	30	6	31	10	13	10	6	32					
п	178-3.8	159.69	10	12	5	32	11	7	54	5	34					
	18H_A 23	202.27	24	3/	7	22	12	21	J- 16	8	25					
	1011-4, 25	202.27	27	54	,	22	12	21	40	0	25					
	315-C0002B-															
	1R-2, 0	476.42	27	38	11	16	9	23	48	12	17	53	16	22	6	9
	4R-1, 84	504.34	19	36	9	24	11	16	47	10	27	53	12	21	5	14
	4R-2, 0	504.60	19	35	4	29	13	16	47	5	33	49	11	20	3	16
	8R-2, 0	534.41	22	34	11	22	11	19	45	12	24	59	15	22	7	14
	8R-3, 73	535.46	26	36	7	21	11	22	47	8	23	50	14	20	4	11
	9R-3, 0	544.99	24	33	7	25	11	21	43	8	28	59	16	22	5	17
	9R-4, 123	546.54	24	34	11	22	9	22	43	12	24	60	16	22	7	15
	10R-2, 0	553.41	29	31	5	26	9	26	40	6	28	52	17	18	3	15
	10R-3, 23	553.95	22	31	3	29	15	18	43	4	35	49	13	18	2	17
	11R-3, 0	564.32	31	31	9	19	10	28	40	10	21	58	20	20	6	12
	11R-4, 84	565.47	24	35	8	21	13	20	47	9	24	42	12	17	4	10
	12R-2, 65	573.06	28	32	11	19	11	24	42	13	21	50	15	18	6	10
	13R-2, 0	581.91	25	34	8	23	10	22	44	9	25	49	13	18	5	12
	13R-3, 24	582.47	24	35	9	21	11	21	46	10	23	50	14	20	5	12
	15R-3, 32	602.65	20	36	9	27	7	18	45	9	28	40	9	16	4	12
	16R-3, 0	611.41	22	37	4	23	14	17	52	4	27	47	12	20	2	13
	16R-4, 9	611.91	22	36	5	22	15	17	51	6	26	43	11	18	3	11
Ш	16R-4, 127	613.09	24	35	0	26	14	20	49	1	31	42	12	17	0	13
	17R-4, 27	623.00	22	37	0	27	15	17	52	0	31	46	12	20	0	14
	19R-2, 127	640.18	23	36	6	22	12	20	48	7	25	45	12	18	3	11
	19R-3_0	640.31	32	33	5	25	5	29	40	6	26	53	18	18	3	14
	19R-4 87	641.60	31	33	7	17	12	28	45	8	19	48	17	18	4	9
	20R-2 125	649.67	23	34	3	21	19	16	52	4	27	40	13	20	2	13
	20R-2, 125	650.40	23	31	7	16	15	27	11	0	20	41	15	15	2	8
	201-3, 37	658 34	25	21	2	22	19	27	47	1	20	41	12	16	2	11
	2111-2, 40 210.2 0	620.04	2.3 21	21	5	22	10 1 <i>4</i>	20 1 <i>4</i>	+/ 50	-+ 	20 20	41	נו 11	10	2	10
	∠1K-2, U 21D / 20	030.90	21	54 25	с г	23	10	10	30 20	0	∠ō 27	44 21	11	10	5	12
	21R-4, 2δ 22D 2 22	۲۵.۲۵۵ ۲۰۰ ۲۲	∠3 21	22 27	5	22	13	20	49 F1	4	27	10	9 10	13	1	0 1 /
	∠3K-∠, 00	0//.U/	21	22	2	20	17	15	21	5	5U 24	4ð	12	∠U 24	1	14
	∠3K-3, U	0//.82	20	40	4	23	12	10	54 72	2	20	21	12	24	5 1	13
	24K-2, U	003.91	21	33 27	2	24	18	14	23	2	50	43	10	18	1	13
	24K-3, /1	68/.04	25	3/	/	18	14	20	52	8	21	41	12	18	3	8
	2/K-2, 0	/14.11	22	3/	6	21	14	1/	52	/	24	53	14	23	4	13
	28R-2, 30	/24.21	24	39	2	24	11	20	51	2	27	43	12	19	1	12
	29R-2, 0	/33.41	25	36	5	20	14	20	51	6	23	40	12	17	2	9
	30R-1, 124	742.74	24	38	3	23	11	20	51	3	26	40	11	17	1	10

	Sample loo	cation			Relative I	mineral at	oundance	in clay-size	fracti	on		Relat	tive minera	ıl abur	ndance in l	oulk
	Core section	Depth	SVD	norm	alization fa	actors (wt	%)	Bisc	aye fa	ctors (area	%)	mu	ud(stone),	SVD fa	actors (wt%	6)
Unit	interval (cm)	CSF (m)	Smectite	Illite	Kaolinite	Chlorite	Quartz	Smectite	Illite	Kaolinite	Chlorite	Total clay	Smectite	Illite	Kaolinite	Chlorite
	30R-2, 0	742.91	24	37	5	22	13	20	50	5	25	48	13	20	3	12
	31R-1, 127	752.27	27	33	3	21	16	22	48	3	26	45	14	18	1	11
	32R-2, 67	762.58	22	34	4	21	18	16	52	5	26	50	14	21	3	13
	32R-2, 89	762.80	25	34	5	20	16	20	50	6	24	46	14	19	3	11
	32R-5, 0	764.29	24	36	2	22	16	18	52	3	27	41	12	18	1	11
II	33R-1, 85	770.85	22	40	4	24	10	18	51	4	26	48	12	21	2	13
	33R-2, 40	771.39	22	38	1	27	13	17	52	1	30	46	11	20	0	14
	37R-2, 0	806.91	28	36	3	20	13	24	49	3	23	41	13	17	1	9
	38R-3, 0	817.82	25	38	0	24	12	21	51	0	28	41	12	18	0	11
	38R-4, 13	818.37	28	35	2	22	13	23	48	2	26	47	15	19	1	12
	40R-2, 0	835.41	26	33	2	24	15	22	48	2	28	41	13	16	1	11
	40R-3, 98	836.81	28	34	1	23	14	24	48	1	27	44	15	17	0	12
	41R-3, 40	846.73	30	36	2	21	13	25	49	2	24	39	13	16	1	9
	41R-4, 8	846.82	35	34	6	15	11	31	46	6	17	46	18	17	3	8
	42R-1, 16	853.16	30	40	5	17	8	26	51	5	19	52	17	23	3	10
	42K-1, 31	853.31	49	30	0	14	/	44	39	1	17	5/	30	19	0	9
	43K-1, 17	862.07	22	3/ 20	2	19	0	20	47	2	21	43	10	17	0	9
	43R-1, 40	868 15	33	35	5	10	12	29	49	6	17	43	10	16	3	7
	43R-3, 40 AAP_1 12A	873.24	34	38	8	14	6	30	40	8	17	41	17	10	1	7
	44R-7, 124	873.89	36	34	5	15	11	32	45	5	17	50	20	19	3	8
	44R-4 125	877.48	36	36	3	19	7	32	45	3	21	42	16	16	1	9
ш	45R-1, 44	881.94	40	33	4	15	, 8	36	42	4	17	32	14	12	1	5
	46R-3, 8	893.91	31	37	0	23	8	27	47	0	25	37	13	15	0	9
	46R-4, 0	894.81	39	34	7	13	7	35	44	8	14	40	17	15	3	5
	46R-5, 94	896.16	38	34	5	16	7	34	43	6	18	45	18	16	2	8
	47R-1, 37	900.87	34	35	6	16	10	30	45	7	18	40	15	15	3	7
	47R-1, 61	901.11	35	37	6	16	7	31	46	6	17	43	16	17	3	7
	47R-3, 38	903.70	36	33	7	14	10	32	44	8	16	40	16	15	3	6
	48R-2, 35	911.76	35	32	2	20	11	31	44	2	23	46	18	17	1	10
	48R-5, 0	915.24	34	33	6	15	12	31	45	7	17	52	20	19	3	9
	48R-6, 65	916.31	41	32	5	14	8	37	42	6	16	52	23	18	3	8
	48R-6, 89	916.55	42	32	1	16	10	38	43	1	18	45	21	16	0	8
	49R-1, 96	920.46	35	35	5	13	12	31	48	6	15	50	20	20	3	7
