Data report: Quaternary dinoflagellate cyst and pollen census counts from IODP Hole U1352B, Canterbury Basin, New Zealand¹

Joseph Graham Prebble,² Erica M. Crouch,² and Giuseppe Cortese²

Chapter contents

Abstract
Introduction
Methods and materials
Results
Acknowledgments
References
Figure
Tables6

Abstract

Pollen, spore, and dinoflagellate cyst census counts are reported from Hole U1352B, part of Integrated Ocean Drilling Program Expedition 317 to the Canterbury Basin, New Zealand. Fifty one samples were processed for palynology between 91.1 and 181.5 m composite depth. Based on the shipboard biostratigraphy, the samples described here include sediment deposited during marine isotope Stages 12-10. Preservation of dinoflagellate cysts and pollen was generally good, although palynomorphs were frequently obscured by the presence of abundant terrestrial organic matter (cuticle and wood fragments) that was observed in all slides. Dinoflagellate cyst assemblages were dominated by the heterotrophic genus Brigantedinium, which made up, on average, 78% of the assemblage (range = 36%–98%). Alternation of two broad pollen associations was observed. Pollen assemblages dominated by Poaceae, Halocarpus, Phyllocladus, and Caryophyllaceae/Chenopodiaceae, interpreted to represent an alpine or cooler climate vegetation, alternated with a pollen assemblage dominated by Fuscospora fusca and Prumnopitys/Podocarpus, reflecting warmer interglacial conditions.

Introduction

The purpose of this pilot study was to assess the suitability of marine and terrestrial palynomorph assemblages from Hole U1352B for combined paleoenvironmental reconstructions of both the eastern South Island terrestrial vegetation and the nearby surface ocean. Previous studies of marine and terrestrial palynomorphs from Deep Sea Drilling Project Site 594, farther east and offshore of the present site, revealed glacial–interglacial changes in pollen assemblages over the last 350 k.y. (Heusser and Van der Geer, 1994) and dinoflagellates cyst assemblages back to 125 ka (Marret et al., 2001). Records from Site U1352 were investigated to add to this information for two reasons. The site is closer to land, with a more constrained pollen source area and is under a different surface-water mass than Site 594, which is overlain by a narrow tongue of partly subtropical water (the Southland Front) that flows around the eastern margin of South Island (Sutton, 2003)

Coring in Hole U1352B recovered 613 m of sediment from the offshore Canterbury Basin, eastern South Island, New Zealand, in November 2009 (see the **"Site U1352**" chapter [Expedition 317

¹Prebble, J.G., Crouch, E.M., and Cortese, G., 2014. Data report: Quaternary dinoflagellate cyst and pollen census counts from IODP Hole U1352B, Canterbury Basin, New Zealand. *In* Fulthorpe, C.S., Hoyanagi, K., Blum, P., and the Expedition 317 Scientists, *Proc. IODP*, 317: Tokyo (Integrated Ocean Drilling Program Management International, Inc.).

doi:10.2204/iodp.proc.317.207.2014 ²GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand.

Correspondence author: j.prebble@gns.cri.nz

Scientists, 2011]). This data report documents the presence of dinoflagellate cysts and pollen and spores from 51 samples, which were collected between 91.1 and 181.5 m composite depth (mcd). Based on the shipboard biostratigraphy (see the "Site U1352" chapter [Expedition 317 Scientists, 2011]), the samples described here include sediment deposited during marine isotope Stages 12-10. The Stage 11 interval was targeted because it had a prolonged period of stable interglacial climate and a similar orbital solution to the present and thus has some similarity to the Holocene (e.g., Siegenthaler et al., 2005; Tzedakis et al., 2009). Additional high-resolution age control required for detailed study is not yet available for this core. Should this become available through future postcruise research, more detailed interpretation and expansion of the present palynomorph data set may be warranted.

Methods and materials

Fifty one samples were analyzed for palynology between 91.1 and 181.5 mcd. Samples were processed as described in Crouch et al. (2010) and Prebble et al. (2013) at the GNS Science Palynology Laboratory, Lower Hutt, New Zealand. This laboratory has positive filtered air pressure to minimize contamination during processing. Samples of 5 cm³ were oven dried at 50°C for 24 h and then weighed. A Lycopodium tablet (batch Number 938934) was added to obtain absolute abundance counts (e.g., Mertens et al., 2009). Cold 10% HCl was added to the dried sample to remove carbonates, followed by 24 h in cold 52% HF and a second 10% HCl wash. Samples were placed in an ultrasonic bath for up to 1 min, sieved through 6 µm mesh to remove small particulate material, and then mounted on glass slides in glycerine jelly. All slides and residues are held in the paleontology collections at GNS Science.

