Data report: occurrence of age-diagnostic nannofossil and biostratigraphic datums at IODP Expedition 316 Sites C0004 and C0008, Nankai Trough¹

Xin Su²

Chapter contents

Abstract
Introduction1
Methods and materials
Results
Conclusions
Acknowledgments4
References
Figures
Tables

Abstract

Preliminary structural and nannofossil observations from core materials at Integrated Ocean Drilling Program (IODP) Site C0004 indicate two age reversals and a complex history of deformation in the Nankai accretionary prism. In order to improve nannofossil biostratigraphy and provide more detailed age control for understanding this deformation history, Pliocene–Pleistocene calcareous nannofossils from sediments at Site C0004 and in IODP Hole C0008A were analyzed. This study presents the nannofossil range chart for Pliocene–Pleistocene age-diagnostic species and provides a detailed record of nannofossil events and zones for three holes. The record also revealed or confirmed the presence of a number of unconformities and/or age reversals in the sediment sequence at Site C0004, providing detailed age control for constraining faulting or folding intervals.

Introduction

Integrated Ocean Drilling Program (IODP) Expedition 316 is a part of the Nankai Trough Seismogenic Zone Experiment (Nan-TroSEIZE) complex drilling project, a coordinated multiexpedition drilling project with the purpose of investigating fault mechanics and seismogenesis along subduction megathrusts in the Nankai Trough (see the "Expedition 316 summary" chapter [Screaton et al., 2009]). During Expedition 316, four sites (C0004, C0006, C0007, and C0008) were drilled in the Nankai Trough (Fig. F1). IODP Site C0004 is located along the slope of the accretionary prism and landward of the inferred intersection of the megasplay fault zone with the seafloor (see the "Expedition 316 Site C0004" chapter [Expedition 316 Scientists, 2009a]). Drilling at this site was conducted to examine the youngest sediments on the slope overlying the accretionary prism, which consist of slowly deposited marine sediments and redeposited material from upslope (Fig. F2). IODP Site C0008 is located ~1 km seaward of Site C0004 (Fig. F2) and was selected to examine the basin seaward of the splay fault penetrated at Site C0004 (see the "Expedition 316 Site C0008" chapter [Expedition 316 Scientists, 2009b]). The drilling results from Sites C0004 and C0008 also provided information necessary to explore the splay fault's origin and evolution and its relation to the structural evolution of the Nankai margin through time (Strasser et al., 2009).

¹Su, X., 2012. Data report: occurrence of agediagnostic nannofossil and biostratigraphic datums at IODP Expedition 316 Sites C0004 and C0008, Nankai Trough. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.210.2012 ²School of Marine Geosciences, China University of Geosciences (Beijing), Xueyuan Road 29, Beijing, 100083, China. xsu@cugb.edu.cn

The objective of this study is to provide detailed data regarding the occurrence of age-diagnostic calcareous nannofossils and to obtain better resolved biostratigraphic datums for these two sites, through reexamining shipboard nannofossil slides and data and analyzing additional samples during the postcruise study.

Methods and materials

Sites and samples

Pliocene–Pleistocene calcareous nannofossils from sediments at Site C0004 and in Hole C0008A in the Nankai Trough were analyzed. Downcore sample spacing is about ~150 to ~300 cm; however, additional samples were analyzed for intervals where a biostratigraphic event horizon was located based on initial shipboard analysis.

Site C0004

Two holes were drilled at Site C0004 on the shallow portion of the megasplay fault system during Expedi-C0004C (33°13.2278'N, tion 316. Hole 136°43.3312′E; water depth = 2627.0 m) was cored from the seafloor to 134.97 meters below seafloor (mbsf), through the slope sediments into the upper part of the accretionary prism; and Hole C0004D (33°13.2190'N, 136°43.3287'E, water depth = 2630.5 m) was cored from 100 to 398.79 mbsf, from the upper part of the accretionary prism and across its lower boundary into the sediments below (see the "Expedition 316 Site C0004" chapter [Expedition 316 Scientists, 2009a]). Nannofossils from these two holes were analyzed.

Site C0008

Three holes (C0008A, C0008B, and C0008C) were drilled at Site C0008. Hole C0008A (33°12.8229'N, 136°43.5997'E; water depth = 2751 m) was cored from the seafloor to 272.46 m (see the "Expedition 316 Site C0008" chapter [Expedition 316 Scientists, 2009b]). This hole recovered the longest sediment sequence and was selected for biostratigraphic analysis.

Preparation and observation

Standard smear slides were made for all samples. In addition, a concentration method was applied to obtain more nannofossils from fine sand or silt samples before making smear slides. About 1–3 g sediment were put in a beaker with distilled water and stirred for several seconds to suspend samples. The suspension was left sitting for a few minutes so that sand-sized particles settled to the bottom first, and nanno-

fossils were concentrated in the upper part of the suspension, from which several drops were taken to make smear slides.

Calcareous nannofossils were examined under crossed polarizers and transmitted light at 500×– 1000× magnification using a Zeiss Axio Scope A1 in the micropaleontological laboratory of the School of Marine Geosciences, China University of Geosciences (Beijing).

The degrees of preservation of calcareous nannofossil species were noted as follows:

- VG = very good preservation (no evidence of dissolution and/or overgrowth).
- G = good preservation (slight dissolution and/or overgrowth; specimens are identifiable to the species level).
- M = moderate preservation (exhibit some etching and/or overgrowth; most specimens are identifiable to the species level).
- P = poor preservation (severely etched or with overgrowth; most specimens cannot be identified at the species and/or generic level).

Group abundance (at 250× magnification) and relative abundance of individual species (at 1000× magnification) are estimated based on a seven-category scheme:

- D= dominant (>50% or >50 specimens per field of view [FOV]).
- A = abundant (15%–50% or 10–50 specimens per FOV).
- C = common (5%–15% or 1–10 specimens per FOV).
- F = few/frequent (1%–5% or >1 specimen per 1–10 FOVs).
- R = rare (<1% or >1 specimen per 20 FOVs).
- T = trace (<0.1% or <1 specimen per 20 FOVs).
- B = barren (0; this level is used only for group abundance).

Biostratigraphic zonations and timescales

The Neocene timescale followed Lourens et al., (2004). The biostratigraphic zonation of calcareous nannofossils is based upon the schemes of Martini (1971) and Okada and Bukry (1980), modified by Young (1998). The orbitally turned ages for biostratigraphic datums were compiled mainly from Raffi et al. (2006).

A summary of the timescale and nannofossil zones used in this study is given in Figure F3 and Table T1.

Taxonomic remarks

Several species of genus *Gephyrocapsa* are commonly used as Quaternary biostratigraphic markers. The *Ge*-

X. Su

phyrocapsa species show a wide range of variation in sizes and other morphological features, causing problems in identification (Su, 1996). Size-defined morphological groups of this genus, suggested by Young (1998) (i.e., *Gephyrocapsa* spp. medium [>3.5 µm], *Gephyrocapsa* spp. medium I [>3.5–<4 µm], *Gephyrocapsa* spp. medium II [>4.5–<5.5 µm], and *Gephyrocapsa* spp. large [≥5.5 µm]), were used during shipboard and shore-based studies. *Reticulofenestra pseudoumbilicus* is identified by reticulofenestrid specimens having a maximum coccolith length >7 µm in its uppermost range (lower Pliocene), after Young (1998). Identification of other calcareous nannofossils mainly followed the compilation of Perch-Nielsen (1985).

Results

Range charts of age-diagnostic nannofossil species for Holes C0004C, C0004D, and C0008A are given in Tables T2, T3, and T4.

Site C0004

In Hole C0004C, a total of 14 nannofossil biostratigraphic events were recognized (Table T5). Three inconsecutive nannofossil zones were distinguished: Pleistocene Zones NN21 and NN19 and middle Pliocene Zone NN16, indicating the presence of unconformities between Zones NN21 and NN19 and between Zones NN19 and NN16.

A total of 16 nannofossil events were recognized for age and depth correlation in Hole C0004D (Table **T6**). The upper part (from the top of the hole to 255.27 mbsf) was assigned to Zones NN16, NN15– NN14, and NN13 of early–middle Pliocene age. The middle part of this hole (259.53–291.05 mbsf) was characterized by two Zone NN16 intervals sandwiched by a Zone NN15–NN14 interval. The lower part of Hole C0004D (from 312.16 mbsf to the bottom of the hole) was assigned to early Pleistocene Zone NN19.