	49R-1, 121	920.71	39	32	3	15	11	35	44	4	17	53	23	19	2	9
	49K-3, U	921.90	33	33	10	17	11	29	48	12	12	54	20	22 14	6	6
	51R-1, 54	930.04	44 54	20 20	0	17	11	41	25	0	20	44 54	22	14	2	0
	51R-5, 0	943.71	36	22	5	12	-0	32	13	5	14	53	21	10	2	10
	51R-6, 20	944 63	52	27	6	11	4	47	34	7	13	65	35	18	4	8
	58R-1 46	1 005 46	22	31	9	19	18	17	46	12	25	51	14	19	6	12
	59R-1, 121	1,010,71	32	33	1	27	7	29	41	1	29	62	21	22	1	18
	59R-2, 0	1.010.91	42	33	5	14	6	37	42	5	16	54	24	19	3	8
	59R-3, 23	1,011.56	51	25	8	12	4	46	32	9	13	45	24	12	4	5
N./	60R-1, 69	1,014.69	60	24	7	9	1	53	29	8	10	45	27	11	3	4
IV	61R-2, 121	1,021.12	53	30	6	10	0	46	36	7	11	63	33	19	4	6
	61R-3, 0	1,021.32	45	34	3	13	4	40	42	4	15	59	28	21	2	8
	61R-4, 22	1,021.96	31	30	7	22	9	28	39	8	25	70	24	23	6	17
	62R-1, 50	1,023.50	55	28	3	13	1	48	34	3	15	49	27	14	1	7
	62R-2, 0	1,024.00	40	35	5	13	8	36	45	5	14	61	26	23	3	8
	63R-1, 120	1,033.70	38	36	5	15	6	33	45	6	16	60	24	23	3	10
	64R-1, 39	1,042.39	43	31	4	14	7	39	40	5	16	57	27	19	3	9
	64R-2, 0	1,043.00	43	31	7	13	6	39	39	8	14	42	19	14	3	6
	65R-1, 105	1,047.55	35	34	2	17	11	31	46	3	20	49	19	19	1	9
	65R-2, 125	1,049.17	39	34	/	14	/	35	43	/	15	61	25	22	4	9
	316-C0004C-															
	1H-2, 119	2.61	35	37	4	17	8	30	47	4	19	39	15	16	1	7
	1H-5, 92	5.17	22	43	11	15	9	18	54	12	16	43	11	20	5	7
	1H-5, 117	5.41	25	42	5	21	8	21	52	5	22	44	12	20	2	10
	2H-4, 0	9.20	33	35	4	18	10	29	46	4	21	47	17	18	2	10
	2H-5, 35	10.98	32	38	8	15	7	28	48	9	16	49	17	20	4	8
I	2H-6, 119	13.26	29	35	2	22	11	25	47	3	25	45	15	18		11
	3H-2, 25	17.54	34	3/	5	18	6	30	46	5	19	45	1/	18	2	9
	оп-б, ∠0 ⊿ц 1 со	22.96	20	40 25	2	10 17	10	∠ I > ∕	5∠ ⊿2	ŏ ⊿	20	4/	15	21 12	4 2	9
	40-1, 30 44-4-20	23.9/	20	27	د ۸	1/ 19	5	24 24	43 ∕17	4	19 20	44 50	10	10	2	0 10
	5H_1 63	29.01	29 20	34 38	4 0	10	2	54 25	72 46	4	20 19	56	∠ı 17	17 22	∠ 5	10
	2	55.51	~	55			0	25				55			2	

	Sample loo	ation			Relative I	mineral at	oundance	in clay-size	fracti	on		Relat	ive minera	ıl abur	ndance in l	bulk
	Core section	Depth	SVD	norm	alization fa	actors (wt	%)	Bisc	aye fa	ctors (area	%)	mu	ıd(stone),	SVD fa	actors (wt	%)
Unit	interval (cm)	CSF (m)	Smectite	Illite	Kaolinite	Chlorite	Quartz	Smectite	Illite	Kaolinite	Chlorite	Total clay	Smectite	Illite	Kaolinite	Chlorite
	5H-4, 0	39.07	29	28	8	15	21	24	45	10	20	53	19	19	5	10
	6H-2, 63	46.44	30	35	6	19	11	27	46	6	21	48	16	19	3	10
	6H-4, 0	48.48	34	40	5	15	5	30	49	6	16	48	17	20	3	7
	6H-7, 15	51.76	44	31	5	17	3	39	38	5	18	52	24	17	3	9
	7H-6, 0	59.34	35	35	6	17	7	31	44	7	19	60	23	23	4	11
1	7H-7, 129	60.85	29	38	4	21	8	25	48	4	23	59	19	24	2	14
•	7H-9, 15	62.52	37	35	6	17	6	32	43	7	18	56	22	20	4	10
	8H-2, 68	65.46	33	37	6	15	9	29	48	7	17	46	17	19	3	8
	8H-4, 0	67.63	34	36	4	20	5	30	45	4	21	45	16	17	2	10
	8H-5, 91	68.76	34	34	5	1/	9	31	44	6	19	48	18	18	3	9
	9H-2, 68	/4.9/ 77.14	32	30	6	10	15	29	44	8	19	55	21	20	4	10
	90-4,0 100 2 102	77.14 92.21	26	20	4	21	4 0	22	43	4	22	J4 ۸۵	12	20	2	12
	10H-3_0	83.47	20	38	4	23	7	22	47	4	20	40 54	13	20	2	12
	11H-1, 110	85.91	28	34	5	21	12	25	46	6	23	54	17	21	3	13
	11H-2. 0	86.24	23	39	5	23	10	20	50	6	24	55	14	24	3	14
	12X-6, 0	94.99	23	40	3	27	7	20	48	3	28	56	14	24	2	16
IIA	12X-8, 64	97.32	26	33	5	15	20	19	54	7	20	53	17	22	3	10
	13X-3, 0	101.27	25	40	7	22	7	22	49	7	23	59	16	25	4	14
	13X-8, 10	107.28	22	38	1	28	11	18	50	1	31	58	14	25	0	18
	14X-5, 0	113.58	22	38	4	24	12	18	51	5	27	58	15	25	3	16
	14X-8, 15	116.82	26	35	4	23	12	22	47	4	27	57	17	23	2	15
IIR	15X-2, 0	119.13	33	34	3	20	10	29	45	4	23	54	20	21	2	12
пр	15X-7, 0	125.91	24	39	7	21	8	21	49	8	22	59	16	25	5	14
	316-C0004D-															
	4R-2, 0	129.07	33	36	5	21	6	29	44	5	22	47	17	18	2	11
	5R-3, 0	139.54	28	38	5	23	6	25	46	5	24	54	16	22	3	14
	7R-2, 0	152.91	26	40	8	19	8	22	49	8	20	56	16	24	5	12
IIB	13R-2, 14	179.54	31	38	3	22	6	27	47	3	23	57	19	23	2	13
	16R-2, 13	203.26	41	33	4	19	3	36	39	5	20	58	25	20	3	11
	19R-2, 1	226.67	41	33	8	14	4	3/	40	8	15	57	25	20	5	8
	23R-1,97	247.97	3/	34	4	18	8	33	44	4	19	60 50	24	22	2	11
	20K-3, U	202.39	27	3/ 20	2 2	21 10	2	29	40	2 2	10	59	21	23	2	13
	27R-2,93	267.37	37	36	0	16	3	30	43	0	16	50	23	20	5	12
	28R-2 80	202.24	39	35	3	18	4	35	43	4	10	53	23	19	2	10
	29R-1, 120	275.20	35	37	4	19	6	30	46	4	20	55	22		-	10
	29R-CC, 18	277.14	39	33	7	16	5	35	41	7	17	61	25	21	4	10
	30R-1, 117	279.67	33	35	3	24	5	29	43	3	25	58	20	22	2	14
III	30R-2, 53	280.44	32	37	7	19	5	29	44	8	20	57	19	22	4	11
	30R-2, 88	280.79	38	35	9	15	4	33	42	9	15	55	22	20	5	8
	30R-3, 29	281.61	34	35	4	21	6	31	43	4	23	55	20	20	2	12
	30R-3, 76	282.08	34	34	7	19	6	31	42	7	20	59	22	21	4	12
	32R-2, 120	290.11	35	37	4	19	5	30	45	4	20	59	22	23	2	12