All counts were completed on a light microscope at 500× magnification. For most samples two entire slides were examined. For dinoflagellate cysts, taxonomy and nomenclature followed Zonneveld (1997), Rochon et al. (1999), Marret and Zonneveld (2003), Radi et al. (2013), and references therein, with identification to species level where possible. Broken cysts were counted per 0.25 of a specimen. For pollen and spores, identification was mostly to a generic level and followed Pocknall (1981a, 1981b, 1981c), Large and Braggins (1991), and Moar (1993). Some taxa, including the frost-intolerant Ascarina lucida, were grouped into an "undifferentiated angiosperms" category. Division within the podocarps followed Heusser and Van der Geer (1994), with Dacrydium cupressinum, Dacrycarpus dacrydioides, *Halocarpus* sp., and *Phyllocladus* spp. differentiated, whereas *Prumnopitys* spp. and *Podocarpus* spp. were grouped. *Fuscospora fusca* pollen, *Lophozonia menzeisii*, and *Trisyngyne brassii* were separated. *Cyathea* spp. and other trilete and monolete spores were counted outside of the dry land sum. Notwithstanding the exceptions outlined above, nomenclature followed Moar et al. (2011).

Results

Preservation of dinoflagellate cysts and pollen was generally good, although palynomorphs were frequently obscured by the abundant terrestrial organic matter (cuticle and wood fragments) observed in all slides. No oxidation was undertaken during processing in order to reduce loss of sensitive dinoflagellate cysts, but oxidation and other steps to concentrate the pollen fraction are advised for future pollen and spore studies from this interval.

Dinoflagellate cysts

On average, 203 specimens were counted per sample (range = 7-374 specimens). Twenty five taxa or groups of dinoflagellate cysts were identified. Count data are included in Table T1, and relative abundance of selected taxa shown in Figure F1.

Assemblages were dominated by *Brigantedinium* spp., which made up 78% of the assemblage on average (range = 36%–98%). Other common taxa occurring throughout the sequence were *Selenopemphix quanta* and *Selenopemphix nephroides* (*Selenopemphix undulata* Verleye and Louwye was not differentiated from *S. nephroides*). *Bitectatodinium tepikiense, ?Islandium min-utum,* and *Quinquecuspis concreta* were common in a few samples.

Gonyaulacoid cysts were considerably rarer than peridinoid cysts. The most frequently occurring form was *Operculodinium centrocarpum sensu* Wall and Dale, which never exceeded 10% of the assemblage. These proportions are similar to those recorded in surface sediment from the area (Crouch et al., 2010; Prebble et al., 2013).

The dinoflagellate cyst assemblages are likely too uniform to allow detailed paleoenvironmental reconstruction, although this uniformity may itself demonstrate a degree of consistency of the surfacewater masses in the area on glacial–interglacial timescales.

Pollen and spores

On average, 124 pollen and spore grains were counted per sample (range = 2-450 specimens). Sixty seven taxa or groups of pollen and spores were iden-

tified. Count data are included in Table **T2**, and relative abundance of selected taxa is shown in Figure **F1**.

Spores, dominated by *Cyathea*, composed on average 15% (range = 3%–35%) of the pollen and spore assemblages. Gymnosperm pollen was dominated by *Prumnopitys/Podocarpus* species and *Halocarpus*. The most common angiosperm pollen was from Poaceae, Asteraceae, and *F. fusca*.

An alternation of two broad pollen associations was observed. Pollen of Poaceae, *Halocarpus, Phyllocladus,* and Caryophyllaceae/Chenopodiaceae, interpreted to represent an alpine or cooler climate vegetation, alternates with a pollen assemblage dominated by *F. fusca* and *Prumnopitys/Podocarpus,* reflecting warmer/ interglacial conditions.

Acknowledgments

This research used samples and data provided by the Integrated Ocean Drilling Program (IODP). Sample processing was funded by the GNS Global Change through Time (GCT) Programme supported by the New Zealand Government. J. Prebble was supported by a New Zealand Government–funded graduate scholarship. Samples were processed at GNS Science by Sonja Fry and Roger Tremain. We also thank the anonymous reviewer for his or her helpful suggestions.