The biostratigraphic results for Site C0004 are correlated to lithology, log interpretation, and core recovery, and are summarized in Figure F4A. This correlation suggests that Units II and III defined for the prism sediments in the megasplay fault system are of early–middle Pliocene age (Zones NN16, NN15– NN14, and NN13), whereas sediments above and below the prism are Pleistocene age (i.e., upper Pleistocene sediments lie above the prism and lower Pleistocene sediments lie below it). The lowermost sediments at this site are <1.67 Ma, according to the presence of *Gephyrocapsa* spp. medium I (>3.5–<4 µm); however, the presence of Zone NN19 sediments below Zone NN16 sediments at the bottom of the hole as well as the presence of multiple nannofossil zone repetitions and age reversals implies significant disturbances of the sedimentary sequence in the area, likely due to accretionary prism formation and subsequent disruption.

Site C0008

For Hole C0008A, 17 nannofossil events were recognized (Table T7). The upper part (from the top of the hole to 241.78 mbsf) is Pleistocene age (Zones NN21 and NN19), whereas the lower part is middle–late Pliocene age, containing Zones NN18, NN17, and NN16.

The correlation of these zones with lithology, log interpretation, and core recovery for this hole are summarized in Figure F4B. The data are interpreted to indicate that most of Unit I is of Pleistocene age (Zones NN21 and NN19), and the lowest part of Unit I and Unit II are of late Pliocene age (Zones NN18, NN17, and NN16). The bottom sediments in this hole are <3.65 Ma, according to the absence of *Sphenolithus* spp.

Biostratigraphic correlation between sites

Figure F4 shows the correlation of zones and important nannofossil events between Site C0004 and Hole C0008A. The correlation of two Pleistocene nannofossil events, first occurrence of Gephyrocapsa spp. large (\geq 5.5 µm, 1.56 Ma) and last occurrence Calcidiscus macintyrei (>11 µm, 1.60 Ma), between Site C0004 and Hole C0008A indicates most of Unit II (75.94–312.16 mbsf) (Tables T4, T5) at Site C0004 is heavily faulted and that the faulting probably occurred roughly between 1.60 and 1.56 m.y. The faulted interval at Site C0004 can be further subdivided into an upper part (75.94-255.27 mbsf) with a normal and relatively intact and continuous zone sequence (Zones NN16, NN15-NN14, and NN13), and a lower part (259.53–291.05 mbsf) characterized by common faults, missing intervals, disruptions, and age reversals. Although further investigation would be required to more completely delineate these different intervals and to illuminate the detailed nannofossil sequence, the data can be interpreted to represent the influence of (1) uplift of the accretionary prism (the upper part of the faulted section) and (2) disruption of the uplifted prism by splay faulting or out-of-sequence thrusting (the lower, more intensely disrupted part of the faulted section). This sequence of events parallels that interpreted based on Strasser et al. (2009).

Conclusions

In conclusion, this study presents the range chart of Pliocene–Pleistocene age-diagnostic nannofossils and provides better resolved nannofossil datums and zones for Site C0004 and Hole C0008A.

At Site C0004, Unit II and III prism sediments in the megasplay fault system are of early–middle Pliocene age (Zones NN16, NN15–NN14, and NN13); sediments above and below the prism are Pleistocene age (upper Pleistocene sediments lie above the prism and lower Pleistocene sediments below it). In Hole C0008A, the majority of Unit I is of Pleistocene age (Zones NN21 and NN19), and the lowest part of Unit I and Unit II are of late Pliocene age (Zones NN18, NN17, and NN16).

Biostratigraphic correlation between Site C0004 and Hole C0008A suggests that most of Unit II at Site C0004 comprises faulted sediments and that faulting probably occurred roughly between 1.60 and 1.56 m.y. The faulted interval can subdivided into two parts: an upper part with normal zone sequence and a lower part characterized by common faults and age reversals. These two zones may correspond to uplift and subsequent disruption of the accretionary prism, similar to the interpretation of Strasser et al. (2009).

Acknowledgments

This research used samples and/or data provided by the Integrated Ocean Drilling Program (IODP). Two referees, Dr. Shijun Jiang and Dr. Dan Curewitz, provided comments and suggestions that substantially improved the quality of the manuscript. Funding for this research was provided by China Natural Sciences Foundation (grant number 40876030) and IODP-China.

References

- Expedition 316 Scientists, 2009a. Expedition 316 Site C0004. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.133.2009
- Expedition 316 Scientists, 2009b. Expedition 316 Site C0008. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G.,

Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.136.2009

- Lourens, L., Hilgen, F., Shackleton, N.J., Laskar, J., and Wilson, D., 2004. The Neogene period. *In* Gradstein, F.M., Ogg, J.G., and Smith, A. (Eds.), *A Geologic Time Scale 2004:* Cambridge (Cambridge Univ. Press), 409–440. doi:10.2277/0521786738
- Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. *In* Farinacci, A. (Ed.), *Proc. Second Planktonic Conf. Roma 1970:* Rome (Ed. Tecnosci.), 2:739–785.
- Okada, H., and Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). *Mar. Micropaleontol.*, 5:321–325. doi:10.1016/ 0377-8398(80)90016-X
- Perch-Nielsen, K., 1985. Cenozoic calcareous nannofossils. *In* Bolli, H.M., Saunders, J.B., and Perch-Nielsen, K. (Eds.), *Plankton Stratigraphy:* Cambridge (Cambridge Univ. Press), 427–554.
- Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., and Hilgen, F., 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. *Quat. Sci. Rev.*, 25(23–24):3113–3137. doi:10.1016/j.quascirev.2006.07.007
- Screaton, E.J., Kimura, G., Curewitz, D., and the Expedition 316 Scientists, 2009. Expedition 316 summary. *In* Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, *Proc. IODP*, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.131.2009
- Strasser, M., Moore, G.F., Kimura, G., Kitamura, Y., Kopf, A.J., Lallemant, S., Park, J.-O., Screaton, E.J., Su, X., Underwood, M.B., and Zhao, X., 2009. Origin and evolution of a splay fault in the Nankai accretionary wedge. *Nat. Geosci.*, 2(9):648–652. doi:10.1038/ngeo609
- Su, X., 1996. Development of late Tertiary and Quaternary coccolith assemblages in the northeast Atlantic. *GEO-MAR-Rep.*, 48.
- Young, J.R., 1998. Neogene. *In* Bown, P.R. (Ed.), *Calcareous Nannofossil Biostratigraphy:* Dordrecht, The Netherlands (Kluwer Academic Publ.), 225–265.

Initial receipt: 17 October 2010 Acceptance: 26 October 2011 Publication: 31 January 2012 MS 314315316-210

Figure F1. Drilling area of IODP Expedition 316 in the Nankai Trough (see the **"Expedition 316 summary"** chapter [Screaton et al., 2009]). In inset, EP = Eurasian plate, PP = Pacific plate, NAP = North American plate, PSP = Philippine Sea plate.

Figure F2. Location of IODP Expedition 316 sites in the Nankai Trough (see the "**Expedition 316 summary**" chapter [Screaton et al., 2009]). VE = vertical exaggeration.

Data report: age-diagnostic nannofossil species

X. Su

6

Figure F3. Pliocene–Pleistocene timescale and magnetostratigraphic and biostratigraphic events. FO = first occurrence, LO = last occurrence.

Figure F4. Correlation of calcareous nannofossil zones and important events between Site C0004 and Hole C0008A. A. Site C0004. B. Hole C0008A. See text for details. FO = first occurrence, LO = last occurrence.

event

Fault interval

Table T1. Calcareous nannofossil events (based on Raffi et al., 2006, with slight modification) used as biostratigraphic tie points in this study.