	34R-1, 15	296.65	38	35	7	16	4	33	42	8	17	62	24	22	5	10
	36R-2, 0	306.69	39	33	8	14	5	35	41	9	15	61	25	21	5	9
	3/R-1, 59	310.59	35	3/	6	18	4	31	44	6	18	55	20	21	3	10
	39K-Z, 8	320.18	30	34 24	2	23	10	2/	45	2	20	48	16	18	I	12
	39K-3, 79	321.19	3Z 38	24 24	2 2	20	7	20	40	4	23 22	10	20	10	1	10
	41R-2, 20 AAR-2, 71	343.61	36	37	2	20	10	33	43 12	2	22	49	10	17	1	10
	44R-2, 71	344.09	34	32	5	18	10	30	44	5	23	47 49	19	18	3	10
	46R-2, 28	352.20	33	34	6	18	9	29	44	7	20	46	17	17	3	9
	48R-1, 37	359.87	33	35	3	21	9	29	45	3	23	53	19	20	2	12
	48R-2, 17	361.07	31	35	1	22	10	27	46	2	25	47	16	18	1	12
	49R-1, 111	365.11	34	33	3	21	9	30	43	3	24	55	20	20	2	13
IV	49R-2, 30	365.72	35	32	5	17	10	32	43	5	20	49	19	18	3	9
	49R-3, 79	367.61	33	35	7	16	9	29	45	8	18	53	19	20	4	10
	51R-1, 90	373.91	35	34	8	14	9	32	44	9	16	54	21	20	5	8
	51R-2, 50	374.92	38	33	6	17	6	34	42	6	18	53	21	19	3	10
	51R-2, 103	375.45	29	34	7	17	13	25	47	9	20	47	15	18	4	9
	52R-1, 10	377.60	32	34	9	16	8	28	44	10	18	54	19	20	6	10
	52R-2, 79	379.69	30	32	4	20	13	27	44	5	24	50	17	18	2	12
	52R-3, 18	380.49	32	32	4	21	11	29	43	5	24	54	19	19	3	13
	52R-3, 76	381.07	36	31	1	24	7	33	40	1	26	47	18	16	1	12
	52R-3, 110	381.41	41	32	5	18	3	37	39	6	19	55	24	18	3	10
	53R-2, 51	383.92	42	29	3	18	8	38	38	3	20	54	24	17	2	11

	Sample loc	ation			Relative I	mineral ab	oundance	in clay-size	fracti	on		Relat	ive minera	al abur	ndance in l	oulk
	Core section	Denth	SVD	norm	alization fa	actors (wt	%)	Bisc	aye fa	ctors (area	%)	mu	ud(stone),	SVD fa	actors (wt%	6)
Unit	interval (cm)	CSF (m)	Smectite	Illite	Kaolinite	Chlorite	Quartz	Smectite	Illite	Kaolinite	Chlorite	Total clay	Smectite	Illite	Kaolinite	Chlorite
	54R-1, 107	387.58	38	31	6	16	9	35	41	6	18	53	22	18	3	9
	54R-2, 11	388.02	39	32	5	18	7	35	40	5	20	41	17	14	2	8
	54R-2, 116	389.06	38	31	1	21	9	35	40	1	24	52	22	17	0	12
n./	54R-3, 0	389.31	34	34	7	17	8	30	44	7	18	47	18	17	3	9
IV	54R-3, 44	389.75	31	34	6	18	11	27	45	7	21	51	18	19	3	10
	54R-3, 77	390.09	38	31	7	19	6	34	39	7	20	49	20	16	3	10
	55R-1, 36	391.36	36	30	3	18	13	32	43	4	21	49	20	17	2	10
	55R-2, 97	393.38	28	36	5	21	10	24	47	5	24	47	15	19	2	11
	316-C0006C-															
	1H-2, 0	1.27	29	36	3	23	9	25	46	4	25	42	13	16	2	10
	1H-6, 0	5.97	34	33	4	22	6	31	41	4	24	43	16	15	2	10
	316-C0006D-															
	1H-2, 0	1.21	25	39	4	23	9	21	49	5	25	45	12	19	2	12
I.	1H-2, 20	1.41	26	42	4	21	7	22	51	4	22	40	11	18	2	9
	1H-5, 0	4.04	20	41	2	22	15	15	57	2	26	46	11	22	1	12
	316-C0006E-															
	1H-2, 0	1.21	21	43	2	27	8	17	53	2	28	41	9	19	1	12
	1H-4, 69	3.53	22	39	2	25	11	18	51	3	28	44	11	19	1	12
	1H-5, 0	4.24	20	42	2	25	10	16	54	3	27	36	8	17	1	10
	1H-6, 49	4.97	26	37	1	27	10	22	48	1	29	46	13	19	0	14
	2H-3, 0	7.79	18	41	6	26	10	15	52	6	27	44	9	20	3	12
I.	2H-4, 115	9.18	25	36	1	26	12	21	48	1	30	42	12	17	1	12
	2H-7, 0	12.09	19	40	2	28	11	15	52	2	31	41	9	19	1	13
	3H-3, 0	17.29	22	41	1	27	8	19	52	1	29	37	9	17	0	11
	3H-6, 55	20.98	28	35	9	19	9	25	45	9	21	42	13	16	4	9
	3H-6, 95	20.98	25	3/	2	25	11	21	49	2	28	42	12	17	1	12
		21.00	54 20	33 ⊿2	6	19	0	50 17	4Z	6	20	41	15	12	2	0 10
	4H-5 0	29.92	20	42	0	23	7	18	Jک ۸۵	0	24	38	9	16	0	10
	5H-1 126	34 49	21	33	-0	28	10	24	43	-0	31	51	16	19	1	15
	5H-3, 0	35.84	21	44	10	19	7	18	52	10	20	35	8	16	4	7
	5H-4, 20	36.26	24	35	5	27	10	20	45	6	29	37	10	14	2	11
	5H-5, 70	38.20	16	42	10	24	9	13	52	10	25	31	6	14	3	8
	7H-2, 115	41.25	22	36	3	30	10	18	46	3	32	29	7	12	1	10
	7H-4, 0	42.92	20	41	7	24	7	17	50	7	25	30	7	13	2	8
	7H-4, 20	43.12	33	40	4	22	3	29	46	4	22	28	9	11	1	6
	8H-1, 55	48.74	21	36	9	20	15	16	50	11	23	53	13	22	6	12
	8H-2, 86	50.45	17	45	9	23	7	14	53	9	24	29	5	14	3	7
	8H-4, 0	51.79	24	37	2	29	8	21	46	2	31	46	12	18	1	15
	9H-2, 93	60.04	30	33	1	30	6	2/	41	1	31	4/	15	16	0	15
	9H-5, U	62.41	18	41	8	24	8 12	15	21	9	25	28	6	15	3	/
	101-0,0	65.46	21	22	5	22	12	20	34 40	6	24	2Z 48	17	17	2	0 12
	11H-4 0	67 70	15	45	9	22	8	12	55	10	24	32	5	16	3	8
	12H-6. 0	76.31	25	34	6	27	8	23	43	6	28	39	11	14	2	11
	16X-1, 96	89.80	23	37	3	30	8	20	46	4	31	44	11	18	2	14
Ш	16X-2, 0	90.11	24	36	6	26	8	21	45	6	28	39	10	15	2	11
	17X-1, 115	99.49	29	34	9	22	6	26	42	9	23	37	12	13	3	9
	17X-3, 0	100.30	21	40	7	25	7	18	48	8	26	37	8	16	3	10
	17X-5, 27	101.45	25	36	6	26	7	22	45	6	27	36	10	14	2	10
	19X-3, 113	118.40	24	35	2	29	9	21	45	3	32	38	10	15	1	12
	19X-4, 95	119.62	24	39	2	29	6	21	47	2	30	42	11	17	1	13
	19X-5, 0	119.76	19	38	4	27	13	15	51	4	30	47	10	20	2	14
	19X-6, 39	120.47	25	33	6	25	11	22	43	7	27	48	14	18	3	13
	20X-1, 38	125./2	23	39 20	S ∡	26	8	20	48 24	5	2/	33	8 1.2	14 12	2	9 10
	∠un-1, 118 208_2 121	120.32 127.04	57 10	∠ŏ ∡∩	4	23 26	0 1 0	55 15	20 52	4	24 20	40 50	10	1Z 22	∠ 2	10
