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Abstract
We conducted shearing tests on samples from the frontal thrust
region of the Nankai Trough offshore Kii Peninsula, Japan, recov-
ered from Sites C0006 and C0007 during Integrated Ocean Drill-
ing Program (IODP) Expedition 316. The samples are all silty clay
recovered from 192–561 meters below seafloor and corresponding
to Units II and III. Samples were sheared in a double-direct shear
configuration in a true-triaxial pressure vessel that was confined
and under fluid pressure control. We observed that residual shear
strength values increase sublinearly over effective normal stresses
from 5 to 35 MPa. Residual friction coefficients calculated from
the measured shear strength and effective normal stress range
from 0.22 to 0.56 and decrease as a function of increasing effec-
tive normal stress. For each sample, the data for coefficient of fric-
tion as a function of increasing effective normal stress are equally
well fit by power law and logarithmic relations. Sample 316-
C0006F-19R-1 is noticeably weaker than the other samples, which
can be attributed to its high clay mineral content of 67 wt%.

Introduction
Frictional strength is an important basic geotechnical parameter
for sediment deformation because the strength controls the struc-
ture and faulting processes in convergent margins. Here, we mea-
sured the frictional strength on five core samples at a range of ef-
fective normal stresses in order to establish basic strength
measurements for the frontal thrust region of the Nankai Trough.
Such strength measurements may be used for studies of shallow
fault slip (Kopf and Brown, 2003; Ikari and Saffer, 2011) or studies
of accretionary wedge geometry (Kimura et al., 2007; Ikari et al.,
2013). The samples we tested were recovered during Integrated
Ocean Drilling Program (IODP) Expedition 316, part of the Nan-
kai Trough Seismogenic Zone Experiment (NanTroSEIZE). During
NanTroSEIZE, several sites were drilled and cored along a transect
offshore Kii peninsula, Japan (Figure F1). We focus on two sites in
the frontal thrust region, Sites C0006 and C0007.

Site and sample description
Sites C0006 and C0007 are located less than ~2 km landward of
the deformation front in the Nankai Trough. The region is a zone
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of diffuse faulting that may act as the plate boundary
(Screaton et al., 2009). The main frontal thrust was
not penetrated at Site C0006 but was penetrated at
Site C0007 slightly trenchward (Figure F2). We tested
four samples from Site C0006 (see the “Expedition
316 Site C0006” chapter [Expedition 316 Scientists,
2009a]) and one sample from Site C0007 (see the
“Expedition 316 Site C0007” chapter [Expedition
316 Scientists, 2009b]), which were recovered from
192–562 meters below seafloor (mbsf) (Table T1). All
samples are described lithologically as silty clay, of
which the uppermost four samples belong to Unit II,
representing accreted trench wedge sediments,
whereas the deepest sample, 316-C0006F-19R-1 from
Unit III, has been classified as accreted Shikoku Basin
sediment. The samples are not from any major fault
or zone of concentrated deformation and therefore
represent wall rock mudstone for the frontal thrust
region. Bulk composition of the samples was quanti-
fied by shipboard X-ray diffraction (see the “Expedi-
tion 316 Site C0006” and “Expedition 316 Site
C0007” chapters [Expedition 316 Scientists, 2009a,
2009b]). Total clay mineral content for our tested
samples ranges from 41 to 67 wt% with the remain-
der being quartz and plagioclase except for 5 wt%
calcite observed in Sample 316-C0006F-7R-1 (Table
T1).

Experimental methods
We conducted laboratory shearing experiments un-
der true-triaxial stress conditions and controlled pore
pressure, using a biaxial testing apparatus with servo-
hydraulic control (Figure F3). Samples were con-
structed as two layers with an area of 5.4 cm ×
5.7 cm and initial thicknesses ranging from ~2 to
6 mm under an initial normal stress of 5 MPa. Most
of the samples were built remolded, meaning core
material was lightly cold-pressed into the sample as-
sembly. One sample, 316-C0006E-40X-8, was tested
as two intact wafers trimmed perpendicular to the
core axis. The two subsamples were sandwiched in a
three-block assembly outfitted with porous metal
frits, allowing fluid access, jacketed in rubber. The
jacketed assembly was placed in the pressure vessel
and subjected to confining pressure and then satu-
rated with 3.5 wt% NaCl brine as pore fluid. The ef-
fective normal stress includes the combined effects
of externally applied normal load, confining pres-
sure, and two independent pore pressures. One of
the pore pressures was applied to the inner faces of
the sample layers and designated as the inlet pres-
sure; the other pore pressure accesses the outer faces
of the samples and was designated as the outlet pres-
sure (Figure F3). The confining pressure was held
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constant at 6 MPa and the inlet pore pressure was
held constant at 5 MPa. The outlet pressure was set
to a no-flow (undrained) condition to monitor pore
pressure in the layer during shearing, following Ikari
and Saffer (2011). Pore pressure fluctuations re-
corded by the outlet pressure are accounted for in
calculating the effective normal stress; these fluctua-
tions are small and have little effect on the experi-
ment (Figure F4). With the confining and pore pres-
sures held constant, the effective normal stress was
raised from 5 to 15, 25, and 35 MPa by increasing the
externally applied normal load (Figure F4).

