Revised composite depth scales and integration of IODP Sites U1331–U1334 and ODP Sites 1218–1220¹

Thomas Westerhold,² Ursula Röhl,² Roy Wilkens,³ Heiko Pälike,⁴ Mitch Lyle,⁵ Tom Dunkley Jones,⁶ Paul Bown,⁷ Ted Moore,⁸ Shin-ichi Kamikuri,⁹ Gary Acton,¹⁰ Christian Ohneiser,¹¹ Yuhji Yamamoto,¹² Carl Richter,¹³ Peter Fitch,⁶ Howie Scher,¹⁴ Diederik Liebrand,⁴ and the Expedition 320/321 Scientists¹⁵

Chapter contents

Abstract
Introduction1
Material and methods2
Results and discussion
Summary
Acknowledgments8
References
Figures
Tables

¹Westerhold, T., Röhl, U., Wilkens, R., Pälike, H., Lyle, M., Jones, T.D., Bown, P., Moore, T., Kamikuri, S., Acton, G., Ohneiser, C., Yamamoto, Y., Richter, C., Fitch, P., Scher, H., Liebrand, D., and the Expedition 320/321 Scientists, 2012. Revised composite depth scales and integration of IODP Sites U1331–U1334 and ODP Sites 1218–1220. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.).

doi:10.2204/iodp.proc.320321.201.2012

²Center for Marine Environmental Sciences, University of Bremen, 28359 Germany. Correspondence author: twesterhold@marum.de

³ Institute of Geophysics and Planetology, Univ. Hawaii, Honolulu HI 96822, USA.

⁴School of Ocean & Earth Sci., Univ. Southampton S014 3ZH, UK.

⁵Dept. of Oceanography, Texas A&M Univ., College Station TX 77845, USA.

⁶Dept. of Earth Sci. and Engineering, Imperial College, London SW7 2AZ, UK.

⁷ Dept. of Earth Sci., Univ. College, London WC1E 6BT, UK.

⁸Dept. of Geological Sci., Univ. Michigan, Ann Arbor MI 48109, USA.

⁹Univ. Tsukuba, Ibaraki 305-8572, Japan.

¹⁰Dept. of Geology, Univ. California, Davis CA 95616, USA.

¹¹Geology Dept., Univ. Otago, Dunedin, NZ.

¹²Marine and Core Research Center, Kochi Univ., Kochi 783-8502, Japan.

¹³Dept. of Geology and Energy Institute, Univ. Louisiana, Lafayette LA 70504, USA.

¹⁴Dept. of Earth and Ocean Sci., Univ. South Carolina, Columbia SC 29208, USA.

¹⁵Expedition 320/321 Scientists' addresses.

Abstract

To reconstruct the climate history of the equatorial Pacific, one major objective of the Pacific Equatorial Age Transect (PEAT) program is to compile a Cenozoic megasplice that integrates all available bio-, chemo-, and magnetostratigraphic data including key records from Ocean Drilling Program (ODP) Leg 199. In order to do so, extended postcruise refinements of the shipboard composite depth scales and composite records are required. Here, we present a revised depth scale of Integrated Ocean Drilling Program (IODP) Expedition 320 Sites U1331, U1332, U1333, and U1334 as well as Leg 199 Sites 1218, 1219, and 1220. The revised composite records were used to perform site-to-site correlation and integration of Leg 199 and Expedition 320 sites. Based on this decimeterscale correlation, a high-resolution integrated paleomagnetic, calcareous nannofossil, and radiolarian stratigraphy for the equatorial Pacific is established that covers the time from 20 to 40 Ma. This sedimentary compendium from the equatorial Pacific will be the backbone for paleoceanographic reconstructions for the late Paleogene.

Introduction

Integrated Ocean Drilling Program (IODP) Expedition 320/321 (Pacific Equatorial Age Transect [PEAT]) cored eight sites (U1331–U1338) during March–July in 2009 (Fig. F1), recovering an age transect at the Pacific paleoequatorial region from the time of maximum Cenozoic warmth in the Eocene, through initial major glaciations in the Oligocene, to the present (see the "Expedition 320/321 summary" chapter [Expedition 320/321 Scientists, 2010a]; Lyle et al., 2009). The overall aim was to obtain continuous and well-preserved calcareous sediment sections for specific time slices. Of major importance for the objectives of the PEAT expeditions is the assembly of an integrated bio-, chemo-, and magnetostratigraphy at the Equator, hereafter referred to as the Cenozoic megasplice.

In addition to those from the PEAT drill sites, key records for the breakthrough in reconstructing the equatorial climate system of the late Eocene and Oligocene epochs were recovered during Ocean Drilling Program (ODP) Leg 199 (Lyle, Wilson, Janecek, et al., 2002), Site 1218 in particular (Fig. F1). Data from Site 1218 allowed astronomical calibration of the entire Oligocene (Wade and

Pälike, 2004; Coxall et al., 2005; Pälike et al., 2006), but the lack of carbonate in the uppermost Eocene at this site made detailed time control much less robust. Although the paleomagnetic record for these time intervals is of high quality (e.g., Lanci et al., 2004, 2005), global stratigraphic correlation is hindered by the lower mass accumulation rate, the absence of a detailed isotope stratigraphy, and low-resolution biostratigraphic control. In order to facilitate the development of an integrated magneto- and biostratigraphic framework with a stable isotope stratigraphy (necessary to enable global correlation), recovery of Eocene carbonate sediment with a highquality magnetostratigraphy was targeted and successfully retrieved during Expedition 320.

During Expedition 320/321, at least three holes at each site were cored and used to construct composite sections (see the "Methods" chapter [Expedition 320/321 Scientists, 2010b]) in order to assure the recovery of a complete stratigraphic section needed for the assembly of the Cenozoic megasplice. As shown at ODP Leg 199 Sites 1218 and 1219 (Pälike et al., 2005), extensive postcruise work is required to reevaluate the shipboard composite depth stratigraphy and to provide a high-resolution revised meters composite depth (rmcd) scale. In addition, squeezing and stretching of cored intervals is necessary to compensate for depth distortion within individual cores (Hagelberg et al., 1992). To locate hiatuses and condensed intervals, it is essential to do a site-to-site correlation using physical property data (Shackleton et al., 1995, 1999; Shackleton and Crowhurst, 1997; Pälike et al., 2005; Westerhold and Röhl, 2006; Westerhold et al., 2007, 2008). Subsequently, the correlation allows integration of any kind of data from one site to another. A prerequisite for correlation is that decimeter-scale features in the sedimentary record can be correlated between holes and, if possible, between sites.

Both Leg 199 and Expedition 320/321 magnetic susceptibility and gamma ray attenuation (GRA) bulk density data can be correlated over large distances (>1000 km) across the Pacific seafloor (Pälike et al., 2005, 2009). Physical property data, a proxy for calcium carbonate oscillations, at Sites U1331 and U1332 show a remarkable match with those from ODP Site 1220, a site with an excellent magnetostratigraphy. Similarly, Sites U1333 and U1334 can be correlated to Site 1218. Together, these sites provide a coherent and integrated record for the equatorial Pacific and enable study of sedimentation patterns and mass accumulation rates at orbital resolution (Pälike et al., 2009). Here, we present revised composite depth scales and revised spliced composite records for Expedition 320 Sites U1331, U1332, U1333, and U1334 and Leg 199 Sites 1218, 1219, and 1220 (Fig. F1). We also correlate and integrate Leg 199 and Expedition 320 physical property and stratigraphic data (including shipboard and revised biostratigraphic data) to define a complete high-resolution time series for the middle–late Eocene, the entire Oligocene, and the early Miocene.

Material and methods

Magnetic susceptibility and GRA bulk density data from the Whole-Round Multisensor Logger and virtual geomagnetic pole (VGP) data calculated from natural remanent magnetization measurements in a superconducting rock magnetometer collected at Expedition 320 sites (see the "Expedition 320/321 summary" chapter [Expedition 320/321 Scientists, 2010a]) were used to refine depth offsets and to revise the shipboard composite section for Sites U1331, U1332, U1333, and U1334. Similarly, magnetic susceptibility, GRA, and VGP data from Leg 199 sites (Shipboard Scientific Party, 2002a, 2002b, 2002c; Pälike et al., 2005) were used to refine offsets and splices at Sites 1218, 1219, and 1220. Refinements are also based on detailed high-resolution Xray fluorescence (XRF) core scanning data (T. Westerhold et al., unpubl. data; D. Liebrand et al., unpubl. data).

In 2006–2007 new classification and nomenclature for depth scale types were defined for IODP (see IODP Depth Scales Terminology at www.iodp.org/ program-policies/). The new methods and nomenclature for calculating sample depth in a hole has changed to be method specific to ensure that data acquisition, mapping of scales, and construction of composite scales and splices are unequivocal. Because this study integrates data with different depth scale nomenclatures, we will describe in detail the classifications and definitions of depth scales as used here for Leg 199 and Expedition 320. A much more detailed definition of IODP depth scales used during Expedition 320/321 is given in the "Methods" chapter (Expedition 320/321 Scientists, 2010b).

For this study, the most important depth is the core depth below seafloor. This depth for each drilled core is based on the actual length of the recovered core and the drillers depth. It is defined as core depth below seafloor (CSF) for Expedition 320 and meters below seafloor (mbsf) for Leg 199. For consistency, we suggest the use of "mbsf (m CSF-A)" for Expedition 320 sites and "mbsf" for Leg 199 sites. Each point in the core can now be located by adding the offset between sample and core top to the drilling depth below seafloor (DSF) of the top of the core. To construct an initial continuous stratigraphic reference

during the expedition, individual cores were depth shifted to maximize correlation between multiple adjacent holes and spliced together into a composite record. The new shipboard depth scale of the spliced section is defined as the composite core depth below seafloor (CCSF-A) for Expedition 320 and meters composite depth (mcd) for Leg 199. For consistency we suggest the use of "mcd (m CCSF-A)" for Expedition 320 and "mcd" for Leg 199. The addendum "-A" to Expedition 320 cores to the CCSF denotes that individual cores were shifted vertically without permitting expansion or contraction of the relative depth scale within any core.

Postcruise, we evaluated and revised the shipboard spliced composite section, establishing new core offsets and refined the shipboard splice if necessary. Intervals having significant disturbance or distortion were not used for composite section construction. For construction of the revised records, we tried to maintain those tie points given in the shipboard composite, where possible. Changes in the position of tie points in the revised spliced record have been highlighted as bold letters in the splice tables of each site. The new refined depth scale is defined as the revised composite core depth below seafloor (revised CCSF-A) for Expedition 320 and revised meters composite depth (rmcd) for Leg 199. For consistency we suggest the use of "rmcd (m revised CCSF-A)" for Expedition 320 and "rmcd" for Leg 199. Correction to the rmcd depth scales of Leg 199 (Pälike et al., 2005) are indicated by the corrected revised meters composite depth (corrected rmcd).

After assembling the new composite records, we adjusted sedimentary sections outside the revised composite splice by squeezing and stretching to conform to the overall rmcd and rmcd (m revised CCSF-A) depth scales. To indicate this adjustment we added the prefix "adjusted" to the rmcd (m revised CCSF-A) and the corrected rmcd if necessary. This mapping procedure allows data and samples located outside the spliced composite record to be placed in the new revised composite depth scale at each site.

Finally, to integrate all available data we correlated magnetic susceptibility, GRA, and VGP data between sites using the time series analysis program Analy-Series (Paillard et al., 1996). All tables and cleaned composite records of magnetic susceptibility and GRA data from Sites 1218, 1219, 1220, U1331, U1332, U1333, and U1334 and VGP data from Sites 1218, 1219, and 1220 are available online in the WDC-MARE PANGAEA database (doi.pangaea.de/ 10.1594/PANGAEA.757215).

Composite core images were created as an additional aid in site-to-site correlation using an approach modified from that described in Wilkens et al. (2009). Individual section images collected by the shipboard Section Half Imaging Logger (SHIL) during Expedition 320 were initially assigned a core depth below seafloor (CSF-A) depth range based on site coring data. Section images were then mapped onto a single image of an entire core. Core image depth ranges were then shifted by constant offsets to revised CCSF-A depths based on the revised composite splice for each site (e.g., Table T1). The final step in creating a single image of the entire revised composite section involved another mapping of depth intervals from individual core images defined in site splice tables (e.g., Table T2) onto a composite image. As the resolution of the original SHIL images is on the order of 50 µm, each mapping step included image interpolation to a coarser scale-250 µm for the individual core images and 1 mm for the composite image. Leg 199 was the first use of an earlier version of the shipboard digital imaging system (DIS), and unfamiliarity with its operation led to inconsistent image exposures. Rather than attempt to correct the DIS images, we elected to use the digitized core photos available online at the IODP data website to construct composite site images. Images of each section of each core were digitally cut from the core images and then combined as described above. As the core photo images were much lower resolution (nominally 2.5 mm), there was no need to downsize while mapping. A slight unevenness in lighting of the core photos (darker around the perimeter) produced an artifact when cutting and combining section images from digitized core photos into total core images. Apparent 1.5 m wavelength banding is particularly evident in lighter colored sediments. An example can be seen in the composite image of Site 1218 between 150 and 200 corrected rmcd.

Results and discussion

Revised composite depth scales

Revised composite depth scales for Expedition 320 Sites U1331–U1334

Site U1331

The shipboard splice for Site U1331 (see the **"Site U1331**" chapter [Expedition 320/321 Scientists, 2010c]) was extensively revised (Figs. F2, F3, F4; Tables T1, T2, T3). The weak magnetic susceptibility and GRA signals in the siliceous ooze dominated the Eocene section of Site U1331, and frequent turbidites hampered straightforward correlation. The exact position and extent of turbidites is given in Table T4. The most problematic section is located around 35–40 rmcd (m revised CCSF-A), where a turbidite occurs that shows different thicknesses in each cored hole. This could be due to coring disturbance at the

top of the Hole U1331C or strong thickness variations of the turbidite itself. We improved the splice to 175 rmcd (m revised CCSF-A), resulting in a growth factor of 1.12 (Fig. F4). Detailed correlation showed that the shipboard declination record of Cores 320-U1331B-4H and 9H had to be flipped by 180°.

Site U1332

The shipboard splice for Site U1332 (see the **"Site U1332**" chapter [Expedition 320/321 Scientists, 2010d]) had to be moderately revised (Figs. F5, F6, F7; Tables T5, T6, T7). Good VGP, magnetic susceptibility, and GRA data enable improvement of the shipboard splice to 141 m revised CCSF-A, resulting in a growth factor of 1.09 (Fig. F7). At around 83 rmcd (m revised CCSF-A), a small gap in the data (Fig. F5) marks an uncertain tie point in the splice. However, detailed correlation to Sites U1331 and 1220 suggests no major break at the base of Chron C15n in the composite record of Site U1332 (see Fig. F23, 50–100 corrected rmcd).

Site U1333

The splice at Site U1333 (see the "Site U1333" chapter [Expedition 320/321 Scientists, 2010e]) needed no change in the upper 48 rmcd (m revised CCSF-A) (Figs. F8, F9, F10; Tables T8, T9, T10). Pronounced cycles in magnetic susceptibility and GRA data in this interval allowed the construction of a robust shipboard splice. Correlation to Sites U1334 and 1218 revealed an incorrect splice interval in the shipboard splice at Site U1333 around 48 rmcd (m revised CCSF-A). Readjustments of the splice reveal a 2 m gap in the shipboard splice, which has been eliminated by the new revised splice. Although the magnetic susceptibility signal is low between 82 and 132 rmcd (m revised CCSF-A), small distinct peaks can be correlated and then verified by VGP data (Fig. F8, 50–100 m). A minor change in the shipboard splice is required at 126 rmcd (m revised CCSF-A). We then follow the tie points of the shipboard splice to 151 rmcd (m revised CCSF-A) and maintain the complete uninterrupted splice to 156.44 rmcd (m revised CCSF-A). Below this depth, the splice can only be appended because there is no clear overlap between cores from adjacent holes. Between 180 and 200 rmcd (m revised CCSF-A), a composite record could be established mainly based on the VGP and magnetic susceptibility data. The new splice has a growth factor of 1.14 (Fig. F10).

Site U1334

At Site U1334 (see the **"Site U1334**" chapter [Expedition 320/321 Scientists, 2010f]), the shipboard splice

was verified to 210 rmcd (m revised CCSF-A) (Figs. F11, F12, F13; Tables T11, T12, T13). Because of geochemical alteration of the magnetic susceptibility record, splicing was uncertain between 150 and 270 rmcd (m revised CCSF-A). Through extensive usage of augmented magnetic susceptibility, GRA, VGP, core images, and especially postcruise XRF core scanning data (T. Westerhold et al., unpubl. data; D. Liebrand et al., unpubl. data), we secured a complete composite record across the geochemically altered interval to 271 rmcd (m revised CCSF-A). Below this depth, we follow the shipboard splice with a major change in the interval from 297 to 306 rmcd (m revised CCSF-A). This change is important because it covers the interval before the Eocene/Oligocene boundary, which is characterized by strong fluctuations in calcium carbonate content (see the "Expedition 320/321 summary" chapter [Expedition 320/321 Scientists, 2010a]). Splicing this interval was a challenge because extended core barrel drilling produced strong biscuiting of the sediment. A complete splice was assembled for Site U1334 to 341 rmcd (m revised CCSF-A) with a growth factor of 1.16 (Fig. F13).

Revised composite depth scales for Leg 199 Sites 1218–1220

Before we accomplished a site-to-site correlation of Expedition 320 and Leg 199 sites, it was necessary to recheck the revised splices of Sites 1218 and 1219 (Pälike et al., 2005) and the shipboard splice of Site 1220 (Shipboard Scientific Party, 2002c).

Site 1218

At Site 1218 (Figs. F14, F15, F16; Tables T14, T15, T16), the revised splice had to be corrected below 210 corrected rmcd. Most of these adjustments benefited from detailed comparison to Site U1334. Prior to Expedition 320, Site 1218 was the only stratigraphically expanded and complete site from the equatorial Pacific covering the late Eocene and early Oligocene. The revisions are mainly in intervals with very high calcium carbonate content and low magnetic susceptibility. A complete splice can be constructed to 287 corrected rmcd, adding a growth factor of 1.11 (Fig. F16).

Site 1219

Changes to the splice of Site 1219 (Figs. F17, F18; Tables T17, T18) are very small, and thus we suggest continuing to use the table by Pälike et al. (2005) to construct a composite record.

Site 1220

In contrast, the shipboard splice of Site 1220 had to be corrected below 71 rmcd (Figs. F19, F20, F21; Ta-

bles **T19**, **T20**, **T21**). Compared to the shipboard splice the changes are minor, a few decimeters at most. The new revised composite record reached 136 rmcd and provided a growth factor of 1.10 (Fig. **F21**). Please note that Site 1220 was not part of the Pälike et al. (2005) splice revision. Therefore, this study is the first revision of the shipboard splice of Site 1220 and is indicated by the depth scale nomenclature revised meters composite depth (rmcd).

Cleaned magnetic susceptibility, GRA, and VGP data sets

For reference, we provide cleaned magnetic susceptibility and GRA density data sets for every spliced composite section of Sites U1331 (Table T22), U1332 (Table T23), U1333 (Table T24), and U1334 (Table T25). Cleaned magnetic susceptibility, GRA density, and VGP latitude data are compiled for Sites 1218 (Table T26), 1219 (Table T27), and 1220 (Table T28) (data sets are also available in "Supplementary material"). To obtain cleaned data we removed outliers and data collected close to end caps and cut out disturbed intervals (e.g., core tops). These data sets have been used for the subsequent site-to-site correlation and squeezing and stretching of core sections outside the spliced records. The mapping pairs from the squeezing and stretching can be used to position samples taken outside the splice to be placed into the new revised composite depth scales.

Site-to-site correlation

More than 800 dated paleomagnetic reversals are available for all PEAT sites (Pälike et al., 2009) and thus provide the perfect framework for the detailed intercalibration of all major fossil groups and refinement of magnetic polarity chrons, particularly in the Eocene. However, the shipboard preliminary paleomagnetic data from Expedition 320 used here have to be considered incomplete. To improve the quality of the magnetostratigraphy, stepwise demagnetization of U-channel samples accompanied by rock magnetic studies are being done as part of the postcruise science. High-quality and high-resolution paleomagnetic records covering the late Eocene, Oligocene, and early Miocene are available from Leg 199 (Pälike et al., 2005; Lanci et al., 2004, 2005). The sites from both expeditions presented here are ideal for the establishment of a fully integrated calibrated bio-, chemo-, and magnetostratigraphy for the early Eocene-early Miocene time interval for the equatorial Pacific. A prerequisite for successful integration of the stratigraphic data and subsequent assembly of the proposed equatorial Pacific Cenozoic megasplice is the correlation of decimeter-scale features in the sedimentary record from the drilled sites from both Leg 199 and Expedition 320/321 (Pälike et al., 2005, 2009). We follow the successful approach of previous deep-sea drilling expeditions (Shackleton et al., 1995, 1999; Shackleton and Crowhurst, 1997; Pälike et al., 2005; Westerhold and Röhl, 2006; Westerhold et al., 2007, 2008) by using physical property data (magnetic susceptibility and GRA) and XRF core scanning data to correlate site to site. In doing so we can transfer, for example, the high-resolution biostratigraphic data from one site to intervals of another site where, due to poor preservation, datums are not well constrained. Furthermore, we can locate hiatuses and condensed intervals that otherwise would not have been identified. For correlation, we first identified a reference site that has the most complete record and high sedimentation rates compared to the other sites. Then we correlated the other sites to the reference site by selecting tie points. We applied a linear interpolation of depth between tie points. Tie points are listed in Tables T29 and T30.

Correlation between Sites 1218, 1219, U1333, and U1334

Physical property data at Sites 1218, 1219, U1333, and U1334 show a remarkable match (Fig. F22) even though the sites are between 375 and 1100 km apart. All sites have an excellent magnetostratigraphy, and thus comparison of the VGP data indicate the high quality of correlation. We have chosen Site 1218 to be the reference site because Site 1218 is the most complete down to the Eocene/Oligocene boundary and has no geochemically altered interval, as found in the mid-Oligocene of Site U1334. The integrated record spans the interval from Chron C1 (Pleistocene) back to Chron C20 (middle Eocene) covering >40 m.y. of equatorial Pacific history. We correlated Sites 1219, U1333, and U1334 to Site 1218 (Table T29), providing a coherent and integrated record for the equatorial Pacific.

The correlation shows full coverage of magnetostratigraphy back to the base of early Oligocene Chron C11n.2n using Sites 1218 and U1334 alone. All four sites cover the interval from the base of Chron C6n to the base of C10n.2n (~20 to ~28 Ma) with a complete magnetostratigraphy. In the time span older than Chron C12n (~30.8 Ma), the magnetostratigraphic boundary positions can be transferred from Site U1333 to Sites 1218, 1219, and U1334 when necessary. The complete magnetostratigraphic record reaches back to the top of middle Eocene Chron C19n (~41 Ma).

Sedimentation rates in the section from 0 to 20 Ma at all sites are highest at Site 1218 (a low 0.35 cm/k.y.). Sites 1219 and U1333 have even lower sedimentation rates in that interval and a hiatus between the

Pliocene-Pleistocene and the lower Miocene (Pälike et al., 2009). All these sediments consist of clays deposited near or below the calcium carbonate compensation depth. In the upper 40 m of the integrated stratigraphy (Fig. F22), correlations are based on the VGP data because magnetic susceptibility and GRA data do not provide patterns that can be matched with certainty. Below that interval, matching of different records was straightforward. From 20 Ma to the Eocene/Oligocene boundary, Site U1334 has the highest sedimentation rate (1.6 cm/k.y.) of all the sites (Site 1218 = 1.3 cm/k.y., Site 1219 = 1.2 cm/k.y., and Site U1333 = 1.1 cm/k.y.). In the upper Eocene section, sedimentation rates are slightly lower because of the decreased carbonate content (see the "Expedition 320/321 summary" chapter [Expedition 320/321 Scientists, 2010a]). Two short condensed intervals were discovered: one at Site 1219 between 112 and 114 corrected rmcd and one at Site U1333 between 137 and 140 rmcd (m revised CCSF-A) (Fig. F22).

Correlation between Sites 1220, U1331, and U1332

Physical property data from Sites 1220, U1331, and U1332 show a remarkable match (Fig. F23), being only 120 to 270 km apart. Sites 1220 and U1332 have an excellent magnetostratigraphy from Chrons C6n to C20n (Table T31). Site U1331 sediment covers Chrons C11–C20n. We chose Site 1220 to be the reference site because it is the most complete for this interval. The correlation with Sites U1331 and U1332 (Table T30) provides a coherent and integrated record.

All three sites show rather low sedimentation rates (~0.5 cm/k.y.) compared to the shallower sites (1218, 1219, U1333, and U1334) (Fig. F24). The upper Eocene sediments are dominated by siliceous ooze and almost entirely lack carbonate sediment. The dominance of siliceous ooze leads to low variability in the GRA density; hence, correlation could only be achieved using magnetic susceptibility data. The comparison of the VGP data suggests a very good match of the three sites in the Eocene. The increased sedimentation rate at Site U1331 in the Eocene is an artifact of the frequent turbidites in the record. The correlation of the Oligocene and Miocene section is straightforward to 28 rmcd (Fig. F23). Above this, Site 1220 can only be matched to Site U1332 using VGP data.

Radiolarians in the tropical Pacific

Cenozoic radiolarian stratigraphy of the tropics was largely developed in sediments from the Pacific

Ocean; however, it did not begin to reach its full potential until Leg 199 studies were completed by Nigrini et al. (2006). This work, combined with that of earlier studies (e.g., Moore, 1995), sought to tie radiolarian datums to a paleomagnetic timescale that could be tuned to orbital frequencies. These studies also greatly expanded the number of first and last occurrences of species that were recorded and calibrated. This effort took advantage of the many important taxonomic and stratigraphic papers that have appeared over the last 50 years, in particular those written by such authors as William Riedel, Annika Sanfilippo, Catherine Nigrini, David Johnson, and Jean Westberg, who focused much of their efforts on material collected in the tropical Pacific.

Expedition 320 was very successful in recovering Pacific Cenozoic sections deposited on or very close to the paleoequator. Two of these drilled sites (U1333 and U1334) recovered what appear to be complete sections across the Eocene/Oligocene boundary. Only one other section, from Site 1218, has been recovered in the tropical Pacific that clearly shows the "two-step" shift in lithology and geochemistry at this boundary that we believe marks a truly complete stratigraphic section (Coxall et al., 2005). Using the stratigraphic datums defined primarily in Nigrini et al. (2006), we were able to provide very detailed stratigraphic control on the sections recovered during Expedition 320 (Tables T32, T33, T34, T35, T36, T37, T38). While producing this detailed integrated stratigraphy of the equatorial Pacific, we have had to deal with some complicated stratigraphic problems that still need to be fully addressed.