	207-2, 121	127.90	19 16	40 45	د ۵	20	۱ <i>۲</i>	13	55 56	د ۵	27 31	 20	0	∠3 24	2	د ا 16
	201-5, 0	131 34	28	32 32	2	27	11	25	43	2	30	-12 51	16	24 18	1	15
	20X-5, 108	132.09	26	32	2	29	11	23	42	2	32	41	12	15	1	13
	20X-7. 0	132.85	29	35	4	26	6	26	43	4	27	37	11	14	2	10
	21X-3.0	137.38	28	34	5	30	4	25	40	5	29	42	12	15	2	13
	22X-2, 33	146.07	25	34	7	23	12	21	45	8	26	46	13	17	4	12
	22X-3, 0	146.83	22	35	2	32	9	19	44	2	34	38	9	14	1	13
	22X-4, 30	147.48	19	38	2	31	10	16	48	2	33	51	11	21	1	17
	22X-4, 115	148.33	21	39	1	33	6	19	47	1	33	39	9	16	1	13

	Sample loc	ation			Relative	mineral at	oundance	in clay-size	fracti	on		Relat	ive minera	l abur	ndance in l	bulk
	Core, section	Depth	SVD	norm	alization f	actors (wt	%)	Bisc	aye fa	ctors (area	%)	mu	d(stone),	SVD fa	actors (wt%	%)
Unit	interval (cm)	CSF (m)	Smectite	Illite	Kaolinite	Chlorite	Quartz	Smectite	Illite	Kaolinite	Chlorite	Total clay	Smectite	Illite	Kaolinite	Chlorite
	22X-6, 20	150.20	23	35	4	31	8	20	43	4	32	39	10	15	2	13
	22X-6, 66	150.66	16	40	10	26	9	13	50	10	27	32	5	14	3	9
	23X-1,65	154.48	25	35	2	31	8	22	44	2	32	52	14	20	1	1/
	237-1, 101	154.04	24	25	4	20	6	21	45 42	2 1	29	41 27	11	10	2	13
	23X-3, 20	157.32	27	36	2	28	13	17	42 49	3	32	50	12	21	1	16
	23X-4, 0	157.74	26	34	1	20	10	22	45	1	32	55	16	21	0	18
	23X-5, 90	158.98	28	32	4	28	8	25	41	5	29	44	13	15	2	13
	25X-6, 25	180.12	26	35	4	29	7	23	43	4	30	43	12	16	2	13
	25X-7, 0	180.79	17	39	4	32	8	15	48	5	33	35	6	15	2	12
	26X-1, 147	183.81	30	32	5	26	8	27	40	5	28	47	15	16	3	13
	26X-4, 0	186.65	27	36	3	28	7	24	44	3	29	54	16	21	2	16
	26X-8, 94	191.82	30	32	0	29	8	27	41	0	32	39	13	14	0	12
	27X-1, 60	192.43	25	33	3	30	9	23	42	3	32	49	14	18	2	16
	2/X-5, 16	197.65	21	3/	3	31	/	18	46	3	32	35	8	14	1	12
	2/A-0, 30 28X 1 21	200.62	27	37	2	25	5	24	44	0	25	54 ⊿0	10	15	2	9 12
	28X-1, 31 28X-1 91	201.04	35	36	3	30	0	26	40 41	4	30	39	10	14	2	12
	28X-3.0	202.24	31	34	7	23	6	20	41	7	24	43	14	15	3	11
	28X-4, 75	204.92	32	32	4	27	5	29	39	4	28	41	14	14	2	12
	29X-2, 84	213.11	24	35	4	28	8	22	44	5	29	52	14	20	2	16
	29X-7, 0	219.04	27	33	7	27	7	25	41	7	28	51	15	18	4	15
	30X-1, 107	221.40	28	33	1	30	7	26	41	1	32	48	15	17	1	16
	30X-3, 0	223.16	26	35	8	22	9	23	45	8	24	56	16	22	5	14
	30X-8, 80	229.63	30	34	3	23	10	26	45	3	25	55	18	21	2	14
	31X-3, 0	232.32	23	32	5	31	9	20	41	6	33	31	8	11	2	10
	31X-4, 65	233.34	32	35	3	26	4	29	42	3	27	42	14	15	1	11
	32X-4, 0	243.21	28	31	2	30	9 11	25	41	2	32	51	15	18	1	1/
	32A-3, 23	243.82	21	25	4	20	0	10	47	4 0	25	5Z 42	12	21 16	2	10
	32X-5, 71	245.19	20	33	4	23	7	25	41	5	29	46	14	16	2	14
	34X-3, 94	262.09	35	33	3	23	5	31	41	3	25	49	18	17	2	12
Ш	34X-4, 44	263.01	31	31	2	27	8	28	40	2	30	48	17	16	1	14
	34X-5, 0	263.62	37	32	6	19	5	33	40	7	21	50	19	17	3	10
	35X-2, 0	268.69	35	28	6	27	4	32	34	6	28	39	14	11	2	11
	35X-3, 118	270.24	31	34	3	27	6	28	41	3	28	44	14	16	1	13
	35X-4, 10	270.56	30	31	3	26	10	27	41	3	29	45	15	15	2	13
	36X-1, 100	278.33	22	38	4	29	8	19	47	4	30	55	13	23	2	17
	36X-4, 0	281.56	31	31	4	23	12	2/	42	4	26	51	18	18	2	13
	3/X-2, /8	289.03	31	29	5	20	15	28	41	/	24	51	19	1/	3 1	12
	378-4, 10	291.23	23 20	32	Z 1	25	10	25	42	 ∕	20	44 58	10	21	2	16
	37X-5, 0	292.12	22	37	4	31	6	20	45	4	31	37	9	15	2	12
	38X-2.0	296.70	32	33	6	22	7	29	42	6	24	48	17	17	3	12
	39X-3, 71	309.36	26	34	2	30	9	23	43	2	32	53	15	19	1	17
	39X-4, 0	309.69	27	33	7	25	8	25	42	7	26	50	15	18	4	13
	39X-CC, 31	315.66	31	30	3	26	11	28	40	3	29	43	15	14	1	12
	40X-7, 0	322.01	30	33	2	25	11	26	44	2	28	49	16	18	1	14
	40X-8, 60	323.01	34	32	4	23	8	31	40	4	25	48	18	16	2	12
	41X-4, 0	328.83	30	31	4	26	9	28	39	5	28	54	18	18	3	15
	42X-5, 0	339.58	29	28	3	24 19	16	25	41	4	30 21	40	14	14	2	11
	421-0, 20	242.20 240.11	30	22	4	10	9	2Z 22	43	4	21	20 45	17	20	2	11
	43X-5,0 44X-5,0	358.99	22	36	6	22	7	19	40	7	30	45	10	17	2	14
	45X-1, 37	363.21	28	30	6	25	, 11	25	40	7	29	50	16	17	3	14
	45X-3, 63	366.27	30	31	6	25	8	27	39	6	27	51	17	17	3	14
	45X-3, 81	366.45	28	34	8	21	9	24	44	9	23	52	16	19	5	12
	45X-4, 0	366.66	23	33	6	27	10	20	43	7	30	49	12	18	3	15
	46X-3, 138	376.55	34	32	2	26	5	31	39	2	27	44	16	15	1	12
	46X-5, 0	377.60	28	34	4	24	9	25	44	5	26	44	14	17	2	12
	47X-3, 93	385.58	32	29	7	18	13	29	40	9	21	47	18	16	4	10
	47X-4, 14	386.20	42	30	2	20	6	38	38	2	22	47	21	15	1	10
	4/X-5,0	386.72	34	30	1	25	10	31	40	1	28	49	19	16	1	13
	487-2, U	396.98	43	28 27	87	16	5	39 10	35 12	9	17	50 40	23 11	15	4	8 15
	477-4, U	404.00	20	5/	/	20	9	١٥	40	/	29	40	11	19	S	15
П	316-C0006F- 2R-2, 0	405.52	33	31	4	25	7	30	39	5	27	46	16	15	2	12

	Sample loo	cation			Relative I	mineral at	oundance	in clay-size	fracti	on		Relat	ive minera	ıl abur	ndance in l	oulk