References

- Crouch, E.M., Mildenhall, D.C., and Neil, H.L., 2010. Distribution of organic-walled marine and terrestrial palynomorphs in surface sediments, offshore eastern New Zealand. *Mar. Geol.*, 270(1–4):235–256. doi:10.1016/ j.margeo.2009.11.004
- Expedition 317 Scientists, 2011. Site U1352. *In* Fulthorpe, C.S., Hoyanagi, K., Blum, P., and the Expedition 317 Scientists, *Proc. IODP*, 317: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.317.104.2011
- Heusser, L.E., and Van de Geer, G., 1994. Direct correlation of terrestrial and marine paleoclimate records from four glacial–interglacial cycles—DSDP Site 594, Southwest Pacific. *Quat. Sci. Rev.*, 13(3):273–282. doi:10.1016/ 0277-3791(94)90030-2
- Large, M.F., and Braggins, J.E., 1991. Spore Atlas of New Zealand Ferns and Fern Allies: Wellington, New Zealand (SIR Publishers).
- Marret, F., de Vernal, A., Benderra, F., and Harland, R., 2001. Late Quaternary sea-surface conditions at DSDP Hole 594 in the southwest Pacific Ocean based on dinoflagellate cyst assemblages. *J. Quat. Sci.*, 16(7):739–751. doi:10.1002/jqs.648

- Marret, F., and Zonneveld, K.A.F., 2003. Atlas of modern organic-walled dinoflagellate cyst distribution. *Rev. Palaeobot. Palynol.*, 125(1–2):1–200. doi:10.1016/S0034-6667(02)00229-4
- Mertens, K.N., Verhoeven, K., Verleye, T., Louwye, S., Amorim, A., Ribeiro, S., Deaf, A.S., Harding, I.C., De Schepper, S., González, C., Kodrans-Nsiah, M., De Vernal, A., Henry, M., Radi, T., Dybkjaer, K., Poulsen, N.E., Feist-Burkhardt, S., Chitolie, J., Heilmann-Clausen, C., Londeix, L., Turon, J.-L., Marret, F., Matthiessen, J., McCarthy, F.M.G., Prasad, V., Pospelova, V., Kyffin Hughes, J.E., Riding, J.B., Rochon, A., Sangiorgi, F., Welters, N., Sinclair, N., Thun, C., Soliman, A., Van Nieuwenhove, N., Vink, A., and Young, M., 2009. Determining the absolute abundance of dinoflagellate cysts in recent marine sediments: the *Lycopodium* marker-grain method put to the test. *Rev. Palaeobot. Palynol.*, 157(3–4):238–252. doi:10.1016/ j.revpalbo.2009.05.004
- Moar, N.T., 1993. Pollen Grains of New Zealand Dicotyledonous Plants: Christchurch, New Zealand (Manaaki Whenua Press).
- Moar, N.T., Wilmshurst, J.M., and McGlone, M.S., 2011. Standardizing names applied to pollen and spores in New Zealand Quaternary palynology. *N. Z. J. Bot.*, 49(2):201–229.
- Prebble, J.G., Crouch, E.M., Carter, L., Cortese, G., Bostock, H., and Neil, H., 2013. An expanded modern dinoflagellate cyst dataset for the Southwest Pacific and Southern Hemisphere with environmental associations. *Mar. Micropaleontol.*, 101:33–48. doi:10.1016/j.marmicro.2013.04.004
- Pocknall, D.T., 1981a. Pollen morphology of *Phyllocladus* L. C. et A. Rich. *N. Z. J. Bot.*, 19(3):259–266. doi:10.1080/ 0028825X.1981.10426378
- Pocknall, D.T., 1981b. Pollen morphology of the New Zealand species of *Dacrydium* Selander, *Podocarpus* L'Heritier, and *Dacrycarpus* Endlicher (Podocarpaceae). N. Z. J. *Bot.*, 19(1):67–95. doi:10.1080/ 0028825X.1981.10425191
- Pocknall, D.T., 1981c. Pollen morphology of the New Zealand species of *Libocedrus* Endlicher (Cupressaceae) and *Agathis* Salisbury (Araucariaceae). *N. Z. J. Bot.*, 19(3):267–272. doi:10.1080/ 0028825X.1981.10426379
- Radi, T., Bonnet, S., Cormier, M.-A., de Vernal, A., Durantou, L., Faubert, É., Head, M.J., Henry, M., Pospelova, V., Rochon, A., and Van Nieuwenhove, N., 2013. Operational taxonomy and (paleo-)autecology of round, brown, spiny dinoflagellate cysts from the Quaternary of high northern latitudes. *Mar. Micropaleontol.*, 98:41– 57. doi:10.1016/j.marmicro.2012.11.001
- Rochon, A., de Vernal, A., Turon, J.L., Mathiessen, J., and Head, M.J., 1999. Distribution of Recent dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in relation to sea-surface parameters. *Am. Assoc. Stratigr. Palynol. Contrib. Ser.*, 35.
- Siegenthaler, U., Stocker, T.F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V., and Jouzel, J., 2005.