Reworking and mixing of older specimens into younger sections

Finding reworked older radiolarian specimens in younger sediments plagued the development of a reliable radiolarian stratigraphy in its early days. Such reworking was commonly found in piston cores and gravity cores from the tropical Pacific (e.g., Riedel and Funnell, 1964), and it was not until the Deep Sea Drilling Project (DSDP) and ODP started to collect thick pelagic sections that we were able to begin to develop a reliable sequence of first and last appearances of species. In studying these sections, several important observations have been made: (1) the reworked older forms were never older than the age of the crust on which the sediment lay, (2) reworking of older forms is most common in the upper parts of recovered sections, and (3) reworking of older forms from the Eocene is commonly found around the Eocene/Oligocene boundary and is often associated with a hiatus at this boundary (Moore et al., 1978;

Moore, 1995). Because many of the biostratigraphic datums near the uppermost part of the Eocene are last appearances, the dependability of such datums are highly suspect and their calibration to a time-scale is still open to question.

Taxonomic definition

Nigrini et al. (2006) described 12 new species, several of which are important in defining the Eocene/Oligocene boundary and in refining the stratigraphy of the Oligocene. These new species require the test of time and usage to make sure their definitions adequately encompass the characteristics and variability of their form. Similarly, other species may need modification of their descriptions in order to more consistently define biostratigraphic datums. Only a small percentage of the total number of radiolarian species present at any given time has been identified as being stratigraphically useful (Riedel and Sanfilippo, 1978). Further work in this area will continue to expand the resolution possible using radiolarian stratigraphy.

Preservation

Radiolarians are generally well preserved in the tropical Pacific; however, they are subject to dissolution, particularly just above basement and at levels of chert formation. Aside from these two problems, Eocene radiolarians are particularly robust (Moore, 1969; Lazarus et al., 2009), and, with their very diverse fauna, usually provide good stratigraphic control. Preservation in the Oligocene of the sites studied, however, is often only moderate and sometimes quite poor. It has yet to be determined if this variation in Oligocene preservation is site specific or time specific.

The radiolarian stratigraphic data presented herein represent a work in progress. Additional samples are being studied and the detailed site-to-site correlation that has been developed by the work presented here will be used to further refine the positions of individual biostratigraphic datums. Some of this more detailed work is shown in the radiolarian data tables (denoted by "Revised" in the column labeled "Source"). There remain many apparent small discrepancies in the levels of individual datums at different sites. It is yet to be determined whether these discrepancies are a result of reworking of radiolarians above or below the true level of the datum, a failure to recognize the presence of a rare species near its first or last appearance, a true diachrony of the datum, or a minor miscorrelation of the lithologic records themselves. Until these discrepancies can be studied further, we use the age assigned each of the datums as published by Nigrini et al. (2006).

Calcareous nannofossils

Shipboard calcareous nannofossil biostratigraphy provided critical age control during Leg 199 and Expedition 320, allowing for the identification of paleomagnetic reversals and the development of composite sections, especially within the successions of carbonate-rich Oligocene-Miocene nannofossil oozes. The new correlations presented here enable more refined assessments of the timing and controls on the expression of calcareous nannofossil datums in the equatorial Pacific. The presented tables of nannofossil datums (Tables T39, T40, T41, T42, T43, T44, T45) are a compilation of data from both shipboard and postcruise biostratigraphy from Expedition 320 and Leg 199 (Shipboard Scientific Party, 2002a, 2002b, 2002c; Pälike et al., 2006; see also "Biostratigraphy" in each site chapter [Expedition 320/321 Scientists, 2010c, 2010d, 2010e, 2010f]). Calibration ages for calcareous nannofossil datums from the Leg 199 timescale were made consistent with those of Expedition 320 (bottom [B] Sphenolithus ciperoensis at 27.1 Ma rather than 28.1 Ma; B *Sphenolithus distentus* at 30.0 Ma rather than 30.4 Ma; top [T] Reticulofenestra umbilicus at 32.0 Ma rather than 31.7 Ma), as were taxonomic concepts (use of Coccolithus formosus rather than Ericsonia formosa). These changes do not imply that the datum ages used during Expedition 320 are better calibrated than those used during Leg 199; revisions were undertaken prior to Expedition 320 partly based on postcruise work from Leg 199 material (e.g., Blaj et al., 2009). For example, during Expedition 320 it became clear that the Leg 199 biostratigraphic datum age of 28.1 Ma for B S. ciperoensis produced a better fit within the integrated stratigraphy than the revised age provided by Blaj et al. (2009) used during Expedition 320/321 of 27.1 Ma. These discrepancies are likely due to differences in taxonomic concept and boundaries within the intergrading Oligocene sphenolith lineage Sphenolithus predistentus-distentusciperoensis. Ongoing postcruise taxonomic and biostratigraphic work will address these issues.

Placing the existing calcareous nannofossil biostratigraphy of Leg 199 and Expedition 320 within the framework of these new stratigraphic correlations clearly shows that the accurate placement of calcareous nannofossil events is compromised by the occurrence of intervals with low or no carbonate deposition during the middle to late Eocene. A clear example of this is the placement of the latest Eocene event T *Discoaster saipanensis* (see Tables T42, T43, T44). This event is well constrained at Site 1218 at 244.52 \pm 0.06 corrected rmcd and at Site U1334 at 301.33 \pm 0.53 rmcd (m revised CCSF-A) (equal to 243.29 \pm 0.45 corrected rmcd [Site 1218]). But this

event is poorly constrained at Site 1219 within the interval 190.06 ± 13.83 rmcd (equal to 254.66 ± 12.03 corrected rmcd [Site 1218]), although the identified range is fully consistent with the stratigraphy of Sites 1218 and U1334. Where there is continuous carbonate sedimentation and reasonable nannofossil preservation, most of the nannofossil datums correlate among these equatorial Pacific sites within the accuracy of the current sampling resolution (e.g., top of R. umbilicus placed at 221.42, 222.97, 224.44, and 220.99 corrected rmcd [Site 1218] at Sites 1218, 1219, U1333, and U1334, respectively). Notable exceptions to this are the placement of the base and top of S. ciperoensis and the top of S. distentus. The base of S. ciperoensis is relatively consistent between Sites 1218, 1219, and U1333 at ~144 corrected rmcd (Site 1218), but S. ciperoensis is first noted at low abundance ~20 m lower at Site U1334 at ~164 corrected rmcd (Site 1218). This suggests the initial evolutionary appearance of S. ciperoensis is followed by a period of low abundance in the equatorial Pacific and then a marked abundance increase that is picked as the "B S. ciperoensis" in the majority of these study sites. The top of S. ciperoensis is also depressed by ~20 m at Site U1333 (~130 corrected rmcd [Site 1218]) with respect to the other sites (~111 corrected rmcd [Site 1218] at Sites 1218, 1219, and U1334); again, this may be due to low abundances at the top of this species' range. The top of S. distentus is placed ~10 m higher in the biostratigraphy of Leg 199 than that of Expedition 320 (~130 corrected rmcd [Site 1218] at Sites 1218 and 1219 versus ~140 corrected rmcd [Site 1218] at Sites U1333 and U1334). This most likely reflects slightly different taxonomic concepts applied by different workers or simply the difficulty in applying consistent taxonomy in a complex species plexus undergoing gradual change, as we observe within this lineage of Oligocene sphenoliths. Improving the taxonomic definition of these sphenolith lineages and determining the abundance patterns and timing of their origin and extinction will be the focus of ongoing detailed biostratigraphic studies.

Reworked calcareous nannofossils were identified in limited intervals of the Oligocene at the top of Site U1331, associated with suspected gravity flow deposits. These intervals were easily identified during shipboard biostratigraphy, and reworking of older nannofossils into younger strata is not thought to have affected the placement of nannofossil datums. The stratigraphic framework presented here is an excellent basis for ongoing detailed assessments of late Eocene–Oligocene nannofossil bioevents, with a particular focus on the improved age resolution and the identification of genuine diachrony across the eastern equatorial Pacific. The integration of both radiolarian and calcareous nannofossil biostratigraphy proved essential for shipboard operations during both Leg 199 and Expedition 320, which both spanned the major lithologic transition from Eocene radiolarian oozes to Oligocene–Miocene calcareous nannofossil oozes. Continued biostratigraphic work on material recovered during these two expeditions and Expedition 321 should produce a greatly improved integrated tropical Pacific radiolarian-nannofossil biostratigraphy of the last ~50 m.y.

Summary

We revised the shipboard composite sections of Sites U1331, U1332, U1333, and U1334 from Expedition 320 and Sites 1218, 1219, and 1220 from Leg 199 using shipboard magnetic susceptibility data, GRA bulk density data, natural remanent magnetization data, and core images. Drilling distortions in cores are compensated by differential squeezing and stretching of parallel cores outside the splice at all investigated sites. This is of major importance because we want to integrate all available data from all drilled holes. A detailed site-to-site correlation was performed. We linked the revised composite sections of Sites U1333, U1334, and 1219 to the corrected rmcd of Site 1218. Sites U1331 and U1332 were correlated to the revised composite record of Site 1220. We chose Sites 1218 and 1220 as reference sites because of their stratigraphic completeness. The decimeterscale correlation was used to integrate and transfer paleomagnetic and biostratigraphic information. Our integrated stratigraphic framework presented here can be used as the backbone for the late Eocene, Oligocene, and early Miocene intervals of the equatorial Pacific Cenozoic megasplice. Because of the presence of clear paleomagnetic records and decimeter-scale cyclic features, the investigated sediments are exceptionally suitable for further working on cyclostratigraphy and orbital tuning. The integration of Expedition 320 and Leg 199 data has the potential to substantially improve the existing geological timescale (Gradstein et al., 2004) and even extend the astronomically calibrated timescale (Lourens et al., 2004; Pälike et al., 2006) far back into the Eocene.

Acknowledgments

This manuscript benefitted from reviews by David J. Mallinson and Lucas J. Lourens. This research used samples and/or data provided by the Integrated Ocean Drilling Program (IODP). Funding for this research was provided by the Deutsche Forschungsgemeinschaft, the DFG-Leibniz Center for Surface Pro-

cess and Climate Studies at the University of Potsdam, and by the National Science Foundation (NSF) through the US Science Support Program. We are indebted to the IODP Bremen Core Repository (BCR) and Gulf Coast Repository (GCR) staff for core handling.

References

- Blaj, T., Backman, J., and Raffi, I., 2009. Late Eocene to Oligocene preservation history and biochronology of calcareous nannofossils from paleo-equatorial Pacific Ocean sediments. *Riv. Ital. Paleontol. Stratigr.*, 115(1):67– 84.
- Cande, S.C., and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. *J. Geophys. Res., [Solid Earth],* 100(B4):6093–6095. doi:10.1029/94JB03098
- Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H., and Backman, J., 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. *Nature (London, U. K.)*, 433(7021):53–57. doi:10.1038/nature03135
- Expedition 320/321 Scientists, 2010a. Expedition 320/321 summary. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.320321.101.2010
- Expedition 320/321 Scientists, 2010b. Methods. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/ 321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ iodp.proc.320321.102.2010
- Expedition 320/321 Scientists, 2010c. Site U1331. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ iodp.proc.320321.103.2010
- Expedition 320/321 Scientists, 2010d. Site U1332. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ iodp.proc.320321.104.2010
- Expedition 320/321 Scientists, 2010e. Site U1333. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ iodp.proc.320321.105.2010
- Expedition 320/321 Scientists, 2010f. Site U1334. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/ 321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ iodp.proc.320321.106.2010

- Gradstein, F.M., Ogg, J.G., and Smith, A.**8Ž**(Eds.), 2004. *A Geologic Time Scale 2004:* Cambridge (Cambridge Univ. Press). doi:10.2277/0521786738
- Hagelberg, T., Shackleton, N., Pisias, N., and Shipboard Scientific Party, 1992. Development of composite depth sections for Sites 844 through 854. *In* Mayer, L., Pisias, N., Janecek, T., et al., *Proc. ODP, Init. Repts.*, 138: College Station, TX (Ocean Drilling Program), 67–77. doi:10.2973/odp.proc.ir.138.105.1992
- Lanci, L., Parés, J.M., Channell, J.E.T., and Kent, D.V., 2004. Miocene magnetostratigraphy from equatorial Pacific sediments (ODP Site 1218, Leg 199). *Earth Planet. Sci. Lett.*, 226(1–2):207–224. doi:10.1016/ j.epsl.2004.07.025
- Lanci, L., Parés, J.M., Channell, J.E.T., and Kent, D.V., 2005. Oligocene magnetostratigraphy from equatorial Pacific sediments (ODP Sites 1218 and 1219, Leg 199). *Earth Planet. Sci. Lett.*, 237(3–4):617–634. doi:10.1016/ j.epsl.2005.07.004
- Lazarus, D.B, Kotrc, B., Wulf, G., and Schmidt, D.N., 2009. Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability. *Proc. Natl. Acad. Sci. U. S. A.*, 106(23):9333–9338. doi:10.1073/pnas.0812979106
- Lourens, L., Hilgen, F., Shackleton, N.J., Laskar, J., and Wilson, D., 2004. The Neogene period. *In* Gradstein, F.M., Ogg, J.G., and Smith, A.8Ž(Eds.), *A Geologic Time Scale 2004:* Cambridge (Cambridge Univ. Press), 409–440. doi:10.2277/0521786738
- Lyle, M., Raffi, I., Pälike, H., Nishi, H., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, 2009. Pacific Equatorial Transect. *IODP Prel. Rept.*, 321. doi:10.2204/iodp.pr.321.2009
- Lyle, M., Wilson, P.A., Janecek, T.R., et al., 2002. Proc. ODP, Init. Repts., 199: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.199.2002
- Moore, T.C., Jr., 1969. Radiolaria: change in skeletal weight and resistance to solution. *Geol. Soc. Am. Bull.*, 80(10):2103–2108. doi:10.1130/ 0016-7606(1969)80[2103:RCISWA]2.0.CO;2
- Moore, T.C., Jr., 1995. Radiolarian stratigraphy, Leg 138. *In* Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), *Proc. ODP, Sci. Results*, 138: College Station, TX (Ocean Drilling Program), 191– 232. doi:10.2973/odp.proc.sr.138.111.1995
- Moore, T.C., Jr., van Andel, T.H., Sancetta, C., and Pisias, N., 1978. Cenozoic hiatuses in the pelagic sediments. *Micropaleontology*, 24(2):113–138. doi:10.2307/1485246
- Nigrini, C., Sanfilippo, A., and Moore, T.C., Jr., 2006. Cenozoic radiolarian biostratigraphy: a magnetobiostratigraphic chronology of Cenozoic sequences from ODP Sites 1218, 1219, and 1220, equatorial Pacific. *In* Wilson, P.A., Lyle, M., and Firth, J.V. (Eds.), *Proc. ODP, Sci. Results*, 199: College Station, TX (Ocean Drilling Program), 1–76. doi:10.2973/odp.proc.sr.199.225.2006
- Paillard, D., Labeyrie, L., and Yiou, P., 1996. Macintosh program performs time-series analysis. *Eos, Trans. Am. Geophys. Union*, 77(39):379. doi:10.1029/96EO00259
- Pälike, H., Moore, T., Backman, J., Raffi, I., Lanci, L., Parés, J.M., and Janecek, T., 2005. Integrated stratigraphic cor-

relation and improved composite depth scales for ODP Sites 1218 and 1219. *In* Wilson, P.A., Lyle, M., and Firth, J.V. (Eds.), *Proc. ODP, Sci. Results*, 199: College Station, TX (Ocean Drilling Program), 1–41. doi:10.2973/ odp.proc.sr.199.213.2005

Pälike, H., Nishi, H., Lyle, M., Raffi, I., Klaus, A., Gamage, K., and the Expedition 320/321 Scientists, 2009. Pacific Equatorial Age Transect. *IODP Prel. Rept.*, 320. doi:10.2204/iodp.pr.320.2009

Pälike, H., Norris, R.D., Herrle, J.O., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackleton, N.J., Tripati, A.K., and Wade, B.S., 2006. The heartbeat of the Oligocene climate system. *Science*, 314(5807):1894–1898. doi:10.1126/science.1133822

Riedel, W.R., and Funnell, B.M., 1964. Tertiary sediment cores and microfossils from the Pacific Ocean floor. *Q. J. Geol. Soc. London*, 120:305–368.

Riedel, W.R., and Sanfilippo, A., 1978. Stratigraphy and evolution of tropical Cenozoic radiolarians. *Micropaleontology*, 24(1):61–96. doi:10.2307/1485420

Shackleton, N.J., and Crowhurst, S., 1997. Sediment fluxes based on an orbitally tuned time scale 5 Ma to 14 Ma, Site 926. *In* Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), *Proc. ODP, Sci. Results*, 154: College Station, TX (Ocean Drilling Program), 69–82. doi:10.2973/odp.proc.sr.154.102.1997

Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N.G., and Schneider, D.A., 1995. A new late Neogene time scale: application to Leg 138 sites. *In* Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), *Proc. ODP, Sci. Results*, 138: College Station, TX (Ocean Drilling Program), 73–101. doi:10.2973/ odp.proc.sr.138.106.1995

Shackleton, N.J., Crowhurst, S.J., Weedon, G.P., and Laskar, J., 1999. Astronomical calibration of Oligocene–Miocene time. *In* Shackleton N.J., McCave, I.N., and Graham, P.W. (Eds.), *Astronomical (Milankovitch) Calibration* of the Geological Time-Scale. Philos. Trans. R. Soc., Ser. A., 357(1757):1907–1929. doi:10.1098/rsta.1999.0407

Shipboard Scientific Party, 2002a. Site 1218. *In* Lyle, M., Wilson, P.A., Janecek, T.R., et al., *Proc. ODP, Init. Repts.*, 199: College Station, TX (Ocean Drilling Program), 1– 125. doi:10.2973/odp.proc.ir.199.111.2002 Shipboard Scientific Party, 2002b. Site 1219. In Lyle, M., Wilson, P.A., Janecek, T.R., et al., Proc. ODP, Init. Repts., 199: College Station, TX (Ocean Drilling Program), 1– 128. doi:10.2973/odp.proc.ir.199.112.2002

Shipboard Scientific Party, 2002c. Site 1220. In Lyle, M., Wilson, P.A., Janecek, T.R., et al., Proc. ODP, Init. Repts., 199: College Station, TX (Ocean Drilling Program), 1– 92. doi:10.2973/odp.proc.ir.199.113.2002

Wade, B.S., and Pälike, H., 2004. Oligocene climate dynamics. *Paleoceanography*, 19(4)PA4019. doi:10.1029/ 2004PA001042

Westerhold, T., and Röhl, U., 2006. Data report: revised composite depth records for Shatsky Rise Sites 1209, 1210, and 1211. *In* Bralower, T.J., Premoli Silva, I., and Malone, M.J. (Eds.), *Proc. ODP, Sci. Results*, 198: College Station, TX (Ocean Drilling Program), 1–26. doi:10.2973/odp.proc.sr.198.122.2006

Westerhold, T., Röhl, U., Laskar, J., Raffi, I., Bowles, J., Lourens, L.J., and Zachos, J.C., 2007. On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. *Paleoceanography*, 22:PA2201–PA2219. doi:10.1029/2006PA001322

Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., and Evans, H.F., 2008. Astronomical calibration of the Paleocene time. *Palaeogeogr.*, *Palaeoclimatol., Palaeoecol.*, 257(4):377–403. doi:10.1016/j.palaeo.2007.09.016

Wilkens, R.H., Niklis, N., and Frazer, M., 2009. Data report: digital core images as data: an example from IODP Expedition 303. *In* Channell, J.E.T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C.A., Malone, M.J., and the Expedition 303/306 Scientists, *Proc. IODP*, 303/306: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ iodp.proc.303306.201.2009

Initial receipt: 3 February 2011 Acceptance: 29 June 2011 Publication: 2 January 2012 MS 320321-201

Figure F1. Location map of sites used in this study (red stars) and additional IODP/ODP/DSDP sites. F.Z. = fracture zone (modified from Pälike et al., 2009).

Water depth (km)

Figure F2. Site U1331 paleomagnetic and physical property data on rmcd (m revised CCSF-A) scale. Splice map and spliced core image on the left side, turbidite location on the right side. VGP = virtual geomagnetic pole, GRA = gamma ray attenuation. Red = Hole U1331A, blue = Hole U1331B, green = Hole U1331C, black = composite record. Composite record line is discontinuous because of distortion and data gaps. DI = drilled interval. (Continued on next three pages.)

Figure F2 (continued).

Depth (rmcd [m revised CCSF-A])

T. Westerhold et al.

16

Figure F4. Growth factor calculated by plotting revised composite depth (rmcd [m revised CCSF-A]) against drilled core depth (CSF-A), Site U1331.

Figure F5. Site U1332 paleomagnetic and physical property data on rmcd (m revised CCSF-A) scale. Splice map and spliced core image on the left side. VGP = virtual geomagnetic pole, GRA = gamma ray attenuation. Red = Hole U1332A, blue = Hole U1332B, green = Hole U1332C, black = composite record. Composite record line is discontinuous because of distortion and data gaps. (Continued on next two pages.)

Figure F5 (continued).

Figure F6. Digital line scan images, Site U1332. Red lines are the tops of splice sections and yellow lines are the bases of those sections (tie to next section). Images were depth registered by R. Wilkens using IGOR-Pro software.

Depth (rmcd [m revised CCSF-A])

T. Westerhold et al.

Figure F7. Growth factor calculated by plotting revised composite depth (rmcd [m revised CCSF-A]) against drilled core depth (CSF-A), Site U1332.

T. Westerhold et al.

Figure F8. Site U1333 paleomagnetic and physical property data on rmcd (m revised CCSF-A) scale. Splice map and spliced core image on the left side. VGP = virtual geomagnetic pole, GRA = gamma ray attenuation. Red = Hole U1333A, blue = Hole U1333B, green = Hole U1333C, black = composite record. Composite record line is discontinuous because of distortion and data gaps. (Continued on next three pages.)

Figure F8 (continued).

Depth (rmcd [m revised CCSF-A])

Proc. IODP | Volume 320/321

Revised composite depth scales

Figure F10. Growth factor calculated by plotting revised composite depth (rmcd [m revised CCSF-A]) against drilled core depth (CSF-A), Site U1333.

Figure F11. Site U1334 paleomagnetic and physical property data on rmcd (m revised CCSF-A) scale. Splice map and spliced core image on the left side. VGP = virtual geomagnetic pole, GRA = gamma ray attenuation. Red = Hole U1334A, blue = Hole U1334B, green = Hole U1334C, black = composite record. Composite record line is discontinuous because of distortion and data gaps. (Continued on next six pages.)

Figure F11 (continued).

Figure F12. Digital line scan images, Site U1334. Red lines are the tops of splice sections and yellow lines are the bases of those sections (tie to next section). Images were depth registered by R. Wilkens using IGOR-Pro software.

Depth (rmcd [m revised CCSF-A])

0

T. Westerhold et al.

36
Figure F13. Growth factor calculated by plotting revised composite depth (rmcd [m revised CCSF-A]) against drilled core depth (CSF-A), Site U1334.

Figure F14. Site 1218 paleomagnetic and physical property data on corrected rmcd scale. Splice map and spliced core image on the left side. VGP = virtual geomagnetic pole, GRA = gamma ray attenuation. Red = Hole 1218A, blue = Hole 1218B, green = Hole 1218C, black = composite record. Composite record line is discontinuous because of distortion and data gaps. (Continued on next five pages.)

Proc. IODP | Volume 320/321

Figure F14 (continued).

Depth (rmcd)

Figure F16. Growth factor calculated by plotting revised composite depth (rmcd) against drilled core depth (mbsf), Site 1218.

Figure F17. Site 1219 paleomagnetic and physical property data on rmcd scale. Splice map and spliced core image on the left side. VGP = virtual geomagnetic pole, GRA = gamma ray attenuation. Red = Hole 1219A, blue = Hole 1219B, black = composite record. Composite record line is discontinuous because of distortion and data gaps. (Continued on next four pages.)

Figure F17 (continued).

Depth (rmcd)

51

Figure F19. Site 1220 paleomagnetic and physical property data on rmcd scale. Splice map and spliced core image on the left side. VGP = virtual geomagnetic pole, GRA = gamma ray attenuation. Red = Hole 1220A, blue = Hole 1220B, green = Hole 1220C, black = composite record. Composite record line is discontinuous because of distortion and data gaps. (Continued on next three pages.)

Figure F19 (continued).

Depth (rmcd)

T. Westerhold et al.

Figure F21. Growth factor calculated by plotting revised composite depth (rmcd) against drilled core depth (mbsf), Site 1220.

Figure F22. Site-to-site correlation of paleomagnetic and physical property data from Sites 1218, 1219, U1333, and U1334 on corrected rmcd scale of Site 1218. VGP = virtual geomagnetic pole, GRA = gamma ray attenuation. Black = Site 1218, green = Site 1219, blue = Site U1333, red = Site U1334. Composite record lines are discontinuous because of distortion and data gaps. (Continued on next five pages.)

Figure F22 (continued).

Figure F23. Site-to-site correlation of paleomagnetic and physical property data from Sites 1220, U1331, and U1332 on rmcd scale of Site 1220. VGP = virtual geomagnetic pole, GRA = gamma ray attenuation. Black = Site 1220, blue = Site U1331, red = Site U1332. Composite record lines are discontinuous because of distortion and data gaps. (Continued on next two pages.)

Figure F23 (continued).

Figure F24. Estimate of linear sedimentation rates for Sites 1218, 1219, 1220, U1331, U1332, U1333, and U1334 by plotting paleomagnetic chronostratigraphic markers from Table **T31**.

Table T1. Revised shipboard composite and corrected composite depths, Site U1331.