	Core section	Depth	SVD	norm	alization fa	actors (wt	%)	Bisc	aye fa	ctors (area	%)	m	ud(stone),	SVD fa	actors (wt%	6)
Unit	interval (cm)	CSF (m)	Smectite	Illite	Kaolinite	Chlorite	Quartz	Smectite	Illite	Kaolinite	Chlorite	Total clay	Smectite	Illite	Kaolinite	Chlorite
	3R-1.0	414.00	36	35	3	17	9	32	45	4	20	49	19	19	2	9
	4R-2, 33	425.24	36	32	4	21	7	32	41	4	22	57	22	20	3	13
Ш	5R-1, 117	434.17	31	31	4	25	9	28	39	5	27	49	17	16	2	14
	6R-1, 120	439.20	34	33	6	15	12	30	46	7	17	55	21	21	4	9
	7R-1, 90	448.40	37	33	3	20	6	33	42	4	21	54	22	19	2	11
	8R-1, 12	457.13	34	40	5	18	4	29	47	5	19	65	23	27	3	12
	8R-1, 103	458.03	35	36	9	16	4	30	44	10	16	63	23	24	6	10
	8R-2, 42	458.84	40	31	5	17	6	36	39	6	18	63	27	21	4	11
	9R-1, 53	467.04	40	35	5	16	4	35	42	6	17	68	29	25	4	11
	9R-1, 105	467.56	43	32	7	14	4	38	40	8	15	63	28	21	5	9
	9R-2, 41	468.42	3/	38	5	19	1	32	44	5	19	63	24	24	3	12
	10R-1, 27	4/0.20	42	22 24	0	15	2	3/	40 41	0	10	67	29	23	4	10
	10R-1, 124 11P-1 60	477.23	42	24	4	17	2	30	41 1	4	10	67	20	23	3	12
	11R-1,00	487.48	39	36	5	16	4	34	41	5	17	57	23	23	3	9
	11R-2, 40	488.01	38	35	5	16	т 6	34	43	6	17	63	25	23	4	11
	12R-1.62	495.63	41	35	6	14	5	36	43	6	15	65	28	24	4	9
	12R-2, 0	496.44	42	36	5	13	3	37	44	6	14	60	26	22	3	8
	13R-1, 119	505.69	36	38	8	14	4	32	45	9	14	65	25	26	6	9
	13R-2, 20	506.10	40	37	7	12	4	35	44	8	13	68	28	26	5	9
	13R-2, 86	506.76	32	37	7	17	6	28	46	8	18	65	23	26	5	12
ш	14R-1, 104	515.04	35	35	6	16	8	31	44	6	18	64	24	24	4	11
	14R-2, 0	515.51	40	35	5	16	3	35	42	6	17	66	27	24	4	11
	14R-2, 37	515.88	35	39	6	15	5	31	47	6	16	61	23	25	4	10
	14R-3, 22	517.24	35	35	9	16	6	31	43	9	17	67	25	25	6	11
	15R-1, 0	523.50	35	38	6	17	4	31	46	6	17	64	24	26	4	11
	15R-1, 121	524.71	45	34	6	14	1	39	39	7	15	65	29	22	4	9
	15R-2, 57	525.57	39	38	2	18	2	34	45	2	19	6/	27	26	1	13
	16K-1, 100	534.00	29	42	2	21	/	24	52	2	17	64	20	29	1	14
	1/K-1, 15 19D 1 112	542.05 552.12	20 25	20 27	5	10	5	21	44	0	1/	65	20	24	4	11
	10R-1, 115 10P-1 122	562 73	38	38	6	17	د ۸	22	45	6	16	68	24	25	4	12
	19R-1, 122 19R-2 78	563.69	33	30	5	15	4	28	43 49	6	10	63	20	20	4	11
	19R-3 0	564 31	43	37	6	14	0	37	43	6	14	63	27	23	4	9
	19R-3, 43	564.75	49	35	4	12	0	42	40	5	13	64	32	22	3	8
	19R-CC, 13	567.84	37	37	8	12	6	32	46	9	13	68	27	27	6	9
	20R-1, 0	571.00	31	41	9	13	6	27	50	10	14	67	22	29	7	9
	22R-1, 0	590.00	42	34	6	14	4	37	41	7	15	61	26	21	4	9
	23R-1, 49	593.99	40	35	5	16	5	36	42	5	17	66	28	24	3	11
	316-C00074-															
	1H-2 0	1 4 2	21	42	4	24	9	17	53	4	26	45	10	21	2	12
Т	1H-4, 0	2.73	27	38	2	25	10	23	49	2	20	41	10	17	1	11
	1H-CC, 14	3.01	30	37	4	20		26	48	5	22	36	12	15	2	8
	216 C0007P															
	316-C000/B-	2 90	20	26	1	24	0	26	47	1	26	12	14	17	0	11
	111-1,00	5.00	50	18	1	16	1	20 58	2/	1	20	42	21	0	0	7
I	1H-6 15	8.92	17	38	5	20	20	9	59	7	25	36	8	17	2	, 9
	1H-7. 0	9.77	23	37	1	27	11	20	49	2	30	45	12	19	1	14
	216 600076									_			. –		-	
	316-C000/C-	12.24	1.5	42		27	10	11	57		20	24		17	1	10
	1H-1,60 1H-2,0	13.24	15	42	4	2/	14	10	50	4	29	34 22	6	10	1	10
	111-2,0	14.03	10	40	1	26	14	10	57	ו כ	22	25	7	12	1	10
	3H-2 0	31 50	10	47	3	20	11	14	57	2	27	36	6	18	1	10
	3H-3 103	32.76	16	40	1	30	13	10	54	1	34	47	9	21	0	16
	3H-4, 0	32.92	15	48	7	22	7	12	58	7	23	41	7	21	3	10
	3H-5. 0	33.00	21	40	, 0	30	, 9	18	50	0	32	44	10	19	0	14
	6X-2, 75	54.75	23	36	2	28	11	19	47	2	31	50	13	20	1	16
	6X-3, 0	55.18	22	34	1	31	12	18	45	1	35	36	9	14	1	13
	6X-4, 55	55.95	19	43	6	24	8	16	52	7	25	35	7	16	2	9
	6X-CC, 22	56.47	23	36	2	28	11	19	48	2	31	53	14	22	1	17
п	7X-1, 95	63.04	23	42	2	30	4	20	49	2	29	37	9	16	1	11
п	7X-3, 0	64.68	20	38	1	30	11	17	50	1	32	36	8	16	0	12
	7X-4, 39	65.30	20	36	3	29	11	17	47	4	32	43	10	18	2	14
	7X-5, 102	67.34	23	38	5	25	10	19	49	5	27	38	10	16	2	10
	8X-2, 15	73.16	15	38	5	31	11	12	50	5	33	35	6	15	2	12
	8X-3, 0	74.42	17	47	2	29	6	14	55	2	29	37	7	19	1	11

	Sample loo	ation			Relative	mineral ab	oundance	in clay-size	fracti	on		Relat	tive minera	l abur	ndance in l	oulk
	Core, section	Depth	SVD	norm	alization f	actors (wt	%)	Bisc	aye fa	ctors (area	%)	mu	ud(stone),	SVD fa	ictors (wt%	%)
Unit	interval (cm)	CSF (m)	Smectite	Illite	Kaolinite	Chlorite	Quartz	Smectite	Illite	Kaolinite	Chlorite	Total clay	Smectite	Illite	Kaolinite	Chlorite
	8X-5, 64	76.48	30	30	0	29	11	27	39	0	33	46	16	15	0	15
	9X-1, 65	81.74	20	34	3	27	16	14	49	4	33	50	12	20	2	16
	9X-5, 0	86.52	24	35	5	24	13	20	47	6	27	37	10	15	2	10
	9X-6, 40	87.14	26	37	4	24	10	22	47	4	27	42	12	17	2	11
	10X-1, 111	91.70	19	41	0	31	8	16	51	0	33	48	10	21	0	16
	10X-2, 0	92.00	16	41	3	29	11	13	52	4	31	45	8	20	2	15
Ш	10X-CC, 6	94.31	10	47	1	30	12	5	61	1	33	28	3	15	0	10
	11X-1, 22	100.32	28	32	4	28	8	25	40	5	30	38	12	13	2	12