Stable carbon cycle–climate relationship during the late Pleistocene. *Science*, 310(5752):1313–1317. doi:10.1126/science.1120130

- Sutton, P.J.H., 2003. The Southland Current: a subantarctic current. *N. Z. J. Mar. Freshwater Res.*, 37(3):645–652. doi:10.1080/00288330.2003.9517195
- Tzedakis, P.C., Raynaud, D., McManus, J.F., Berger, A., Brovkin, V., and Kiefer, T., 2009. Interglacial diversity. *Nat. Geosci.*, 2(11):751–755. doi:10.1038/ngeo660
- Zonneveld, K.A.F., 1997. New species of organic walled dinoflagellate cysts from modern sediments of the Arabian Sea (Indian Ocean). *Rev. Palaeobot. Palynol.*, 97(3– 4):319–337. doi:10.1016/S0034-6667(97)00002-X

Initial receipt: 15 July 2013 Acceptance: 20 March 2014 Publication: 14 May 2014 MS 317-207

Figure F1. A. Smoothed natural gamma radiation (NGR) using a Gaussian low-pass filter (30 passes) (see Fig. **F34** in the "Site U1352" chapter [Expedition 317 Scientists, 2011]). **B.** Relative abundance (%) of selected pollen and spores shown as a proportion of spore and pollen sum. Samples with <100 spore and pollen specimens are denoted by a circle. **C.** Relative abundance (%) of selected dinoflagellate cysts shown as a proportion of dinoflagellate cyst sum. Samples with <100 dinoflagellate cyst specimens are denoted by a circle. **D.** Microfossil bioevents (see Table **T5** in the "Site U1352" chapter [Expedition 317 Scientists, 2011]). **1.** Calcareous nannofossil (CN) last occurrence (LO) *Emiliania huxleyi* (Zone NN21 base); 0.29 Ma (±0.03); 112.82–121.10 mcd. **2.** Benthic foraminifer highest occurrence (HO) *Proxifrons advena;* ~0.40 Ma (±0.2); 130.26–141.14 mcd. **3.** CN HO *Pseudoemiliania lacunosa* (Zone NN20 base); 0.44 Ma (±0.01); 155.99–164.18 mcd. **4.** Planktonic foraminifer (PF) LO *Hirsutella hirsuta;* 0.34 Ma (±0.1); 180.38–189.06 mcd. **5.** PF HO *Globoconella puncticuloides;* 0.5 Ma (±0.2); 189.06–198.87 mcd (recalibrated at Site U1352).