	Depth (mbsf	Offset	Top depth (rmcd [m revised					
Core	[m CSF-A])	(m)	CCSF-A])					
320-U1331A-								
1H	0.00	0.00	0.00					
2H	5 20	1 50	6 70					
311	14 70	2 91	17.61					
4H	24 20	3.26	27.46					
511	33 70	5 25	38.95					
6H	43.20	7 16	50.36					
71	52 70	0.81	62 51					
211 8H	62.20	10 77	72.97					
он	71 70	11 36	83.06					
104	81 20	10.99	03.00					
111	90.70	12.00	102.00					
124	100.20	16.12	103.72					
1211	100.20	17.07	127 67					
1 J II	109.70	10.00	127.07					
140	119.20	19.09	130.29					
100	128.70	20.90	149.00					
10/	138.20	19.01	156.01					
177	147.00	20.40	177.70					
187	157.30	20.40	177.70					
19X	160.50	20.40	180.90					
20X	167.00	20.40	187.40					
21X	1/6./0	20.40	197.10					
22X	186.40	20.40	206.80					
320-U133	1B-							
1H	0.00	0.85	0.85					
2H	10.10	0.27	10.37					
3H	19.60	2.98	22.58					
4H	29.10	3.75	32.85					
5H	38.60	5.51	44.11					
6H	48.10	7.09	55.19					
7H	57.60	8.31	65.91					
8H	67.10	10.79	77.89					
9H	76.60	12.45	89.05					
10H	86.10	13.20	99.30					
11H	95.60	15.03	110.63					
12H	105.10	16.54	121.64					
13H	114.60	17.73	132.33					
14H	124.10	19.60	143.70					
15H	133.60	20.30	153.90					
16H	143.10	22.85	165.95					
17H	152.60	24.93	177.53					
18X	156.60	24.93	181.53					
320-U133	1C-							
1H	0.00	0.54	0.54					
2H	9.50	2.12	11.62					
3H	19.00	2.40	21.40					
4H	28.50	2.50	31.00					
6H	59.00	11.46	70.46					
8H	92.50	14.39	106.89					
10H	102.50	15.09	117.59					
12H	129.00	19.43	148.43					
13H	138 50	20.50	159.00					
14H	148.00	21 25	169.25					
16H	177.00	21.25	198 25					
17H	184.00	27.25	206 75					
1711	101.00	22.15	200.75					

Bold = changes to ship CCSF, italics = ship splice, but CCSF shifted according to new offsets higher in the section.

Table T2. Revised splice tie points, Site U1331.

	De	oth			De	pth
Hole, core, section, interval (cm)	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])		Hole, core, section, interval (cm)	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])
320-				320-		
U1331A-1H-3, 103	4.00	4.00	Tie to	U1331C-1H-3, 46	3.46	4.00
U1331C-1H-5, 94	6.95	7.48	Tie to	U1331A-2H-1, 79	5.98	7.48
U1331A-2H-5, 79	12.00	13.50	Tie to	U1331C-2H-2, 38	11.38	13.50
U1331C-2H-6, 25	17.25	19.37	Tie to	U1331A-3H-2, 26	16.46	19.37
U1331A-3H-6, 3	22.23	25.14	Tie to	U1331B-3H-2, 106	22.16	25.14
U1331B-3H-5, 18	25.78	28.76	Tie to	U1331A-4H-1, 130	25.50	28.76
U1331A-4H-6, 108	32.78	36.04	Tie to	U1331B-4H-3, 19	32.29	36.04
U1331B-4H-6, 137	39.47	41.72	Tie to	U1331A-5H-2, 127	36.47	41.72
U1331A-5H-5, 120	40.90	46.15	Tie to	U1331B-5H-2, 54	40.64	46.15
U1331B-5H-7, 66	47.76	53.27	Tie to	U1331A-6H-2, 141	46.11	53.27
U1331A-6H-6, 38	51.08	59.31	Tie to	U1331B-6H-3, 5	51.15	58.24
U1331B-6H-6, 116	56.76	63.85	Tie to	U1331A-7H-1, 134	54.04	63.85
U1331A-7H-7, 31	62.01	71.82	Tie to	U1331C-6H-1, 136	60.36	71.82
U1331C-6H-4, 108	64.58	76.04	Tie to	U1331A-8H-3, 7	65.27	76.04
U1331A-8H-5, 94	69.14	79.91	Tie to	U1331B-8H-2, 52	69.12	79.91
U1331B-8H-6, 50	75.10	85.89	Tie to	U1331A-9H-2, 133	74.53	85.89
U1331A-9H-6, 4	79.24	90.60	Tie to	U1331B-9H-2, 4	78.15	90.60
U1331B-9H-3, 147	81.07	93.52	Tie to	U1331A-10H-1, 144	82.64	93.52
U1331A-10H-5, 148	88.68	99.56	Tie to	U1331B-10H-1, 26	86.36	99.56
U1331B-10H-6, 122	94.82	108.02	Tie to	U1331A-11H-4, 42	94.80	108.02
U1331A-11H-6, 150	98.88	112.10	Tie to	U1331B-11H-2, 147	97.07	112.10
U1331B-11H-7, 23	104.83	119.86	Tie to	U1331A-12H-3, 53	103.73	119.86
U1331A-12H-5, 132	107.52	123.62	Tie to	U1331B-12H-2, 48	107.08	123.62
U1331B-12H-6, 69	113.29	129.83	Tie to	U1331A-13H-2, 66	111.86	129.83
U1331A-13H-6, 86	118.06	136.03	Tie to	U1331B-13H-3, 70	118.30	136.03
U1331B-13H-6, 91	123.01	140.74	Tie to	U1331A-14H-2, 98	121.65	140.74
U1331A-14H-5, 148	126.65	145.74	Tie to	U1331B-14H-2, 54	126.14	145.74
U1331B-14H-5, 55	130.65	150.25	Tie to	U1331C-12H-2, 32	130.82	150.25
U1331C-12H-7, 7	137.87	157.30	Tie to	U1331A-15H-6, 14	136.34	157.30
U1331A-15H-7, 52	138.22	159.18	Tie to	U1331B-15H-4, 78	138.88	159.18
U1331B-15H-5, 148	141.08	161.38	Tie to	U1331C-13H-2, 88	140.88	161.38
U1331C-13H-6, 56	146.56	167.06	Tie to	U1331B-16H-1, 111	144.21	167.06
U1331B-16H-3, 63	146.73	169.58	Tie to	U1331A-17X-2, 8	149.18	169.58

Bold = new splice tie point, italics = old splice tie points with new revised composite depth.

Table T3. Mapping pairs for adjusting cores to the rmcd (m revised CCSF-A) splice, Site U1331. (Continued on next page.)

	Depth		Depth								
Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])	Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])	Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])
320-11133	14-			121	100.20	116 33	116.20	6H	49 48	56 57	56 32
1H	0.01	0.01	0.01	12日	100.20	117.55	117.50	6H	51 15	58.24	58.24
1H	4.00	4.00	4.00	12H	101.50	119.86	119.86	6H	56.76	63.85	63.85
1H	5.19	5.19	5.19	12H	107.49	123.62	123.62	6H	58.25	65.34	65.34
2H	5.20	6.70	6.70	12H	108.25	124.38	124.47	7H	57.60	65.91	66.33
2H	5.98	7.48	7.48	12H	109.70	125.83	126.17	7H	59.00	67.31	67.73
2H	12.00	13.50	13.50	12H	110.20	126.33	126.67	7H	59.68	67.99	68.02
2H	12.90	14.40	14.45	13H	109.70	127.67	127.39	7H	60.62	68.93	68.90
2H	13.90	15.40	15.49	13H	110.15	128.12	127.84	7H	63.46	71.77	71.77
2H	14.49	15.99	16.05	13H	111.86	129.83	129.83	7H	65.01	73.32	73.53
2H	15.07	16.51	16.57	13H	118.06	136.03	136.03	7H	66.11	74.42	74.45
3H	14.70	17.61	17.61	13H	119.63	137.60	137.60	7H	66.63	74.94	74.94
3H	15.06	17.97	18.08	14H	119.20	138.29	138.29	7H	67.21	75.52	75.52
3H	15.86	18.77	18.83	14H	121.65	140.74	140.74	8H	67.10	77.89	77.80
3H	16.26	19.17	19.12	14H	126.65	145.74	145.74	8H	68.10	78.89	78.80
3H	16.46	19.37	19.37	14H	127.55	146.64	146.53	8H	69.12	79.91	/9.91
3H	22.23	25.14	25.14	14H	128.17	147.26	147.19	8H	75.10	83.89	83.89
211	23.00	26.39	26.60	14H	129.28	148.37	148.37	പ	76.60	07.90 80.05	07.90 80.05
3H	24.04	20.93	20.99	15H	128.70	149.66	149.04	9H QH	70.00	09.03 00.60	09.03 00.60
4H	24.32	27.20	27.50	150	129.00	150.04	152.17	9H	81.07	93.52	93.52
4H	25 50	28.76	28.76	151	136.30	153.32	15730	9H	82.66	95.52	95.52
4H	32.78	36.04	36.04	15H	138.22	159.18	159.18	9H	83.05	95.50	95.48
4H	34.19	37.45	37.45	15H	138.60	159.56	159.56	9H	83.53	95.98	95.83
5H	33.70	38.95	38.95	16X	138.20	158.01	158.01	9H	84.98	97.43	97.19
5H	36.47	41.72	41.72	16X	139.30	159.11	159.11	9H	86.08	98.53	98.17
5H	40.90	46.15	46.15	17X	147.60	168.00	168.00	9H	86.65	99.10	98.74
5H	41.65	46.90	46.94	17X	157.06	177.46	177.46	10H	86.10	99.30	99.30
5H	43.02	48.27	48.43	18X	157.30	177.70	177.70	10H	86.36	99.56	99.56
6H	43.20	50.36	50.42	18X	157.55	177.95	177.95	10H	94.82	108.02	108.02
6H	43.85	51.01	51.07	19X	160.50	180.90	180.90	10H	95.07	108.27	108.22
6H	45.69	52.85	52.85	19X	162.41	182.81	182.81	10H	96.14	109.34	109.29
6H	46.11	53.27	53.27	320-U133 ⁻	IB-			11H	95.60	110.63	110.64
6H	51.08	58.24	58.24	1H	0.00	0.85	0.85	11H	96.13	111.16	111.17
6H	51.60	58.76	58.87	1H	5.62	6.47	6.57	11H 11U	96.69	111./2	111.82
6H	51.80	58.96	59.09	1H	6.68	7.53	7.59	1111	97.07	112.10	112.10
0П 2Ц	52.41	59.57	59.57	1H	7.62	8.47	8.53	110	104.63	179.00	119.00
0H 7U	52.03	59.01 62.51	59.95 62.51	1H	9.35	10.20	10.19	110	105.47	120.30	120.50
711 7H	54.04	63.85	63.85	1H	9.74	10.59	10.58	12H	105.70	120.75	120.01
7H	62 01	71 82	71 82	1H	10.06	10.91	10.90	12H	107.08	123.62	123.62
7H	62.65	72.46	72.46	2H	10.10	10.37	10.14	12H	113.29	129.83	129.83
8H	62.20	72.97	72.77	2H	11.77	12.04	12.27	12H	115.02	131.56	131.56
8H	63.76	74.53	74.33	2H	12.85	13.12	13.30	13H	114.60	132.33	132.81
8H	63.86	74.63	74.43	2H	15.18	15.45	15.49	13H	115.27	133.00	133.48
8H	65.27	76.04	76.04	2H	18.30	18.57	18.48	13H	115.69	135.29	135.36
8H	69.14	79.91	79.91	2H 2U	20.13	20.40	20.31	13H	118.30	136.03	136.03
8H	72.22	82.99	82.99	21	19.00	22.30	22.00	13H	123.01	140.74	140.74
9H	71.70	83.06	83.05	21	21.01	23.99	24.09	13H	124.41	142.14	142.14
9H	72.95	84.31	84.30	311	21.01	24.79	24.02	14H	124.10	143.70	143.51
9H	73.81	85.17	85.14	3H	25.78	28.76	28.76	14H	124.25	143.85	143.66
9H	74.08	85.44	85.34	3H	26.35	29.33	29.42	14H	124.68	144.28	144.07
9H	74.53	85.89	85.89	3H	28.76	31.74	31.72	14H	125.58	145.18	145.14
9H	79.24	90.60	90.60	3H	29.54	32.52	32.50	14H	126.14	145.74	145.74
9H	81.66	93.02	93.02	4H	29.10	32.85	32.85	14H	130.65	150.25	150.25
10H	81.20	92.08	92.08	4H	32.29	36.04	36.04	14H	132.41	152.01	152.01
10H	ŏZ.64	93.5Z	93.5Z	4H	37.97	41.72	41.72	14H 14U	133.43	155.05	155.1/
10H	88.68	99.56	99.56 100.50	4H	39.17	42.92	42.92	14H	134.03	153.63	153.63
10H	07.75 00 22	100.83	100.58	5H	38.60	44.11	43.81	13H 15H	120.00	155.90	155.90
	90.22	101.10	100.00	5H	39.48	44.99	44.69	15日 15日	1 30.00 1 1 1 00	157.10 161 20	157.10 161 20
10H	90.33 QA 70	101.41	101.10	5H	40.15	45.66	45.66	15H 15H	141.00	163 02	163.00
110 110	90.70 Q1 Q0	103.92	103.92	5H	40.64	46.15	46.15	13F1 16H	143.02	165.92	165.92
11H	27.00 QR RR	112 10	112 10	5H	47.76	53.27	53.27	16H	144 21	167.06	167.06
11H	99 57	112.10	112.10	5H	48.10	53.61	53.61	16H	146 73	169 58	169 58
1 1 1 1	27.JZ	112./4	112./4	6H	48.10	55.19	54.94	1011	1-0.75	107.50	107.50

Table T3 (continued).

		Depth				Depth				Depth	
Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])	Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])	Co	(mbsf re [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])
16H	149.24	172.09	172.36	3H	23.18	25.58	25.24	10H	107.59	122.68	122.68
16H	149.21	174.14	174.21	3H	24.84	27.24	27.00	10H	108.19	123.28	123.28
16H	149.86	174.79	174.60	3H	25.47	27.87	27.77	10H	110.54	125.63	125.48
16H	152.50	175.35	175.16	3H	25.94	28.34	28.15	10H	110.98	126.07	125.92
17H	152.60	177.53	177.53	3H	26.31	28.71	28.63	12H	129.00	148.43	148.43
17H	156.88	181.81	181.81	3H	27.02	29.42	29.42	12H	129.10	148.53	148.35
320-11133	16-			3H	27.35	29.75	29.89	12H	130.82	150.25	150.25
1H	0.00	0.54	0.54	3H	28.25	30.65	30.70	12H	137.87	157.30	157.30
1H	3 46	4 00	4 00	3H	28.77	31.17	31.22	12H	139.05	158.48	158.48
1H	6 94	7 4 8	7 4 8	4H	28.50	31.00	31.00	13H	138.50	159.00	159.00
1H	9.46	10.00	10.00	4H	36.34	38.84	38.96	13H	140.88	161.38	161.38
2H	9.50	11.62	11 54	4H	38.49	40.99	40.99	13H	146.56	167.06	167.06
2H	10.08	12 20	12 12	6H	59.00	70.46	70.46	13H	148.59	169.09	169.09
2H	10.00	12.20	12.12	6H	60.36	71.82	71.82	14H	148.00	169.25	168.92
2H	11 25	13 37	13 32	6H	64.58	76.04	76.04	14H	151.29	172.54	172.21
2H	11 38	13.57	13.52	6H	65.63	77.09	76.94	14H	149.60	170.85	170.20
2H	17.25	1937	1937	6H	67.62	79.08	78.82	14H	154.32	175.57	175.17
2H	17.23	19.95	20.00	6H	68.25	79.71	79.29	14H	155.52	176.77	176.20
2H	18.23	20.35	20.00	6H	68.25	79.71	79.29	14H	156.94	178.19	177.62
211	18.46	20.55	20.50	6H	68.54	80.00	79.58	16H	177.00	198.25	198.25
2H	18.98	21 10	21.21	8H	92.50	106.89	106.89	16H	185.46	206.71	206.71
211	19.50	21.10	21.21	8H	95.48	109.87	109.87	17H	184.00	206.75	206.75
31	19.02	21.04	20.92	8H	101.71	116.10	116.10	17H	189.53	212.28	212.28
3H	20.34	27.40	22.22	10H	102.50	117.59	117.59				
3H	22.05	24.45	24.09	10H	106.08	121.17	121.17	Italics = spl	ice tie points.		

 Table T4. Turbidites in Site U1331 revised splice.

Top of t	urbidite			Base of	Base of turbidite		
Depth				Depth		Thickness	
Hole, core, section, interval (cm)	(mbsf [m CSF-A])	(rmcd [m revised) CCSF-A])		Hole, core, section, interval (cm)	(mbsf [m CSF-A]]	(rmcd [m revised) CCSF-A])	(rmcd [m revised CCSF-A])
320-				320-			
U1331A-3H-4, 52 U1331A-4H-6, 106 U1331A-6H-4, 86 U1331A-6H-5, 148 U1331B-6H-5, 148 U1331B-8H-2, 66 U1331A-9H-4, 138 U1331A-10H-3, 38 U1331B-10H-1, 50 U1331B-10H-5, 85 U1331A-11H-6, 149 U1331B-11H-4, 10 U1331B-11H-4, 10 U1331B-12H-4, 86 U1331B-12H-2, 70 U1331A-13H-3, 22	19.72 32.76 48.56 50.68 52.20 69.26 77.58 84.58 86.60 92.95 98.87 100.20 101.22 105.56 107.30 112.92	22.63 36.02 55.72 57.84 59.29 80.05 88.94 95.46 99.80 106.15 112.09 115.23 116.25 121.69 123.84 130.89	Down to Down to	U1331A-3H-4, 72.5 U1331B-4H-5, 8 U1331A-6H-4, 143 U1331B-6H-4, 22 U1331B-6H-4, 32 U1331B-6H-4, 32 U1331B-9H-4, 124 U1331A-10H-3, 44 U1331B-10H-2, 10 U1331A-11H-4, 43 U1331B-11H-3, 23 U1331B-11H-5, 40 U1331B-12H-5, 22 U1331B-12H-2, 90 U1331A-13H-3, 35	19.92 36.68 49.13 51.98 52.92 73.16 82.34 84.64 87.70 94.84 98.83 100.89 102.00 106.42 107.50 113.05	22.83 38.94 56.29 59.07 60.01 83.95 94.79 95.52 100.90 108.03 113.86 115.92 117.03 122.55 124.04 131.05	0.21 2.92 0.57 1.23 0.72 3.90 5.85 0.06 1.10 1.88 1.77 0.69 0.78 0.86 0.20 0.16
U1331A-13H-5, 36 U1331B-14H-3, 40 U1331B-14H-4, 40	116.06 127.50 129.00	134.03 147.10 148.60	Down to Down to Down to	U1331A-13H-6, 45 U1331B-14H-3, 55 U1331B-14H-4, 51	117.65 127.65 129.13	135.62 147.25 148.73	1.59 0.15 0.13

Table T5. Revised shipboard composite and corrected composite depths, Site U1332.

Core	Depth (mbsf [m_CSE-A])	Offset	Top depth (rmcd [m revised CCSE-A1)
	[()	
320-U133	2A-		
1H	0.00	0.00	0.00
2H	3.90	0.31	4.21
3H	13.40	0.65	14.05
4H	22.90	2.55	25.45
5H	32.40	5.05	37.45
6H	41.90	5.50	47.40
7H	51.40	7.75	59.15
8H	60.90	/.35	68.25
9H	70.40	2.63	/3.03
10H	79.90	3.30	83.20
1111	89.40	5.58	92.78
120	98.90	0.22	105.12
1 4 1	106.40	0.0Z	117.02
147	117.30	12.50	120.00
164	125.90	13.50	137.40
107	133.30	12.50	149.00
1/7	144.30	12.50	158.00
IOA	130.40	15.50	105.90
320-U133	2B-		
1H	0.00	0.15	0.15
2H	2.10	0.65	2.75
3H	11.60	2.15	13.75
4H	19.60	4.15	23.75
SH	29.10	4.25	33.35
6H	38.60	7.05	45.65
/H	48.10	10.35	58.45
011	57.60	10.05	07.03
90 100	76.60	5.75	70.03 97 13
111	86.10	5.80	02.13
121	00.10 01.10	9.07	100.37
13H	100.60	10.48	111 08
14X	110 10	11 48	121 58
15X	116.10	16.05	132.15
16X	124.60	18.08	142.68
17X	134.30	18.08	152.38
18X	143.90	15.90	159.80
220 111 22	20		
520-0155. 1ロ	20-	0.04	0.04
1 TI 2 LI	0.00	0.04	7.00
311	17.00	0.75	17.25
4H	26.50	235	28.85
511	36.00	4 1 5	40.15
6H	45.50	3.35	48.85
7H	49.50	6.80	56.30
8H	59.00	7.51	66.51
9H	66.00	0.95	66.95
10H	75.50	0.55	76.05
11H	85.00	3.43	88.43
12H	94.50	4.84	99.34
13H	104.00	5.60	109.60
14X	113.50	7.96	121.46
15X	118.00	10.76	128.76
16X	127.60	11.82	139.42
17X	137.20	11.82	149.02
18X	146.90	13.82	160.72

Bold = changes to ship CCSF, italics = ship splice, but CCSF shifted according to new offsets higher up in the section.

Table T6. Revised splice tie points, Site U1332.

	Depth				De	oth
Hole, core, section, interval (cm)	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])		Hole, core, section, interval (cm)	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])
320-				320-		
U1332A-1H-2, 110	2.60	2.60	Tie to	U1332C-1H-2, 104	2.55	2.60
U1332C-1H-5, 61	6.60	6.65	Tie to	U1332A-2H-2, 94	6.34	6.65
U1332A-2H-5, 125	11.15	11.46	Tie to	U1332C-2H-3, 47	10.97	11.46
U1332C-2H-6, 146	16.46	16.95	Tie to	U1332A-3H-2, 138	16.28	16.95
U1332A-3H-5, 38	19.78	20.43	Tie to	U1332C-3H-3, 18	20.18	20.43
U1332C-3H-7, 5	26.05	26.30	Tie to	U1332A-4H-1, 85	23.75	26.30
U1332A-4H-5, 20	29.10	31.65	Tie to	U1332C-4H-2, 130	29.30	31.65
U1332C-4H-5, 45	32.95	35.30	Tie to	U1332B-5H-2, 45	31.05	35.30
U1332B-5H-5, 151	36.60	40.85	Tie to	U1332C-5H-1, 70	36.70	40.85
U1332C-5H-6, 103	44.53	48.68	Tie to	U1332A-6H-1, 128	43.18	48.68
U1332A-6H-7, 30	51.20	56.70	Tie to	U1332C-7H-1, 40	49.90	56.70
U1332C-7H-7, 27	58.77	65.57	Tie to	U1332B-7H-5, 112	55.22	65.57
U1332B-7H-7, 68	57.78	68.13	Tie to	U1332C-8H-2, 12	60.62	68.13
U1332C-8H-4, 34	63.84	71.35	Tie to	U1332B-9H-1, 50	67.60	71.35
U1332B-9H-5, 35	73.45	77.20	Tie to	U1332A-9H-3, 117	74.57	77.20
U1332A-9H-CC, 16	83.38	83.01	Tie to	U1332B-10H-1, 88	77.48	83.01
U1332B-10H-5, 92	83.52	89.05	Tie to	U1332A-10H-4, 135	85.75	89.05
U1332A-10H-6, 108	88.48	91.78	Tie to	U1332C-11H-3, 35	88.35	91.78
U1332C-11H-4, 140	90.90	94.33	Tie to	U1332A-11H-2, 5	90.95	94.33
U1332A-11H-6, 28	97.18	100.56	Tie to	U1332C-12H-1, 122	95.72	100.56
U1332C-12H-5, 131	101.81	106.65	Tie to	U1332A-12H-2, 3	100.43	106.65
U1332A-12H-5, 122	106.12	112.34	Tie to	U1332C-13H-2, 124	106.74	112.34
U1332C-13H-4, 26	108.76	114.36	Tie to	U1332B-13H-3, 28	103.88	114.36
U1332B-13H-6, 28	108.38	118.86	Tie to	U1332A-13H-2, 34	110.24	118.86
U1332A-13H-5, 118	115.58	124.20	Tie to	U1332B-14X-2, 112	112.72	124.20
U1332B-14X-6, 138	118.98	130.46	Tie to	U1332C-15X-2, 20	119.70	130.46
U1332C-15X-3, 115	122.15	132.91	Tie to	U1332B-15X-1, 76	116.86	132.91

Bold = new splice tie point, italics = old splice tie points with new revised composite depth.

Table T7. Mapping pairs for adjusting cores to the rmcd (m revised CCSF-A) splice, Site U1332. (Continued on next page.)