	11X-2, 56	102.07	18	40	4	25	13	14	53	5	28	51	11	23	3	15
	11X-3, 0	102.70	9	51	2	29	9	6	63	2	29	33	3	18	1	10
	11X-4, 6/	103.61	12	48	3	2/	10	9	60	3	28	31	4	1/	1	9
	142.2.0	103.83	0 15	54	5	20	9	3 10	66	5	20	28	2	10	2	8 11
	147-2, 0	129.73	15	44	5	28	8	12	54 52	5	29	33	6	17	2	11
		149.00	20	43	0	23	4	17	32	5	23	27	5	15	Z	/
	316-C000/D-	101 42	27	22	4	22	14	22	40	4	26	4.4	14	17	2	11
	3R-2, U	191.42	27	33	4	22	14	23	46	4	26	44	14	1/	2	10
	3R-3, 09 4D 1 37	192.45	24	20 26	0	25	10	21	40 42	0	25	41 29	11	10	2	10
	4R-1, 57	200.00	20	21	4	20	4 12	27	42	4	20	20	12	14	2	10
	SR-1, U	209.00	29	22	4	25	12	20	42	5	27	39 40	15	14	2	10
	0R-3,90 7D 1 00	221.44	20	22 26	0	22	10	23	25	0	23	49 50	22	10	5	12
	7R-1,90	220.99	40	20	5	24	10	22	20	5	27	50	22	14	2	13
	00-1, 20	238.40	40	29	2	20	6	36	20	2	23	10	21	16	1	12
	9R-2, 23 9R-2, 77	240.05	22	30	0	26	10	30	JU 1	0	20	50	18	17	0	11
	10R-1 50	257.00	32	34	6	20	8	29	43	7	2)	53	18	20	3	11
Ш	15R-1 85	304 35	35	29	1	20	12	32	30	, 1	27	54	22	18	1	14
	16R-1,05	313.95	32	30	6	20	12	28	41	7	27	53	19	18	4	12
	16R-2 100	315.23	35	30	4	20	11	31	41	4	23	53	20	18	2	12
	17R-3 0	325 30	35	31	0	26	8	32	40	0	23	49	19	16	0	14
	17R-5, 0 17R-CC 10	327.12	32	33	2	20	9	29	43	2	26	54	19	20	1	14
	18R-1 24	332.24	40	30	2	18	11	36	41	2	20	56	25	19	1	11
	18R-1, 62	332.62	33	30	5	17	16	30	44	6	21	49	19	17	3	10
	19R-1, 31	341.81	36	31	3	23	7	32	40	3	25	51	20	17	2	12
	20R-1, 84	351.85	37	33	4	18	8	33	42	5	20	53	21	19	2	10
	21R-1, 57	361.07	35	40	1	20	4	30	47	1	21	56	20	23	0	12
	22R-1, 47	370.47	39	35	5	17	4	34	43	5	18	63	26	23	3	11
	22R-2, 78	372.19	49	30	2	19	-0	42	36	2	20	65	32	20	1	12
	22R-3, 97	373.79	44	34	4	17	2	38	40	4	18	65	29	22	2	11
	23R-2, 23	381.14	43	34	6	15	2	37	41	6	16	65	28	23	4	10
	23R-2, 113	382.04	41	37	5	14	2	35	44	6	15	67	28	26	4	10
	23R-3, 62	382.96	36	38	8	16	3	31	45	8	16	61	23	24	5	10
	23R-4, 14	383.89	35	38	5	18	4	31	45	5	19	67	24	26	3	12
	24R-1, 16	389.17	40	38	3	19	0	35	43	3	20	64	26	24	2	12
	24R-2, 105	391.47	36	36	7	15	6	32	45	8	16	66	26	25	5	10
	24R-3, 66	392.51	40	37	6	15	3	34	44	6	16	64	26	24	4	10
	24R-3, 98	392.83	33	38	5	19	6	29	46	5	20	62	22	25	3	12
	24R-5, 42	395.09	42	36	6	14	2	36	43	6	15	68	29	25	4	10
	25R-2, 80	400.73	38	34	9	14	6	34	42	9	15	63	25	23	6	9
	25R-3, 50	401.87	30	38	2	23	8	26	48	2	24	64	21	26	1	16
	26R-1, 0	408.00	38	39	9	12	3	33	46	9	12	68	26	27	6	8
	26R-1, 133	409.34	35	40	7	14	3	30	47	8	15	65	23	27	5	9
	27R-1, 24	417.74	37	37	8	13	4	33	45	9	14	61	24	24	5	8
	28R-4, 12	431.37	37	38	6	15	4	32	46	6	15	67	26	27	4	10
	29R-1, 31	436.81	40	37	7	14	2	35	44	7	14	64	26	24	5	9
	29R-2, 77	438.68	45	33	5	14	3	40	39	6	15	43	14	15	3	11
	316-C0008A-															
	1H-3, 0	1.64	23	39	6	21	11	19	51	7	23	42	11	18	3	10
	1H-7, 0	5.43	26	35	4	22	14	22	48	4	26	38	11	15	2	10
	2H-2, 0	8.35	30	31	3	17	19	26	49	3	22	27	10	11	1	6
	2H-8, 0	15.43	31	37	0	24	9	27	47	0	26	35	12	14	0	9
14	3H-1, 55	16.05	26	38	4	21	12	21	51	4	24	46	13	20	2	11
iA	3H-3, 0	18.41	32	35	5	17	12	28	48	6	19	46	17	18	3	9
	3H-8, 0	22.98	31	34	5	19	11	28	45	5	22	40	14	15	2	9
	3H-10, 98	25.40	31	35	8	16	10	27	46	9	18	44	15	17	4	8
	4H-4, 0	29.18	33	35	8	16	8	29	45	8	17	48	17	19	4	8
	4H-6, 32	30.89	36	33	2	21	8	33	42	2	23	50	19	18	1	11

	Sample loc	ation			Relative I	mineral at	oundance	in clay-size	fracti	on		Relat	tive minera	ıl abur	ndance in l	oulk
	Core section	Depth	SVD	norm	alization fa	actors (wt	%)	Bisc	aye fa	ctors (area	%)	mu	ud(stone),	SVD fa	actors (wt%	6)
Unit	interval (cm)	CSF (m)	Smectite	Illite	Kaolinite	Chlorite	Quartz	Smectite	Illite	Kaolinite	Chlorite	Total clay	Smectite	Illite	Kaolinite	Chlorite
	41.0.50	25.20	21	40	10	10	10	10	F 1	10	10	20	0	17	-	0
	4H-9, 59	35.20	21	40 28	12	18	10	18	21 ⊿0	12	19	52	9 14	1/	2	8 14
	5H-6 72	40.76	37	34	4	17	9	33	45	4	19	47	19	18	2	9
	6H-3, 59	47.35	24	35	9	22	9	21	45	9	24	46	13	18	4	11
	6H-5, 0	49.27	26	34	12	21	6	24	41	13	22	55	15	20	7	13
	6H-6, 100	50.50	34	30	5	19	11	31	41	6	22	54	20	18	3	12
	7H-3, 28	56.46	22	35	9	23	11	18	46	10	25	52	13	20	5	13
	7H-5, 0	58.63	25	31	5	20	19	20	48	7	26	31	10	12	2	8
	7H-8, 113	62.75	22	42	8	23	6	19	50	8	23	31	7	14	2	7
	8H-4, 72	67.66	20	33	10	26	10	18	43	11	28	48	11	18	6	14
	8H-5, 0	68.25	25	36	4	27	8	22	45	4	29	52	14	20	2	15
	9H-3, 107	/6.19	23	34 24	14	19	10	20	44	16	20	44	11	16	/	9
	9H-5, U	//.30	20	34 27	6	25	15	10	47	8 7	29	59	9 12	15	3	11
	10H-0, 0	07.23 87.83	24	37	8	20	8	21	40	/ 0	10	3Z 40	15	21 10	4	0
	10H-8 125	90.17	33	37	7	16	8	27	47	7	18	46	16	18	3	8
	11H-4, 0	94.73	27	30	6	21	16	23	43	, 7	26	41	13	14	3	10
	11H-5, 49	95.50	31	34	10	19	6	28	42	11	20	58	19	21	6	12
	11H-6, 28	96.47	24	34	8	21	12	21	46	9	24	36	10	14	3	9