X Gephyrocapsa caribbeanica (>3.5 µm) - Emiliania huxleyiFO Emiliania huxleyiNLO Pseudoemiliania lacunosaNLCO Reticulofenestra asanoiNRE Gephyrocapsa spp. medium II (≥4.5–<5.5 µm)FCO Reticulofenestra asanoiLOLO Gephyrocapsa spp. large (≥5.5 µm)LO Helicosphaera selliiFCO Gephyrocapsa spp. large (≥5.5 µm)FO Gephyrocapsa spp. large (≥5.5 µm)LO Calcidiscus macintyrei (>11 µm)FO Gephyrocapsa spp. medium (>3.5 µm)NLO Discoaster brouweriAE Discoaster triradiatusLO Discoaster surculusNLO Discoaster tamalis	0.0 N21 0.2 N19 0.4 0.5 1.0 1.2 1.3 1.4 1.5 1.6)63 291 436 9 04 078* 24 34 46 560
FO Emiliania huxleyiNLO Pseudoemiliania lacunosaNLCO Reticulofenestra asanoiNRE Gephyrocapsa spp. medium II (\geq 4.5–<5.5 µm)	IN21 0.2 IN19 0.4 0.9 1.0 1.0 1.2 1.3 1.4 1.5 1.6	291 436 9 04 078* 24 34 46 560
LO Pseudoemiliania lacunosa N LCO Reticulofenestra asanoi RE Gephyrocapsa spp. medium II (≥4.5–<5.5 µm) FCO Reticulofenestra asanoi LO Gephyrocapsa spp. large (≥5.5 µm) LO Helicosphaera sellii FCO Gephyrocapsa spp. large (≥5.5 µm) FO Gephyrocapsa spp. large (≥5.5 µm) LO Calcidiscus macintyrei (>11 µm) FO Gephyrocapsa spp. medium (>3.5 µm) LO Discoaster brouweri N AE Discoaster triradiatus LO Discoaster pentaradiatus LO Discoaster surculus LO Discoaster tamalis	N19 0.4 0.5 1.0 1.2 1.3 1.4 1.5 1.6	436 9 04 078* 24 34 46 560
LCO Reticulofenestra asanoi RE Gephyrocapsa spp. medium II (\geq 4.5–<5.5 µm) FCO Reticulofenestra asanoi LO Gephyrocapsa spp. large (\geq 5.5 µm) LO Helicosphaera sellii FCO Gephyrocapsa spp. large (\geq 5.5 µm) FO Gephyrocapsa spp. large (\geq 5.5 µm) LO Calcidiscus macintyrei (>11 µm) FO Gephyrocapsa spp. medium (>3.5 µm) LO Discoaster triradiatus LO Discoaster pentaradiatus LO Discoaster surculus LO Discoaster tamalis	0.9 1.0 1.2 1.3 1.4 1.5 1.6	9)4)78* 24 34 46 560
RE Gephyrocapsa spp. medium II (\geq 4.5–<5.5 µm)FCO Reticulofenestra asanoiLO Gephyrocapsa spp. large (\geq 5.5 µm)LO Helicosphaera selliiFCO Gephyrocapsa spp. large (\geq 5.5 µm)FO Gephyrocapsa spp. large (\geq 5.5 µm)LO Calcidiscus macintyrei (>11 µm)FO Gephyrocapsa spp. medium (>3.5 µm)LO Discoaster brouweriAE Discoaster triradiatusLO Discoaster surculusNLO Discoaster tamalis	1.0 1.2 1.3 1.4 1.5 1.6	04 078* 24 34 46 560
FCO Reticulofenestra asanoiLO Gephyrocapsa spp. large (\geq 5.5 µm)LO Helicosphaera selliiFCO Gephyrocapsa spp. large (\geq 5.5 µm)FO Gephyrocapsa spp. large (\geq 5.5 µm)LO Calcidiscus macintyrei (>11 µm)FO Gephyrocapsa spp. medium (>3.5 µm)LO Discoaster brouweriAE Discoaster triradiatusLO Discoaster surculusNLO Discoaster tamalis	1.0 1.2 1.3 1.4 1.5 1.6)78* 24 34 46 560
LO Gephyrocapsa spp. large (≥5.5 µm) LO Helicosphaera sellii FCO Gephyrocapsa spp. large (≥5.5 µm) FO Gephyrocapsa spp. large (≥5.5 µm) LO Calcidiscus macintyrei (>11 µm) FO Gephyrocapsa spp. medium (>3.5 µm) N LO Discoaster brouweri N AE Discoaster triradiatus LO Discoaster surculus N LO Discoaster surculus N LO Discoaster tamalis	1.2 1.3 1.4 1.5 1.6	24 34 46 560
LO Helicospheera sellii FCO Gephyrocapsa spp. large (≥5.5 µm) FO Gephyrocapsa spp. large (≥5.5 µm) LO Calcidiscus macintyrei (>11 µm) FO Gephyrocapsa spp. medium (>3.5 µm) N LO Discoaster brouweri N AE Discoaster triradiatus LO Discoaster surculus N LO Discoaster surculus N LO Discoaster tamalis	1.3 1.4 1.5 1.6	34 16 560
FCO Gephyrocapsa spp. large (≥5.5 µm) FO Gephyrocapsa spp. large (≥5.5 µm) LO Calcidiscus macintyrei (>11 µm) FO Gephyrocapsa spp. medium (>3.5 µm) N LO Discoaster brouweri N AE Discoaster triradiatus LO Discoaster pentaradiatus N LO Discoaster surculus N LO Discoaster tamalis	1.4 1.5 1.6	46 560
FO Gephyrocapsa spp. large (≥5.5 μm) LO Calcidiscus macintyrei (>11 μm) FO Gephyrocapsa spp. medium (>3.5 μm) N LO Discoaster brouweri N AE Discoaster triradiatus LO Discoaster pentaradiatus LO Discoaster tamalis	1.5 1.6	560
LO Calcidiscus macintyrei (>11 µm) FO Gephyrocapsa spp. medium (>3.5 µm) N LO Discoaster brouweri N AE Discoaster triradiatus LO Discoaster pentaradiatus N LO Discoaster surculus N LO Discoaster tamalis	1.6	<u>^</u>
FO Gephyrocapsa spp. medium (>3.5 µm) N LO Discoaster brouweri N AE Discoaster triradiatus LO Discoaster pentaradiatus N LO Discoaster surculus N LO Discoaster tamalis		50
LO Discoaster brouweri N AE Discoaster triradiatus LO Discoaster pentaradiatus N LO Discoaster surculus N LO Discoaster tamalis	N19 1.6	67
AE Discoaster triradiatus LO Discoaster pentaradiatus N LO Discoaster surculus N LO Discoaster tamalis	N18 2.0)6
LO Discoaster pentaradiatus N LO Discoaster surculus N LO Discoaster tamalis	2.1	135
LO Discoaster surculus N LO Discoaster tamalis	N17 2.3	393
LO Discoaster tamalis	N16 2.5	52
	2.8	37
LO Sphenolithus spp.	3.6	55
LO Reticulofenestra pseudoumbilicus (>7 µm) NN15	5–NN14 3.7	79
FCO Discoaster asymmetricus	4.1	3
LO Amaurolithus primus	4.5	50
LO Ceratolithus acutus	5.0)4
FO Ceratolithus rugosus N	N13 5.1	12
FO Ceratolithus acutus	5.3	32
LO Discoaster quinqueramus N	N12 5.5	59

* = datum based on Atlantic or Mediterranean records. X = crossover in abundance, RE = reentrance, AE = acme end, FO = first occurrence, FCO = first consistent occurrence, LO = last occurrence, LCO = last consistent occurrence.