		Denth		. —			Depth		-			Depth	
		Deptil	(rmcd	-	-			(rmcd	-				(rmcd
		(rmcd	fadiusted				(rmcd	[adjusted				(rmcd	[adjusted
	(mbsf	[m revised	m revised			(mbsf	[m revised	m revised		~	(mbsf	[m revised	m revised
Core	[m CSF-A])	CCSF-A])	CCSF-A])	Co	re	[m CSF-A])	CCSF-A])	CCSF-A])		Core	[m CSF-A])	CCSF-A])	CCSF-AJ)
220 111	12224			- 0+		71 15	73 78	73 54	-	3H	18 32	20.47	20.55
320-01 1LL	0.01	0.01	0.01	91	4	71.15	74 31	7415		3H	19.25	21.40	21.46
1H	2.60	2.60	2.60	9F	4	72.13	74.76	74.50		3H	20.02	22.17	22.17
1H	3 91	3.91	3.91	9H	•	72.56	75.19	75.00		4H	19.60	23.75	24.00
2H	3.90	4.21	4.03	91	1	73.09	75.72	75.63		4H	20.37	24.52	24.77
2H	4.10	4.41	4.23	9H	ł	73.50	76.13	76.03		4H	21.33	25.48	25.48
2H	5.52	5.83	5.83	9H	ł	74.02	76.65	76.56		4H	23.29	27.44	27.44
2H	6.34	6.65	6.65	9H	ł	74.57	77.20	77.20		4H	24.20	28.35	28.33
2H	11.15	11.46	11.46	9H	ł	80.38	83.01	83.01		4H	24.81	28.96	29.04
2H	11.49	11.80	12.16	9H	ł	80.52	83.15	83.15		4H	25.21	29.36	29.47
2H	12.01	12.32	12.64	10	H	79.90	83.20	83.51		4H	28.71	32.86	33.40
2H	12.83	13.14	13.60	10	H	81.28	84.58	84.89		4H	29.66	33.81	34.35
2H	13.67	13.98	14.44	10	Η	82.91	86.21	86.73		5H	29.10	33.35	33.35
3H	13.40	14.05	14.05	10	н	84.40	87.70	88.09		5H	31.05	35.30	35.30
3H	16.30	16.95	16.95	10	H	85.75	89.05	89.05		5H	36.60	40.85	40.85
3H	19.78	20.43	20.43	10	н	88.48	91.78	91.78		5H	37.68	41.93	41.93
3H	23.09	23.74	23.22	10	н	89.94	93.24	93.24		6H 211	38.60	45.65	45.23
3H	23.56	24.21	23.69	11	н	89.40	92.78	92.78		0⊓ ∠⊔	41.20	40.31	47.89
4H	22.90	25.45	25.45	11	н	90.95	94.33	94.33		6H	41.04	40.09	40.04 50.30
4H	23.73	20.30	20.30	11	п	97.10	100.50	100.50		6H	44 52	51 57	51 72
40 40	29.10	31.03	37.03	12	н	98.90	101.95	101.95		6H	48.55	55.60	55.60
411	32.34	3/ 80	35.41	12	н	100.20	106.65	106.65		7H	48.10	58.45	58.45
411 4H	33.00	35 55	35.14	12	Н	106.12	112.34	112.34		7H	55.22	65.57	65.57
5H	32.00	37.45	36.91	12	Н	107.64	113.86	114.05		7H	57.78	68.13	68.13
5H	32.83	37.88	37.34	12	Н	108.15	114.37	114.85		7H	58.10	68.45	68.45
5H	33.58	38.63	38.31	12	2H	108.50	114.72	115.20		8H	57.60	67.65	68.18
5H	34.22	39.27	39.01	13	н	108.40	117.02	117.17		8H	60.03	70.08	70.61
5H	35.49	40.54	40.52	13	н	108.65	117.27	117.42		8H	63.10	73.15	73.21
5H	35.82	40.87	40.92	13	н	110.24	118.86	118.86		8H	63.68	73.73	73.57
5H	36.45	41.50	41.57	13	н	115.58	124.20	124.20		8H	65.02	75.07	74.57
5H	37.44	42.49	42.47	13	н	116.87	125.49	125.64		8H	65.57	75.62	74.70
5H	38.43	43.48	43.55	13	н	117.96	126.58	126.88		8H	67.30	77.35	76.43
5H	39.38	44.43	44.47	13	н	118.43	127.05	127.35		9H	67.10	70.85	70.85
5H	40.69	45.74	45.72	14	Н	117.90	130.40	130.71		9H	67.60	71.35	71.35
5H	41.49	46.54	46.45	14	Н	120.29	132.79	133.10		9H	/3.45	77.20	77.20
5H	42.52	47.57	47.48	14	Н	122.13	134.63	134.63		9H	74.16	79.12	//.8/
6H	41.90	47.40	47.20	14	H	125.24	137.74	138.92		90 01	74.30	70.13	70.07
6H	42.80	48.30	48.10	14	H	125.72	138.22	139.37		911 011	74.04	70.39	70.32 78.50
6H	43.18	48.68	48.68	14		120.33	120.03	140.01		911 QH	74.90	78.86	78.39
6H	51.20	56.70	56.70	13	п	123.90	139.40	139.40		9H	75.29	79.00	78.96
6H 2 LL	51.52	57.02	57.00	13	оп X	132.90	140.40	140.40		9H	76.12	79.87	79.78
0H 7U	52.02	50.15	50.02	16	x	135.50	149.00	149.00		9H	76.56	80.31	80.19
711	51.40	59.15	59.05	17	x x	144 50	158.00	158.00		9H	77.12	80.87	80.74
7H	52.99	60 74	60.87	17	'X	148.26	161.76	161.76		10H	76.60	82.13	82.13
7H	53.84	61.59	61.82	18	X	150.40	163.90	163.90		10H	77.48	83.01	83.01
7H	54.90	62.65	62.69	18	x	150.56	164.06	164.06		10H	83.52	89.05	89.05
7H	55.75	63.50	63.25	220	1112	220				10H	86.69	92.22	92.22
7H	56.41	64.16	64.45	520-	-013 4	0.01	0.16	0.16		11H	86.10	91.99	92.25
7H	59.87	67.62	67.20	11	1	2.10	2.10	2.10		11H	88.15	94.04	94.30
7H	61.54	69.29	68.68	11 2⊢	4	2.10	2.23	2.25		11H	90.87	96.76	96.94
8H	60.90	68.25	68.30	21	4	3.00	3.65	3.00		11H	92.63	98.52	98.81
8H	63.92	71.27	71.32	21	4	3.85	4 50	4 06		11H	93.87	99.76	100.05
8H	65.90	73.25	73.39	21 21	4	5.21	5.86	5.82		12H	91.10	100.37	99.64
8H	66.15	73.50	73.57	21	•	6.14	6.79	6.79		12H	92.06	101.33	100.60
8H	66.75	74.10	74.15	21	•	8.25	8.90	8.90		12H	92.88	102.15	101.62
8H	67.71	75.06	74.97	21	•	10.32	10.97	10.47		12H	93.69	102.96	102.58
8H	68.45	75.80	75.63	21	ł	11.68	12.33	11.43		12H	94.88	104.15	103.86
8H	68.87	76.22	76.04	 2⊦	ł	12.14	12.79	11.89		12H	95.66	104.93	104.88
8H	69.57	76.92	76.69	 3⊦	ł	11.60	13.75	13.31		12H	96.27	105.54	105.54
8H	70.55	77.90	77.57	31	ł	13.96	16.11	15.67		12H	100.19	109.46	109.82
8H	71.05	78.40	78.07	31	ł	14.53	16.68	16.42		12H	101.06	111.33	111.69
9H	70.40	73.03	72.84	31	ł	15.73	17.88	17.81		13H	100.60	111.08	111.08
9H	70.75	73.38	73.19	3⊦	ł	16.80	18.95	18.42		13H	103.88	114.36	114.36

Table T7 (continued).

Revised composite depth scales

		Depth				Depth				Depth	
Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])	Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])	Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])
13H	108.38	118.86	118.86	4H	28.17	30.52	30.64	10H	85.58	86.13	86.13
13H	109.65	120.13	120.28	4H	29.30	31.65	31.65	11H	85.00	88.43	88.55
13H	110.81	121.29	121.44	4H	32.95	35.30	35.30	11H	86.42	89.85	89.97
14X	110.10	121.58	121.95	4H	33.89	36.24	36.38	11H	88.35	91.78	91.78
14X	110.70	122.18	122.55	4H	34.78	37.13	37.30	11H	90.90	94.33	94.33
14X	112.72	124.20	124.20	4H	36.00	38.35	38.65	11H	94.10	97.53	97.53
14X	118.98	130.46	130.46	4H	36.55	38.90	39.20	12H	94.50	99.34	99.34
14X	119.83	131.31	131.31	5H	36.00	40.15	39.95	12H	95.72	100.56	100.56
15X	116.10	132.15	132.15	5H	36.10	40.25	40.05	12H	101.81	106.65	106.65
15X	116.86	132.91	132.91	5H	36.70	40.85	40.85	12H	103.25	108.09	108.09
15X	125.82	141.87	141.87	5H	44.53	48.68	48.68	13H	104.00	109.60	109.60
16X	124.60	142.68	142.68	5H	45.79	49.94	49.94	13H	106.74	112.34	112.34
16X	125.39	143.47	143.47	6H	45.50	48.85	48.91	13H	108.76	114.36	114.36
17X	134.30	152.38	152.38	6H	48.34	51.69	51.75	13H	114.13	119.73	119.73
17X	135.08	153.16	153.16	6H	49.37	52.72	52.72	14X	113.50	121.46	122.00
18X	143.90	159.80	159.80	6H	49.83	53.18	53.15	14X	114.81	122.77	122.87
18X	146.26	162.16	162.16	6H	52.15	55.50	55.45	14X	116.52	124.48	124.50
220.111	2226			6H	53.07	56.42	56.38	14X	117.61	125.57	125.64
320-01	332C-	0.04	0.04	7H	49.50	56.30	56.30	14X	118.91	126.87	127.38
IH	0.00	0.04	0.04	7H	49.90	56.70	56.70	14X	119.88	127.84	128.35
IH	2.56	2.60	2.60	7H	58.77	65.57	65.57	15X	118.00	128.76	128.90
IH	6.61	6.65	6.65	7H	59.46	66.26	66.26	15X	118.35	129.11	129.26
TH	7.49	7.53	7.53	8H	59.00	66.51	66.51	15X	119.20	129.96	130.10
2H	7.50	7.99	7.99	8H	60.62	68.13	68.13	15X	119.70	130.46	130.46
2H	7.50	7.99	7.85	8H	63.84	71.35	71.35	15X	122.15	132.91	132.91
2H	9.08	9.57	9.43	8H	67.01	74.52	74.17	15X	126.39	137.15	137.54
2H	9.99	10.48	10.48	8H	68.22	75.73	75.20	15X	127.43	138.19	138.58
2H	10.97	11.46	11.46	9H	66.00	66.95	66.95	16X	127.60	139.42	139.42
2H	16.46	16.95	16.95	9H	68.59	69.54	69.54	16X	134.67	146.49	146.49
2H	17.48	17.97	17.97	9H	68.88	69.83	70.05	17X	137.20	149.02	149.02
3H	17.00	17.25	17.25	9H	69.72	70.67	70.90	17X	139.94	151.76	151.76
3H	20.18	20.43	20.43	9H	72.65	73.60	73.60	18X	146.90	160.72	160.72
3H	26.05	26.30	26.30	9H	74.74	75.69	75.69	18X	147.30	161.12	161.12
3H	26.96	27.21	27.21	9H	75.96	76.91	76 91	-10/	117.50	.01.12	.01.12
4H	26.50	28.85	29.00	10H	75 50	76.05	76.05				
4H	26.70	29.05	29.20	1011	75.50	70.05	/0.05	Italics = spli	ce tie point	.s.	

Table T8. Revised shipboard composite and corrected composite depths, Site U1333.

Core	Depth (mbsf [m CSF-A])	Offset (m)	Top depth (rmcd [m revised CCSF-A])						
320-U1333A-									
1H	0.00	4.66	4 66						
2H	9.50	3.68	13.18						
3H	19.00	6.84	25.84						
4H	28.50	6.57	35.07						
5H	38.00	9.80	47.80						
6H	47.50	11.75	59.25						
7H	57.00	13.30	70.30						
8H	66.50	15.38	81.88						
9H	76.00	17.73	93.73						
10H	85.50	19.36	104.86						
11X	95.00	20.72	115.72						
12X	100.70	21.45	122.15						
13X	110.30	23.35	133.65						
14X	120.00	23.61	143.61						
15X	129.60	26.70	156.30						
16X	139.20	28.00	167.20						
17X	148.80	30.20	179.00						
18X	158.40	26.90	185.30						
19X	168.00	25.75	193.75						
20X	177.60	25.75	203.35						
21X	181.60	25.75	207.35						
22X	182.60	25.75	208.35						
320-U1	333B-								
1H	0.00	0.00	0.00						
2H	7.70	0.01	7.71						
3H	17.20	2.07	19.27						
4H	26.70	3.18	29.88						
5H	36.20	3.98	40.18						
6H	45.70	7.84	53.54						
7H	55.20	10.03	65.23						
8H	64.70	10.77	75.47						
9H	74.20	12.03	86.23						
10H	83.70	15.21	98.91						
11H	93.20	17.33	110.53						
12H	102.70	18.50	121.20						

Core	Depth (mbsf [m CSF-A])	Offset (m)	Top depth (rmcd [m revised CCSF-A])
13H	112.20	19.55	131.75
14H	121.70	21.45	143.15
15H	131.20	26.00	157.20
16H	140.70	26.00	166.70
17H	150.20	28.90	179.10
18H	159.70	28.90	188.60
19X	162.70	25.65	188.35
20X	172.30	26.00	198.30
320-U1	333C-		
1H	0.00	0.00	0.00
2H	1.60	2.30	3.90
3H	11.10	2.66	13.76
4H	20.60	3.28	23.88
5H	30.10	6.55	36.65
6H	39.60	8.60	48.20
7H	49.10	11.13	60.23
8H	58.60	12.90	71.50
9H	68.10	15.34	83.44
10H	77.60	16.81	94.41
11H	87.10	16.60	103.70
12H	93.10	19.13	112.23
13H	98.10	19.00	117.10
14H	107.60	21.90	129.50
15H	117.10	22.20	139.30
16H	126.60	24.36	150.96
17H	131.10	25.70	156.80
18H	140.60	26.50	167.10
19H	150.10	26.50	176.60
20H	154.10	27.95	182.05
21H	163.20	28.10	191.30
22X	163.20	28.10	191.30
23X	172.80	28.10	200.90
24X	176.00	28.10	204.10

Bold = changes to ship CCSF, italics = ship splice, but CCSF shifted according to new offsets higher up in the section.

Table T9. Revised splice tie points, Site U1333.

	De	oth			De	oth
Hole, core, section, interval (cm)	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])		Hole, core, section, interval (cm)	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])
320-				320-		
U1333B-1H-5, 22	6.22	6.22	Tie to	U1333A-1H-2, 6	1.56	6.22
U1333A-1H-5, 76	6.76	11.42	Tie to	U1333B-2H-3, 71	11.41	11.42
U1333B-2H-6, 31	15.51	15.51	Tie to	U1333C-3H-2, 26	12.86	15.51
U1333C-3H-6, 63	19.23	21.88	Tie to	U1333B-3H-2, 111	19.81	21.88
U1333B-3H-6, 93	25.63	27.70	Tie to	U1333C-4H-3, 82	24.42	27.70
U1333C-4H-5, 83	27.43	30.70	Tie to	U1333B-4H-1, 82	27.52	30.70
U1333B-4H-6, 35	34.55	37.73	Tie to	U1333C-5H-1, 108	31.18	37.73
U1333C-5H-5, 98	37.08	43.63	Tie to	U1333B-5H-3, 45	39.65	43.63
U1333B-5H-7, 30	45.00	48.98	Tie to	U1333C-6H-1, 77*	40.37	48.98
U1333C-6H-4, 131	45.41	54.01	Tie to	U1333B-6H-1, 46	46.16	54.01
U1333B-6H-6, 130	54.50	62.35	Tie to	U1333A-6H-3, 9	50.59	62.35
U1333A-6H-5, 106	54.56	66.32	Tie to	U1333B-7H-1, 109	56.29	66.32
U1333B-7H-6, 96	63.66	73.69	Tie to	U1333C-8H-2, 69	60.79	73.69
U1333C-8H-7, 23	67.83	80.73	Tie to	U1333B-8H-4, 76	69.96	80.73
U1333B-8H-6, 81	73.01	83.78	Tie to	U1333A-8H-2, 59	68.39	83.78
U1333A-8H-4, 46	71.26	86.65	Tie to	U1333C-9H-3, 21	71.31	86.65
U1333C-9H-4, 21	72.81	88.15	Tie to	U1333B-9H-2, 41	76.11	88.15
U1333B-9H-6, 95	82.65	94.68	Tie to	U1333A-9H-1, 95	76.95	94.68
U1333A-9H-6, 113	84.64	102.37	Tie to	U1333B-10H-3, 46	87.16	102.37
U1333B-10H-6, 137	92.57	107.78	Tie to	U1333A-10H-2, 142	88.42	107.78
U1333A-10H-6, 150	94.50	113.86	Tie to	U1333B-11H-3, 33	96.53	113.86
U1333B-11H-5, 105	100.25	117.58	Tie to	U1333A-11X-2, 36	96.86	117.58
U1333A-11X-4, 16	99.66	120.38	Tie to	U1333C-13H-3, 28	101.38	120.38
U1333C-13H-7, 28	107.38	126.38	Tie to	U1333B-12H-4, 68	107.88	126.38
U1333B-12H-6, 143	111.63	130.13	Tie to	U1333C-14H-1, 63	108.23	130.13
U1333C-14H-3, 33	110.93	132.83	Tie to	U1333B-13H-1, 108	113.28	132.83
U1333B-13H-5, 145	119.65	139.20	Tie to	U1333A-13X-4, 105	115.85	139.20
U1333A-13X-6, 89	118.69	142.04	Tie to	U1333C-15H-2, 124	119.84	142.04
U1333C-15H-5, 125	124.35	146.55	Tie to	U1333B-14H-3, 40	125.10	146.55
U1333B-14H-6, 110	130.31	151.76	Tie to	U1333C-16H-1, 80	127.40	151.76
U1333C-16H-4, 98	132.08	156.44	Append to	U1333C-17H-1, 0	131.10	156.80
U1333C-17H-7, 72	140.82	166.52	Append to	U1333C-18H-1, 0	140.60	167.10
U1333C-18H-CC, 30	150.81	177.31	Append to	U1333C-19H-1, 88	150.98	177.48
U1333C-19H-3, 70	153.80	180.30	Tie to	U1333B-17H-1, 120	151.40	180.30
U1333B-17H-3, 140	154.60	183.50	The to	U1333C-20H-1, 145	155.55	183.50
U1333C-20H-5, 95	161.50	189.00	Tie to	U1333A-18X-3, 136*	162.10	189.00
U1333A-18X-4, 74	162.98	189.88	Tie to	U1333B-19X-2, 3	164.23	189.88
U1333B-19X-5, 17	168.87	194.52	lie to	U1333A-19X-1, 77	168.//	194.52
U1333A-19X-CC, 20	1/4.68	200.43		End of splice		

* = uncertain tie point. Bold = new splice tie point, italics = old splice tie points with new revised composite depth.

Table T10. Mapping pairs for adjusting cores to the rmcd (m revised CCSF-A) splice, Site U1333. (Continued on next two pages.)

		Depth				Depth					Depth	
			(rmcd	-			(rmcd	-				(rmcd
		(rmcd	[adjusted			(rmcd	[adjusted				(rmcd	[adjusted
6	(mbsf	[m revised	m revised	Coro	(mbst	[m revised	m revised		Coro	(mbst	[m revised	m revised
Core	[m CSF-A])	CCSF-A])	CCSF-A])	Core	[III C3F-A])	CC3F-AJ)	CC3F-AJ)		Cole	[III C3F-A])	CC3F-AJ)	CC3F-AJ)
320-U	1333A-			8H	68.41	83.79	83.79		14X	129.05	152.66	153.05
1H	0.01	4.67	3.90	8H	71.27	86.65	86.65		14X	129.85	153.46	153.85
1H	0.50	5.16	4.97	8H	71.82	87.20	87.20		15X	129.60	156.30	156.13
1H	1.01	5.67	5.67	8H	73.33	88.71	88.65		15X	130.00	156.70	156.87
1H	1.56	6.22	6.22	8H	73.74	89.12	89.10		15X	130.75	157.45	157.50
1H	6.76	11.42	11.42	8H	75.11	90.49	90.38		15X	131.79	158.49	158.53
1H	7.59	12.25	12.25	8H	/5.54	90.92	90.76		15X	131.56	158.26	158.35
1H	8.18	12.84	12.88	8H	76.19	91.57	91.41		15X 15V	132.49	159.19	159.28
1H 2U	10.05	14./1	14./5	9H 9H	76.00	95.75	95.75		15X	133.05	160 16	160 34
211 2H	9.50	13.10	13.13	9H	84.64	102.37	102.37		15X	134.57	161.27	161.36
2H	10.08	13.76	13.66	9H	85.92	103.65	103.65		15X	135.60	162.30	162.49
2H	10.70	14.38	14.36	10H	85.50	104.86	104.91		15X	136.29	162.99	163.37
2H	11.11	14.79	14.74	10H	86.02	105.38	105.43		15X	136.99	163.69	164.27
2H	11.38	15.06	15.06	10H	86.22	105.58	105.57		15X	137.31	164.01	164.59
2H	12.04	15.72	15.69	10H	86.42	105.78	105.77		15X	138.47	165.17	166.15
2H	12.29	15.97	16.00	10H	86.82	106.18	106.15		15X	139.19	165.89	166.95
2H	12.86	16.54	16.50	10H	87.38	106.74	106.79		16X	139.20	167.20	166.57
2H	13.29	16.97	16.91	10H	87.9Z	107.28	107.37		16X	141.82	109.82	169.19
2⊓ 2⊔	14.20	17.90	17.00	10H	94 50	113.86	113.86		16X	142.23	170.23	170.00
211 2H	16.22	19.94	19.70	10H	95.38	114.74	114.74		16X	144.99	172.99	173.29
2H	19.62	23.30	23.10	11X	95.00	115.72	115.72		16X	145.78	173.78	173.92
3H	19.00	25.84	25.84	11X	96.86	117.58	117.58		16X	146.90	174.90	174.90
3H	19.95	26.79	26.79	11X	99.66	120.38	120.38		16X	147.83	175.83	175.83
3H	20.10	26.94	26.88	11X	101.22	121.94	121.94		16X	148.22	176.22	176.73
3H	21.56	28.40	28.25	12X	100.70	122.15	122.04		16X	149.14	177.14	177.65
3H	23.04	29.88	29.64	12X	100.80	122.25	122.14		17X	148.80	179.00	178.95
3H	24.23	31.07	30.76	12X	101./0	123.15	123.15		1/X	148.93	179.13	179.08
3H 2U	25.01	31.85	31.52	128	103.19	124.04	124.91		178	149.56	179.38	179.50
лс 3Н	20.10	33.00 34.12	32.03	128	103.00	125.11	125.54		17X	151.30	180.50	180.50
3H	27.20	35.34	35.02	12X	105.39	126.84	127.26		17X	153.85	184.05	183.35
3H	28.92	35.76	35.43	12X	106.12	127.57	128.20		17X	154.22	184.42	183.72
4H	28.50	35.07	36.46	12X	106.70	128.15	129.03		17X	155.48	185.68	184.42
4H	31.74	38.31	39.70	12X	107.80	129.25	130.00		17X	155.91	186.11	184.80
4H	32.39	38.96	40.13	12X	107.99	129.44	130.19		17X	157.70	187.90	186.02
4H	33.13	39.70	40.63	13X	110.30	133.65	132.94		17X	158.72	188.92	187.04
4H	34.33	40.90	41.50	13X	112.20	135.17	134.46		18X	158.40	185.30	185.30
4H 4H	35.26	41.83	42.12	13/	112.50	135.05	135.20		107	168.00	190.01	190.01
41 4H	36.90	42.04	42.72	13X	112.00	137.60	137.32		19X	174.75	200.50	200.50
4H	37.76	44.33	44.33	13X	115.23	138.58	138.58		20X	177.60	203.35	203.35
4H	38.65	45.22	45.22	13X	115.85	139.20	139.20		20X	180.13	205.88	205.88
5H	38.00	47.80	47.83	13X	118.69	142.04	142.04		21X	181.60	207.35	207.35
5H	39.34	49.14	49.17	13X	119.10	142.45	142.61		21X	181.66	207.41	207.41
5H	40.58	50.38	50.28	13X	119.61	142.96	143.20		22X	182.60	208.35	208.35
5H	42.66	52.46	52.28	13X	119.98	143.33	143.57		22X	182.66	208.41	208.41
5H	45.05	54.85	54.59	14X	120.00	143.01	143.89	3	20-U1	333B-		
50 50	45.94	56.02	56 72	147	120.03	143.00	143.94		1H	0.01	0.01	0.01
51	47.12	57 50	57 31	14X	121.00	144.93	145.02		1H	1.58	6.22	6.22
6H	47.50	59.25	59.25	14X	121.74	145.35	145.43		1H	7.73	7.73	7.73
6H	50.60	62.35	62.35	14X	122.39	146.00	145.96		2H 2L	7.70	/./1	7.69
6H	54.57	66.32	66.32	14X	122.97	146.58	146.57		217 2H	9.24 9.66	9.23 9.67	9.23 9.78
6H	57.32	69.07	69.07	14X	123.81	147.42	147.20		2H	10.29	10.30	10.43
7H	57.00	70.30	69.93	14X	124.59	148.20	147.86		2H	10.98	10.99	11.01
7H	58.65	71.95	71.58	14X	124.87	148.48	148.20		2H	11.41	11.42	11.42
7H	61.35	74.65	74.26	14X	125.17	148.78	148.55		2H	15.50	15.51	15.51
7H	63.01	/6.31	/6.05	14X	126.01	149.62	149.40 140.47		2H	17.65	17.66	17.66
/H 7⊔	03.94 61 50	//.24 77.00	//. 77 ⊑1	14Å 17V	120.20	147.07	147.07		3H	17.20	19.27	19.15
7H	65 93	79.23	79.30	14X 14X	127.53	151.14	151.14		3H	18.30	20.37	20.25
7H	66.60	79.90	80.06	14X	128.21	151.82	151.91		3H	18.88	20.95	20.85
8H	66.50	81.88	81.88	14X	128.96	152.57	152.91		3日 2日	19.81	21.88 27.70	21.88 27.70
									רוכ	20.00	21.10	27.70

Table T10 (continued). (Continued on next page.)