J.G. Prebble et a

														urs , , ,	m (long)		"bəled											
							oikiense		um cyst	шпхорі	Ium	tum	ø	s labyrinti	ntrocarpu ata	areta	nore crun	tarctica	ohroides	anta). IS	anthus	anaceous	is group	ermus 's		r ts	uaternary
		CNIS					linium tep	inium spp	lium nud	ı sp. ium para	ium patu	m? minu	m? cezar sta sp.	haeropsi	linium ce. sis reticul	uspis con	rown - n	ıphix ant	nphix nep	nphix qua	nphix spp s delicatu	s hyperco	s membr	s mirabili	s pachyd s ramosu	s spp.	n clavun dinocys	- pre-Q
Core, section, interval (cm)	Depth (mcd)	Science Laboratory number	Slides counted (<i>N</i>)	Dinoflagellate sum	Spike <i>Lycopodium</i> count	Dry weight (g)	Bitectatod	Brigantedi	Protoperia	Echniaium Impagidin	Impagidin	Islandiniuı	Islandiniuı Lejeunecy:	Nematosp	Operculoa	Quinquect	"Round b	Selenopen	Selenopen	Selenopen	Selenopen Spiniferite.	Spiniferite.	Spiniferite	Spiniferite	Spiniferite. Spiniferite.	r Spiniferite	<i>Votadiniu</i> Unknown	Reworked
317-U1325B- 10H-6, 0.65	91.11	L25044	2	130.5	530	2.99	6	55.5						29	1	12		2	1	9					25	5		
11H-1, 0.68	94.38	L25046	2	108	315	5.26		91						3		1				3	2	2			;	7	1	l
11H-3, 0.65	97.35	L25048	1	246	578	5.63	2	207.5						1			1		1.5	31				1	4	2		1
11H-5, 0.65 11H-6, 0.64	100.33	L25050	2 1.2	291	645	4.07 6.4		282								4	1		о 4	1				Z				I
11H-7, 0.65	102.83	L25052	2	198.5	875	3.24		182		1					1		2		10.5	2								
12H-1, 0.65	103.85	L25053	2	203	795	5.72		192						1	1		17	1	8	1						- 1		
12H-2, 0.65 12H-4, 0.65	105.35	L25054 L25056	2	360	930	3.54 6.27		104 306		4							31	'	о 13	1 3					4	21		
12H-6, 0.65	111.31	L25058	2	323.25	324	5.48		252					1			1	33	1	3	29				2		0.25	i	1
13H-1, 0.65	113.35	L25060	2	207.5	916 1604	3.03		82		4				3	-	2	80		18.5	12			2		3	1		
13H-2, 0.65	114.85	L25061 L25062	2	91.25 7	270	2.45 3.61		6.5		I				1		1 3			0.5	/						0.25		
13H-4, 0.65	117.83	L25063	2	159.5	1851	4.65	3	102		1	5.5		3	2		1			19	19				1	3	3		
13H-5, 0.65	119.33	L25064	2	10.5	202	7.18		8.5							1				1	1						1		
13H-6, 0.65 14H-1, 0.65	120.85	L25065 L25066	2	42.5	1153	5.5Z 5.57		14 31											5.5	4				1			1	
14H-2, 0.65	124.35	L25067	2	105	2844	3.6	1	88					5		1 1	1		1	2	4					2	2		1
14H-3, 0.65	125.85	L25068	2	188	1492	5.6		135		2	1					1		7	10	33	3	1			-	1 1	2	2
14H-4, 0.65 14H-5, 65–67	127.35	L25069 L24628	2	94	2945	3.84 5.73		80.5 82			1			1		I			6.5 3	4	2			1	-	5	1	
15H-1, 65–67	132.35	L24629	2	109.5	324	5.52		89.5								5	8		1	2	-	2					2	2
15H-2, 65–67	133.85	L24630	1	29.75	77	5.93		25.5							1				0.5	1						0.75	1	
15H-3, 65–67 15H-4, 65–67	135.28	L24631 L24632	2	138	356 636	6.95 6.46		104 92.5	1						9	1 10	3		11	5.5 2.5				1.5		1	2	2
15H-5, 65–67	138.15	L24633	3	186	790	5.81		140.5							1.5	11	10		8	3	3 1	1		5		3	2	
15H-6, 65–67	139.65	L24634	2	326	366	6.55		264.5	1.5	2		5.5	1		3.5	2	10		12.25	8.5		2		4.5		0.75	8	3
16H-1, 65–67	141.85	L24635	2	230.5 o	1498	6.78 4.6		160		1.5					3	31.5	7		4	4				4	-	1 0.5	14	1
16H-3, 64–66	144.81	L24637	2	177.75	413	6.17		127.5					1		9	11.5	1		13.5	2.5				5		1 3.75	2	
16H-4, 64–66	146.31	L24638	2	276	992	5.23		201	1					3	0	3.5	7		23.5	0.5				1		1.5	2 5	5
16H-5, 65–67 16H-6, 65, 67	147.82 149.32	L24639	2	165 322	214 200	6.43	1	93.5				1	4		4.5 7		48.5	5	8 11	6.5 26	5			25		1	2	2 1
17H-1, 64–66	151.34	L24641	2	239.75	686	5.91		220.5			0.25	1	-r		, 1		8	2	4	20	5		1	2.5			1	1
17H-2, 65–67	152.85	L24642	2	296.25	468	8.37	14	231			2.5				8	1	3		15.5	16	2			1		1.25	1	1
17H-3, 65–67 17H-4 50 61	154.35 155.08	L24643	1 1	68 309	173 אי	5.84 5.78		54 277		0.5				1		n	5 15		3	1.5 14					1	2	1	1
18H-1, 65–67	156.85	L24645	2	312.5	1640	6.15	2	177.5	1			78		1	9.5	Р 7	15	1	21	12.5	1	1					1	
18H-2, 65–67	158.35	L24646	1	374	459	4.6		135.5				172	р	р	8	1	1		8	44.5				3			1	
18H-3, 64–66	159.84	L24647	2	96.5 324 25	42	9.19 7 8		75 305			0.25				1.5 1		16	2	3	4 8						1		
18H-6, 0.66	162.76	L25070	∠ 1.5	343	1360	7.8 5.8		323			0.25				2		2	S	э 7	о 8		1			2	+		
19H-1, 0.66	166.36	L25072	0.75	302	1000	5.02		297											2	3								
19H-2, 0.65	167.85	L25073	0.5	338.25	926	5.09	143	179							2				1	13						0.25		
1911-3, 0.64 19H-4. 0.64	170.84 170.84	L25074 L25075	0.5	303 349.5	380 480	8.58 6.61	110.5	297 220							2		3		4	14							1	
19H-5, 0.65	172.35	L25076	0.5	14	250	3.23	9	5							-		2											
20H-1, 0.65	175.35	L25077	0.5	313	1088	3.94		302							3				4	4								
20H-2, 0.65 21H-1. 0.64	176.85	L25078 L25079	1.5 1.25	330 305	1548 1642	4.09 4.86		320 297											4 6	ь 1						1		1
21H-2, 0.65	181.85	L25080	0.75	324	572	6.81		290							1			1	12	20								•
		1					1				1																1	