Epoch	Lithologic unit	Zone	Core, section, interval (cm)	Тор	Depth (mbsf Bottom) Mean	Abundance	Preservation	Calcidiscus macintyrei	Discoaster asymmetricus	Discoaster brouweri	Discoaster pentaradiatus	Discoaster surculus	Discoaster tamalis	Emiliania huxleyi	G <i>ephyrocapsa</i> spp. large (≥5.5 μm)	Gephyrocapsa spp. medium II (≥4.5–<5.5 µm)	Gephyrocapsa spp. medium I (>3.5-<4 µm)	<i>Gephyrocapsa</i> spp. smaller (≤3.5 μm) Helicosphaera sellii	Pseudoemiliania lacunosa	Reticulofenestra asanoi	Reticulofenestra pseudoumbilicus (>7 µm) Sphenolithus abies
Pleistocene		NN19 & NN21	316-C0004C- 1H-1, 13.0-15.0 1H-4, 15-17 1H-7, 11.0-13.0 1H-CC, 0.0-5.0 2H-2, 6-10 2H-4, 6-10 2H-5, 37-39 2H-CC, 0.0-5.0 3H-1, 59-64 3H-2, 62-65 3H-4, 51-54 3H-6, 59-63 3H-9, 56-59 3H-CC, 0.0-5.0 4H-2, 60-63 4H-3, 70-74 4H-5, 51-55 4H-7, 60-63 4H-CC, 5.0-10.0 5H-3, 61-64 5H-7, 61-64 5H-7, 61-64 5H-CC, 4.0-9.0 6H-2, 31-33 6H-6, 60-62 6H-CC, 11.0-16.0 7H-2, 60-63 7H-5, 60-62 7H-CC, 0.0-5.0 8H-2, 114-116 8H-6, 60-62 8H-CC, 23.5-28.5 9H-1, 59-64	0.01 2.99 5.76 6.25 7.75 9.06 10.69 16.31 16.43 17.78 18.99 20.40 23.05 25.57 27.27 28.70 29.84 32.62 35.34 38.16 42.27 44.93 45.95 50.13 54.60 55.71 58.38 63.77 65.73 69.19 72.83 73.46	0.01 3.01 5.78 6.30 7.79 9.10 10.72 16.36 16.48 17.81 19.02 20.44 23.08 25.62 27.30 28.73 29.88 32.64 35.39 38.19 42.30 44.98 45.97 50.15 54.65 55.74 58.40 63.82 65.74 69.21 72.89 73.51	0.01 3.00 5.77 6.27 7.77 9.08 10.70 16.33 16.46 17.80 19.00 20.42 23.06 25.60 27.28 28.71 29.86 32.63 35.36 38.18 42.28 44.96 45.96 50.14 54.62 55.73 58.39 63.79 65.73 69.20 72.86 73.49	D A D D C D D A D D D D A A A A A A C F A A C A A F A F C A A .	С С С С С С С С С С С С С С С С С С С	T T R		ТТ				D A C F R	FFFFRFF CCCFFCAFAF A FR	D C D D C F C C C C F C F F C C F C A F A F C C C C	D A D D C D D A C A C C C C F F C C F C C C F F C C C A F C F C	D C D D C D D D D D D D D D A A A A A C C A A C D A F D F C C C C	R R R F C C C C C A A A A C C C C C C C C C C	R R C C C F	
	~~~~	~~~~	9H-2, 79-83 9H-5, 64-67 9H-6, 60-63 9H-CC, 0.0-5.0 10H-1, 63-65 10H-CC, 0.0-5.0 11H-3, 58-63 11H-C 0.0 5.0	75.05 77.92 79.10 80.87 81.37 84.62 87.00 89.20	75.09 77.95 79.13 80.92 81.39 84.67 87.05 89 25	75.07 77.94 79.11 80.90 81.38 84.64 87.02 89.23	A C A F C F B B	M M M G	R T R T	R R T	T F F F	T F C C	F F T D	R T T			C	C C	C F F	F C F C F		R R
middle Pliocene	IIA		12X-2, 59–61 12X-5, 13–15 12X-CC, 0.0–5.0 13X-2, 59–61 13X-6, 63–65	90.99 94.58 98.49 100.72 104.83	91.01 94.60 98.54 100.74 104.85	91.00 94.59 98.51 100.73 104.84	F C F B B	M M M	R R F	r R R	R F C	R F C	Υ F T	R T						N		T T C
			13X-CC, 25.5–30.5 14X-6, 60–62 14X-CC, 0.0–5.0 15X-5, 52–54 15X-CC, 0.0–5.0	108.37 114.13 117.77 123.45 127.28	108.42 114.15 117.82 123.47 127.33	108.40 114.14 117.80 123.46 127.31	R B R F R	M M M	F F R F		R C R C	R C R R	R T T R	т т т								F C R

Table T2. Calcareous nannofossil range chart of age-diagnostic fossils, Hole C0004C. (Continued on next page.)

## Table T2 (continued).

	logic unit				Depth (mbs	D	dance	rvation	discus macintyrei	aster asymmetricus	aster brouweri	aster pentaradiatus	aster surculus	aster tamalis	ania huxleyi	<i>yrocapsa</i> spp. large (≥5.5 μm)	yrocapsa spp. medium II (≥4.5–<5.5 μm)	yrocapsa spp. medium I (>3.5-<4 µm)	yrocapsa spp. smaller (≤3.5 µm)	ssphaera sellii	loemiliania lacunosa	ulofenestra asanoi	lofenestra pseudoumbilicus (>7 µm)	nolithus abies
Epoc	Litho	Zone	Core, section, interval (cm)	Тор	Bottom	Mean	Abun	Prese	Calci	Disco	Disco	Disco	Disco	Disco	Emilia	Geph	Geph	Geph	Geph	Helico	Pseuc	Reticu	Reticu	Sphei
middle Pliocene		NN16	16H-1, 60–62 16H-CC, 4.0–9.0 17H-1, 15–17 17H-CC, 20.5–26.0 18H-1, 59–60 18H-CC, 45.0–50.0	127.81 128.81 132.80 133.26 133.77 134.92	127.83 128.86 132.82 133.31 133.78 134.97	127.82 128.84 132.81 133.28 133.78 134.95	A R C R T	M M M M P	F F R T T	F R R	F C F C T R	F C F R T	F F R F	T T					R	R	F		F R R T	

Abundance: D = dominant, A = abundant, C = common, F = few, R = rare, T = trace, B = barren. Preservation: VG = very good, G = good, M = moderate, P = poor.



Epoch	Lithologic unit	Zone	Core, section, interval (cm)	Тор	Depth (mbs Bottom	f) Mean	Abundance	Preservation	Amaurolithus delicatus	Calcidiscus macintvrei	Ceratolithus acutus	Ceratolithus rugosus	Discoaster asymmetricus	Discoaster brouweri Discoaster pentaradiatus	Discoaster periodadada Discoaster surculus	Discoaster tamalis	Discoaster triradiatus	Emiliania huxleyi	<i>Gephyrocapsa</i> spp. large (≥5.5 µm)	Gephyrocapsa spp. medium II (≥4.5–5.5 µm)	Gephyrocapsa spp. medium I (>3.5-<4 µm)	<i>Gephyrocapsa</i> spp. smaller (≤3.5 μm)	Helicosphaera sellii Beerdoomiticaria Incuraca	r seudoenniariid lacanosa Reticulofenestra asanoi	Reticulofenestra pseudoumbilicus (>7 µm)	Sphenolithus abies