		Depth				Depth				Depth	
			(rmcd				(rmcd	-			(rmcd
		(rmcd	[adjusted			(rmcd	[adjusted			(rmcd	[adjusted
	(mbsf	[m revised	m revised	_	(mbsf	[m revised	m revised		(mbsf	[m revised	m revised
Core	[m CSF-A])	CCSF-A])	CCSF-A])	Core	[m CSF-A])	CCSF-A])	CCSF-A])	Core	[m CSF-A])	CCSF-A])	CCSF-A])
21	26.07	20.14	20.10	13日	122 17	1/1 72	1/1 35		12.07	14 72	14 72
חכ חכ	20.07	20.14	20.10	1/14	122.17	1/13/15	141.55	2H 2H	12.07	14./5	14./5
	27.25	29.30	29.23	1411	121.70	1/3 05	1/3 85	лс Л	12.03	13.31	13.31
40 40	20.70	29.00	29.77	1411	122.50	144.50	144.50	лс Л	19.22	21.00	21.00
40 40	20.90	20.10	30.03	1411	125.05	146.55	146 55	лс Л	19.97	22.03	22.71
40 70	27.20	30.56	20.50	1411	120.10	151 76	151 76	21	20.36	23.04	23.32
411 7H	27.58	30.30	30.30	14H	131.46	152.91	152.91		21.10	23.70	24.04
4H	31 55	37.73	37.73	15H	131.10	157.20	156 53	411	20.00	25.00	25.07
4H	35 31	38.49	38.45	15H	131.90	157.90	157.23	41	22.51	26.80	26.88
4H	35.74	38.92	38.82	15H	132.40	158.40	157.91	4H	24.21	27.49	27.51
4H	36.14	39.32	39.22	15H	132.84	158.84	158.53	4H	24.42	27.70	27.70
4H	36.66	39.84	39.74	15H	134.00	160.00	159.88	4H	27.42	30.70	30.70
5H	36.20	40.18	39.38	15H	134.41	160.41	160.33	4H	27.68	30.96	31.04
5H	36.96	40.94	40.14	15H	134.86	160.86	160.86	4H	28.16	31.44	31.49
5H	37.28	41.26	40.63	15H	136.13	162.13	162.49	4H	28.84	32.12	32.23
5H	37.86	41.84	41.50	15H	136.73	162.73	163.37	4H	29.24	32.52	32.65
5H	38.19	42.17	41.98	15H	137.59	163.59	164.44	4H	30.72	34.00	34.13
5H	39.43	43.41	43.32	15H	139.02	165.02	166.33	5H	30.10	36.65	36.65
5H	39.65	43.63	43.63	15H	139.84	165.84	167.15	5H	31.18	37.73	37.73
5H	45.00	48.98	48.98	16H	140.70	166.70	167.47	5H	37.08	43.63	43.63
5H	45.90	49.88	49.88	16H	141.73	167.73	168.50	5H	37.65	44.20	44.26
6H	45.70	53.54	53.50	16H	142.23	168.23	169.14	5H	38.56	45.11	45.22
6H	45.90	53.74	53.60	16H	143.79	169.79	170.83	5H	39.03	45.58	45.77
6H	46.10	53.94	53.94	16H	144.99	170.99	171.99	5H	39.41	45.96	46.11
6H	54.51	62.35	62.35	16H	145.69	171.69	173.07	5H	39.89	46.44	46.59
6H	54.80	62.64	62.86	16H	146.54	172.54	173.92	6H	39.60	48.20	48.20
6H	55.60	63.44	63.66	16H	147.28	173.28	174.57	6H	40.38	48.98	48.98
7H	55.20	65.23	65.23	16H	147.96	173.96	175.20	6H	45.41	54.01	54.01
7H	56.29	66.32	66.32	16H	148.73	174.73	175.86	6H	45.97	54.57	54.60
7H	63.66	73.69	73.69	16H	149.27	175.27	176.46	6H	46.62	55.22	55.41
7H	64.25	74.28	74.14	16H	149.53	1/5.53	1/6./3	6H	47.71	56.31	56.68
7H	65.16	75.19	75.05	16H	150.05	1/6.05	177.25	6H	48.73	57.33	57.59
8H	64.70	75.47	75.32	17H	150.20	1/9.10	179.10	6H	49.41	58.01	58.46
8H	65.27	76.04	75.90	1/H	150.70	1/9.60	179.60	6H	49.74	58.34	58.79
8H	66.38	//.15	//.11	1/H	151.13	180.03	190.90	/H	49.10	60.23	60.23
8H	66.81	//.58	//.51	17日	151.40	100.30	100.30	/H	52.97	64.10	64.10
8H	69.45	80.22	80.22	17日	154.00	103.30	103.30	/H	55.57	64.70	64.93
81	69.96 72.01	80.73	80.73	17日	155.10	104.00	103.92	/H	55.15	66.28	67.14
ᇬ	73.01	03./0	03./0	1711	155.70	184.00	184.94	7H 7U	55.00	00./J	07.67
011 011	73.09	04.00 85.00	04.00 85.15	1711	156.00	185 23	185 12	/ H 오니	58.60	71 50	70.50
8H	74.23	85.32	85.32	171	157.16	186.06	186.06	8H	58.00 60.79	73.60	73.60
он	74.33	86.13	86.02	17H	158.00	186.90	186.80	8H	67.83	80.73	80.73
он	76.12	88 15	88 15	17H	158.56	187.46	187.36	8H	68 70	81.60	81.60
9H	82.65	94 68	94 68	18H	159.70	188.60	188.60	011 9H	68 10	83 34	83.02
9H	83.16	95 19	95 19	18H	161.30	190.20	190.20	9H	69.02	84 36	84 04
10H	83.70	98.91	98.53	18H	162.35	191.25	191.05	9H	69.80	85.14	84.90
10H	84.86	100.07	99.69	18H	162.99	191.89	191.69	9H	70.53	85.87	85.77
10H	87.16	102.37	102.37	19X	162.70	188.35	188.35	9H	71.31	86.65	86.65
10H	92.57	107.78	107.78	19X	164.23	189.88	189.88	9H	72.81	88.15	88.15
10H	93.46	108.67	108.67	19X	168.87	194.52	194.52	9H	73.71	89.05	89.23
11H	93.20	110.53	110.53	19X	169.87	195.52	195.52	9H	75.26	90.60	90.90
11H	96.53	113.86	113.86	20X	172.30	198.30	198.30	9H	76.68	92.02	92.24
11H	100.25	117.58	117.58	20X	178.57	204.57	204.57	9H	77.56	92.90	93.15
11H	101.82	119.15	119.15	320-11	13330-			9H	77.82	93.06	93.31
11H	103.31	120.64	120.20	1H	0.01	0.01	0.01	10H	77.60	94.41	94.04
12H	102.70	121.20	121.10	11	1 65	1 65	1 65	10H	79.69	96.50	96.13
12H	103.63	122.13	122.13	2H	1.60	3.90	3.40	10H	80.72	97.53	97.10
12H	107.88	126.38	126.38	2H	2.47	4 77	4.27	10H	82.07	98.88	98.58
12H	111.63	130.13	130.13	2H	5.64	7.94	7.94	10H	82.89	99.70	99.46
12H	112.34	130.84	130.84	2H	7.95	10.25	10.42	10H	83.63	100.44	100.25
13H	112.20	131.75	131.75	2H	8.53	10.83	11.05	10H	85.56	102.37	102.37
13H	112.83	132.38	132.38	2H	9.33	11.63	11.76	10H	85.89	102.70	102.75
13H	119.65	139.20	139.20	2H	10.40	12.70	12.88	10H	86.17	102.98	103.00
13H	120.31	139.86	139.81	2H	11.63	13.93	14.11	10H	86.34	103.15	103.15
13H	120.84	140.39	140.21	3H	11.10	13.76	13.87	10H	86.78	103.59	103.60
13H	121.51	141.06	140.69					10H	87.70	104.51	105.00

Table T10 (continued).

Depth (rmcd (mcd (mbsf [m revised m revised re [m CSF-A]) CCSF-A]) CCSF-A]) H 87 10 103 70 103 51
(rmcd (rmcd [adjusted (mbsf [m revised m revised re [m CSF-A]) CCSF-A]) CCSF-A])
H 87 10 103 70 103 51
07.10 103.70 103.31
H 88.55 105.15 104.96
H 89.51 106.11 105.80
H 90.12 106.72 106.70
H 90.82 107.42 107.42
H 91.52 108.12 108.12
H 93.64 110.24 109.88
H 94.52 111.12 111.12
H 96.25 112.85 112.85
H 93.10 112.23 112.23
H 97.16 116.29 116.28
H 99.75 118.88 118.88
H 98.10 117.10 117.95
H 100.29 119.29 119.55
H 101.38 120.38 120.38
H 107.38 126.38 126.38
H 108.06 127.06 126.80
H 107.60 129.50 129.50
H 108.23 130.13 130.13

		Depth	
Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])
14H	110.93	132.83	132.83
14H	115.00	136.90	136.90
14H	115.43	137.33	137.14
14H	116.96	138.86	138.58
14H	117.63	139.53	139.25
15H	117.10	139.30	139.30
15H	119.84	142.04	142.04
15H	124.35	146.55	146.55
15H	125.72	147.92	147.87
15H	126.06	148.26	148.17
15H	126.51	148.71	148.57
15H	126.84	149.04	149.12
15H	127.16	149.36	149.44
16H	126.60	150.96	150.96
16H	127.40	151.76	151.76
16H	132.13	156.49	156.49
17H	131.10	156.80	156.80
17H	141.11	166.81	166.81
18H	140.60	167.10	167.10

	Depth								
			(rmcd						
		(rmcd	[adjusted						
	(mbsf	[m revised	m revised						
Core	[m CSF-A])	CCSF-A])	CCSF-A])						
18H	150.81	177.31	177.31						
19H	150.10	176.60	176.60						
19H	150.98	177.48	177.48						
19H	153.80	180.30	180.30						
19H	155.14	181.64	181.80						
20H	154.10	182.05	182.05						
20H	155.55	183.50	183.50						
20H	161.05	189.00	189.00						
20H	163.34	191.29	191.29						
21H	163.20	191.30	191.30						
21H	163.74	191.84	191.84						
22X	163.20	191.30	191.30						
22X	163.59	191.69	191.69						
23X	172.80	200.90	200.90						
23X	173.01	201.11	201.11						
24X	176.00	204.10	204.10						
24X	176.27	204.37	204.37						

Italics = splice tie points.

Table T11. Revised shipboard composite and corrected composite depths, Site U1334.

	Depth		Top depth (rmcd
Core	(mbsf [m CSF-A])	Offset (m)	[m revised CCSF-A])
320-11133	44-		
1H	0.00	0.00	0.00
2H	8.20	0.87	9.07
3H	17.70	1.97	19.67
4H	27.20	3.48	30.68
5H	36.70	4.77	41.47
6H	46.20	6.93	53.13
7H	55.70	7.42	63.12
8H	65.20	9.06	74.26
9H	74.70	11.22	85.92
10H	84.20	11.31	95.51
11H	93.70	12.92	106.62
12H	103.20	14.15	117.35
13H	112 70	15 44	128 14
14H	122.20	16.93	139 13
15H	131 70	18.86	150.56
16H	141 20	20.56	161 76
17H	150 70	20.00	173 92
18H	160.20	23.22	184 30
19H	169.20	24.10	196.12
20H	179.20	20.42 40.46	219.66
211	188 70	41 16	219.00
27H	198.20	47.46	240.66
2211	206.90	44 72	251.62
237	214 50	47 70	267.02
25X	274.50	49.43	202.20
26X	223.10	49.43	283 24
207	233.00	51 10	205.24
28X	252.80	53 30	306 10
207	262.00	54.07	316.47
30X	272 10	55 27	327 37
31X	281.80	55.27	337 58
328	285.00	55.70	340 78
320,11133	4B-	55.70	540.70
1H	3 70	4 00	7 70
211	13 20	4.00	17.80
311	22 70	4.67	27.34
7H	32.70	6 27	38 47
511	JZ.20 41 70	5 00	47.69
61	49.20	7 31	56 51
71	58 70	0.20	67.99
211 8H	68 20	12.14	80.34
он	77 70	14 35	92.05
10H	87.20	15 //	102.63
11H	96.70	17.00	113 79
124	106.20	17.09	123 / 8
134	115 70	18 00	134 60
1 <u>4</u> H	125.20	21 7/	146 04
154	134 70	21./4	157 10
16H	144.20	23.79	167.99

Core	Depth (mbsf [m CSF-A])	Offset (m)	Top depth (rmcd [m revised CCSF-A])
		. ,	
17H	153.70	25.14	178.84
18H	163.20	27.10	190.30
19H	1/2./0	28.25	200.95
20H	182.20	30.46	212.66
21H	191.70	32.51	224.21
22H	201.20	33.91	235.11
238	210.70	34.91	245.61
247	219.00	49.05	200.03
258	228.60	50.72	2/9.32
268	238.20	52.32	290.32
2/X	247.80	54.15	301.93
207	257.40	55.21	312.01
298	267.00	57.45	324.43
30X	276.60	58.04	334.64
31X	283.90	38.04	341.94
320-U133	4C-		
1H	0.00	3.65	3.65
2H	9.50	4.33	13.83
3H	19.00	6.65	25.65
4H	28.50	10.04	38.54
5H	38.00	10.11	48.11
6H	47.50	12.06	59.56
7H	57.00	12.06	69.06
8H	66.50	13.96	80.46
9H	76.00	16.30	92.30
10H	85.50	17.98	103.48
11H	95.00	19.69	114.69
12H	104.50	22.75	127.25
13H	114.00	25.13	139.13
14H	123.50	27.06	150.56
15H	133.00	28.23	161.23
16H	142.50	29.69	172.19
17H	152.00	30.35	182.35
18H	161.50	31.44	192.94
19H	171.00	32.52	203.52
20H	180.50	33.33	213.83
21H	190.00	34.06	224.06
22H	199.50	36.86	236.36
23X	209.00	41.35	250.35
24X	214.00	44.85	258.85
25X	223.60	46.33	269.93
26X	233.20	47.10	280.30
27X	239.20	48.01	287.21
28X	248.80	49.53	298.33
29X	258.40	58.28	316.68
30X	268.00	58.81	326.81
31X	277.70	61.02	338.72

Bold = changes to ship CCSF, italics = ship splice, but CCSF shifted according to new offsets higher up in the section.

Table T12. Revised splice tie points, Site U1334.

	De	oth			Dep	oth
		(rmcd				(rmcd
Hole, core, section,	(mbsf	[m revised		Hole, core, section,	(mbsf	[m revised
interval (cm)	[m CSF-A])	CCSF-A])		interval (cm)	[m CSF-A])	CCSF-A])
320-				320-		
111334A-1H-5 80	6 80	6 80	Tie to	U1334C-1H-3 15	3 1 5	6 80
U1334C-1H-5, 69	6.69	10.35	Tie to	U1334A-2H-1, 128	9.48	10.35
U1334A-2H-6, 132	17.02	17.89	Tie to	U1334C-2H-4, 10	13.56	17.89
U1334C-2H-5, 108	16.04	20.37	Tie to	U1334A-3H-1, 70	18.40	20.37
U1334A-3H-6, 145	26.65	28.62	Tie to	U1334B-3H-1, 128	23.98	28.62
U1334B-3H-5, 114	29.84	34.48	Tie to	U1334A-4H-3, 80	31.00	34.48
U1334A-4H-6, 139	36.09	39.57	Tie to	U1334B-4H-1, 110	33.30	39.57
U1334B-4H-6, 145	41.15	47.42	Tie to	U1334A-5H-4, 144	42.64	47.42
U1334A-5H-6, 30	44.50	49.27	Tie to	U1334C-5H-1, 116	39.16	49.27
UI334C-5H-7, 5	47.05	57.16	The to	UI334A-6H-3, 103	50.23	57.16
UI 334A-6H-6, Z3	53.93	60.86	Tie to	UI334C-0H-1, I30	48.80	60.86
U1334C-0H-3, 149	63.88	71 30	Tie to	UI334A-7H-3, 93	59.05 62.01	71 30
U1334R-7H-6 102	67.22	76.51	Tie to	U1334A-8H-2 76	67.46	76.51
U1334A-8H-6, 128	73.98	83.04	Tie to	U1334B-8H-2, 119	70.89	83.04
U1334B-8H-5, 75	74.95	87.10	Tie to	U1334A-9H-1, 118	75.88	87.10
U1334A-9H-6, 20	82.40	93.61	Tie to	U1334B-9H-2, 6	79.26	93.61
U1334B-9H-5, 74	84.44	98.80	Tie to	U1334A-10H-3, 29	87.49	98.80
U1334A-10H-6, 142	93.12	104.43	Tie to	U1334C-10H-1, 95	86.45	104.43
U1334C-10H-5, 37	91.87	109.84	Tie to	U1334A-11H-3, 22	96.92	109.84
U1334A-11H-6, 132	102.52	115.44	Tie to	U1334B-11H-2, 14	98.34	115.44
UI334B-11H-6, 100	105.20	122.30	Tie to	UI334A-12H-4, 45	108.15	122.30
UI334A-IZH-6, 43	111.13	125.27	Tie to	UI334B-12H-2, 29	107.99	125.27
UI334D-12H-0, 39	113.86	136.61	Tie to	UI334C-12H-3, 113	100.05	136.61
U1334B-13H-5 5	121 75	140 75	Tie to	U1334C-13H-2 12	115.62	140 75
U1334C-13H-6.86	122.36	147.49	Tie to	U1334B-14H-1, 55	125.75	147.49
U1334B-14H-4, 101	130.71	152.45	Tie to	U1334C-14H-2, 39	125.39	152.45
U1334C-14H-6, 44	131.44	158.49	Tie to	U1334B-15H-1, 130	136.00	158.49
U1334B-15H-6, 129	143.49	165.99	Tie to	U1334C-15H-4, 26	137.76	165.99
U1334C-15H-6, 74	141.24	169.47	Tie to	U1334B-16H-1, 148	145.68	169.47
U1334B-16H-5, 75	150.95	174.74	Tie to	U1334C-16H-2, 105	145.05	174.74
U1334C-16H-6, 53	150.53	180.22	Tie to	U1334B-17H-1, 138	155.08	180.22
U1334B-17H-6, 67	161.87	187.01	Tie to	U1334A-18H-2, 122	162.92	187.01
UI334A-18H-3, 33	100./3	190.83	Tie to	UI334B-18H-1, 33	103./3	190.83
UI334D-100-0, 120	177.31	203 72	Tie to	UI 334A-19H-3, Z	172.04	203 72
U1334R-19H-4 12	177.31	205.72	Tie to	U1334C-19H-2, 127	173.47	205.72
U1334C-19H-7. 66	180.66	213.18	Tie to	U1334B-20H-1, 52	182.72	213.18
U1334B-20H-5, 110	189.30	219.76	Tie to	U1334C-20H-4, 143	186.43	219.76
U1334C-20H-6, 142	189.42	222.75	Tie to	U1334A-20H-3, 9	182.29	222.75
U1334A-20H-5, 99	186.19	226.65	Tie to	U1334B-21H-2, 94	194.14	226.65
U1334B-21H-6, 11	199.31	231.82	Tie to	U1334A-21H-2, 46	190.66	231.82
U1334A-21H-5, 65	195.35	236.51	Tie to	U1334B-22H-1, 140	202.60	236.51
U1334B-22H-7, 13	210.33	244.24	Tie to	U1334C-22H-6, 38	207.38	244.24
U1334C-22H-7, 44	208.94	245.80	Tie to	U1334A-22H-4, 64	203.34	245.80
UI334A-22H-5, 70	204.90	247.30	Tie to	U1334B-23X-2, 23	212.45	247.30
U1334D-23A-0, 139	219.39	254.50	Tie to	U1334A-23A-2, 130	209.76	250 30
U1334C-24X-6 143	277.07	257.57	Tie to	U1334A-24X-4 110	279.34	257.57
U1334A-24X-6, 134	223.34	271.02	Tie to	U1334C-25X-1, 109	224.69	271.02
U1334C-25X-5, 21	229.81	276.14	Tie to	U1334A-25X-2, 111	226.71	276.14
U1334A-25X-6, 97	232.57	282.00	Tie to	U1334C-26X-2, 20	234.90	282.00
U1334C-26X-5, 23	239.43	286.53	Tie to	U1334A-26X-3, 29	236.89	286.53
U1334A-26X-6, 93	242.03	291.67	Tie to	U1334B-26X-1, 115	239.35	291.67
U1334B-26X-5, 86	245.06	297.38	Tie to	U1334A-27X-3, 8	246.28	297.38
U1334A-27X-6, 27	249.97	301.07	Tie to	U1334C-28X-2, 124	251.54	301.07
U1334C-28X-3, 145	253.25	302.78	Tie to	U1334B-27X-1, 85	248.65	302.78
UI334B-2/X-4, 14	252.44	306.57	Tie to	UI334A-28X-1, 4/	255.27	300.57
UI334A-201-0, 110	∠01.40 262 92	314./U	Tie to	UISS40-201-2, 39	∠39.49 250 75	314.70 318 02
11334C-29X-6 121	267 11	325 39	Tie to	1/1334B-29X-1 96	267.96	325.39
U1334B-29X-6. 90	275.40	332.83	Tie to	U1334C-30X-5. 2	274.02	332.83
U1334C-30X-6, 144	276.94	335.75	Tie to	U1334B-30X-1, 111	277.71	335.75
U1334B-30X-5, 78	283.38	341.42		End of splice		

Bold = new splice tie point, italics = old splice tie points with new revised composite depth.

Table T13. Mapping pairs for adjusting cores to the rmcd (m revised CCSF-A) splice, Site U1334. (Continued on next three pages.)

		Denth				Depth				Depth	
Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])	- Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])	Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])
220 11122	4.4			10H	87.20	98 60	98.60	17H	153.78	177.00	176.65
320-0133 1H	4A- 0.01	0.01	0.01	10H	92.97	104.28	104.28	17H	155.62	178.84	178.55
1H	6.60	6.60	6.60	10H	94.00	105.31	105.00	17H	157.64	180.86	180.26
1H	8.24	8.24	8.30	11H	93.70	106.62	106.53	17H	158.80	182.02	181.35
2H	8.20	9.07	9.07	11H	95.16	108.08	107.99	17H	159.01	182.23	181.56
2H	9.25	10.12	10.12	11H	96.79	109.71	109.71	18H	160.20	184.30	184.14
2H	16.74	17.61	17.61	11H	102.50	115.42	115.42	18H 19U	161.62	185./2	185.56
2H	18.16	19.03	19.03	11H	103.08	116.00	116.00	18H	162.33	186.43	186.93
3H 2U	17.70	19.67	19.67	121	103.80	110.72	117.33	18H	166.65	190.75	190.75
311	76.20 26.45	20.17	20.17	12H	103.55	117.33	117.76	18H	168.53	192.63	192.63
3H	27.70	29.67	29.67	12H	104.65	118.80	118.90	18H	170.22	194.32	194.32
4H	27.20	30.68	30.60	12H	105.17	119.32	119.33	19H	169.70	196.12	196.12
4H	27.32	30.80	31.00	12H	105.52	119.67	119.82	19H	172.55	198.97	198.97
4H	27.68	31.16	31.34	12H	106.29	120.44	120.44	19H	177.23	203.65	203.65
4H	27.84	31.32	31.52	12H	108.13	122.28	122.28	19H	1/8.54	204.96	204.96
4H	28.68	32.16	32.42	12H	110.99	125.14	125.14	20H	179.20	219.00	219.60
4H	30.07	33.55	33.64	12H 12H	112.90	127.05	127.05	2011 20H	182.29	221.04	222.75
4H 4H	30.49	33.97	34.00	13日	112.70	120.14	120.10	20H	186.19	226.65	226.65
411 4H	35.80	39.20	39.20	13H	113.88	129.32	129.36	20H	188.68	229.14	229.14
4H	37.23	40.71	40.65	13H	115.10	130.54	130.62	21H	188.70	229.86	229.86
5H	36.70	41.47	41.60	13H	116.83	132.27	132.35	21H	189.53	230.69	230.66
5H	37.25	42.02	42.15	13H	117.50	132.94	133.10	21H	189.92	231.08	231.11
5H	37.90	42.67	42.85	13H	118.17	133.61	133.67	21H	190.15	231.31	231.36
5H	38.04	42.81	43.10	13H	119.06	134.50	134.62	21H 21U	190.66	231.82	231.82
5H	38.91	43.68	43.87	13H	119.72	135.16	135.16	21H 21H	195.55	230.31	230.31
5H	40.66	45.43	45.53	13H 12U	121.01	130.45	130.50	2111 21H	197.88	237.43	239.05
3H 5H	41.24	40.01	40.01	131	121.80	137.24	137.24	21H	198.10	239.26	239.34
5H	44.31	49.08	49.08	14H	122.20	139.13	139.05	21H	198.53	239.69	239.77
5H	44.88	49.65	49.63	14H	122.68	139.61	139.45	22H	198.20	240.66	240.66
5H	45.70	50.47	50.52	14H	123.15	140.08	140.08	22H	201.85	244.31	244.31
5H	46.39	51.16	51.06	14H	123.66	140.59	140.72	22H	203.34	245.80	245.80
5H	46.83	51.60	51.50	14H	124.07	141.00	141.22	22H	204.90	247.36	247.36
6H	46.20	53.13	53.46	14H	124.74	141.67	142.00	22H 22H	205.24	247.70	247.96
6H	47.10	54.03	54.36	14H	126.83	143./6	144.45	22H 22H	203.02	240.00	240.30
6H 2 LI	49.22	56.15	56.15	140 140	127.33	144.20	145.15	23X	206.90	251.62	251.47
6H	53.76	60.69	50.97 60.69	14H	127.05	145.61	146.89	23X	207.25	251.97	251.81
6H	54.68	61.61	61.55	14H	128.95	145.88	147.16	23X	208.08	252.80	252.87
6H	55.49	62.42	62.42	14H	129.28	146.21	147.54	23X	208.95	253.67	253.92
6H	55.86	62.79	62.82	14H	129.58	146.51	147.86	23X	209.23	253.95	254.17
6H	56.25	63.18	63.21	14H	131.19	148.12	149.46	23X	209.78	254.50	254.50
7H	55.70	63.12	63.70	14H	132.01	148.94	150.28	23X	214.67	259.39	259.39
7H	57.18	64.60	64.83	15H	131./0	150.56	150.65	237	215.12	259.04	259.95
/H 711	57.73	65.15	65.30	15H 15H	132.46	151.32	151.41	23X 23X	215.65	260.15	260.52
7H	59.33	66 64	66 64	15H	134.67	153.53	153.58	23X	215.77	260.49	260.88
7H	59.43	66.85	66.85	15H	135.34	154.20	155.50	23X	216.22	260.94	260.33
7H	63.84	71.26	71.26	15H	136.67	155.53	155.62	24X	214.50	262.18	262.18
7H	65.71	73.13	73.13	15H	136.90	155.76	155.82	24X	220.10	267.78	267.78
8H	65.20	74.26	74.60	15H	138.21	157.07	157.36	24X	223.34	271.02	271.02
8H	66.22	75.28	75.32	15H	139.52	158.38	158.71	24X	224.27	271.95	271.95
8H	67.26	76.32	76.32	15H	140.00	158.86	159.11	25X 25Y	224.10	215.55	2/3.42
8H	73.78	82.84	82.84	15H	141.25	160.11	160.36	23A 25X	224.0U 224.0U	274.03 274.22	273.92 274 10
8H	/4.38	83.44	83.40	16H 12⊔	141.20	161./6	161.95	25X	224.00	274 43	274.10
оН QL	/ 5. 7/ 70	04.1/ 85.00	04.1/ 85.00	10H	142.42	102.90	166.01	25X	225.35	274.78	274.64
9H	75 70	86 92	86 92	16H	145.99	166.55	166.56	25X	225.94	275.37	275.44
9H	82.16	93.38	93.38	16H	148.04	168.60	168.80	25X	226.29	275.72	275.72
9H	84.79	96.01	95.65	16H	148.49	169.05	169.31	25X	226.71	276.14	276.14
10H	84.20	95.51	95.82	16H	149.62	170.18	170.44	25X	232.57	282.00	282.00
10H	85.38	96.69	97.00	17H	150.70	173.92	173.65	25X	233.84	283.27	282.75
10H	87.20	98.51	98.51	17H	152.57	175.79	175.40	26X	233.60	283.24	283.79

Table T13 (continued). (Continued on next page.)