In each experiment, we sheared our samples at a con-
stant driving rate boundary condition of 11 µm/s, as
measured at the load cell on the vertical piston (i.e.,
load point velocity). The shear stress  is measured
continuously, from which we calculate a coefficient
of sliding friction µ (Handin, 1969):

 = µn

where µn is the effective normal stress. Note that in
calculating a sliding coefficient of friction we assume
that the shear strength results entirely from fric-
tional strength and there is no cohesive strength
component. This facilitates comparison with previ-
ous studies, but we acknowledge that the cohesion
in sheared materials may be significant (Ikari and
Kopf, 2011).

Peak shear strength was measured only at the lowest
effective normal stress (5 MPa) because the higher ef-
fective normal stresses tested in this study are much
higher than the in situ effective stresses experienced
by the samples. Residual shear strength was mea-
sured at every effective normal stress. In some cases,
the sample reached a steady state; however, in many
cases a slight slip strengthening or weakening trend
was superimposed on the data (Table T2). In the case
of slip weakening, we measured the maximum
strength. In slip strengthening cases, we calculated a
strengthening rate as d/dx, where x is displacement,
and picked the strength value where d/dx became
constant (see Ikari et al., 2011).

Results
Residual shear strength increases from ~2.5 MPa at
n = 5 MPa to 12–14 MPa at n = 35 MPa for most
samples (Figure F5; Table T2). Sample 316-C0006F-
19R-1 is noticeably weaker than the other samples
and increases from 1.3 to 8.6 MPa residual shear
strength. Sample 19R-1 is also the only sample to ex-
hibit a significant peak shear strength at n = 5 MPa,
whereas for the other samples the peak strength is
2
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not significantly higher than the residual shear
strength (Table T2).

For all samples, residual shear strength increases as a
function of effective normal stress, similar to Cou-
lomb-Mohr behavior. However, our samples did not
strictly exhibit Coulomb-Mohr behavior but rather
sublinear shear strength as a function of effective
normal stress. This can be seen in the values of resid-
ual coefficient of friction, which decrease as a func-
tion of effective normal stress (Figure F6; Table T2).
For most samples, residual µ ranges from 0.46 to 0.56
at n = 5 MPa and decreases to 0.34–0.40 at n =
35 MPa. The residual µ of the weaker Sample 316-
C0006F-19R-1 ranges from 0.22 to 0.27. 

A feature of the residual coefficient of friction data is
that they decrease nonlinearly with increasing effec-
tive normal stress. We fit the data for each sample
with both power law and logarithmic functions:

µ = An and

µ = Blog10(n) + C,  

where the parameters A, , B, and C are empirically
determined from the regression. We observe that
both power law and logarithmic provided excellent
fits to the data for the four stronger samples, with
the coefficient of determination R2 values of at least
0.978 (Figure F7; Table T3). The power law and loga-
rithmic functions provide nearly identical fits to the
data. 

In contrast to the four stronger samples, the weaker
Sample 316-C0006F-19R-1 exhibits a low R2 value for
both the power law and logarithmic fits. It is possible
that the reason for this is that the coefficient of fric-
tion may show a more significant increase at lower
effective normal stresses than the other samples. In
general, the unique behavior of this sample can be
attributed to its clay mineral content, which is the
highest of the five samples at 67 wt% (Figure F8; Ta-
ble T1). For our data set, we observed a general trend
of decreasing coefficient of friction with increasing
clay content (Figure F8) with the low friction of Sam-
ple 19R-1 being clearly related to high clay content.
We note that because we tested mostly remolded
samples, our experiments isolate the effect of min-
eral assemblage. In nature, microstructural differ-
ences due to different depositional settings (i.e.,
trench wedge [Unit II]) compared to hemipelagic ba-
sin [Unit II]) sediments) could also play a role (e.g.,
Takahashi et al., 2013).
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Figure F1. Nankai Trough with location of Sites C0006 and C0007 and rupture areas (dashed boxes), and epi-
centers (stars) of the 1944 Tonankai and 1946 Nankai earthquakes (modified from Kimura et al., 2008). EP =
Eurasian plate, PSP = Philippine Sea plate, PP = Pacific plate, NAP = North American plate. 

