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Abstract
Compressional and shear wave velocities were examined for sedi-
ments from the hanging wall and footwall of the megasplay fault
in the Nankai accretionary prism, obtained during Integrated
Ocean Drilling Program (IODP), Nankai Trough Seismogenic Zone
Experiment (NanTroSEIZE) Stage 1. The samples were cored at Ex-
pedition 315 Site C0002 and Expedition 316 Site C0004. Three
samples were tested from each site. At Site C0002, one sample is
from forearc basin sediments and two samples are from accreted
sediments. At Site C0004, one sample is from slope-apron sedi-
ments and two samples are from underthrust sediments in the
footwall of the megasplay fault. Laboratory tests were conducted
with controlled pore fluid pressure.

Compressional wave velocity covered a range from ~2010 to
2370 m/s at Site C0002 and ~1790 to 2200 m/s at Site C0004, both
under hydrostatic fluid pressure conditions. Shear wave velocity
ranged from ~720 to 950 m/s at Site C0002 and ~650 to 940 m/s at
Site C0004. VP/VS ranged from ~2.5 to 2.8 at Site C0002 and ~2.3 to
2.7 at Site C0004, with a mean of ~2.6. Computed shear modulus
ranged from ~1.0 to 1.88 GPa for Site C0002 and ~0.79 to 1.76 GPa
at Site C0004. Bulk modulus ranged from ~6.60 to 9.24 GPa at
Site C0002 and from ~4.22 to ~7.17 GPa at Site C0004.

Introduction
Accretionary prism sediments are initially unlithified and have
>60% porosity (e.g., Bray and Karig, 1985). Because of progressive
sedimentation or underthrusting along the décollement, the un-
lithified sediments become lithified rocks at depth. The degree of
lithification in a package of sediments can be examined quantita-
tively using physical properties. We focused on compressional and
shear wave velocities to examine the state of lithification because
these parameters are expressions of elastic moduli. The evolution
of elastic moduli in sediments is strongly related to diagenetic
and strengthening processes resulting from porosity decrease,
fluid release, cementation, and strain history. Variability within
the accretionary complex and along the décollement may have
implications for wedge geometry, fluid migration, and seismogen-
esis (e.g., Bangs and Westbrook, 1991; von Huene and Scholl,
1991; Moore and Vrolijk, 1992; Erickson and Jarrard, 1998; Bilek
and Lay, 1999; Moore and Saffer, 2001; Gettemy and Tobin, 2003;
Saffer, 2007).
doi:10.2204/iodp.proc.314315316.217.2011 
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In this study, we describe the results of laboratory
measurements of compressional and shear wave ve-
locities and related physical properties such as shear
and bulk moduli of sediments obtained from Inte-
grated Ocean Drilling Program (IODP) Expedition 315
Site C0002 and IODP Expedition 316 Site C0004. The
results can be compared with other velocity or physi-
cal property data of sediments from accretionary
prisms (e.g., Gettemy and Tobin, 2003; Hashimoto et
al., 2010; Raimbourg et al., 2011). All sites are located
in the hanging wall and footwall of the megasplay
fault in the Nankai accretionary prism (see the “Expe-
dition 315 summary” chapter [Ashi et al., 2009] and
the “Expedition 316 summary” chapter [Screaton et
al., 2009]). Shear wave velocity for accretionary sedi-
ments has only rarely been reported (e.g., Gettemy and
Tobin, 2003; Tsuji et al., 2006). Measuring the S-wave
velocity of unlithified sediments at in situ conditions
can be difficult, but S-wave velocity is needed to obtain
elastic moduli. We conducted careful measurements
and signal processing to obtain S-wave velocities.

Site locations and lithologies
Site C0002

Site C0002, drilled during Expedition 315, is located
at the southern margin of the Kumano forearc basin
(Figs. F1A, F1B) (see the “Expedition 315 Site
C0002” chapter [Expedition 315 Scientists, 2009]).
The lithology of this site is divided into four units:
upper forearc basin (Unit I), lower forearc basin
(Unit II), basal (starved) basin (Unit III), and upper
accretionary prism (Unit IV) (Fig. F1D).

Units I and II are composed mainly of dark gray
hemipelagic silty clay with minor fine sand, silt tur-
bidites, and volcanic ash. The dominant lithologies
of Unit III are greenish-gray, gray, and gray-brown
silty claystones. Calcareous nannofossils are abundant
in Unit III, and a suite of Pliocene biostratigraphic
events was recognized in the short depth interval
within this unit (Fig. F1D).

The boundary between Units III and IV is an uncon-
formity. The dominant lithology of Unit IV is gray to
greenish-gray silty claystone. The silty claystones
here are highly fractured. Unit IV is interpreted to be
of late Miocene age on the basis of biostratigraphic
analysis. This unit is interpreted as accreted sediments.

One sample from Unit II (forearc basin sediments)
and two samples from Unit IV (accreted sediments)
are examined in this study.