		Depth				Depth					Depth	
			(rmcd				(rmcd	-				(rmcd
	((rmcd	[adjusted		(mala of	(rmcd	[adjusted			(mala of	(rmcd	[adjusted
Core	(mbst [m CSE-A])	[m revised	m revised	Core	(mbsr [m CSF-A])	CCSF-Al)	CCSF-Al		Core	(mbst [m CSF-A])	CCSF-Al)	m revised CCSF-Al)
		ccsi-Aj)		 00.0	[661 7.])		0001 //])			[66: 74])	eee. , ,j)	
26X	234.15	283.79	284.34	1H	7.40	11.40	11.16		8H	77.35	89.49	89.49
26X	235.36	285.00	285.31	1H	11.57	15.57	14.92		8H	78.07	90.21	90.40
26X	236.61	286.25	286.25	1H	12.48	16.48	15.75		9H	77.70	92.05	91.99
26X	236.89	286.53	286.53	1H 2U	13.72	17.72	16.80		9H	/9.03	93.38	93.38
26X	242.03	291.67	291.67	2H 2L	13.20	17.89	10.13		9H 0H	84.25 85.20	98.60	98.60
20A 27X	243.41	293.03	293.03	211 2H	16.45	21 14	21 31		9H	85.90	100 25	100 52
27X	243.48	294.58	295.16	2H	17.69	22.38	22.48		9H	86.40	100.25	101.10
27X	243.83	294.93	295.41	2H	18.45	23.14	23.14		9H	86.91	101.26	101.68
27X	244.71	295.81	296.05	2H	19.83	24.52	24.55		9H	87.73	102.08	102.50
27X	245.47	296.57	296.65	2H	20.63	25.32	25.25		10H	87.20	102.64	102.77
27X	245.73	296.83	296.83	2H	21.63	26.32	26.20		10H	87.40	102.84	102.97
27X	246.28	297.38	297.38	2H 2U	22.88	27.57	27.25		10H	88.00	103.44	103.99
27X 27X	249.97	301.07	301.07	2H 3H	23.00	27.77	27.45		10H	91.42	100.00	106.22
27 X	250.13	301.23	301.21	3H	23.18	27.82	27.95		10H	91.99	107.43	106.70
27X	250.79	301.89	301.89	3H	23.78	28.42	28.42		10H	92.65	108.09	108.00
28X	252.80	306.10	306.20	3H	29.64	34.28	34.28		10H	93.12	108.56	108.56
28X	252.92	306.22	306.32	3H	31.08	35.72	36.18		10H	93.80	109.24	109.14
28X	253.09	306.39	306.47	3H	32.05	36.69	37.32		10H	94.72	110.16	109.75
28X	253.27	306.57	306.57	3H	32.30	36.94	37.57		10H	94.89	110.33	110.01
28X 28X	261.40	314.70	314.70	о⊓ ⊿н	32.87	37.31	38.14		10H	95.30 96.15	111.60	110.56
28X	261.70	315.00	315.02	4H	33.10	39.37	39.37		10H	97.25	112.69	112.12
28X	261.90	315.20	315.16	4H	40.97	47.24	47.24		11H	96.70	113.79	113.79
28X	262.76	316.06	316.02	4H	41.96	48.23	48.23		11H	98.33	115.42	115.42
29X	262.40	316.47	316.61	5H	41.70	47.69	47.59		11H	105.19	122.28	122.28
29X	263.81	317.88	317.88	5H	43.74	49.73	49.63		11H	106.74	123.83	123.83
29X	264.22	318.29	318.43	5H 5H	44./3	50.72	50.51		12H 12H	105.20	125.48	125.60
29A 20X	203.13	319.20	319.21	5H	45.55	51.54	51.04		1211 12H	113 95	123.14	123.14
29X 29X	266.25	320.32	320.39	5H	46.72	52.71	52.32		12H	116.19	133.47	133.47
29X	266.99	321.06	321.01	5H	47.40	53.39	53.00		13H	115.70	134.69	134.80
29X	267.19	321.26	321.20	5H	48.06	54.05	53.42		13H	117.49	136.48	136.48
29X	267.69	321.76	321.73	5H	48.63	54.62	54.00		13H	121.61	140.60	140.60
29X	268.04	322.11	322.03	5H	49.01	55.00	54.32		13H	125.64	144.63	144.63
29X 20X	268.95	323.02	323.03	5П 5Н	49.25 50.96	56.95	55.85		14⊓ 1⊿H	125.20	140.94	140.94
29X 29X	209.37	323.44	323.57	6H	49.20	56.51	56.51		14H	130.58	152.32	152.32
29X	270.86	324.93	325.28	6H	50.00	57.31	57.31		14H	135.35	157.09	157.30
29X	272.05	326.12	326.47	6H	50.62	57.93	57.88		15H	134.70	157.19	156.95
30X	272.10	327.37	327.01	6H	52.31	59.62	59.42		15H	135.88	158.37	158.37
30X	272.46	327.73	327.37	6H	53.56	60.87	60.52		15H	143.40	165.89	165.89
30X	273.03	328.30	328.00	6H	54.34	61.65	61.30		15H	144.64	167.13	167.30
30X 30X	2/4.31	329.58	329.47	оп 6Н	54.57 54.84	62 15	61.55		10H	144.20	167.99	169.37
30X 30X	275.85	331 12	330.14	6H	55.12	62.43	62.17		16H	150.85	174.64	174.64
30X	276.91	332.18	332.18	6H	55.53	62.84	62.58		16H	154.27	178.06	177.50
30X	277.11	332.38	332.38	6H	56.14	63.45	63.30		17H	153.70	178.84	178.84
30X	277.74	333.01	332.84	6H	56.54	63.85	63.64		17H	154.98	180.12	180.12
30X	278.01	333.28	333.15	6H	56.72	64.03	64.08		17H	161.79	186.93	186.93
30X	278.84	334.11	334.08	6H ∠⊔	57.25	64.56	64.53		1/H 10U	163./3	188.8/	188.8/
30X 30X	279.40	334.67	334.59	оп 6Н	57.85 58.02	65.33	65 31		100 18H	163.20	190.30	190.30
30X 30X	279.72	335 21	335.09	6H	58.28	65.59	65.63		18H	171.87	198.97	198.97
30X	280.55	335.82	336.02	6H	58.53	65.84	65.88		18H	173.28	200.38	200.38
30X	281.18	336.45	336.65	6H	58.73	66.04	66.11		19H	172.70	200.95	200.95
30X	281.75	337.02	337.22	6H	59.23	66.54	66.61		19H	175.40	203.65	203.65
31X	281.80	337.58	337.58	7H	58.70	67.99	67.89		19H	177.22	205.47	205.47
31X	283.94	339.72	339.72	7H	59.58	68.87	68.77		19H	178.23	206.48	206.48
32X	285.00	340.78	340.78	7H 7H	61.27 61.07	70.56 71 24	70.56 71 24		19H 10H	1/ሃ.18 181 ናହ	207.43	207.63 200 82
328	203.30	541.14	541.14	7H	67.03	76.32	76.32		19H	182.69	209.05	209.05
320-U133	4B-	7 70	7.24	7H	68.91	78.20	78.20		20H	182.20	212.66	212.66
1日 1日	3./0	/./0	7.36 7.70	8H	68.20	80.34	80.34		20H	182.72	213.18	213.18
іп 1Н	3.93 5 80	7.93 9.80	7.78 9.79	8H	70.70	82.84	82.84		20H	189.30	219.76	219.76
	5.00	2.00		8H	74 78	86 92	86 92		20H	189 76	220.22	220 32

Table T13 (continued). (Continued on next page.)

		Depth				Depth					Depth	
			(rmcd				(rmcd	-				(rmcd
		(rmcd	[adjusted			(rmcd	[adjusted			<i>(</i>) ((rmcd	[adjusted
Coro	(mbsf	[m revised	m revised	Core	(mbsf	[m revised	m revised		Core	(mbsf [m CSE-A])	[m revised	m revised
Core	[m CSF-A])	CC3F-AJ)	CC3F-AJ)		[III C3F-A])	CC3F-AJ)	CC3F-AJ)		core	[11 C51 - A])	CC31-A])	CC31-74])
20H	190.39	220.85	220.77	27X	257.63	311.76	311.70		5H	46.86	56.97	56.97
20H	190.75	221.21	221.14	28X	257.40	312.61	312.69		5H	48.03	58.14	58.14
20H	191.36	221.82	221.72	28X	257.75	312.96	313.04		6H	47.50	59.56	59.56
20H	191.58	222.04	221.94	28X	258.40	313.61	313.57		6H	48.63	60.69	60.69
21H	191.70	224.21	223.91	28X	258.98	314.19	314.11		6H	54.79	66.85	66.85
21H	192.38	224.89	224.59	28X	259.24	314.45	314.40		6H 7U	57.00	69.34 69.06	69.55
21H 21U	192.80	225.31	225.06	288	259.49	314.70	314.70		7H	59.63	71 69	71.86
21H	195.50	225.61	225.00	287	263.18	318 39	318.05		7H	61.02	73.08	73.27
2111 21H	199.31	231.82	220.05	28X	263.66	318.87	318.81		7H	62.53	74.59	74.63
21H	199.64	232.15	232.14	28X	264.17	319.38	319.21		7H	63.25	75.31	75.33
21H	200.48	232.99	232.94	28X	264.75	319.96	319.91		7H	63.82	75.88	75.88
21H	201.31	233.82	233.77	28X	265.71	320.92	320.69		7H	64.95	77.01	77.09
22H	201.20	235.11	235.11	28X	266.08	321.29	321.01		7H	65.47	77.53	77.66
22H	202.60	236.51	236.51	28X	266.73	321.94	321.65		7H	66.12	78.18	78.06
22H	210.33	244.24	244.24	28X	267.34	322.55	322.26		7日 8日	00.04 66.50	78.70 80.46	70.30 80.33
22H 22Y	211.13	245.04	245.04	29A 29X	267.00	324.45	324.30		8H	67.70	81.66	81.79
23A 23X	210.70	245.01	243.71	29X	275.40	332.83	332.83		8H	68.89	82.85	82.82
23X	212.45	247.36	247.36	29X	277.03	334.46	334.40		8H	69.74	83.70	83.59
23X	219.59	254.50	254.50	30X	276.60	334.64	334.78		8H	70.97	84.93	84.86
23X	220.48	255.39	255.39	30X	276.67	334.71	334.85		8H	71.36	85.32	85.18
24X	219.00	268.63	268.63	30X	276.90	334.94	335.04		8H	71.96	85.92	85.81
24X	221.46	271.09	271.09	30X	277.11	335.15	335.23		8H	73.11	87.07	87.00
24X	222.02	271.65	271.61	30X	277.71	335.75	335.75		8H	74.14	88.10	88.00
24X	222.52	272.15	272.08	30X	283.83	341.87	341.87		011 814	75.39	09.33 00.32	09.33 00.32
24X 24X	222.92	272.55	272.41	31X	283.90	341.94	341.94		9H	76.00	92.30	92.15
24A 24X	223.00	273.49	273.28	200,110	204.02	542.00	542.00		9H	76.80	93.10	92.95
24X	225.09	274.72	274.64	320-0133	34C-	2 (5	2 70		9H	77.57	93.87	93.87
24X	226.06	275.69	275.75	111	0.00	5.05	5.79		9H	79.29	95.59	95.32
24X	226.97	276.60	276.74	111	2.84	6 4 9	5.40 6.49		9H	79.74	96.04	95.70
24X	228.21	277.84	278.03	1H	6.47	10.12	10.12		9H	81.31	97.61	97.16
24X	228.73	278.36	278.55	1H	9.83	13.48	13.48		9H	82.28	98.58	98.04
25X	228.60	279.32	279.72	2H	9.50	13.83	13.83		90 01	02.95 83.25	99.25	98.04 08.07
25X 25X	229.15	2/9.8/	280.27	2H	13.28	17.61	17.61		9H	84.70	101.00	100.65
25X 25X	229.75	281.65	280.70	2H	15.84	20.17	20.17		9H	85.82	102.12	101.80
25X	232.77	283.49	283.61	2H	18.72	23.05	23.05		10H	85.50	103.48	103.48
25X	233.50	284.22	284.35	3H 2H	19.00	25.65	25.65		10H	86.30	104.28	104.28
25X	234.13	284.85	284.98	3H	20.95	27.00	27.00		10H	91.73	109.71	109.71
25X	234.50	285.22	285.28	3H	22.92	29.57	29.36		10H	92.43	110.41	110.41
25X	235.29	286.01	286.01	3H	23.75	30.40	30.32		10H	93.97	111.95	111.79
25X	235.81	286.53	286.53	3H	24.25	30.90	30.92		10H	94.90	112.88	112.72
25X	237.43	288.15	288.38	3H	24.78	31.43	31.50		10H 11H	95.17	112.13	112.99
23A 26X	230.42	209.14	209.37	3H	25.58	32.23	32.42		11H	95.98	115.67	115.77
26X	230.20	291.67	291.67	3H	26.92	33.57	33.70		11H	96.43	116.12	116.22
26X	245.06	297.38	297.38	3H 2U	27.78	34.43	34.43		11H	98.08	117.77	117.77
26X	245.28	297.60	297.59	311 4H	28.12	38.54	38.45		11H	99.23	118.92	118.92
26X	245.40	297.72	297.79	4H	28.80	38.84	38.75		11H	99.66	119.35	119.41
26X	245.81	298.13	298.29	4H	28.98	39.02	39.05		11H	99.92	119.61	119.51
26X	246.26	298.58	298.72	4H	29.80	39.84	39.62		11H 11U	100.22	119.91	119.91
26X	246.71	299.03	299.20	4H	30.58	40.62	40.58		11H	100.77	120.40	120.40
20X 26X	240.95 247 20	299.27 200.62	299.46 200 94	4H	31.24	41.28	41.28		11H	102.16	121.35	121.35
207 26X	247.30	299.02 299.78	277.04 299.99	4H	32.63	42.67	42.85		11H	102.41	122.10	122.10
26X	247.90	300.22	300.43	4H	33.14	43.18	43.38		11H	104.01	123.70	123.70
27X	247.80	301.93	302.05	4H 4니	55.64 25.20	43.68 15 24	43.83 15 51		11H	104.62	124.31	124.31
27X	248.00	302.13	302.25	40 4H	35.20	45.24	45.04		12H	104.50	127.25	126.95
27X	248.18	302.31	302.35	4H	36.83	46.87	47.11		12H	105.30	128.05	127.75
27X	248.65	302.78	302.78	4H	37.36	47.40	47.70		12H	106.78	129.53	129.35
27X	252.44	306.57	306.57	4H	37.90	47.94	48.28		12H 12년	107.68	121 22	121 22
2/X	252.90	307.03	306.98	4H	38.31	48.35	48.69		12H	108.48	131.23	131.23
∠/∧ 27X	∠34.30 254.87	300.43 309.00	308.3/ 308.94	5H	38.00	48.11	48.11		12H	114.28	137.03	137.03
27X	255.02	309.15	309.09	5H	38.97	49.08	49.08		13H	114.00	139.13	139.00
		· · · -										

Table T13 (continued).

		Depth				Depth				Depth	
Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])	Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])	Core	(mbsf [m CSF-A])	(rmcd [m revised CCSF-A])	(rmcd [adjusted m revised CCSF-A])
131	11/ 01	140.04	130.04	22H	199 50	236 36	236 31	28X	250.22	299.75	299.46
131	114.21	140.04	139.94	22H	199.76	236.50	236.51	28X	250.29	299.82	299.58
131	115.52	140.45	140.55	22H	200.68	237.54	237.36	28X	250.38	299.91	299.68
13H	122.24	147.37	147 37	22H	201.69	238.55	238.36	28X	250.44	299.97	299.74
13H	122.24	147.94	147.90	22H	202.59	239.45	239.28	28X	250.54	300.07	299.87
13H	123.85	148 98	148 80	22H	204.78	241.64	241.58	28X	250.80	300.33	300.19
14H	123.50	150.56	150.56	22H	205.77	242.63	242.72	28X	250.95	300.48	300.38
14H	125.36	152 32	152 32	22H	187.38	224.24	244.24	28X	251.25	300.78	300.76
14H	131 31	158 37	158 37	22H	208.94	245.80	245.80	28X	251.54	301.07	301.07
14H	133.03	160.09	160.09	22H	209.41	246.27	246.27	28X	253.25	302.78	302.78
15H	133.00	161 23	161.63	23X	209.00	250.35	249.99	28X	253.48	303.01	303.05
15H	137.66	165.89	165.89	23X	209.22	250.57	250.21	28X	253.68	303.21	303.31
15H	141 14	169.37	169.37	23X	210.14	251.49	251.37	28X	254.01	303.54	303.83
15H	142.50	170.73	170.73	23X	210.94	252.29	252.04	28X	254.26	303.79	304.09
16H	142.50	172 19	172.00	23X	211.65	253.00	252.89	28X	254.67	304.20	304.64
16H	143.88	173 57	173 57	23X	212.70	254.05	254.25	28X	254.96	304.49	305.09
16H	144 95	174 64	174 64	23X	213.16	254.51	254.70	28X	255.06	304.59	305.24
16H	150.43	180 12	180 12	23X	213.61	254.96	255.15	28X	255.26	304.79	305.61
16H	151.94	181.63	181 78	24X	214.00	258.85	258.86	28X	255.42	304.95	305.86
17H	152.00	182 35	182 23	24X	214.54	259.39	259.39	28X	255.82	305.35	306.45
17H	153.21	183 56	183 44	24X	222.93	267.78	267.78	28X	256.34	305.87	307.26
17H	153.21	184.07	183.94	24X	223.89	268.74	268.74	28X	256.94	306.47	308.46
17H	155.27	185.62	185.46	25X	223.60	269.93	269.93	28X	257.21	306.74	308.76
17H	156.68	187.03	187.07	25X	224.69	271.02	271.02	28X	257.52	307.05	309.15
17H	160.53	190.88	191.30	25X	229.81	276.14	276.14	28X	258.62	308.15	310.15
17H	161.52	191.87	191.29	25X	230.49	276.82	276.88	29X	258.40	316.68	316.68
18H	161.50	192.94	193.50	25X	232.03	278.36	278.45	29X	258.56	316.84	316.95
18H	162.31	193.75	194.31	25X	232.93	279.26	279.27	29X	258.76	317.04	317.09
18H	166.37	197.81	197.75	25X	233.35	279.68	279.69	29X	259.10	317.38	317.35
18H	167.45	198.89	198.90	26X	233.20	280.30	280.30	29X	259.75	318.03	318.03
18H	168.70	200.14	200.10	26X	234.90	282.00	282.00	29X	267.11	325.39	325.39
18H	170.56	202.00	201.94	26X	239.43	286.53	286.53	29X	268.29	326.57	326.57
18H	171.16	202.60	202.54	26X	240.54	287.64	287.80	30X	268.00	326.81	326.78
19H	171.00	203.52	203.48	27X	239.20	287.21	287.54	30X	268.69	327.50	327.37
19H	171.75	204.27	204.21	27X	241.16	289.17	289.50	30X	269.78	328.59	328.45
19H	172.88	205.40	205.44	27X	242.55	290.56	290.45	30X	271.40	330.21	330.14
19H	173.05	205.57	205.57	27X	243.58	291.59	291.49	30X	271.78	330.59	330.57
19H	180.66	213.18	213.18	27X	245.17	293.18	293.48	30X	271.91	330.72	330.62
19H	180.76	213.28	213.28	27X	245.44	293.45	293.30	30X	272.88	331.69	331.55
20H	180.50	213.83	213.40	27X	246.97	294.98	294.95	30X	273.08	331.89	331.84
20H	180.75	214.08	213.65	27X	247.35	295.36	295.41	30X	273.63	332.44	332.28
20H	181.79	215.12	214.63	27X	248.16	296.17	296.22	30X	274.02	332.83	332.83
20H	184.21	217.54	217.23	28X	248.80	298.33	297.65	30X	276.94	335.75	335.75
20H	184.67	218.00	217.76	28X	249.49	299.02	298.62	30X	277.96	336.77	336.77
20H	186.43	219.76	219.76	28X	249.60	299.13	298.76	31X	277.70	338.72	338.72
20H	189.42	222.75	222.75	28X	249.74	299.27	298.92	31X	280.11	341.13	341.13
20H	190.02	223.79	223.79	28X	249.89	299.42	299.08	32X	279.70	279.70	279.70
21H	190.00	224.06	224.06	28X	250.00	299.53	299.20	32X	280.17	280.17	280.17
21H	199.97	234.03	234.03								

Italics = splice tie points.

Table T14. Revised offset for composite depth section, Site 1218.

	Donth	Officiat	Depth
Core	(mbsf)	(m)	rmcd)
	. ,	. ,	,
199-1218A-			
1H	0.00	0.00	0.00
2H	8.20	0.78	8.98
3H	17.70	2.34	20.04
4H	27.20	4.42	31.62
5H	36.70	4.80	41.50
6H	46.20	6.84	53.04
7H	55.70	8.06	63.76
8H	65.20	7.96	73.16
9H	74.70	10.26	84.96
10H	84.20	11.90	96.10
11H	93.70	13.40	107.10
12H	103.20	14.47	117.67
13H	112.70	14.91	127.61
14H	122.20	15.42	137.62
15H	131.70	16.22	147.92
16H	141.20	17.84	159.04
17H	150.70	17.90	168.60
18H	160.20	20.56	180.76
19H	169.70	20.38	190.08
20H	179.20	22.28	201.48
22X	195.90	22.93	218.83
23X	205.50	22.64	228.14
24X	215.10	24.48	239.58
25X	224.70	25.73	250.43
26X	234.30	25.53	259.83
27X	243.90	25.59	269.49
28X	253.50	24.53	278.03
29X	263.10	24.83	287.93
30X	270.70	23.63	294.33
199-1218B-			
1H	0.00	0.00	0.00
2H	3.90	1.16	5.06
3H	13.40	3.82	17.22
4H	22.90	5.18	28.08
5H	32.40	5.66	38.06
6H	41.90	7.66	49.56
7H	51.40	7.29	58.69
8H	60.90	8.39	69.29
9H	70.40	8.34	78.74
10H	79.90	10.80	90.70
11H	89.40	13.38	102.78
12H	98.90	15.24	114.14

			Depth
	Depth	Offset	(corrected
Core	(mbst)	(m)	rmcd)
13H	108.40	15.49	123.89
14H	117.90	16.46	134.36
15H	127.40	17.82	145.22
16H	136.90	19.02	155.92
17H	146.40	19.78	166.18
18H	155.90	20.12	176.02
19X	165.40	19.04	184.44
20X	175.10	20.70	195.80
21X	184.80	22.27	207.07
22X	194.40	23.65	218.05
23X	204.10	23.18	227.28
24X	213.70	25.86	239.56
25X	223.30	27.59	250.89
26X	228.30	27.07	255.37
27X	237.90	28.59	266.49
28X	247.50	31.20	278.70
29X	257.20	30.00	287.20
199-12180	<u>-</u>		
1H	55.00	8.04	63.04
2H	64.50	9.36	73.86
3H	74.00	9.78	83.78
4H	83.50	11.58	95.08
5H	93.00	12.82	105.82
6H	102.50	15.58	118.08
7H	112.00	14.09	126.09
8H	121.50	14.47	135.97
9H	131.00	15.90	146.90
10H	144.50	17.84	162.34
11H	154.00	18.62	172.62
12X	163.50	19.78	183.28
13X	172.00	19.76	191.76
14X	181.60	19.81	201.41
15X	191.20	21.82	213.02
16X	200.80	23.30	224.10
17X	210.40	22.86	233.26
18X	223.00	23.88	246.88
19X	232.60	24.39	256.99
20X	242.20	26.91	269.11
21X	247.20	27.03	274.23

Bold = changes to rmcd of Pälike et al. (2005).

Table T15. Tie points used to create the corrected revised composite depth section (corrected rmcd), Site 1218.