p =present.

Data report: Quaternary dinoflagellate cyst and pollen census counts

Core, section, interval (cm)	Depth (mcd)	GNS Science Laboratory number	Slides counted (N)	Pollen and spore sum	Spike Lycopodium count	Dry weight (g)	<i>Acacia</i> Asteraceae	Bisaccate indeterminate/weathered	Botryococcus Carvobhvllaceae	Caryophyllaceae cf. S <i>tellaria</i> sp.	Casuarina cf. Dactylanthis	Chenopodiaceae	Coprosma Coniaria sp.	Cyathea dealbata type Cyathea smithii type	Dacrycarpus dacrydioides	Dacrydium cupressinum	Dodonea viscosa Enilohum	Ericaceae	Fuscospora fusca	Fuscospora spp.	uonocarpus type Grisleninia	Halocarpus Haloraris true	Hoheria	Leptospermum type	Libocedrus Lonhozonia menzeisii	Lycopodium spp.	Phormium Phyllocladus	Pinus	<i>Plagianthus</i> Poaceae	Prumnopitys/Podocarpus	Pseudowintera	Trisyngyne brassii type	Weinmannia racemosa	Undifferentiated angiosperm miospore Undifferentiated monolete spores Undifferentiated trilete spores
317-U1325B-10H-6, 0.65 11H-1, 0.68 11H-3, 0.65 11H-5, 0.65 11H-6, 0.65 12H-1, 0.65 12H-2, 0.65 12H-4, 0.65 12H-4, 0.65 13H-2, 0.65 13H-3, 0.65 13H-4, 0.65 13H-4, 0.65 13H-5, 0.65 13H-4, 0.65 14H-1, 0.65 14H-3, 0.65 14H-3, 0.65 14H-3, 0.65 14H-3, 0.65 14H-3, 0.65 14H-3, 0.65 14H-4, 0.65 14H-5, 65-67 15H-1, 65-67 15H-2, 65-67 15H-3, 65-67 15H-4, 65-67 15H-5, 65-67 15H-5, 65-67 15H-5, 65-67 16H-2, 64-66 16H-3, 64-66 16H-4, 64-66 16H-4, 64-66 16H-5, 65-67 17H-1, 64-66 17H-2, 65-67 17H-3, 65-67 17H-4, 59-61 18H-2, 0.65 18H-5, 0.65 18H-6, 0.66 19H-1, 0.66 19H-2, 0.65 20H-1, 0.65 20H-2, 0.65 21H-1, 0.64 21H-2, 0.65	91.11 94.38 97.35 100.33 101.82 102.83 103.85 105.35 108.31 111.31 113.35 114.83 117.83 119.33 120.83 122.85 124.35 124.35 124.35 124.35 125.85 127.35 133.85 135.28 135.28 135.28 135.28 136.78 136.78 136.78 136.78 136.78 136.78 136.78 136.78 141.85 141.85 141.85 144.81 146.31 147.82 151.34 152.85 155.08 156.85 159.84 161.25 162.76 166.36 167.85 159.84 170.84 172.35 176.85 180.34 181.85	L25044 L25048 L25048 L25050 L25052 L25053 L25054 L25056 L25058 L25060 L25061 L25062 L25063 L25064 L25065 L25066 L25067 L25068 L25067 L2608 L24628 L24629 L24630 L24631 L24632 L24633 L24634 L24635 L24636 L24637 L24638 L24637 L24638 L24637 L24638 L24634 L24635 L24642 L24643 L24642 L24643 L24644 L24645 L24644 L24645 L24644 L24645 L24647 L25070 L25071 L25072 L25073 L25077 L25078 L25077 L25078 L25079 L25080	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	149.5 24 165 103 109.5 94 106 183 403 450 142.5 29 9 318 12.5 16 106 91 168 96.5 37.5 21.5 15 88.5 101.5 106.5 92.5 169 22 142.5 169 22 142.5 169 22 142.5 169 