Figure F2. Seismic reflection profile of the frontal thrust region in the accretionary prism along the Kumano
transect shown in Figure F1, Sites C0006 and C0007 (modified from Kimura et al., 2008). Blue stars = sample
depths. VE = vertical exaggeration.
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Figure F3. Pressure vessel with sample assembly housed in a biaxial deformation apparatus, Expedition 316
(modified from Samuelson et al., 2009). Half arrows = sense of shear on the sample.

Figure F4. Example of experimental raw data from Sample 316-C0007D-3R-3, showing the measured shear
stress and controlled effective normal stress as a function of shear displacement. The effective normal stress
includes any potential fluctuations in pore pressure. The nearly constant values show that the effect of pore
pressure fluctuations on the shear stress data is negligible.
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Figure F5. Residual shear strength as a function of effective normal stress for all samples in this study, Sites
C0006 and C0007. 
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Figure F6. Residual coefficient of friction as a function of effective normal stress for all samples in this study,
Sites C0006 and C0007. 

Figure F7. Comparison of (A) Power law and (B) logarithmic fits to the residual coefficient of friction as a
function of effective normal stress data shown in Figure F6, Holes C0006 and C0007. Note that the two forms
fit the data nearly identically well. See Table T3 for fit parameters.
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Figure F8. Residual coefficient of friction for all samples in this study as a function of total clay mineral
content, Sites C0006 and C0007.
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Table T1. Sample details, Site C0006 and C0007.

Lithology and total clay from the “Expedition 316 Site C0006” and “Expedition 316 Site C0007” chapters (Expedition 316 Scientists, 2009a,
2009b).

Table T2. Results of shearing experiments, Site C0006 and C0007.

Table T3. Curve fits to residual friction data, Site C0006 and C0007.

Experiment
Hole, core, 

section Depth (mbsf) Unit Lithology Total clay (%)

316-
P3321 C0007D-3R-3 192.35 IIC Silty clay 41.3
P3325 C0006E-29X-2 213.12 IIC Silty clay 52.2
P3324 C0006E-40X-8 322.80 IIC Silty clay 47.9
P3354 C0006F-7R-1 448.10 IID Silty clay 54.4
P3355 C0006F-19R-1 561.65 III Silty clay 67.1

Experiment
Hole, core, 

section
Depth 
(mbsf)

Testing 
condition

n
(MPa)

Peak τ
(MPa) Peak μ

Residual τ 
(MPa) Residual μ Trend description

316-
P3321 C0007D-3R-3 192.35 Remolded 5.0 2.41 0.48 2.33 0.47 Steady state

15.0 6.43 0.43 Steady state
25.1 10.47 0.42 Slip weakening
35.1 14.20 0.40 Slip weakening

P3325 C0006E-29X-2 213.12 Remolded 4.9 2.57 0.52 2.52 0.52 Slip weakening
14.8 6.47 0.44 Steady state
24.9 9.89 0.40 Steady state
34.9 12.88 0.37 Slip weakening

P3324 C0006E-40X-8 322.80 Intact 5.1 2.39 0.47 2.35 0.46 Steady state
15.0 5.87 0.39 Steady state
24.9 8.98 0.36 Steady state
35.0 11.83 0.34 Slip weakening

P3354 C0006F-7R-1 448.10 Remolded 4.5 2.51 0.56 2.51 0.56 Slip weakening
14.2 5.87 0.41 Slip weakening
24.4 9.30 0.38 Slip weakening
34.5 12.17 0.35 Slip weakening

P3355 C0006F-19R-1 561.65 Remolded 4.8 1.61 0.33 1.30 0.27 Steady state
14.8 3.28 0.22 Slip strengthening
25.0 6.32 0.25 Steady state
35.1 8.58 0.24 Slip strengthening

Power law Logarithmic

Experiment Hole, core, section Depth (mbsf ) Coefficient A Exponent  R2 Coefficient B Intercept C R2

316-
P3321 C0007D-3R-3 192.35 0.52 –0.07 0.996 –0.07 0.51 0.995
P3325 C0006E-29X-2 213.12 0.68 –0.17 0.994 –0.17 0.63 0.999
P3324 C0006E-40X-8 322.80 0.60 –0.16 0.999 –0.15 0.57 1.000
P3354 C0006F-7R-1 448.10 0.77 –0.22 0.991 –0.23 0.70 0.978
P3355 C0006F-19R-1 561.65 0.28 –0.05 0.260 –0.03 0.28 0.252
Proc. IODP | Volume 314/315/316 10
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