	D	epth			D	epth
Hole, core, section, interval (cm)	(mbsf)	(Corrected rmcd)		Hole, core, section, interval (cm)	(mbsf)	(Corrected rmcd)
199-				199-		
1218A-1H-5, 54	6.54	6.54	Tie to	1218B-2H-1, 148	5.38	6.54
1218B-2H-5, 40	10.30	11.46	Tie to	1218A-2H-2, 97	10.68	11.46
1218A-2H-7, 6	17.26	18.04	Tie to	1218B-3H-1, 82	14.22	18.04
1218B-3H-5, 12	19.52	23.34	Tie to	1218A-3H-3, 30	21.00	23.34
1218A-3H-6, 132	26.52	28.86	Tie to	1218B-4H-1, 78	23.68	28.86
1218B-4H-4, 120	28.60	33.78	Tie to	1218A-4H-2, 66	29.36	33.78
1218A-4H-6, 132	36.02	40.44	Tie to	1218B-5H-2, 88	34.78	40.44
1218B-5H-5, 44	38.84	44.50	Tie to	1218A-5H-2, 150	39.70	44.50
1218A-5H-7, 20	45.90	50.70	Tie to	1218B-6H-1, 113	43.04	50.70
1218B-6H-4, 60	47.00	54.66	Tie to	1218A-6H-2, 12	47.82	54.66
1218A-6H-6, 88	54.58	61.42	Tie to	1218B-7H-2, 128	54.13	61.42
1218B-7H-5, 56	57.91	65.20	Tie to	1218A-7H-1, 144	57.14	65.20
1218A-7H-6, 8	63.28	71.34	Tie to	1218B-8H-2, 54.5	62.95	71.34
1218B-8H-5, 76	67.66	76.05	Tie to	1218A-8H-2, 138.5	68.09	76.05
1218A-8H-5, 112	72.32	80.28	Tie to	1218B-9H-2, 3	71.94	80.28
1218B-9H-6, 118	79.08	87.42	Tie to	1218A-9H-2, 96	77.16	87.42
1218A-9H-6, 112	83.32	93.58	Tie to	1218B-10H-2, 138	82.78	93.58
1218B-10H-6, 126	88.66	99.46	Tie to	1218A-10H-3, 36	87.56	99.46
1218A-10H-6, 92	92.62	104.52	Tie to	1218B-11H-2, 24	91.14	104.52
1218B-11H-6, 144	98.34	111.72	Tie to	1218A-11H-4, 12	98.32	111.72
12188-11H-6, 136	102.56	115.96	Tie to	1218B-12H-2, 32	100.72	115.96
1218B-12H-5, 144	106.34	121.58	Tie to	1218A-12H-3, 90, 5	107.11	121.58
12188-12H-5, 112	110.32	124.79	Tie to	1218B-13H-1, 90	109.30	124.79
1218B-13H-6, 44	116.34	131.83	Tie to	1218A-13H-3, 122	116.92	131.83
12188-13H-6, 44	120.64	135.55	Tie to	1218B-14H-1, 118,5	119.09	135.55
1218B-14H-4, 66	123.06	139.52	Tie to	1218A-14H-2, 36	124.10	139.52
12188-14H-6, 104	130.74	146.16	Tie to	1218B-15H-1, 94	128.34	146.16
1218R-15H-4 40	132.30	150 12	Tie to	12188-15H-2 69	133.90	150 12
12186-15H-7 48	141 18	157.40	Tie to	1218R-16H-1 148	138.38	157.40
1218R-16H-6 40	144 30	163 32	Tie to	12188-16H-3 128	145 48	163 32
12188-16H-6 64	149 34	167.18	Tie to	1218R-17H-1 99	147.40	167.18
1218R-17H-6 46	154 36	174 14	Tie to	1218C-11H-2 0	155 52	174 14
1218C-11H-5 58	160 58	179.20	Tie to	1218E-18H-3 18	159.02	179.20
1218E-18H-5 118	163.08	183 20	Tie to	12188-18H-2 94	162.60	183 20
12186-18H-5_8	166.20	186.76	Tie to	12186-12X-3 48	166.98	186.76
12186-128-6 28	171 28	191.06	Tie to	12186-12A-3, 40	170.68	191.06
12180-12H-6, 20	177.96	198.34	Tie to	1218R-20X-2 103	177.64	198.34
1218R-20X-5 120	182.30	203.00	Tie to	12184-20H-1 152	180 72	203.00
12180-20H-6 124	187 94	210 22	Tie to	1218R-21X-3 15	187.95	205.00
1218R-21X-6 86	107.24	215.22	Tie to	12186-158-2 93	107.55	215.22
12186-158-4 118	196.88	218.70	Tie to	1218E-22X-1 65	195.05	213.45
12188-22X-6 82	202 72	276.37	Tie to	12186-168-2 77	203.08	276.37
1218C-16X-4 80	202.72	220.37	Tie to	12180-108-2, 77	205.00	220.37
12184-238-5 10	200.10	227.40	Tie to	12186-178-1 98	200.70	222.40
12186-178-6 12	217.00	240 58	Tie to	1218E-24X-1 102	211.30	240 58
1218C-17X-0, 12 1218R-24X-6 94	217.72	240.30	Tie to	12186-188-1 112	214.72	240.50
1218C-18X-7 36	222.14	255 81	Tie to	1218B-26Y-1 AA	227.12	255 81
1218E-26X-5 90	231.75	261 77	Tie to	12180-268-7 44	220.74	255.01
12100-207-3, 70	234.70	201.77	Tie to	12104-207-2, 44	220.24	201.77
1210A-20A-0, /	241.07	207.40	Tie to	12100-2/ 1. 31	230.01	207.40
12100-2/ 1-0, 119	240.37	273.10	Tio to	12102-217-1, 73	240.13	2/ 3.10
1210C-21A-3, 00	233.00	200.09 207.27	Append to	1210A-20A-2, 130	250.50	200.07
1210A-201-1,14	202.14	20/.2/ 202 1 7	Append to	1210A-23A-1, U 1219A 20V 1 0	203.10	201.73 201.20
1210A-27A-4,00 1210A 20V 2 140	∠00.40 272 ∠0	272.17	Append (0	1210A-3UA-1, U	270.70	274.37
1210A-3UX-2, 140	213.00	291.29				

Bold = changes to rmcd of Pälike et al. (2005), italics = shifts according to new offsets higher up in the section.

Table T16. Revised mapping pairs for adjusting cores to the corrected rmcd splice, Site 1218.

		Depth				Depth				Depth	
		(Corrected	Adjusted (corrected			(Corrected	Adjusted (corrected			(Corrected	Adjusted (corrected
Core	(mbsf)	rmcd)	rmcd)	Core	(mbsf)	rmcd)	rmcd)	Core	(mbsf)	rmcd)	rmcd)
199-1218A-				21X	185.04	207.31	207.62	29X	261.64	291.64	293.94
22X	195.90	218.83	218.83	21X	187.12	209.39	209.41	100 12190			
22X	203.63	226.56	226.56	21X	187.95	210.22	210.22	159-12100-	101 20	212.02	212 20
23X	205.50	228.14	228.14	21X	193.16	215.43	215.43	157	191.20	213.02	213.20
23X	206.76	229.40	229.40	21X	194.50	216.77	216.77	157	192.90	214.72	214.72
23X	211.60	234.24	234.24	22X	194.40	218.05	218.05	157	195.07	214.09	214.09
23X	212.42	235.06	235.06	22X	195.05	218.70	218.70	157	193.01	213.43	213.43
23X	212.88	235.52	235.52	22X	202.72	226.37	226.37	158	196.88	218.70	218.70
23X	215.39	238.03	238.03	22X	203.99	227.64	227.64	15X	199.64	221.46	221.27
24X	215.10	239.58	239.58	23X	204.10	227.28	228.22	15X	200.36	222.18	221.95
24X	215.64	240.12	240.12	23X	205.48	228.66	229.58	15X	200.99	222.91	222.68
24X	216.02	240.50	240.56	23X	206.20	229.38	230.00	16X	200.80	224.10	223.80
24X	216.42	240.90	240.90	23X	206.99	230.17	230.71	16X	202.18	226.08	225.90
24X	216.70	241.18	241.20	23X	208.34	231 52	231.74	16X	203.07	226.37	226.37
24X	217.60	242.08	242.00	23X	209.65	237.82	233.04	16X	206.10	229.40	229.40
24X	218 19	242.67	242 40	238	202.05	232.05	233.04	16X	207.86	231.76	231.88
24X	270.06	244 54	243.98	227	210.00	235.10	235.20	16X	209.34	233.24	233.24
24X	220.00	244.54	245.20	237	211.00	235.00	233.09	17X	210.40	233.26	233.26
247	221.40	243.24	245.24	238	212.00	233.00	233.75	17X	211.38	234.24	234.24
247	223.20	247.70	240.70	238	213.02	230.20	230.20	17X	217.72	240.58	240.58
247	223.00	240.34	247.24	238	213.82	237.00	237.00	17X	218.12	240.80	240.80
247	224.92	249.40	240.13	24X	213.70	239.56	239.61	17X	218.50	241.22	241.30
258	224.70	250.45	250.55	24X	214.20	240.06	240.13	17X	218.47	241.33	241.46
258	225.33	251.06	251.05	24X	214./2	240.58	240.58	17X	219.40	241.85	241.95
258	225.85	251.58	251.57	24X	222.14	248.00	248.00	17X	220.12	243.58	243.68
25X	226.06	251.79	251.67	24X	223.46	249.32	249.32	18X	223.00	246.88	246.98
25X	226.24	251.97	251.96	25X	223.30	250.89	250.51	18X	224.12	248.00	248.00
25X	226.48	252.21	252.11	25X	223.78	251.37	251.24	18X	231.93	255.81	255.81
25X	227.14	252.87	252.45	25X	224.24	251.83	251.71	18X	232.74	257.16	257.16
25X	227.60	253.33	252.83	25X	224.61	252.20	252.03	19X	232.60	256.99	257.94
25X	228.28	254.01	253.83	25X	224.72	252.31	252.21	19X	234 22	259.15	259.69
25X	228.80	254.53	254.73	25X	224.72	253.05	252.83	19X	235 36	260.29	260.78
25X	229.51	255.24	255.17	25X	227.60	255.19	255.20	19X	236.15	261.08	261 18
25X	230.06	255.79	255.85	26X	228.30	255.37	255.37	10X	230.13	267.50	262 51
25X	232.54	258.27	258.14	26X	228.74	255.81	255.81	100	237.30	262.51	262.51
25X	234.31	260.04	259.94	26X	234.70	261.77	261.77	197	239.00	203.43	203.03
26X	234.30	259.83	260.41	26X	237.89	264.96	264.96	197	239.02	204.01	204.30
26X	234.24	259.77	260.35	27X	237.90	266.49	266.35	197	240.80	205.19	200.47
26X	236.24	261.77	261.77	27X	238.81	267.40	267.40	197	242.20	207.15	269.00
26X	241.87	267.40	267.40	27X	246.59	275.18	275.18	20X	242.20	269.11	268.91
26X	244.17	269.70	269.50	27X	247.65	276.24	276.24	20X	244.98	2/2.43	2/2.48
27X	243.84	269.43	269.63	28X	247.50	278.70	278.70	20X	247.73	2/5.18	2/5.18
27X	246.24	271.83	271.83	28X	249 20	280.40	280 32	21X	247.20	274.23	274.23
27X	250.43	276.02	276.02	28X	249.80	281.00	280.99	21X	248.15	275.18	275.18
28X	253.50	278.03	278.03	288	250.90	282.10	281 94	21X	253.86	280.89	280.89
28X	255.00	280.00	279.80	207	250.20	282.10	284 07	21X	255.38	282.41	283.19
28X	256 36	280.80	280.89	207	252.07	203.07	207.07	21X	256.29	283.32	284.39
28X	262 98	287 51	287 51	270	257.20	207.20	207.70	21X	256.68	284.25	285.32
207	202.70	207.51	207.51	27A 20V	230.32	200.32	290.04				
199-1218B-				29A 20X	230.0Z	200.02	271.34	Italics – splice tie	noints		
21X	184.80	207.07	207.38	298	239.74	289.74	292.08	italics – splice th	points.		

Table T17. Tie points used to create the revised composite depth section (rmcd from Pälike et al., 2005), Site1219.

Hole, core, section,	De	pth	-	Hole, core, section,	De	pth
interval (cm)	(mbsf)	(rmcd)		interval (cm)	(mbsf)	(rmcd)
199-				199-		
1219A-1H-4, 128	5.78	5.78	Tie to	1219A-2H-1, 0	6.00	6.00
1219A-2H-7, 78	15.78	15.78	Tie to	1219A-3H-1, 28	15.78	15.78
1219A-3H-6, 32	23.32	23.32	Tie to	1219B-2H-1, 76	21.76	23.32
1219B-2H-6, 88	29.29	30.85	Tie to	1219A-4H-4, 46.5	29.97	30.85
1219A-4H-6, 128	33.78	34.66	Tie to	1219B-3H-1, 80.5	31.31	34.66
1219B-3H-4, 142	36.42	39.77	Tie to	1219A-5H-2, 148	37.48	39.77
1219A-5H-7, 40	43.90	46.19	Tie to	1219B-4H-2, 28	41.78	46.19
1219B-4H-4, 60	45.10	49.51	Tie to	1219A-6H-1, 149	45.49	49.51
1219A-6H-5, 124	51.24	55.26	Tie to	1219B-5H-1, 86	50.36	55.26
1219B-5H-6, 50	57.50	62.40	Tie to	1219A-7H-5, 98.5	60.33	62.40
1219A-7H-6, 128	62.12	64.19	Tie to	1219B-6H-1, 84.5	59.85	64.19
1219B-6H-6, 142	67.92	72.26	Tie to	1219A-8H-5, 19.5	69.21	72.26
1219A-8H-7, 32	72.32	75.37	Tie to	1219B-7H-1, 88.5	69.39	75.37
1219B-7H-6, 40	76.40	82.38	Tie to	1219A-9H-2, 100.5	75.01	82.38
1219A-9H-6, 79	80.79	88.16	Tie to	1219B-8H-2, 124	80.74	88.16
1219B-8H-7, 66	87.66	95.08	Tie to	1219A-10H-3, 31	85.31	95.08
1219A-10H-4, 100	87.50	97.27	Tie to	1219B-9H-1, 31	87.81	97.27
1219B-9H-5, 28	93.78	103.55	Tie to	1219A-11H-1, 148	92.98	103.55
1219A-11H-5, 8	97.58	108.15	Tie to	1219B-10H-1, 78.5	97.79	108.15
1219B-10H-6, 98	105.48	115.84	Tie to	1219A-12H-2, 103.5	103.55	115.84
1219A-12H-6, 28	108.78	121.07	Tie to	1219B-11H-3, 34	109.84	121.07
1219B-11H-7, 64	116.14	127.37	Tie to	1219A-13H-1, 0	110.50	127.25
1219A-13H-5, 124	117.30	134.05	Tie to	1219B-12H-4, 109	121.60	134.05
1219B-12H-7, 74	125.74	138.19	Append to	1219B-13H-1, 0	125.50	138.95
1219B-13H-7, 48	134.98	148.43	Tie to	1219A-15H-1, 0	129.50	149.51
1219A-15H-7, 62	139.12	159.13	Append to	1219A-16H-1, 0	139.00	160.49
1219A-16H-7, 50	148.61	170.10	Append to	1219A-17H-1, 0	148.50	170.99
1219A-17H-8, 22	157.99	180.48	Append to	1219A-18H-1, 0	158.00	181.49
1219A-18H-7, 48	167.48	190.97	Append to	1219A-19H-1, 0	167.50	191.99
1219A-19H-7, 46	176.96	201.45	Append to	1219A-20H-1, 0	177.00	202.49
1219A-20H-7, 94	186.99	212.48	Append to	1219A-21H-1, 0	186.50	212.99
1219A-21H-8, 48	195.98	222.47	Append to	1219A-22H-1, 0	196.00	223.49
1219A-22H-7, 48	205.48	232.97	Append to	1219A-23H-1, 0	205.50	233.99
1219A-23H-7, 64	215.14	243.63	Append to	1219A-24H-1, 0	215.00	244.49
1219A-24H-7, 58	224.63	254.12	Append to	1219A-25X-1, 0	224.50	254.99
1219A-25X-2, 52	226.52	257.01	Append to	1219A-26X-1, 0	234.10	265.59
1219A-26X-3, 72	237.82	269.31	Append to	1219A-27X-1, 0	243.70	276.19

Bold = changes to rmcd of Pälike et al. (2005).

Table T18. Revised offset for composite depth section, Site 1219 (from Pälike et al., 2005).

	Depth	Offset	Depth
Core	(mbsf)	(m)	(rmcd)
199-1219A-			
1H	0.00	0.00	0.00
2H	6.00	0.00	6.00
3H	15 50	0.00	15 50
4H	25.00	0.88	25.88
511	34 50	2 29	36.79
6H	44 00	4 02	48.02
7H	53 50	2.07	55 57
81	63.00	3.05	66.05
он	72 50	7 3 7	79.87
10H	82.00	977	91 77
111	02.00	10.57	102.07
12H	101.00	12 29	113 29
13H	110 50	16.75	127.25
14H	120.00	18.61	138.61
15H	120.00	20.01	149 51
16H	139.00	20.01	160.49
17H	148 50	27.49	170.99
18H	158.00	23 49	181 49
10H	167 50	23.42	101.42
20H	177.00	25.49	202 49
21H	186 50	26.49	212.42
22H	196.00	27 49	223 49
23H	205 50	28.49	233.99
24H	215.00	29.49	244.49
25X	224.50	30.49	254.99
26X	234.10	31.49	265.59
27X	243.70	32.49	276.19
100 12108			
199-1219D- 2U	21.00	1 56	22.56
211	20.50	2.25	22.30
311	40.00	3.35	33.85
511	40.00	4 90	54.40
511 6H	59.00	4.30	63 34
71	68 50	5.08	74.48
81	78.00	7 42	85 42
он он	87.50	9.77	97.77
10H	97.00	10.36	107.27
11H	106 50	11 23	117 72
12H	116.00	12.45	128.45
13H	125 50	13 45	138.95
14H	135.00	14 45	149 45
15H	144 50	16 35	160.85
164	154.00	16.55	170.03
1011	134.00	10.01	170.01

Bold = changes to ship mcd.

Table T19. Revised offset for composite depth section, Site 1220.

Core	Depth (mbsf)	Offset (m)	Depth (rmcd)
199-1220A			
1H	0.00	0.00	0.00
2H	9.50	0.00	9.50
3H	19.00	0.00	19.00
4H	28.50	2.25	30.75
5H	38.00	3.29	41.29
6H	47.50	5.34	52.84
7H	57.00	6.31	63.31
8H	66.50	7.64	74.14
9H	76.00	8.65	84.65
10H	85.50	9.61	95.11
11H	95.00	9.69	104.69
12H	104.50	14.10	118.60
199-1220B-			
1H	34.00	0.05	34.05
2H	43.50	2.39	45.89
3H	53.00	3.39	56.39
4H	64.50	5.32	69.82
5H	74.00	6.67	80.67
6H	83.50	8.53	92.03
7H	93.00	10.02	103.02
8H	102.50	11.45	113.95
9H	112.00	11.95	123.95
10H	121.50	11.74	133.24
11H	131.00	16.30	147.30
12H	140.50	17.82	158.32
13H	150.00	17.82	167.82
16X	169.10	17.82	186.92
18X	187.90	17.82	205.72
19X	192.40	17.82	210.22
20X	197.40	17.82	215.22
199-1220C	-		
1H	25.00	-1.25	23.75
2H	60.00	2.17	62.17
3H	69.50	5.54	75.04
4H	79.00	7.55	86.55
5H	88.50	8.50	97.00
6H	98.00	8.85	106.85
7H	107.50	10.02	117.52
8H	117.00	10.35	127.35
9H	126.50	9.17	135.67
10H	136.00	10.77	146.77
11X	145.50	12.45	157.95
14X	173.90	14.85	188.75
16X	193.00	15.51	208.51

Bold = changes to ship mcd, italics = ship splice, but mcd shifted according to new offsets higher up in the section.

Table T20. Tie points used to create the revised composite depth section (rmcd), Site 1220.

Hole, core, section.	De	pth	_	Hole, core, section.	De	pth
interval (cm)	(mbsf)	(rmcd)		interval (cm)	(mbsf)	(rmcd)
199-				199-		
1220A-1H-7, 60	9.60	9.60	Tie to	1220A-2H-1, 24	9.70	9.60
1220A-2H-CC, 18	19.33	19.23	Append to	1220A-3H-1, 0	19.00	19.00
1220A-3H-6, 75	26.70	26.70	Tie to	1220C-1H-2, 145	27.95	26.70
1220C-1H-6, 80	33.30	32.05	Tie to	1220A-4H-1, 130	29.80	32.05
1220A-4H-5, 84	35.34	37.59	Tie to	1220B-1H-3, 54	37.54	37.59
1220B-1H-7, 46	42.96	43.01	Tie to	1220A-5H-2, 22	39.72	43.01
1220A-5H-5, 64	44.64	47.93	Tie to	1220B-2H-2, 54	45.54	47.93
1220B-2H-6, 10	51.10	53.49	Tie to	1220A-6H-1, 64.5	48.15	53.49
1220A-6H-5, 70	54.20	59.54	Tie to	1220B-3H-3, 15	56.15	59.54
1220B-3H-7, 30	61.80	65.19	Tie to	1220A-7H-2, 37	58.88	65.19
1220A-7H-6, 60	65.06	71.37	Tie to	1220B-4H-2, 5	66.05	71.37
1220B-4H-5, 28	69.88	75.20	Tie to	1220A-8H-1, 106	67.56	75.20
1220A-8H-6, 58	74.58	82.22	Tie to	1220B-5H-2, 5	75.55	82.22
1220B-5H-4, 148	79.98	86.65	Tie to	1220A-9H-2, 50	78.00	86.65
1220A-9H-7, 40	85.40	94.05	Tie to	1220B-6H-2, 59	85.52	94.05
1220B-6H-6, 84	91.67	100.20	Tie to	1220C-5H-3, 28	100.00	100.20
1220C-5H-5, 52	94.94	103.44	Tie to	1220B-7H-1, 42	93.42	103.44
1220B-7H-5, 138	100.38	110.40	Tie to	1220C-6H-3, 55	101.55	110.40
1220C-6H-5, 140	105.40	114.25	Tie to	1220B-8H-1, 30	102.80	114.25
1220B-8H-5, 23	108.72	120.18	Tie to	1220A-12H-2, 8	106.08	120.18
1220A-12H-5, 118	111.68	125.78	Tie to	1220B-9H-2, 33	113.83	125.78
1220B-9H-4, 84	117.34	129.29	Tie to	1220C-8H-2, 44	118.94	129.29
1220C-8H-6, 140	125.90	136.25	Tie to	1220B-10H-3, 8	124.52	136.26
1220B-10H-7, 88	131.32	143.06	Append to	1220B-11H-1,0	131.00	147.30
1220B-11H-7, 74	140.74	157.04	Append to	1220C-11X-1, 0	145.50	157.95
1220C-11X-5, 140	152.90	165.35	Append to	1220B-13H-1,0	150.00	167.82
1220B-13H-1, 114	151.14	168.96	Append to	1220B-16X-1, 0	169.10	186.92
1220B-16X-7, 44	178.54	196.36	Append to	1220B-18X-1, 0	187.90	205.72
1220B-18X-3, 144	191.66	209.48	Append to	1220B-19X-1, 0	192.40	210.22
1220B-19X-1, 110	193.50	211.32	Append to	1220B-20X-1, 0	197.40	215.22
1220B-20X-2, 92	199.82	217.64				

Bold = changes to ship mcd, italics = ship splice, but mcd shifted according to new offsets higher up in the section.

Table T21. Mapping pairs for adjusting cores to the corrected rmcd splice, Site 1220.

		Depth				Depth				Depth	
Core	(mbsf)	(Corrected rmcd)	Adjusted (corrected rmcd)	Core	(mbsf)	(Corrected rmcd)	Adjusted (corrected rmcd)	Core	(mbsf)	(Corrected rmcd)	Adjusted (corrected rmcd)
100 12	204	,		124	111 68	125 78	125 78	19X	193 73	211 55	211 55
199-122	20A- 0.01	0.01	0.01	1211	114 37	123.78	125.78	20X	197.40	215.22	215.22
1H	0.01	0.01	0.01	1211	114.57	120.47	120.50	20X	200.03	217.85	217.85
2H	9.50	9.50	9.50	199-122	20B-			100.10	200		
2H	19.37	19.37	19.37	1H	34.00	34.05	34.05	199-12	200-	22.75	22.45
3H	19.00	19.00	19.00	IH	37.54	37.39	37.59	10	25.00	23.73	23.45
3H	26.70	26.70	26.70	111	42.90	43.01	43.01	11	20.10	24.91	24.01
3H	28.99	28.99	28.85	1 I I I	43.47	43.32	43.90	111	27.95	32.05	20.70
4H	28.50	30.75	30.75	1 H 2 L	43.47	45.32	45.90	111	35.05	33.80	33.80
4H	29.80	32.05	32.05	211	45.50	43.89	43.89	2H	60.00	62 17	61.80
4H	35.34	37.59	37.59	211	43.34 51.10	47.93	47.75	211	62.36	64 53	65.07
4H	38.14	40.39	40.39	211	53 59	55.98	55.98	2H 2H	63.85	66.02	66.63
5H	38.00	41.29	41.29	38	53.00	56 39	56.60	2H 2H	66.30	68.47	68.47
5H	38.47	41.76	41.79	311	56.15	59.52	59.50	2H 2H	68.66	70.83	70.83
5H	39.02	42.31	42.23	311	61.80	65 19	65 19	3H	69.50	75.04	75.35
5H	39.31	42.60	42.49	311	62.59	65.98	65.98	3H	71.20	76.74	76.74
5H	39.72	43.01	43.01	2H	64 50	69.82	69.82	3H	72.78	78.32	78.10
5H	44.64	47.93	47.93	4H	66.05	71 37	71 37	3H	75.08	80.62	80.22
5H	45.28	48.57	48.31	4H	69.88	75 20	75 20	3H	79.48	85.02	84.60
5H	45.64	48.93	48.63	4H	70.68	76.00	76.08	4H	79.00	86.55	86.55
5H	46.40	49.69	49.23	4H	71.88	77.20	77.26	4H	88.69	96.24	96.24
5H	47.34	50.63	50.05	4H	72.64	77.96	78.10	5H	88.50	97.00	97.00
5H	47.74	51.03	50.39	4H	73.73	79.05	79.19	5H	91.70	100.20	100.20
5H	48.05	51.34	50.70	5H	74.00	80.67	80.67	5H	94.94	103.44	103.44
6H	47.50	52.84	52.84	5H	75.55	82.22	82.22	5H	98.59	107.09	106.80
6H	48.15	53.49	53.49	5H	79.98	86.65	86.65	6H	98.00	106.85	106.85
6H	54.20	59.54	59.54	5H	84.06	90.73	90.73	6H	101.55	110.40	110.40
6H	55.66	61.00	61.00	6H	83.50	92.03	92.03	6H	105.64	114.49	114.49
6H	57.39	62.73	63.00	6H	85.52	94.05	94.05	6H	105.96	114.81	114.81
7H	57.00	63.31	62.85	6H	91.67	100.20	100.20	6H	107.78	116.63	116.40
7H	58.88	65.19	65.19	6H	93.32	101.85	101.85	7H	107.50	117.52	117.52
7H	65.06	71.37	71.37	7H	93.00	103.02	103.02	7H	108.08	118.10	118.10
7H	66.71	73.02	73.02	7H	93.42	103.44	103.44	7H	108.62	118.64	118.75
8H	66.50	74.14	74.14	7H	100.38	110.40	110.40	7H	109.16	119.18	119.43
8H	67.56	75.20	75.20	7H	102.96	112.98	112.70	7H	109.92	119.94	120.44
8H	74.58	82.22	82.22	8H	102.50	113.95	113.95	7H	111.10	121.12	121.24
8H	75.14	82.78	82.97	8H	103.04	114.49	114.49	7H	112.66	122.68	123.02
8H	76.51	84.15	84.34	8H	108.73	120.18	120.18	7H	115.16	125.18	125.24
9H	76.00	84.65	84.65	8H	109.20	120.65	120.65	7H	116.56	126.58	126.35
9H	76.88	85.53	85.53	8H	112.39	123.84	123.50	7H	117.46	127.48	127.25
9H	77.12	85.77	85.95	9H	112.00	123.95	123.95	8H	117.00	127.35	127.35
9H	78.00	86.65	86.65	9H	113.83	125.78	125.78	8H	118.94	129.29	129.29
9H	85.40	94.05	94.05	9H	117.34	129.29	129.29	8H	125.91	136.26	136.26
9H	85.89	94.54	94.54	9H	121.23	133.18	133.30	8H	126.76	137.11	137.11
10H	85.50	95.11	95.11	10H	121.50	133.24	133.24	9H	126.50	135.67	135.67
10H	89.92	99.53	99.53	10H	124.52	136.26	136.26	9H	136.66	145.83	145.83
10H	90.78	100.39	100.39	10H	131.65	143.39	143.39	10H	136.00	146.77	146.77
10H	92.76	102.37	102.06	11H	131.00	147.30	147.30	10H	145.86	156.63	156.63
10H	94.40	104.01	103.62	11H	141.09	157.39	157.39	11X	145.50	157.95	157.95
10H	95.23	104.84	104.45	12H	140.50	158.32	158.32	11X	153.09	165.54	165.54
11H	95.00	104.69	104.69	12H	150.56	168.38	168.38	14X	173.90	188.75	188.75
11H	96.30	105.99	105.88	13X	150.00	167.82	167.82	14X	182.48	197.33	197.33
11H	100.12	109.81	109.81	13X	159.19	177.01	177.01	16X	193.00	208.51	208.51
11H	102.38	112.07	111.61	16X	169.10	186.92	186.92	16X	193.97	209.48	209.48
11H	104.16	113.85	113.4/	16X	178.78	196.60	196.60				
11H	105.12	114.81	114.81	18X	187.90	205.72	205.72	Italics = splig	e tie poir	nts.	
12H	104.50	118.60	118.40	18X	191.89	209.71	209.71	itenes – spin			
12H	106.08	120.18	120.18	19X	192.40	210.22	210.22				

Table T22. Cleaned magnetic susceptibility and gamma ray attenuation composite records from Site U1331 on rmcd (m revised CCSF-A).