middle Pliocene	IIB	NN16	316-C0004D- 1R-1, 60.0-61.0 1R-2, 60.0-61.0 1R-3, 60.0-61.0 1R-3, 60.0-5.0 2R-1, 50-52 2R-CC, 0.0-5.0 3R-1, 48-50 3R-CC, 0.0-5.0 4R-1, 48-50 4R-CC, 8.5-13.5 5R-1, 50-52 5R-CC, 0.0-5.0 3R-1, 117-118 8R-CC, 9.0-14.0 9R-1, 55-57 9R-CC, 0.0-5.0 10R-CC, 0.0-5.0 11R-3, 25-27 11R-CC, 0.0-5.0 12R-CC, 0.0-5.0 13R-CC, 26.0-31.0 16R-1, 60-61 16R-CC, 20.5-25.5 19R-1, 50-51 19R-CC, 0.0-5.0	100.60 102.01 103.41 103.81 110.00 110.81 119.49 120.40 128.98 129.43 138.00 139.32 140.20 152.96 153.76 157.17 157.46 161.05 163.01 165.00 171.16 171.38 175.17 179.81 202.60 203.49 226.00 226.98	100.61 102.02 103.42 103.86 110.02 110.86 119.51 120.45 129.00 129.48 138.02 139.34 140.25 152.98 153.81 157.18 157.51 161.07 163.06 165.05 171.18 171.43 175.22 179.86 202.61 203.54 226.01 227.03	100.61 102.02 103.42 103.84 110.01 110.84 119.50 120.43 128.99 129.46 138.01 139.33 140.23 152.97 153.79 157.18 157.48 161.06 163.04 165.03 171.17 171.40 175.19 179.83 202.61 203.51 226.01 227.00	R C F F F C C C F C T R F F R R C R F C F C T T C A C	М _G –М _G м _G м м _M _G р р м м м м м м _G м _G м м м _M м м м м м м м м м м м м м м м м м м м		T F F F F F F F F F F F F F F F F F F F	T = T = T	ТТТ	R T R	T F F F F F F F F F F F F F F F F F F F	F     R     T     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R     R <th>R T T R T R T T T T T T T T</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>T? T</th> <th>R C T C T C T</th> <th>FCFFFCCFCCTRF F FFFFFFFFFFFFFFFFFFFFFFFF</th> <th>т</th> <th>ТТТ</th>	R T T R T R T T T T T T T T						T? T	R C T C T C T	FCFFFCCFCCTRF F FFFFFFFFFFFFFFFFFFFFFFFF	т	ТТТ
cene		NN15-NN14	20R-CC, 10.0–15.0 21R-1, 2–4 21R-CC, 0.0–5.0 22R-1, 36–38	228.77 238.02 238.62 242.86	227.05 228.82 238.04 238.67 242.88	227.00 228.80 238.03 238.65 242.87	C C C T	M M M M		F F F	F T R F T	Т	R T	F I F I C I	F R F R F R	Т						F		F F F	F F R	F F R
early Plio		NN13	22R-CC, 0.0–5.0 23R-1, 28–30 24R-2, 77–99 24R-CC, 0.0–5.0 25R-1, 59–60 25R-1, 79	243.76 247.28 253.68 253.92 256.59	243.81 247.30 253.70 253.97 256.60 256.79	243.79 247.29 253.69 253.94 256.60 256.79	C F T C C	M P M M M	Т	T 9 7 9 9 7	F R T R R T R T	T R T T T	R	F F R F T R T F F	RR RR TT T						R	R R		R R	T F T C C C	F F C C C

## Table T3. Calcareous nannofossil range chart of age-diagnostic fossils, Hole C0004D. (Continued on next two pages.)



## Table T3 (continued). (Continued on next page.)

Epoch	Lithologic unit	Zone	Core, section, interval (cm)	Тор	Depth (mbsi Bottom	) Mean	Abundance	Preservation	Amaurolithus delicatus Amaurolithus tricorniculatus	Calcidiscus macintyrei	Ceratolithus acutus	Ceratolithus rugosus	Discoaster asymmetricus	Discoaster brouweri	Discoaster peritaradiatas Discoaster surculus	Discoaster tamalis	Discoaster triradiatus	<i>Emilania huxleyi</i> G <i>ebhyrocabsa</i> spb. larqe (≥5.5 μm)	Gephyrocapsa spp. medium II (≥4.5–5.5 µm)	Gephyrocapsa spp. medium l (>3.5-<4 µm)	Gephyrocapsa spp. smaller (≤3.5 µm)	Helicosphaera sellii	Pseudoemiliania lacunosa Reticulofenestra asanoi	Reticulofenestra pseudoumbilicus (>7 μm)	Sphenolithus abies
e Pe		??	25R-CC, 0.0–5.0 26R-1, 79–80	257.72 261.29	257.77 261.30	257.75 261.30	B C	м		F	:		т	F	FR	Т					F		F		т
middl		NN16	26R-2, 48–49	262.39	262.40	262.40	C	М		F		Т	R	F	RR	Т					Т		F		
middle .		NN15-NN14?	26R-CC, 0.0–5.0 27R-1, 40–42	262.80 265.40	262.85 265.42	262.83 265.41	C C	M M		F	Т	T T	R T	F	FR FR	Т					F R		F F	F	F
<u> </u>		NN16	27R-2, 6–7 27R-CC, 0.0–5.0 28R-1, 102–103 28R-2, 121–122 28R-CC, 0.0–5.0 29R-1, 67–69 29R-2, 39–40	266.47 267.39 270.52 272.12 272.97 274.67 275.44	266.48 267.44 270.53 272.13 273.02 274.69 275.45	266.48 267.41 270.53 272.13 273.00 274.68 275.44	F C C C C R F	M G M M M		R F F R T	k : : :	T T T T	T R T T	R F F F R R	RT FR FR FR FR RRT RRR	T T T					T T T	R	R F F F R R	Т	т
?		?	29R-2, 117–119	276.57	276.59	276.58	т	Р		т	-			т											
?		?	29R-CC, 27.5-32.5	277.23	277.28	277.26	Т	Р		г			р	Т	ТΤ	D					_T		c		
iiddle Pliocene	111	NN16	30R-2, 57-39 30R-3, 20-21 30R-CC, 7.5-12.5 31R-1, 69-71 31R-2, 69-71 31R-CC, 3.0-8.0 32R-2, 51	280.49 281.52 282.37 283.69 285.10 287.13	280.30 281.53 282.42 283.71 285.12 287.18 289.52	280.30 281.52 282.40 283.70 285.11 287.16 289.51	D C A C C	M M M M M M		F R F F F R			R R R R R	F F F F F F	FR FR FFR FR FR FR	T T T					T		C C F F F	T T	
ne?		NN17-NN18?	32R-CC, 0.0–5.0 33R-1, 20 33R-3, 16–18 33R-CC, 0.0–5.0	291.94 294.98 296.06	291.99 292.58 295.00 296.11	291.97 292.58 294.99 296.09	C C R T	M M M P		F T	-		R R	F F R T	FR FR T	I							⊦ F R T		I
late Plioce		NN17-NN18? NN17-NN18? ? NN16 mixed with NN19	34R-1, 77 34R-1, 109–111 34R-CC, 0.0–5.0 35R-1 64–66	297.59 298.39 297 59	297.59 297.61 298.44 297.61	297.59 297.60 298.41 297.60	T R B A	M M		T	-		T	T F	FR		   _			F	F	R	R	т	т
?	 IV	NN17-NN18? NN16 mixed with NN19 NN19? ?	35R-CC, 0.0–4.0 36R-1, 111–113 36R-CC, 0.0–5.0 37R-1,14–16 37R-CC, 0.0–1.0	302.61 306.61 307.47 310.14 312.62	302.65 306.63 307.52 310.16 312.63	302.63 306.62 307.50 310.15 312.62	A A R A T	M M M P		F F T F	т Т Т	T T T T	R R T	R F R	R F R R T	R	т			R R	F C R C T	R R	F C R C T	F T	R F T



#### Table T3 (continued).

Epoch	Lithologic unit	Zone	Core, section, interval (cm)	Тор	Depth (mbsf Bottom	) Mean	Abundance	Preservation	Amaurolithus delicatus Amaurolithus tricorniculatus Calcidiscus macintyrei Ceratolithus acutus Ceratolithus rugosus	Discoaster asymmetricus	Discoaster brouweri	Discoaster pentaradiatus Discoaster surculus	Discoaster tamalis	Discoaster triradiatus Emiliania huxlevi	<i>Gephyrocapsa</i> spp. large (≥5.5 µm)	<i>Gephyrocapsa</i> spp. medium II (≥4.5–5.5 μm)	Gephyrocapsa spp. medium I (>3.5–<4 µm)	Gephyrocapsa spp. smaller (≤3.5 µm) 	Helicosphaera sellii	Pseudoemiliania lacunosa Reticulatenestra asanai	Reticulofenestra pseudoumbilicus (>7 µm)	Sphenolithus abies