22 142.5 169 22 142.5 169 22 142.5 169 22 142.5 17.5 60 61 200.5 164.5 179.5 217.5 60 61 200.5 164.5 18.5 18.5 164.5 18.5 164.5 29 143 194 140.5 29 21 165 165 165 165 165 165 165 165 165 16	 530 315 578 1415 1399 875 1023 1023 1537 1427 916 1694 270 1851 201 513 1153 2844 1492 2945 152 324 77 636 790 366 1498 126 413 992 214 856 686 468 173 319 1640 1741 42 2718 2718 2109 1389 2748 250 3017 2545 1864 994 	2.99 5.26 5.63 4.07 6.4 3.24 5.72 3.54 6.27 5.48 3.03 2.45 3.61 4.65 7.18 3.52 5.57 3.6 5.6 3.84 5.73 5.52 5.93 6.46 5.81 6.55 6.78 4.6 5.78 4.6 5.73 6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.4	14 4 17 18 8 17 18 17 18 17 14 5 10 7 11 6 321 1 15 8 22 10 5 6 7.5 9 4 8 6 15 8 20 13 18 26 22 1 8 26 22 1 8 20 18 25 10 12 15 15 16 17 18 20 215	2 1 1.5 7 3.5 3 4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 3 1.5 0.5 0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	1 3 2 2 2 3 1 3 2 1 3 2 1 3 2 5 1 3 2 5 1 3 2 5 1 3 2 5 1 3 2 5 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 2 1 1 1 1 5 4	5 2 1 8 2	2 3 4 1 3 4 2 2 3 4 2 2 3 4 1 4 2 2 3 4 1 3 2 3 2 1 3 2 3 2 1 3 2 3 2 1 3 2 3 4 1 1 3 2 2 3 4 1 3 2 2 3 4 1 3 2 3 4 1 3 2 3 4 1 3 2 3 4 1 3 2 3 2 3 4 1 3 2 3 2 3 4 1 3 2 3 2 3 4 1 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 1 3 2 3 2 3 2 1 3 2 3 2 3 2 1 3 2 3 2 3 2 1 3 2 3 2 1 3 2 3 2 1 3 2 3 2 1 3 2 3 2 1 3 2 3 2 1 3 2 3 2 1 3 2 3 2 1 3 2 3 2 1 3 2 1 3 2 3 2 1 3 2 3 2 1 3 2 1 3 2 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 3 3 4 6 1 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 11 0 0 12 0 0 1 12 0 0 1 13 0 1 1 14 0 0 15 0 1 16 0 0 17 1 1 16 0 0 17 1 1 16 0 0 17 1 1 18 0 0 <td>1 2 1 1 5 13 9 2 5 3 3 2 1 5 1 5 1 5 1 5 1 5 1 2 4 2 2 6 8 4 1 2 5 1 5 5 5 1 5 1 5 1 5 5 5 1 1 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5</td> <td>1</td> <td>3 2 3 2 2 2 1 10 6 2 1 3 1 6 2 2 1 3 1 6 2 2 1 13 2 7</td> <td>9 5 41 4 15 10 14 59 61 51 2 1 9 1 2 6 11 8 4 2 5 22 14 32 15 17 12 48 3 1 5 12 4 2 5 17 12 48 3 1 5 12 5 13 2 6 9 13 3 3 1 5 15 13 2 5 15 13 2 5 15 15 15 15 15 15 15 15 15 15 15 15 1</td> <td>3 2 2 3 1 0.5</td> <td>1 1 1 1 1 1 1 1 2 2 1 3 1 4 2 2 7 2</td> <td>8.5 1 4 1.5 7 2 1.5 7 7 1.5 7 7 1.5 7 1.5 7 7 1.5 7 1.5 7 7 1.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</td> <td>1 1 3 1 1 1 3 2 1 1 1 1 1 1 1 1 1 2 3 2 3 2 3 2 6 1</td> <td>5 1 1 1 2</td> <td>4 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>5 3 2 3 3 3 4 10 5 12 2 1 4 4 1 2 2 1 1 1 4 4 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1</td> <td>25 14 4 4 5 8 11 23 17 20 4 1 3 12 6 6 6 3 8 11 23 17 20 4 1 3 12 6 6 6 20. 