	11H-7, 31	98.02	31	38	7	18	6	27	47	7	19	44	15	18	3	9
	12H-5, 0	104.92	19	40	8	27	7	16	48	8	27	43	9	18	4	12
	12H-6, 98	106.18	31	35	3	23	8	27	45	4	25	51	17	20	2	13
	13H-5, 0	114.79	28	36	5	19	12	24	49	6	22	48	15	20	3	10
	15H-2, 0	120.14	24	34	10	22	10	21	43	11	24	52	14	19	6	13
	16H-4, 0	128.82	34	33	5	16	11	30	45	6	19	50	19	19	3	9
	16H-5, 33	129.44	25	38		19	10	21	50		21	5/	11	16	3	8 12
	17H-0,0	136.63	22	4Z 1	7	25	7	21	50	8	24	51	12	25	3 1	13
IA	17H-8 23	130.03	24	38	7	20	8	21	48	7	22	51	15	22	4	12
	18H-3. 0	143.02	24	36	4	27	9	21	45	4	29	64	17	25	3	19
	18H-3, 25	143.27	24	32	4	25	15	19	46	4	31	54	15	21	2	16
	19H-2, 0	151.38	36	33	3	18	11	32	44	4	21	51	20	19	2	10
	20H-3, 0	155.11	30	33	7	18	12	27	45	8	20	47	16	18	4	10
	20H-4, 94	156.33	31	31	6	16	15	27	46	7	20	48	18	18	3	9
	20H-5, 34	157.05	36	30	1	20	13	33	42	1	24	58	24	20	1	13
	21H-3, 80	162.34	31	35	3	20	11	27	46	4	23	58	20	22	2	13
	21H-4, 48	163.42	32	36	1	23	9	28	46	1	26	58	20	23	0	15
	21H-5, 26	164.38	31	36	8	10	8 11	28	46	8	18	58	20	23	5	11
	2211-3,00	172.62	3Z 30	20	2 7	10	7	20	40 47	2	20	54 52	19	21	2	10
	2211-0, 0 23H-3 40	175.02	28	32	4	20	16	20	47	4	25	51	17	19	4	10
	23H-5, 0	182.04	36	30	1	19	13	33	43	2	23	51	21	18	1	11
	24H-2, 23	187.92	26	36	8	19	11	22	47	9	21	50	14	20	5	11
	24H-4, 83	191.14	34	32	4	17	14	30	45	5	20	51	20	19	2	10
	24H-6, 0	192.78	37	35	3	18	7	32	44	4	20	49	19	18	2	10
	25H-2, 0	198.21	30	37	3	23	7	26	46	3	25	48	15	19	1	12
	26H-2, 0	202.21	35	38	1	22	4	31	45	1	23	45	16	17	1	10
	27H-1, 68	211.07	26	33	2	21	18	21	50	3	26	46	15	18	1	12
	27H-2, 35	212.05	33	32	6	20	10	29	42	7	22	49	18	17	3	11
	2/H-5, 0	215.64	25	33	8	16	17	20	50		19	45	14	18	5	8
	2011-1,00	220.78	20 26	22	0 2	10	9 11	3Z 32	43	0 2	10	49	19	10	2	0
	28H-2 83	221.23	29	36	۲ ۲	20	10	25	43	5	23	50	16	20	2	12
	28H-3, 0	222.03	29	33	2	20	16	23	49	3	23	48	10	19	1	11
	28H-4, 51	223.03	31	37	1	19	11	27	49	2	22	60	21	25	1	13
	29X-5, 0	229.25	36	33	5	17	8	32	43	6	19	39	16	14	2	7
	30X-7, 0	240.16	38	36	3	19	4	33	43	3	20	51	20	19	2	10
	31X-2, 55 M	245.53	33	31	2	22	12	29	42	2	26					
	31X-6, 0	249.92	34	35	5	17	9	31	45	5	19	48	18	18	3	9
	32X-1, 118 C	254.45	52	31	5	12	0	45	37	6	13					
10	32X-2, 3 BL	254.53	39	33	6	18	4	34	41	6	19					
IR	32X-2, 3C	254.55	43 50	54 20	4	1/ 1 <i>4</i>	2	58 11	40 26	4	1ð 17					
	32X-2, 34 C	233.04 255.04	30	22	5	10	2	44	50 ∡2	с 6	10					
	32X-7 0	260 72	31	27	8	20	13	28	38	10	24	52	18	16	5	12
	33X-4, 0	266.70	40	35	3	20	2	35	41	3	21	36	15	13	1	7
	33X-5, 51 M	267.54	32	31	6	22	9	29	41	7	24		-	-		

Table T3 (continued).

	Sample loc	ation			Relative I	mineral at	oundance	in clay-size	fracti	on		Relat	ive minera	al abur	ndance in l	oulk
	Coro soction	Donth	SVD) norm	alization fa	actors (wt	%)	Bisc	aye fa	ctors (area	%)	mu	d(stone),	SVD fa	actors (wt	%)
Unit	interval (cm)	CSF (m)	Smectite	Illite	Kaolinite	Chlorite	Quartz	Smectite	Illite	Kaolinite	Chlorite	Total clay	Smectite	Illite	Kaolinite	Chlorite
	316-C0008B-															
IA	1H-5, 0	5.65	31	35	2	20	13	27	48	2	23	43	15	17	1	10
	316 C0008C															
	14 2 0	1 / 2	25	24	2	10	o	21	11	2	22	12	17	16	1	0
	111-2,0	1.45	20	20	5	19	9 15	21 15	44 57	5	22	45	0	10	2	9 10
	1H-3, 0 2H 2 0	4.27	20	25	נ ז	12	15	25	50	2	23	25	9 12	1/	2 1	10
	211-2,0	0.02	20	22	2	10	13	23	30 47	5	22	24	12	14	ו כ	7
	211-7,0	12.19	20	36	7	22	5	20	47	7	20	47	14	10	2	11
	211-3,0	17.73	22	20	6	22	11	10	51	7	23	52	12	22	1	12
	311-4, 20	10.20	23	37	6	20	16	15	54	7	24	51	13	23	3	12
	3H-7 0	21 0/	22	3/	1	17	10	32	J4 45	5	10	38	15	23 14	2	7
	3H-10 65	21.24	36	3/	-	1/	10	32	45 45	7	16	51	20	10	4	8
	4H-5_0	20.24	24	38	3	24	10	20	50	1	27	50	13	21	т 2	13
	4H-6 24	29.35	30	37	5	10	0	20	17		27	46	15	18	2	10
	5H-2 18	34.58	23	30	7	22	ó	20	50	7	21	50	13	21	1	10
	5H-4 20	36.91	20	32	6	18	5	20	40	7	10	54	22	18	7	10
	5H-5 0	38.02	30	32	0	10	11	27 27	43	10	20	48	16	17	5	10
	6H-2 100	45.81	30	32	2	25	10	27	43 43	2	20	40	15	17	1	13
	6H-3 50	46.80	35	31	6	17	10	32	41 41	7	20	47	18	16	3	9
	6H-4_0	40.00	40	28	5	16	11	38	38	5	10	46	21	14	2	8
	7H-4,0	55.87	18	38	8	20	16	12	55	9	24	32	7	14	2	8
	7H-8 129	61 11	29	40	10	18	4	25	47	10	18	53	16	22	5	10
	7H-0, 122 7H-9, 15	61.27	25	37	5	26	8	23	46	5	27	56	15	22	3	16
	9H-3 58	69.87	26	36	9	20	6	23	44	10	23	54	15	21	5	13
	9H-4 0	70 71	30	36	5	21	8	26	45	6	23	55	18	22	3	13
	9H-5 70	71 64	21	40	2	28	10	17	51	2	30	45	10	20	1	14
IA	10H-9_0	83 30	29	35	6	20	8	26	45	7	22	52	17	20	4	11
	10H-10 45	83.98	27	36	5	25	7	24	44	5	27	49	14	19	3	13
	11H-3, 12	83.08	32	31	0	21	15	29	45	0	26	43	16	16	0	11
	11H-8, 113	86.58	25	34	5	20	15	21	49	7	24	44	13	18	3	10
	11H-10.0	88.10	31	31	3	17	17	27	47	4	22	47	17	18	2	10