early Pleistocene	IV	NN19	38R-1, 12 38R-CC, 0.0–5.0 39R-1, 37–39 39R-3, 103-104 39R-CC, 0.0–5.0 40R-1, 127-129 40R-CC, 4.0–9.0 41R-CC, 0.0–5.0 42R-2, 55-57 42R-CC, 5.0–10.0 43R-CC, 5.0–10.0 44R-2, 60-61 44R-2, 60-61 44R-CC, 0.0–5.0 45R-CC, 0.0–5.0 45R-CC, 0.0–5.0 47R-1, 28-30 47R-3, 7-9 47R-CC, 14.0–19.0 48R-CC, 0.0–5.0 49R-1, 46-48 49R-CC, 17.0–22.0 50R-CC, 16.0–21.0 51R-3, 93-95 51R-CC, 10.0–15.0 52R-3, 59-61 52R-CC, 0.0–5.0 53R-1, 47-48 53R-CC, 0.0–5.0 54R-2, 12-14 54R-CC, 0.0–5.0 54R-2, 12-10 56R-2, 64-66 56R-CC, 0.0–5.0	315.27 319.37 321.44 321.82 324.78 325.43 330.37 334.46 336.55 340.09 343.50 345.22 347.92 351.10 352.36 355.28 357.89 358.31 361.79 364.46 368.40 370.75 376.76 377.12 379.50 381.66 382.48 384.56 388.03 390.89 393.30 394.74 397.67 398.64	314.62 315.32 319.39 321.45 321.87 324.78 325.48 330.42 334.48 336.60 340.14 343.50 345.27 347.97 351.11 355.30 357.91 358.36 361.84 364.48 368.45 370.80 376.80 377.17 379.52 381.71 382.50 384.61 388.05 390.94 393.20 394.79 397.69 398.69	314.62 315.29 319.38 321.45 324.78 324.78 325.45 330.40 334.47 336.57 340.11 343.50 345.25 347.95 357.90 358.33 361.81 364.47 366.42 370.78 376.78 377.14 379.51 381.68 382.49 384.58 384.58 384.58 384.58 384.58	ACFFAFCAFADFACCFFFFFFFFFFCBFFFRAFAT	С	F T R T R F F F F F F F R R R R R R R R R R R R		т т тт				т	FFR R FFR R T T	FFFRCFCCFRRFFRRRR R T R	CCFFCFCCFCCFCCFFCCFCRFRF FRF FFF	R F RF FFRRR RF RR R	CCFFCFCCFCCCFFCCFCCFCC FFFRCFCT	T R R T T R T	R R F T R R

Abundance: D = dominant, A = abundant, C = common, F = few, R = rare, T = trace, B = barren. Preservation: G = good, G–M = good to moderate, M = moderate, P = poor.

14 4

Table T4 Calcareous	nannofossil range	chart of age dia	mostic fossils	Hole COOO8A	(Continued o	n novt nago)
Table 14. Calcaleous	nannoiossii lange	chart of age-ula	gnostie iossiis,	1101e C0008A. (	(Commuted of	n next page.)

		1					1		1				1											
							1		1				1				ĉ							
																	Ъ							
																	5	۲					~	
																	S.	4					Ê	
																	Y	Ý	ĉ				д.	
																Ê	t.5	Υ.	E				~	
																Ц	Ň	Ň	Ś				S	
																S.	Ĭ	)	Ω.				ca	
																≥5	Ε	Е	Ÿ				pil	
																0	.⊒	.in	le		a		Ē	
										sn	ti,	5				ğ	eq	eq	Ja		OS	.=	0	
									rei	ti i	. i	5		1S		aı	E	Е	sn		un	no n	na	
									ity.	lan	ua.	ST	S	atı		ġ	ġ	ġ	ġ	Щ	g	150	sc	S
									ci	Ĩ	4 4	i in	al	igi	iYi	s S	с,	sp	S,	sei	ø	ä	a f	piq
	Ľ.							~	па	sy	010	, in	an	rir c	IX	sa	sa	sa	sa	ra	an	str	str	SG
							ce	ō	IS I		2 2	r s	r t	rt	Ц	db	db	db	db	ae	ii.	ы	ы	hu
	ġ.			I	Depth (mbsf	)	an	/at	SCL	ste	ste ste	ste	ste	ste	ia	õ	õ	õ	õ	Чd	ы	bfe	bfe	ļ
÷	8	e	Coro soction		•		pu	еЪ	idi	oa.	00	oa.	oa.	oa.	iar	Ň	ş	hλ	ž	SO	g	n'	'n.	ŝ
õ	Ę	u	interval (and)	Tam	Dattana	Maan	no	es.	ä	isc.	isc isc	isc	isc	isc	lin	вb	вb	вb	в	elic	sel	ŝti	ŝti	Ŕ
Щ		Ň	interval (Cm)	төр	Bottom	wear	A	Р	Ŭ	D		D 0	D	Ω	Ξ	G	G	G	G	Ξ	ď	Re	Re	S
			316-C0008A-																					
			1H-1, 4.0–6.0	0.04	0.06	0.05	А	G	R		R F	2			Α		F	F	F	R	F			
			1H-4 6 0-8 0	1 90	1 92	1 91	Δ	G	R		RF	2			C		C	C	F	R	F			
		<del>.                                    </del>	111 5 6 0 8 0	2.97	2.90	2.00		c	T T		т і т	•			г г		ĉ		D	т Т				
		2	11-3, 0.0-0.0	2.07	2.09	2.00		G	1		1				5		C	C	U	-	5			
		Ī	TH-CC, 0.0–5.0	6.81	6.86	6.83	D	G	F						F		D	D	D	R	F			
			2H-1, 78–80	7.58	7.60	7.59	А	G	Т						R		С	С	А		R			
			2H-3, 81-83	8.98	8.99	8.99	С	G							R		С	С	С		R			
		m	2H_4 71_73	9 90	9.92	9 91	Δ	C.							2		F	C	Δ		C	т		
			211-7,71-75	10.70	10.01	10.00	2	C									-		~		č	÷		
			21-3, 33-37	10.79	10.61	10.80	А	G							?		F	C	А		C	I		
			2H-6, 72–74	12.30	12.31	12.30	Α	G									F	F	А		С	Т		
			2H-7, 112–114	13.82	13.84	13.83	D	G									F	F	D		С	Т		
			2H-CC, 4.0–9.0	16.98	17.03	17.01	D	м									R	F	D	F	А	R	R	F
			21 2 104 106	17 72	17 75	17.74		N.4									E	E	^	•	^	C		•
			311-2, 104-100	17.73	17.75	17.74					-						Г	Г	A		A	C F		
			3H-5, 97–99	20.36	20.38	20.37	C	M			I						к	к	C		C	F		
			3H-7, 12–14	22.19	22.21	22.20	D	G			Т							R	D		С	С		
			3H-CC, 0.0–5.0	25.60	25.65	25.62	D	G			Т							R	D		С	С		
			4H-2 74-76	26.82	26.84	26.83	C	м			т							R	C		C	F		
			411 ( (9 70	20.02	20.01	20.05	~	C			÷								~		ĉ			
			411-0, 00-70	50.47	50.49	50.46	A	G			1							ĸ	A		C	5	_	
			4H-8, 59–61	32.79	32.81	32.80	C	М										к	C		C	к	к	
			4H-9, 39–41	33.77	33.79	33.78	D	G										R	D		А			
			4H-CC, 6.5–11.5	35.50	35.55	35.53	D	G	R		Т						R	F	D	R	А		R	Т
			5H-2 50-52	36 14	36.16	36.15	C	М											C		C			
			511-2, 30-32	27.59	27.00	27.50		1.61											C		C			
			SH-3, 70-72	57.58	57.00	57.59	Б																	
			5H-5, 58–60	39.00	39.02	39.01	С	М											С		С			
			5H-6, 95–97	40.32	40.34	40.33	С	М											С		С			
			5H-7, 58–60	41.19	41.20	41.19	А	G	Т		Т					F			А		С			R
e			5H-CC 0 0-5 0	44 78	44 83	44 80	р	м	т							Δ	C		D		Δ		т	
G				10 00	48.00	10 00	г	N.4	ι. Τ		т	-				г	č		c		Г		•	
ğ	1		01-0, 7-9	40.00	46.90	40.09	<b>_</b>		_			_				5			C		5		-	-
is:			6H-8, 114–116	52.12	52.14	52.13	F	M	1		1 1					F			C		F		I	I
Ple			6H-CC, 56.5–61.5	54.79	54.84	54.82	D	G	R		Т					С	С	F	D	Т	А		Т	Т
		19	7H-4, 37–39	57.23	57.25	57.24	F	М	Т		Т					F			С		F		Т	Т