5 4 1. 1. 1. 1. 2. 6 6 20. 5 4 1. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 1. 2. 1. 1. 1. 2. 1. 1. 2. 1. 1. 1. 2. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</td> <td>2 1 15 1 1 1 1 1 1 1 1 1 1 1 2 2 5 5 5 2 1 4 25 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>13 10 10 11 11 12 22 23 3 3 18 58 22 24 58 22 24 58 22 24 24 24 24 24 24 24 24 24</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>5 5 1 1 5 5 5 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 1 5 5 1</td> <td>1 5 4 3 7 4 1 1 2 4 1 1 2 4 4 1 1 2 4 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 1 2 4 4 1 1 1 2 4 4 4 1 1 1 2 4 4 4 1 1 1 2 4 4 4 1 1 2 4 4 4 1 1 2 4 4 4 1 1 2 4 4 4 1 1 2 4 4 4 1 1 2 4 4 4 1 1 2 4 4 4 1 1 2 2 4 4 4 1 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>3 1 7 6 3 1 2 2 3 1 1 4 1 1 1</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	1 2 1 1 5 13 9 2 5 3 3 2 1 5 1 5 1 5 1 5 1 5 1 2 4 2 2 6 8 4 1 2 5 1 5 5 5 1 5 1 5 1 5 5 5 1 1 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	1	3 2 3 2 2 2 1 10 6 2 1 3 1 6 2 2 1 3 1 6 2 2 1 13 2 7	9 5 41 4 15 10 14 59 61 51 2 1 9 1 2 6 11 8 4 2 5 22 14 32 15 17 12 48 3 1 5 12 4 2 5 17 12 48 3 1 5 12 5 13 2 6 9 13 3 3 1 5 15 13 2 5 15 13 2 5 15 15 15 15 15 15 15 15 15 15 15 15 1	3 2 2 3 1 0.5	1 1 1 1 1 1 1 1 2 2 1 3 1 4 2 2 7 2	8.5 1 4 1.5 7 2 1.5 7 7 1.5 7 7 1.5 7 1.5 7 7 1.5 7 1.5 7 7 1.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 3 1 1 1 3 2 1 1 1 1 1 1 1 1 1 2 3 2 3 2 3 2 6 1	5 1 1 1 2	4 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	5 3 2 3 3 3 4 10 5 12 2 1 4 4 1 2 2 1 1 1 4 4 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1	25 14 4 4 5 8 11 23 17 20 4 1 3 12 6 6 6 3 8 11 23 17 20 4 1 3 12 6 6 6 20. 5 4 1. 1. 1. 1. 2. 6 6 20. 5 4 1. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 1. 2. 1. 1. 1. 2. 1. 1. 2. 1. 1. 1. 2. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2 1 15 1 1 1 1 1 1 1 1 1 1 1 2 2 5 5 5 2 1 4 25 1 1 1 1 1 1 1 1 1 1 1 1 1	13 10 10 11 11 12 22 23 3 3 18 58 22 24 58 22 24 58 22 24 24 24 24 24 24 24 24 24	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 1 1 5 5 5 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 1 5 5 1	1 5 4 3 7 4 1 1 2 4 1 1 2 4 4 1 1 2 4 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 1 2 4 4 1 1 1 2 4 4 4 1 1 1 2 4 4 4 1 1 1 2 4 4 4 1 1 2 4 4 4 1 1 2 4 4 4 1 1 2 4 4 4 1 1 2 4 4 4 1 1 2 4 4 4 1 1 2 4 4 4 1 1 2 2 4 4 4 1 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	3 1 7 6 3 1 2 2 3 1 1 4 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