Site C0004
Site C0004, drilled during Expedition 316, is located
at the edge of the megasplay fault seaward of Site
C0001 (Figs. F1A, F1B) (see the “Expedition 316
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Site C0004” chapter [Expedition 316 Scientists,
2009]). This site is divided into four units on the
basis of lithology and age (Fig. F1C).

Unit I is composed mainly of greenish-gray silty clay
containing nannofossils (up to ~25%). The boundary
between Units I and II is an unconformity.

Unit II is divided into two subunits on the basis of
lithology (Fig. F1C). Subunit IIA comprises greenish-
gray synsedimentary breccia with rounded to suban-
gular clasts of pebble size. Both the matrix and the
clasts are composed of dark greenish-gray silty clay.
This unit is interpreted as slump or mass wasting de-
posits (see the “Expedition 316 Site C0004” chapter
[Expedition 316 Scientists, 2009]). Subunit IIB also
consists of mostly dark greenish-gray silty clay, but
the breccia is only rarely observed.

Unit III includes relatively abundant ash layers
within hemipelagic silty clays. The boundaries be-
tween Units II and III and between Units III and IV
might be faults because biostratigraphic age reversals
have been identified around the boundaries.

The dominant lithology of Unit IV is dark olive-gray
silty clay with a moderate amount of calcareous nan-
nofossils. This unit is considered to have formed in a
lower trench-slope environment and underthrust
the footwall of the megasplay fault.

In this study, one sample from Subunit IIA (slope
apron sediments) and two samples from Unit IV (un-
derthrust sediments) were examined. The samples
from Subunit IIA were selected from a homogenized
part within the synsedimentary breccia.

Methods
The design of the experiment is similar to that em-
ployed in other studies of saturated marine sedi-
ments (e.g., Tobin et al., 1994; Tobin and Moore,
1997; Gettemy and Tobin, 2003; Hashimoto et al.,
2010).

In the velocity measurements, two pumps (Teledyne
ISCO 1000D syringe pump) were used to control
pore fluid pressure and confine pressure. The pore
pressure of 500 kPa was kept under drained condi-
tions. Confining (effective) pressure was increased
stepwise in the measurements. Velocity measure-
ments were conducted under isotropic pressure con-
ditions. Confining pressure was pressurized in 10 s
and maintained for 24 h for the next step. The pres-
sure intervals depended on the samples, ranging
from 100 to 1000 kPa (Fig. F2). An in situ effective
pressure was approximated for each sample from the
sediment bulk density and hydrostatic pore fluid
pressures at the depth of recovery (Table T1). The
maximum effective pressure for each test was the in
2
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situ effective pressure. Lead zirconate titanate (PZT)
shear wave transducers (1 MHz) were used in a
source-receiver pair to measure wave speed. PZT in a
shear orientation generates a weak compressional
mode in addition to its primary shear mode. This al-
lowed us to identify P- and S-wave arrivals in each
test, although the S-wave arrival time was often diffi-
cult to locate precisely within the coda of the P-wave
arrival. Axial displacements were measured during
the experiments. Porosity changes were not obtained.

We found that the S-wave arrival was consistent
across an array of waveforms at different effective
pressures, although the error can be as large as ~2 µs
(~5% error in shear wave velocity). Errors for P-wave
velocity, bulk moduli, and shear moduli are ~2%,
~5%, and ~10%, respectively.

Three samples for each site were examined (Fig. F1C,
F1D). At Site C0002, one sample is from forearc basin
sediments (Core 315-C0002B-32R [Sample C2B-32R])
and two samples are from upper accreted sediments
(Cores 315-C0002B-51R and 61R [Samples C2B-51R
and C2B-61R]) (Fig. F1D). At Site C0004, one sample
is from sedimentary breccia (Core 315-C0004C-12X
[Sample C4C-12X]) and two samples are from under-
thrusted slope apron sediments (Cores 315-C0004C-
41R and 49R [Samples C4C-41R and C4C-49R]),
located below a fault (Fig. F1C).

Samples were formed into a cylindrical shape
~3.8 cm in diameter and ~5–6 cm in length.

Results
Change in compressional wave velocity with effec-
tive pressure is shown in Figure F2. Velocities from
Sites C0002 and C0004 ranged from ~1430 to
~1910 m/s and ~1700 to ~2010 m/s, respectively, at
low effective pressures as high as 500 kPa (Fig. F2).
Velocity increases with effective pressure. Although
Sample C2B-32R shows higher velocity than Sample
C2B-51R at low effective pressure, the slope in wave
speed versus effective pressure is relatively flatter.
The slopes for Samples C2B-51R and C2B-61R are
almost parallel. For Site C0004, the relationships
between wave speed and effective pressure for
forearc basin sediments and underthrust sediments
have similar slope angles (Fig. F2).