		Z	7H-8, 42-44	60.83	60.84	60.83	F	м	т		тι	-				F	R	R	F		F			
		2	74 CC 65 5 70 5	64.35	64.40	64.38		N.4	D		т					Ċ	C	Е	D	т			т	
			711-00, 05.5-70.5	66.70	66.70	04.30			IN IN		- -					r r	C		6		÷		÷	
			8H-3, 110–112	66.73	66.75	66.74	F	IVI			I					F			C		F		1	
			8H-6, 87–89	69.35	69.37	69.36	С	М	Т							С	R	R	С		F			
			8H-CC, 0.0–5.0	72.11	72.16	72.13	Α	М	R		ΤI	-				С	С	С	А	Т	С		Т	Т
			9H-CC, 0.0–5.0	78.47	78.52	78.50	Α	М	R		R F	2	1			С	С	С	А	R	С		Т	Т
		1	10H-3_14-16	83 51	83 52	83 52	F	м	1		т					F	F	F	F		F		т	
			10H-7 10 12	87 11	8710	Q7 11		N.A	D		т т		1			Ċ	r.		^		c.		Ť	т
		1		07.11	07.12	07.11			- K		' .						Ċ		A	-	č		I P	I D
			IUH-CC, 0.0–5.0	90.36	90.41	90.39	טן	M			F	(	1			C	A	C	υ	I	C		К	к
		1	11H-6, 62–64	95.99	96.00	95.99	F	М	1		Т					F	R	R	F		F		Т	
			11H-8, 58–60	98.50	98.51	98.50	Т	Μ	1				1			Т					Т			
		1	11H-CC, 0.0–5.0	100.52	100.57	100.54	А	м	т							C	C	F	А	F	C			т
			12H-5 44 46	105 24	105 29	105 27	F	M	1.		т		1			Ę	D	D	E	-	Ē		т	
				105.50	105.50	103.37			- I		ч Р		1			Г Р	1		r P	P	Ċ			
			120-00, 0.0-5.0	106.42	106.47	106.45	יין	P			к		1			к	A	F	υ	к	C			
		1	13H-2, 77–79	111.69	111.71	111.70	F	М	1		Т					F	R	R	F	Т	F		Т	
			13H-CC, 0.0–5.0	118.19	118.24	118.21	D	Μ	Т		R		1			F	А	С	D	F	С		R	R
		1	14H-CC 51 5-56 5	119 52	119 57	119 54	D	Р	т		R					R	Α	C	D	R	C		R	F
			15H-5 101 102	172 77	122 70	172 70	Б	Ň.A.	1				1			D	т	Τ	D	.,	D		т	•
		1	1511-5, 101-105	123.//	123.17	123./0	I N		1							ri D	- -	-					+	
			ISH-7, 103-105	126.43	126.45	126.44	R	M	1				1			К	I		К		К		I	
			15H-CC, 0.0–5.0	127.22	127.27	127.25	F	Р	Т							R	F	F	F		R		R	R
			16H-5, 44–46	129.54	129.56	129.55	F	Μ	1		Т		1			F	R	R	F	R	F		Т	
		1	16H-CC, 0.0–5.0	129.66	129.71	129.68	D	м	т		R					R	А	C	D	R	C		R	F
			17H-4 86 88	13/ 2/	13/ 24	13/ 25	D	M	1.				1			D	т	Τ	D		D		т	•
		1		129.24	120.77	120 7/	I N		1							ri D	- -	-					+	
			1/H-9, 64–66	138./6	138.//	138./6	К	М					1			К	I		К		К		I.	

## Table T4 (continued).

t	ologic unit	υ	Core section	Ē	Depth (mbsl	f)	ndance	ervation	idiscus macintyrei	oaster asymmetricus	oaster brouweri	oaster pentaradiatus	oaster surculus	oaster tamalis	oaster triradiatus	iania huxleyi	<i>hyrocapsa</i> spp. large (≥5.5 μm)	hyrocapsa spp. medium II (≥4.5–<5.5 µm)	hyrocapsa spp. medium l (>3.5–<4 µm)	h <i>yrocapsa</i> spp. smaller (≤3.5 µm)	cosphaera sellii	idoemiliania lacunosa	culofenestra asanoi	culofenestra pseudoumbilicus (>/ µm)	enolithus abies
Epo	Lith	Zon	interval (cm)	Тор	Bottom	Mean	Abu	Pres	Calc	Disc	Disc	Disc	Disc	Disc	Disc	Emil	Gep	Gep	Gep	Gep	Heli	Pseu	Reti	Retu	Sphe
Pleistocene	1	NN19	17H-CC, 18.5–23.5 18H-4, 88–90 18H-CC, 25.0–30.0 19H-1, 112–113 19H-CC, 12.5–17.5 20H-1, 27 20H-CC, 0.0–5.0 21H-3, 30.0 21H-CC, 29.0–34.0 22H-1, 24 22H-CC, 5.0–10.0 23H-1, 61 23H-4, 17–18 23H-CC, 7.5–12.5 24H-1, 15–17 24H-4, 47–49 24H-CC, 0.0–5.0 25H-1, 78.0 25H-4, 73–75 25H-CC, 0.0–5.0 26H-1, 40–42 26H-CC, 0.0–5.0 27H-1, 83–85 27H-CC, 0.0–5.0 28H-1, 47–48 28H-CC, 0.0–5.0 29H-1, 55–57	141.31 144.17 148.70 151.01 152.66 158.34 168.022 177.426 181.84 186.18 187.36 190.31 197.92 199.54 201.70 201.29 205.94 211.22 219.54 220.35 224.55 225.27	141.36 144.19 148.75 151.02 152.71 152.66 158.48 161.46 168.27 168.68 177.48 178.34 178.34 181.85 186.23 187.38 190.33 197.97 197.35 199.56 201.75 201.31 205.99 211.24 219.59 220.36 224.60 225.29	141.34 144.18 148.73 151.02 152.69 152.66 158.41 161.46 168.25 168.68 177.46 178.34 181.84 186.21 187.37 190.32 197.35 199.55 201.72 201.30 205.97 211.23 219.56 220.36 224.58 225.28	A F A F D A D D T F C C F A C F C C F C R C R F F B C	P M P M M P M P M M M M M M M M M M M M	T TTTT TTRFRRCFRFTRTRF F		R T R T R R R	T					T F T F C C F R T R	CRCRCCAA FFFCFF R T	CRCCCA FFFFFFR TFRRT T	CFCFCADA FCFFCFFCCFCRCRFF R	RRRRR RRFRRR R RT	CFCFCCCCTFCCCCFCCRCRFF C		T TRRR TRRR RRTRT T T	R R T R R T T T
			29X-CC, 0.0–5.0 30H-3, 22–24 30X-5, 60 30X-8, 31–33 30X-CC, 0.0–5.0 31X-1, 52–54 31H-3, 93–95 31X-CC, 0.0–5.0	234.06 236.50 240.83 242.69 244.21 246.79 254.08	234.11 236.52 238.69 240.85 242.74 244.23 246.81 254.13	234.08 236.51 238.69 240.84 242.71 244.22 246.80 254.10	D F A F B F C D	M M M M M M M M M M M M M M M M M M M	F R C R F C		т								F T T	C R F F F F C	R R R R	A F C F C A		T T R	T T F
		NN18	32X-3, 70–72 32X-5, 77 32X-9, 11–14 32X-CC, 2.5–7.5 33X-3, 25.0	255.96 260.92 264.15	255.98 258.12 260.94 264.20 266.55	255.97 258.12 260.93 264.17 266.55	F C T T C	M M M M	R C T T C		T F T				F					F F	F	F C T T C		R R	т т
ene		17	33X-5, 58–60 33X-7, 7–9	267.61 269.09	267.63 269.11	267.62 269.10	F C	M M	R F		T R	T R		т						R R		F R			
Plioc		ZZ	33X-CC, 0.0–5.0 34X-CC, 0.0–5.0 35X-1, 2.0	269.61 272.84	269.66 272.89 281.78	269.64 272.86 281.78	F C C	M M M	F C C	T R	F R F	T R	R	т						R F F	F F	F C C		R R	т
	11	NN16	35X-CC, 34.0–39.0 36X-1, 9 36X-CC, 13–14 36X-CC, 18.0–23.0	282.33 291.62 291.67	282.38 291.34 291.63 291.72	282.35 291.34 291.63 291.69	T T C	P P P P	с		F	F	R							F	F	T T R		R	т

Abundance: D = dominant, A = abundant, C = common, F = few, R = rare, T = trace, B = barren. Preservation: G = good, M = moderate, P = poor.

# Proc. IODP | Volume 314/315/316

				Тор		Bottom		Mean
Epoch	Zone	Age (Ma)	Event	Core, section, interval (cm)	Depth (mbsf)	Core, section, interval (cm)	Depth (mbsf)	depth (mbsf)