	13H-7, 48	94.25	23	39	6	24	7	20	48	7	25	52	13	22	4	13
	13H-7, 91	94.68	25	37	5	21	12	21	50	5	24	48	14	20	3	12
	13H-8.0	94.88	24	39	10	17	10	20	50	11	18	51	14	22	6	10
	14H-6. 0	102.71	28	38	5	21	9	24	49	5	23	47	14	20	2	11
	15H-5, 0	103.32	36	31	1	21	11	33	42	1	25	52	21	18	0	13
	16H-5, 0	112.35	31	38	2	23	7	27	47	2	24	55	18	22	1	13
	18H-1, 35	120.25	35	36	6	18	6	31	44	6	19	54	20	21	3	10
	18H-4, 42	124.27	31	32	1	24	12	27	44	1	28	43	15	16	0	12
	18H-6, 0	126.23	33	33	5	19	10	29	44	6	21	53	19	20	3	11
	19H-2, 2 BG	126.41	33	36	4	19	8	29	46	5	21					
	21H-4, 39	133.95	34	35	6	17	8	30	45	6	19	45	17	17	3	9
	21H-5, 0	134.40	31	36	4	20	9	28	46	5	22	46	16	18	2	10
	22X-5, 0	144.08	30	36	2	21	10	27	47	2	24	44	15	18	1	10
	23X-4, 0	150.38	23	37	8	21	11	19	49	8	24	43	11	18	4	10
	23X-6, 107	152.78	36	34	4	20	6	32	43	4	21	54	21	20	2	11
	24X-3, 97	160.63	31	37	7	17	9	27	47	8	18	49	17	20	4	9
	24X-4, 0	160.96	38	33	5	18	6	34	41	6	20	51	20	18	3	10
	24X-10, 20	166.46	31	37	5	19	9	27	47	5	20	52	18	21	3	11
	25X-7, 22 C	169.18	47	34	3	16	1	41	40	3	17					
	25X-7, 22 M	169.18	34	34	5	18	9	30	44	5	21					
	25X-9, 0	171.59	41	31	6	16	5	37	39	7	18	44	19	14	3	8
IB	25X-10, 25 C	172.17	45	31	3	16	4	40	39	3	18					
	25X-10, 25 M	172.17	38	32	3	19	8	34	41	3	22					
	25X-10, 30	172.23	36	36	4	17	7	32	45	5	19	52	20	20	2	9
	25X-11, 94	173.86	33	36	3	20	8	29	46	3	22	47	17	18	1	10

SVD = singular value decomposition. BG = background mudstone, M = matrix, C = clasts, BL = bulk sample.

Table T4. Statistical comparison of maximum, minimum, average, and standard deviation for values of relative mineral abundance and expandability of illite/smectite (I/S) mixed-layer clay, Sites C0001, C0002, C0004, C0006, C0007, and C0008. (Continued on next page.)

Site	Unit		Relativ	e abundance	(wt%)	 Standard deviation
		Mineral	Maximum	Minimum	Average	
C0002	Ι	Smectite	30	10	21	6
		Illite	44	33	38	8
		Kaolinite	9	0	5	1
		Chlorite	32	16	22	4
		Quartz	16	10	13	1
		I/S expandability (%)	74	52	59	5
	П	Smectite	32	19	25	3
		Illite	40	31	35	2
		Kaolinite	11	0	5	3
		Chlorite	29	16	22	3
		Quartz	19	5	13	3
		I/S expandability (%)	68	53	61	3
	III	Smectite	49	30	36	4
		Illite	40	30	35	2
		Kaolinite	10	0	4	3
		Chlorite	23	11	16	3
		Quartz	12	6	9	2
		I/S expandability (%)	65	58	61	2
	IV	Smectite	60	22	43	10
		Illite	36	24	31	3
		Kaolinite	9	0	5	2
		Chlorite	27	9	15	4
		Quartz	18	0	6	4
		I/S expandability (%)	72	60	69	5
C0001	I	Smectite	47	17	31	6
		Illite	45	31	36	2
		Kaolinite	11	1	5	2
		Chlorite	25	13	19	3
		Quartz	18	0	9	3
		I/S expandability (%)	69	51	62	4
	П	Smectite	44	27	36	4
		Illite	43	33	37	2
		Kaolinite	12	3	8	2
		Chlorite	21	11	15	2
		Quartz	9	0	4	2
		I/S expandability (%)	69	60	64	2
C0004	I	Smectite	44	22	32	5
		Illite	43	28	36	3
		Kaolinite	11	2	6	2
		Chlorite	22	11	17	3
		Quartz	21	0	7	4
		I/S expandability (%)	72	59	65	3
	IIA	Smectite	33	22	26	3
		Illite	40	33	37	2
		Kaolinite	7	1	4	2
		Chlorite	28	15	23	4
		Quartz	20 65	7 61	10 62	4
		i/s expandability (%)	60	01	02	
	IIB	Smectite	41	24	28	4
		lilite Kaalinita	40	33	38	2
		Kaolinite	8	3	6 21	2
		Chiorite	23	19	Z I	2
		Quartz	0	2	7	1

Table T4 (continued).

			Relative abundance (wt%)			Standard
Site	Unit	Mineral	Maximum	Minimum	Average	deviation
C0004	Ш	Smectite	39	32	36	2
		Illite	38	33	36	1
		Kaolinite	9	3	6	2
		Chlorite	24	14	18	3
		Quartz	/	3	5	1
		1/3 expandability (%)	00	05	00	Z
	IV	Smectite	42	28	34	4
		Illite	36	29	33	2
		Kaolinite	9	14	4	2
		Chionte	24	14	19	2
		I/S expandability (%)	71	69	68	2
~~~~			, ,		00	-
C0008	IA	Smectite	38	19	29	5
		lilite Kaalinita	42	30	35	3
		Chlorito	14	16	20	3
		Quartz	19	10	10	3
		I/S expandability (%)	70	52	65	3
	ID	Smeatite	41	10	20	6
	ID	Illito	41	10	30	0
		Kaolinite	40	27	5	2
		Chlorite	28	14	20	3
		Ouartz	17	2	10	3
		I/S expandability (%)	72	56	66	4
C0006	I.	Smectite	34	18	25	5
20000	•	Illite	43	33	38	3
		Kaolinite	9	1	3	2
		Chlorite	28	19	25	3
		Quartz	15	5	10	2
		I/S expandability (%)	68	59	64	3
	П	Smectite	43	15	27	6
		Illite	45	28	35	4
		Kaolinite	10	0	4	2
		Chlorite	33	16	26	4
		Quartz	16	63	8	3
		1/3 expandability (%)	74	05	00	5
	111	Smectite	49	20	37	5
		Illite	42	31	36	3
		Kaolinite	9	2	6	2
		Chiorite	28 12	12	17	3
		I/S expandability (%)	72	61	65	2
C0007	I.	Smectite	66	14	23	13
00007		Illite	48	18	39	7
		Kaolinite	7	0	2	2
		Chlorite	30	16	25	4
		Quartz	20	0	10	4
		I/S expandability (%)	77	53	63	5
	П	Smectite	40	6	25	8
		Illite	54	26	35	5
		Kaolinite	8	0	3	2
		Chlorite	31	17	25	4
		Quartz	16	4	9	2
		I/S expandability (%)	73	54	66	4
	Ш	Smectite	49	30	39	4
		Illite	40	30	36	2
		Kaolinite	9	2	6	2
		Chlorite	23	12	16	3
		Quartz	8	0	5	2
		1/3 expandability (%)	09	01	00	Z