Porosity was corrected to remove smectite effects
from onboard porosity measurements using Brown
and Ransom (1996)’s method; smectite content was
estimated by X-ray diffraction analysis (Guo et al.,
2009). Representative velocities were taken under
hydrostatic conditions assuming the in situ setting is
consistent with hydrostatic pore pressure. Porosity,
compressional and shear wave velocities, and related
properties are shown in Table T1.
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Corrected porosity is ~37.4%–27.0% for Site C0002
and ~46.8%–38.9% for Site C0004. Compressional
wave velocity is ~2010–2370 m/s for Site C0002 and
~1790–2200 m/s for Site C0004 under hydrostatic
pore pressure conditions. The relationship between
porosity and compressional wave velocity is shown in
Figure F3A. Porosity and compressional wave
velocity for Site C0001 (Hashimoto et al., 2010) are
also included in Figure F3A for comparison. Open
symbols represent cover sediments (slope-apron sedi-
ment or forearc basin sediments) for all sites; solid
symbols represent sediments below the cover sedi-
ments, such as accreted sediments for Sites C0001
and C0002 and underthrust sediments for Site
C0004. At Site C0001, the relationship between
porosity and compressional wave velocity for slope-
apron sediments has a lower slope angle than that
for other sediments, although the data for Sites
C0002 and C0004 are more limited.

Shear wave velocity is ~720–950 m/s for Site C0002
and ~650–940 m/s for Site C0004 under hydrostatic
pore pressure conditions. The relationship between
porosity and shear wave velocity is presented in Fig-
ure F3B. Because the number of samples for shear
wave velocity measurements is very limited, it is
difficult to compare velocity-porosity relationships
between forearc basin sediments and accreted
sediments at Site C0002 or between slope-apron
sediments and underthrust sediments at Site C0004.
Porosity at Site C0004 is higher than that at Site
C0002 in samples with almost the same shear wave
velocities.

VP/VS is ~2.5–2.8 for Site C0002 and ~2.3–2.7 for
Site C0004, with a mean of ~2.6 (Fig. F3C; Table
T1). VP/VS for forearc basin sediments (Site C0002)
and slope-apron sediments (Site C0004) are slightly
higher than those for other sediments.

From compressional and shear wave velocities, shear
modulus (µ) and bulk modulus (κ) at specific effec-
tive pressures and porosities can be obtained, assum-
ing that samples are isotropic and linearly elastic
bodies, using the following formulas:

µ = ρbwVS
2 and  (1)

κ = ρbwVP
2 – 4/3µ,  (2)

where ρbw is wet bulk density from moisture and
density data.

The computed shear modulus is ~1.0–1.88 GPa for
Site C0002 and ~0.79–1.76 GPa for Site C0004. The
bulk modulus is ~6.60–9.24 GPa for Site C0002 and
~4.22–7.17 GPa for Site C0004 (Table T1). Both are
under hydrostatic fluid pressure conditions.
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Y. Hashimoto et al. Data report: velocity measurements
Figure F2. Effective pressure vs. compressional wave velocity. 
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Y. Hashimoto et al. Data report: velocity measurements
Figure F3. A. Compressional wave velocity vs. porosity, Sites C0001, C0002, and C0004. Global relationship
between compressional wave velocity and porosity from Erickson and Jarrard (1998) is shown by solid gray
lines (“normal compaction” for lower line and “high compaction” for upper line). Dashed lines indicate fitting
lines for accreted sediments at Sites C0001 and C0002, underthrust sediments at Site C0004, and cover sedi-
ments (slope-apron sediments at Sites C0001 and C0004 and forearc basin sediments at Site C0002). B. Shear
wave velocity vs. porosity, Sites C0002 and C0004. C. Compressional wave velocity vs. shear wave velocity,
Sites C0002 and C0004. D. Bulk and shear moduli vs. porosity, Sites C0002 and C0004. Sed. = sediment. 
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Y. Hashimoto et al. Data report: velocity measurements
Table T1. Tested samples, depth, porosity, VP,  VS, VP/VS, shear modulus, and bulk modulus, Sites C0002 and
C0004. 

Sample
Depth
(mbsf)

In situ effective 
pressure (kPa)

Uncorrected 
porosity (%)

Corrected 
porosity (%) VP (m/s) VS (m/s) VP/VS

Shear 
modulus 

(GPa)

Bulk
modulus 

(GPa)

C2B-32R 762.677 5947.3 47.70 37.35 2009.59 717.03 2.80 1.01 6.60
C2B-51R 938.82 7652.7 43.09 35.05 2125.86 829.30 2.56 1.33 6.98
C2B-61R 1023.57 8549.8 32.99 27.00 2367.91 946.87 2.50 1.88 9.24
C4C-12X 97.165 632.0 52.13 46.86 1788.17 663.02 2.70 0.79 4.18
C4D-41R 330.42 2453.4 40.93 44.32 2129.62 836.61 2.55 1.30 6.70
C4D-49R 367.62 2765.4 45.88 38.89 2193.30 943.23 2.33 1.76 7.17
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