				316-C0004C-		316-C0004C-		
	NN21	0.063	X Gephyrocapsa caribbeanica (>3.5 μm) - Emiliania huxleyi	1H-7, 11.0–13.0	5.77	1H-CC, 0.0–5.0	6.27	6.02
		0.291	FO Emiliania huxleyi	2H-2, 6–10	7.77	2H-4, 6–10	9.08	8.42
a		0.436	LO Pseudoemiliania lacunosa	2H-2, 6–10	7.77	2H-4, 6–10	9.08	8.42
en		0.900	LCO Reticulofenestra asanoi	2H-CC, 0.0–5.0	16.46	3H-1, 59–64	16.43	16.44
toc		1.040	RE Gephyrocapsa spp. medium II (≥4.5–<5.5 µm)	3H-6, 59–63	20.42	3H-9, 56–59	23.06	21.74
leis	NN19	1.078*	FCO Reticulofenestra asanoi	3H-CC, 0.0–5.0	25.60	4H-2, 60–63	27.28	26.44
4		1.240	LO <i>Gephyrocapsa</i> spp. large (≥5.5 µm)	4H-3, 70–74	28.71	4H-5, 51–55	29.86	29.29
		1.460	FCO Gephyrocapsa spp. large (≥5.5 μm)	7H-CC, 0.0–5.0	63.79	8H-2, 114–116	65.73	64.76
		1.560	FO Gephyrocapsa spp. large (≥5.5 µm)	8H-CC, 23.5–28.5	73.22	9H-1, 59–64	73.49	73.36
		2.060	LO Discoaster brouweri	9H-5, 64–67	77.94	9H-6, 60–63	79.11	78.53
alle ene								
oce	NN16	2.393	LO Discoaster pentaradiatus	9H-5, 64–67	77.94	9H-6, 60–63	79.11	78.53
E il		2.520	LO Discoaster surculus	9H-5, 64–67	77.94	9H-6, 60–63	79.11	78.53
		2.870	LO Discoaster tamalis	9H-5, 64–67	77.94	9H-6, 60–63	79.11	78.53

X = crossover in abundance, RE = reentrance, FO = first occurrence, FCO = first consistent occurrence, LO = last occurrence, LCO = last consistent occurrence.

Table T5. Nannofossil biostratigraphic events, Hole C0004C.

				Тор		Bottom		Mean
Epoch	Zone	Age (Ma)	Event	Core, section, interval (cm)	Depth (mbsf)	Core, section, interval (cm)	Depth (mbsf)	depth (mbsf)
				316-C0004D-		316-C0004D-		
		2.52	LO Discoaster surculus	1R-1, 60.0–61.0	100.6	1R-2, 60.0–61.0	102.02	101.31
e dle	NN16	2.87	LO Discoaster tamalis	1R-2, 60.0–61.0	102.02	1R-3, 60.0–61.0	103.42	102.72
nid en		3.65	LO Sphenolithus spp.	16R-1, 60–61	202.61	16R-CC, 20.5-25.5	203.51	203.06
io		3.79	LO Reticulofenestra pseudoumbilicus (>7 µm)	19R-CC, 0.0–5.0	227.00	20R-CC, 10.0-15.0	228.80	227.90
Pl	ININ I 3-ININ I 4	4.13	FO Discoaster asymmetricus	22R-CC, 0.0-5.0	243.79	23R-1, 28–30	247.29	245.54
Ψ	NN13	4.5	LO Amaurolithus primus	24R-CC, 0.0-5.0	253.94	25R-1, 59–60	256.60	255.22
	?	Faulted zone						
e e		2.06	LO Discoaster brouweri	25R-CC, 0.0-5.0	257.75	26R-1, 79-80	261.30	259.53
Gen		2.39	LO Discoaster pentaradiatus	25R-CC, 0.0-5.0	257.75	26R-1, 79-80	261.30	259.5
lio	ININTO	2.52	LO Discoaster surculus	25R-CC, 0.0-5.0	257.75	26R-1, 79-80	261.30	259.53
		2.87	LO Discoaster tamalis	25R-CC, 0.0-5.0	257.75	26R-1, 79-80	261.30	259.5
_	NN15-NN14?	3.79	LO Reticulofenestra pseudoumbilicus (>7 µm)	26R-2, 48–49	262.40	26R-CC, 0.0-5.0	262.83	262.62
ne		2.52	LO Discoaster surculus	26R-CC, 0.0-5.0	262.83	27R-1, 40–42	265.41	264.12
oce	NN16	2.87	LO Discoaster tamalis	27R-2, 6–7	266.48	27R-CC, 0.0–5.0	267.41	266.9
Eiĭ		3.65	LO Sphenolithus spp.	32R-2, 51	289.51	33R-1, 20	292.59	291.05
	!	Faulted zone		33R-CC, 0.0–5.0	296.06	37R-CC, 0.0–1.0	312.62	
Je		1.60	LO Calcidiscus macintyrei (≥11 µm)	37R-CC, 0.0–1.0	312.62	38R-1, 12	314.64	313.63
early Pleistocer	NN19	1.67	FO <i>Gephyrocapsa</i> spp. medium (>3.5 μm)	55R-CC, 16.0–21.0	394.76	56R-2, 64–66	397.67	396.22

## Table T6. Nannofossil biostratigraphic events, Hole C0004D.

Proc. IODP | Volume 314/315/316

				Тор		Bottom		Mean
Epoch	Zone	Age (Ma)	Event	Core, section, interval (cm)	Depth (mbsf)	Core, section, interval (cm)	Depth (mbsf)	depth (mbsf)
Pleistocene			316-C0008A- 316-C0008A-					
	NN21	0.063	X Gephyrocapsa caribbeanica (>3.5 µm) - Emiliania huxleyi	1H-4, 6.0–8.0	1.91	1H-5, 6.0–8.0	2.88	2.40
	$\sim\sim\sim$	0.291	FO Emiliania huxleyi	2H-3, 81–83	8.99	2H-4, 71–73	9.91	9.45
	NN19	0.436	LO Pseudoemiliania lacunosa	2H-3, 81–83	8.99	2H-4, 71–73	9.91	9.45
		0.900	LCO Reticulofenestra asanoi	2H-7, 112–114	13.83	2H-CC, 4.0–9.0	17.01	15.42
		1.040	RE <i>Gephyrocapsa</i> spp. medium II (≥4.5–<5.5 µm)	3H-5, 97–99	20.37	3H-7, 12–14	22.20	21.29
		1.078*	FCO Reticulofenestra asanoi	4H-8, 59–61	32.80	4H-9, 39–41	33.78	33.29
		1.240	LO Gephyrocapsa spp. large (≥5.5 µm)	5H-6, 95–97	40.33	5H-7, 58–60	41.19	40.76
		1.340	LO Helicosphaera sellii	11H-8, 58–60	98.50	11H-CC, 0.0–5.0	100.54	99.52
		1.460	FCO Gephyrocapsa spp. large (≥5.5 μm)	20H-1, 27.0	152.66	20H-CC, 0.0-5.0	158.41	155.54
		1.560	FO Gephyrocapsa spp. large (≥5.5 µm)	22H-CC, 5.0–10.0	177.46	23H-1, 61.0	178.34	177.9
		1.600	LO Calcidiscus macintyrei (>11 µm)	23H-4, 17–18	181.84	23H-CC, 7.5–12.5	186.21	184.02
		1.670	FO <i>Gephyrocapsa</i> spp. medium (>3.5 μm)	30X-8, 31-33	240.84	30X-CC, 0.0-5.0	242.71	241.78
Pliocene	NN18	2.060	LO Discoaster brouweri	31X-CC, 0.0-5.0	254.10	32X-3, 70–72	255.97	255.04
		2.135	AE Discoaster triradiatus	32X-3, 70–72	255.97	32X-5, 77.0	258.13	257.05
	NN17	2.393	LO Discoaster pentaradiatus	33X-3, 25.0	266.56	33X-5, 58-60	267.62	267.09
	NN16	2.520	LO Discoaster surculus	34X-CC, 0.0-5.0	272.86	35X-1, 2.0	281.78	277.32
		<3.65	LO Sphenolithus spp.	36X-CC, 13–14	291.62	36X-CC, 18.0–23.0	291.67	291.64

* = datum based on Atlantic or Mediterranean records. X = crossover in abundance, RE = reentrance, AE = acme end, FO = first occurrence, FCO = first consistent occurrence, LO = last occurrence, LCO = last consistent occurrence.

X. Su