Gamma ray at	tenuation	Magnetic sus	entibility	Gamma ray a	ttenuation	Magnetic sus	ceptibility	Gamma ray a	Ittenuation	Magnetic sus	ceptibility
Depth (rmcd		Depth (rmcd	<u>repensitely</u>	Depth (rmcd		Depth (rmcd		Depth (rmcd		Depth (rmcd	
[m revised	Density	[m revised		[m revised	Density	[m revised		[m revised	Density	[m revised	
CCSF-A])	(g/cm ³)	CCSF-A])	(10 ⁻⁵)	CCSF-A])	(g/cm ³)	CCSF-A])	(10 ⁻⁵)	CCSF-A])	(g/cm ³)	CCSF-A])	(10 ⁻⁵)
				2.22	1 410	1 74	22.6	4.05	1 41 6	2.42	27.0
1.57	1.384	0.07	22.4	3.33	1.410	1.74	32.6	4.95	1.416	3.42	27.0
1.59	1.382	0.10	21.6	2.22	1.412	1.77	32.4 31.9	4.98	1.395	5.44 2.46	24.0
1.62	1.376	0.12	21.6	3.38	1.414	1.79	31.8	5.00	1.405	3.46	25.0
1.64	1.375	0.15	21.4	3.40	1.412	1.82	31.8	5.03	1.417	3.49	25.4
1.67	1.386	0.17	21.6	3.43	1.406	1.85	31.4	5.07	1.438	3.51	27.8
1.69	1.376	0.20	22.2	3.45	1.393	1.87	30.6	5.10	1.430	3.54	27.2
1.72	1.380	0.22	23.0	3.48	1.391	1.90	30.8	5.12	1.442	3.56	26.4
1.74	1.373	0.25	24.0	3.50	1.3/3	1.92	30.4	5.15	1.430	3.59	26.4
1.77	1.374	0.27	24.8	3.53	1.420	1.95	30.2	5.17	1.404	3.61	26.8
1.79	1.372	0.29	25.8	3.55	1.407	1.97	29.4	5.20	1.414	3.64	27.0
1.82	1.378	0.32	26.4	3.58	1.400	2.00	29.4	5.22	1.414	3.66	26.8
1.84	1.376	0.34	27.0	3.60	1.398	2.02	29.0	5.25	1.430	3.68	26.6
1.87	1.381	0.37	27.0	3.63	1.419	2.05	28.4	5.28	1.414	3./1	26.4
1.89	1.374	0.39	27.0	3.65	1.400	2.07	29.0	5.30	1.422	3.73	26.8
1.92	1.377	0.42	27.4	3.68	1.397	2.10	28.2	5.33	1.419	3.76	26.4
1.94	1.379	0.44	28.0	3.70	1.393	2.12	28.0	5.35	1.420	3.78	27.0
1.97	1.372	0.47	28.0	3.73	1.397	2.15	27.4	5.38	1.415	3.81	27.0
1.99	1.369	0.49	28.4	3.75	1.412	2.17	27.6	5.40	1.410	3.83	27.2
2.02	1.377	0.51	28.4	3.78	1.397	2.20	27.0	5.43	1.403	3.86	28.4
2.04	1.383	0.54	28.2	3.80	1.387	2.22	27.0	5.45	1.419	3.88	28.8
2.07	1.376	0.56	27.8	3.83	1.405	2.25	26.8	5.48	1.419	3.90	30.0
2.09	1.376	0.59	28.4	3.85	1.403	2.27	27.0	5.50	1.413	3.93	30.8
2.12	1.388	0.61	28.8	3.88	1.395	2.30	26.6	5.53	1.409	3.95	30.6
2.14	1.372	0.64	29.0	3.90	1.410	2.32	26.6	5.55	1.424	3.98	30.0
2.17	1.380	0.66	29.8	3.93	1.418	2.35	26.6	5.58	1.424	4.00	30.0
2.19	1.389	0.69	31.8	3.95	1.410	2.37	26.8	5.60	1.408		
2.22	1.361	0.71	34.0	3.98	1.399	2.40	26.6	5.63	1.422	4.03	30.8
2.24	1.373	0.73	32.0	4.00	1.403	2.42	26.2	5.65	1.419	4.05	31.9
2.27	1.392	0.76	36.8			2.45	26.4	5.68	1.421	4.08	32.2
2.29	1.378	0.78	40.4	4.03	1.416	2.47	26.8	5.70	1.428	4.10	33.0
2.32	1.384	0.81	39.0	4.05	1.418	2.50	26.4	5.73	1.428	4.13	33.0
2.34	1.381	0.83	40.0	4.08	1.415	2.52	27.0	5.75	1.430	4.15	33.0
2.37	1.383	0.86	39.0	4.10	1.413	2.55	27.6	5.78	1.414	4.18	33.3
2.39	1.367	0.88	38.0	4.13	1.414	2.57	27.6	5.80	1.428	4.20	33.3
2.42	1 374	0.91	38.0	4.15	1.401	2.60	27.8	5.83	1.402	4.23	33.7
2.12	1 378	0.93	37.0	4.18	1.413	2.62	28.0	5.85	1.399	4.25	34.8
2.44	1 393	0.95	36.4	4.20	1.406	2.65	27.8	5.88	1.412	4.28	34.8
2.47	1 3 9 9	0.90	36.4	4.23	1.404	2.67	27.2	5.90	1.403	4.30	35.2
2.42	1 399	1.00	35.6	4.25	1.415	2.70	27.2	5.93	1.412	4.33	35.2
2.52	1.327	1.00	36.4	4.28	1.413	2.72	26.4	5.95	1.410	4.35	34.8
2.55	1 3 9 5	1.05	36.0	4.30	1.412	2.75	25.2	5.98	1.400	4.38	35.2
2.57	1.375	1.05	35.6	4.33	1.406	2.77	25.6	6.00	1.412	4.40	35.2
2.00	1 / 15	1.08	35.6	4 35	1 411	2.80	26.2	6.03	1 4 3 3	4 4 3	35.2
2.02	1.413	1.10	25.6	4 38	1 4 1 3	2.00	26.0	6.05	1 4 3 1	4 4 5	35.2
2.03	1 202	1.13	35.0	4 40	1 416	2.85	26.0	6.08	1 406	4 48	34.1
2.07	1.393	1.15	36.0	4 4 3	1 4 3 3	2.85	24.8	6.00	1 416	4 50	34.1
2.70	1.409	1.10	30.0	4 4 5	1 4 1 4	2.00	27.2	613	1 417	4 53	34.1
2.72	1.400	1.20	25.6	4.49	1.414	2.90	27.2	615	1 4 3 3	4.55	34.1
2.75	1.300	1.22	33.0	4.50	1.400	2.75	27.0	6.18	1.430	4.55	34.4
2.77	1.406	1.25	33.0	4.50	1.474	2.75	27.0	6.20	1 4 2 8	4.50	25.2
2.80	1.411	1.27	35.8	4.55	1.424	2.70	27.2	6.20	1.420	4.00	33.2
2.82	1.396	1.30	35.0	4.55	1.419	2.05	24.4	6.25	1.430	4.05	24.0
2.85	1.410	1.32	35.8	4.30	1.407	3.03	20.0	6.23	1.422	4.03	24.0
2.87	1.394	1.35	35.2	4.60	1.408	3.07	27.0	0.20	1.415	4.00	24.0 24.4
2.90	1.399	1.3/	34.6	4.05	1.415	5.10	20.0	6.30	1.420	4.70	24.4
2.92	1.395	1.40	34.0	4.65	1.407	3.12	25.6	6.33	1.420	4.73	34.4
2.95	1.399	1.42	34.0	4.68	1.404	5.15	28.2	0.35	1.41/	4./5	54.I
2.97	1.425	1.44	31.0	4./0	1.409	3.1/	29.6	6.38	1.401	4.78	54.4
3.10	1.373	1.47	31.0	4.73	1.408	3.20	29.4	6.40	1.436	4.80	34.8
3.13	1.388	1.54	30.0	4.75	1.412	3.22	29.4	6.43	1.415	4.83	34.4
3.15	1.400	1.57	31.2	4.78	1.398	3.25	29.0	6.45	1.409	4.85	34.4
3.18	1.403	1.59	32.0	4.80	1.407	3.27	28.8	6.48	1.405	4.88	34.4
3.20	1.406	1.62	32.8	4.83	1.401	3.29	29.0	6.50	1.401	4.90	35.2
3.23	1.425	1.64	32.8	4.85	1.407	3.32	28.8	6.53	1.414	4.93	35.5
3.25	1.410	1.67	32.8	4.88	1.401	3.34	28.4				
3.28	1.398	1.69	32.4	4.90	1.402	3.37	28.2	Only a portio	on of this t	able appears I	here. The
3.30	1.410	1.72	32.4	4.93	1.403	3.39	27.4				

complete table is available in ASCII.

Table T23. Cleaned magnetic susceptibility and gamma ray attenuation composite records from Site U1332 on rmcd (m revised CCSF-A).

Gamma ray at	tenuation	Magnetic susc	ceptibility	Gamma ray a	ttenuation	Magnetic suse	ceptibility	Gamma ray a	ttenuation	Magnetic susc	ceptibility
Depth (rmcd		Depth (rmcd		Depth (rmcd		Depth (rmcd		Depth (rmcd		Depth (rmcd	
[m revised	Density	[m revised	(10-5)	[m revised	Density	[m revised	(10-5)	[m revised	Density	[m revised	(10-5)
CCSF-AJ)	(g/cm²)	CCSF-AJ)	(10^{-1})		(g/cm)	CC3I-AJ)	(10)		(g/cm)	(CC31-AJ)	(10)
1.00	1.233	1.03	30.8	1.84	1.236	2.70	26.4	2.57	1.230	4.41	22.8
1.00	1.257	1.05	30.4	1.86	1.240	2.72	26.8	2.59	1.231	4.44	22.6
1.03	1.251	1.08	30.4	1.87	1.238	2.75	26.4	2.59	1.231	4.47	22.0
1.05	1.229	1.10	30.4	1.67	1.200	2.77	25.0	2.62	1 230	4.49	22.4 21.4
1.05	1.245	1.15	30.4 30.4	1.89	1.247	2.80	24.0	2.62	1.230	4.59	20.6
1.10	1.245	1.13	29.7	1.91	1.246	2.85	24.0	2.67	1.222	4.62	20.0
1.10	1.260	1.20	29.3	1.92	1.236	2.87	22.6	2.70	1.240	4.64	20.4
1.13	1.245	1.23	28.6	1.94	1.249	2.90	18.6	2.72	1.239	4.67	22.0
1.15	1.240	1.25	28.9	1.94	1.277	2.92	16.6	2.75	1.222	4.69	23.0
1.15	1.233	1.28	28.2	1.96	1.238	2.95	17.0	2.77	1.209	4.72	22.8
1.18	1.253	1.30	27.5	1.97	1.258	2.97	17.4	2.80	1.217	4.74	21.6
1.20	1.233	1.33	28.2	1.99	1.255	3.00	17.0	2.82	1.225	4.//	22.4
1.20	1.243	1.35	28.6	2.01	1.236	3.08	21.2	2.85	1.225	4.79	22.8
1.25	1.235	1.30	20.0 28.9	2.01	1.264	3.13	24.4	2.90	1.226	4.84	23.4
1.25	1.237	1.43	20.2	2.04	1.257	3.15	24.0	2.92	1.194	4.87	23.6
1.28	1.220	1.45	28.6	2.04	1.241	3.18	23.4	2.95	1.212	4.89	23.6
1.30	1.240	1.48	27.5	2.06	1.272	3.20	22.4	2.97	1.206	4.92	23.2
1.30	1.230	1.52	23.1	2.07	1.259	3.23	22.4	3.07	1.204	4.94	24.0
1.30	1.212	1.57	24.5	2.09	1.246	3.25	24.6	3.10	1.237	4.97	25.0
1.33	1.232	1.59	26.0	2.09	1.259	3.28	26.0	3.13	1.228	4.99	25.8
1.33	1.243	1.62	27.1	2.11	1.268	3.30	26.4	3.15	1.217	5.02	26.0
1.35	1.231	1.64	28.2	2.12	1.262	3.33	26.0	3.18	1.210	5.04	27.2
1.35	1.237	1.67	27.1	2.12	1.250	3.33	25.0	3.20	1.219	5.07	28.0 28.4
1.35	1.234	1.69	25.0	2.14	1.247	3.38	24.4	3.25	1.217	5.12	20.4
1.30	1.240	1.72	23.5	2.16	1.237	3.43	23.4	3.28	1.243	5.14	29.6
1.30	1.259	1.77	23.8	2.17	1.253	3.45	23.0	3.30	1.244	5.17	29.2
1.40	1.244	1.79	25.3	2.17	1.256	3.48	21.4	3.33	1.225	5.19	30.2
1.40	1.245	1.82	27.5	2.19	1.258	3.51	19.2	3.35	1.232	5.22	30.2
1.43	1.252	1.84	28.9	2.19	1.241	3.53	17.6	3.38	1.224	5.24	30.0
1.43	1.249	1.87	29.7	2.21	1.262	3.56	16.6	3.40	1.227	5.27	29.4
1.45	1.231	1.89	30.0	2.22	1.259	3.58	17.0	3.43	1.220	5.29	29.0
1.45	1.219	1.92	30.8	2.22	1.248	3.61	19.6	3.45	1.246	5.32	29.0
1.45	1.248	1.94	31.9	2.24	1.252	3.03	20.8	3.48	1.249	5.34	29.2
1.54	1.234	1.97	31.9	2.24	1.2.34	3.68	19.0	3.50	1.220	5 39	29.0
1.50	1.222	2 02	32.0	2.20	1.270	3.71	19.0	3.56	1.239	5.42	27.0
1.57	1.212	2.04	32.2	2.27	1.264	3.73	18.4	3.58	1.252	5.44	25.0
1.58	1.245	2.07	31.9	2.29	1.242	3.76	17.0	3.61	1.266	5.47	23.8
1.59	1.217	2.09	31.9	2.29	1.259	3.78	14.0	3.63	1.255	5.49	20.8
1.61	1.247	2.12	32.2	2.31	1.256	3.81	13.0	3.66	1.235	5.52	21.4
1.62	1.239	2.14	32.6	2.32	1.261	3.83	13.8	3.68	1.210	5.54	23.8
1.62	1.241	2.17	33.0	2.32	1.254	3.86	13.4	3.71	1.240	5.57	25.0
1.63	1.242	2.19	32.6	2.54	1.230	2.00 2.01	13.0	3./3 3.76	1.224	5.60	23.0
1.64	1.242	2.22	32.0 21.0	2.34	1.235	3.91	12.0	3.70	1.213	5.65	23.0
1.60	1.241	2.24	37.9	2.30	1.238	3.96	13.0	3.81	1.224	5.67	21.2
1.67	1.229	2.29	30.8	2.37	1.236	3.99	13.8	3.83	1.249	5.70	21.0
1.68	1.220	2.32	28.9	2.39	1.254	4.01	10.8	3.86	1.237	5.72	18.4
1.69	1.226	2.34	25.3	2.39	1.250	4.04	10.0	3.88	1.232	5.75	16.2
1.71	1.238	2.37	23.4	2.41	1.238	4.06	10.8	3.91	1.222	5.77	16.0
1.72	1.230	2.39	22.0	2.42	1.249	4.09	14.2	3.93	1.231	5.80	15.6
1.72	1.232	2.42	15.8	2.42	1.230	4.11	17.6	3.96	1.223	5.82	16.6
1.73	1.236	2.44	18.0	2.44	1.253	4.14	18.2	3.98	1.240	5.85	20.6
1./4 1.74	1.226	2.4/	13.9 16 1	2.44 2.46	1.230	4.10	18.8	4.01	1.223	5.07 5.90	∠4.0 26.2
1./0	1.20U	2.49 2.52	10.1	2.47	1.245	4.21	19.0	4 06	1.203	5.92	27.0
1.77	1.220	2.52	19.8	2.49	1.252	4.24	19.0	4.09	1.218	5.95	27.0
1.78	1.244	2.57	19.8	2.49	1.244	4.26	20.0	4.11	1.223	5.97	27.6
1.79	1.252	2.59	22.0	2.51	1.245	4.29	20.6	4.14	1.230	6.00	27.8
1.81	1.249			2.52	1.249	4.31	21.2	4.16	1.218	6.07	24.6
1.82	1.236	2.62	22.0	2.54	1.236	4.34	21.8				
1.82	1.246	2.65	24.2	2.54	1.250	4.36	22.2	Only a portic	on of this t	able appears l	here. The
1.83	1.272	2.67	25.0	2.56	1.235	4.39	22.6	complete tab	الديرد عز مار		

Proc. IODP | Volume 320/321

Table T24. Cleaned magnetic susceptibility and gamma ray attenuation composite records from Site U1333 on rmcd (m revised CCSF-A).

Gamma ray at	ttenuation	Magnetic susc	eptibility	Gamma ray a	ttenuation	Magnetic sus	ceptibility	Gamma ray a	ttenuation	Magnetic susc	eptibility
Depth (rmcd		Depth (rmcd		Depth (rmcd		Depth (rmcd		Depth (rmcd		Depth (rmcd	
[m revised	Density	[m revised	(10-5)	[m revised	Density	[m revised	(10-5)	[m revised	Density	[m revised	(10-5)
CCSF-AJ)	(g/cm²)	CCSF-AJ)	(10 ⁻⁵)	CCSF-AJ)	(g/cm²)	CC3F-A])	(10^{-1})	CCSF-AJ)	(g/cm²)	CC3F-AJ)	(10-)
0.00	0.769	0.03	28.0	2.66	1.471	1.76	27.6	4.33	1.495	3.40	16.0
0.03	1.080	0.05	33.0	2.68	1.482	1.78	27.6	4.35	1.496	3.43	16.0
0.05	1.149	0.08	33.0	2.71	1.482	1.81	27.0	4.38	1.467	3.45	16.0
0.08	1.061	0.10	36.2	2.73	1.491	1.83	27.8	4.40	1.470	3.48	15.8
0.10	1.059	0.13	40.0	2.76	1.472	1.86	28.2	4.43	1.460	3.50	15.2
0.13	1.149	0.15	40.8	2.78	1.457	1.88	27.0	4.45	1.446	3.53	15.0
0.15	1.145	0.18	41.0	2.81	1.480	1.91	25.6	4.48	1.453	3.55	15.0
0.18	1.141	0.20	41.0	2.83	1.48/	1.93	25.0	4.55	1.456	3.58	14.6
0.20	1.135	0.23	41.0	2.86	1.513	1.96	24.2	4.57	1.483	3.60	14.8
0.23	1.149	0.25	41.4	2.00	1.550	1.96	24.0	4.60	1.409	3.03	14.4
0.25	1.146	0.28	41.8	2.91	1.541	2.01	23.0	4.02	1.431	3.63	13.0
0.28	1.152	0.30	42.0	2.95	1.544	2.05	22.0	4.05	1.420	3.00	14.0
0.30	1.136	0.35	42.2	2.90	1.554	2.00	21.4	4 70	1 417	3.70	14.0
0.35	1.125	0.33	42.4	3.03	1.607	2.00	21.2	4 72	1 396	3.75	15.6
0.33	1.105	0.38	42.0	3.05	1.596	2.13	21.2	4.75	1.362	3.78	16.0
0.50	1.157	0.43	40.4	3.08	1.568	2.16	20.2	4.82	1.309	3.80	17.4
0.43	1.102	0.45	39.4	3.10	1.550	2.18	20.6	4.85	1.328	3.83	19.0
0.45	1.157	0.48	38.8	3.13	1.579	2.21	20.2	4.87	1.271	3.85	19.0
0.48	1.156	0.50	38.4	3.15	1.560	2.23	20.0	4.90	1.284	3.88	19.8
0.50	1.144	0.53	38.8	3.18	1.558	2.26	19.8	4.92	1.274	3.90	21.0
0.53	1.162	0.55	39.6	3.20	1.584	2.28	19.2	4.95	1.262	3.93	22.0
0.55	1.170	0.60	38.4	3.23	1.585	2.31	20.6	4.97	1.279	3.95	21.6
0.58	1.169	0.63	38.0	3.25	1.576	2.33	21.4	5.00	1.270	3.98	21.2
0.60	1.164	0.65	38.0	3.28	1.551	2.36	21.2	5.02	1.276	4.00	21.6
0.63	1.150	0.68	38.0	3.30	1.561	2.38	20.4	5.05	1.288	4.03	21.0
0.65	1.154	0.70	37.6	3.33	1.543	2.41	17.6	5.07	1.301	4.05	20.4
0.68	1.172	0.73	37.6	3.35	1.532	2.43	13.8	5.10	1.293	4.08	19.0
0.70	1.159	0.75	37.6	3.38	1.501	2.46	12.0	5.12	1.279	4.10	17.2
0.73	1.172	0.78	37.8	3.40	1.470	2.48	12.0	5.15	1.279	4.13	16.4
0.75	1.154	0.80	37.2	3.43	1.486	2.51	12.0	5.17	1.26/	4.15	15.0
0.78	1.150	0.83	38.0	3.45	1.463	2.53	12.2	5.20	1.255	4.18	14.8
0.80	1.163	0.85	38.0	3.40	1.439	2.30	12.4	5.22	1.249	4.20	12.0
0.83	1.103	0.88	37.2	3.50	1.409	2.50	13.0	5.25	1.213	4.23	13.2
0.85	1.102	0.90	37.4 27.4	3.55	1 400	2.01	14.4	5 30	1 257	4.25	14.0
0.88	1.102	0.95	37.4	3 58	1 504	2.05	15.8	5 32	1 251	4 30	14.8
0.90	1.155	0.95	36.8	3.60	1.492	2.68	16.2	5.35	1.246	4.33	15.4
0.95	1.150	1.00	37.2	3.63	1.502	2.71	17.8	5.37	1.264	4.35	16.4
0.98	1.175	1.00	37.2	3.65	1.516	2.73	18.8	5.40	1.260	4.38	17.2
1.00	1.176	1.05	37.0	3.68	1.503	2.76	19.0	5.42	1.261	4.40	17.4
1.03	1.165	1.08	36.8	3.70	1.498	2.78	19.0	5.45	1.263	4.43	18.0
1.05	1.164	1.10	35.2	3.73	1.520	2.81	18.2	5.47	1.261	4.45	18.2
1.08	1.158	1.13	34.4	3.75	1.504	2.83	17.8	5.50	1.242	4.48	18.8
1.10	1.174	1.15	33.0	3.78	1.496	2.86	16.4	5.52	1.271	4.55	19.0
1.13	1.169	1.18	32.2	3.80	1.449	2.88	15.4	5.55	1.264	4.57	19.6
1.15	1.183	1.20	32.0	3.83	1.475	2.91	16.0	5.57	1.289	4.60	20.2
1.18	1.153	1.23	31.0	3.85	1.439	2.93	15.4	5.60	1.311	4.62	20.8
1.20	1.161	1.25	30.2	3.88	1.454	2.96	14.0	5.62	1.304	4.65	22.0
1.23	1.157	1.28	30.2	3.90	1.424	2.98	11.8	5.65	1.325	4.67	22.8
1.25	1.163	1.30	29.6	3.93	1.446	3.00	8.4	5.67	1.350	4.70	24.0
1.28	1.179	1.33	29.4	3.95	1.42/	3.03	10.0	5.70	1.32/	4.72	27.0
1.30	1.166	1.35	29.0	3.98	1.419	3.05	9.8	5.72	1.325	4.75	28.2
1.33	1.155	1.38	30.0	4.00	1.422	3.08	9.2	5./5	1.324	4.//	29.0
1.35	1.168	1.40	29.8	4.03	1.452	3.1U 2.10	9.0 0.0	5.//	1.323	4.8U 1 00	220
1.38	1.159	1.43	29.0	4.05 1 02	1.432	3.13	7.0 10.2	5.0U	1.320	4.0Z	32.0
1.40	1.13/	1.45	27.0	4 10	1 473	3.15	10.2	5.85	1 3 2 8	4.87	34.0
1.43	1.165	1.55	20.0 27.6	4.10	1.4/3	3.10	10.4	5.05	1 302	4.07	36.4
1.45 1.40	1.13/ 1.10 ^r	1.55	∠/.0 20 4	4.15	1 477	3.20	10.0	5.07	1 302	4.20	37.0
1.40 251	1.10) 1 /20	1.38 1.40	∠0.4 20.2	4 1 8	1.544	3.25	10.6	5.90	1 287	4 95	38.2
2.21	1.420 1.471	1.00	29.2 20.8	4.20	1.543	3.28	10.8	5.95	1,288	4.97	39.2
2.55	1 445	1.05	29.0 29.6	4.23	1.531	3.30	10.2	5.97	1.284	5.00	38.6
2.50	1.457	1.65	29.2	4.25	1.531	3.33	11.6			5.00	
2.61	1.482	1.70	28.6	4.28	1.514	3.35	12.6	Only a mart	n of this t	ablo annear l	DORG TH
2.63	1.454	1.73	27.8	4.30	1.519	3.38	14.4			able in ASCI	iere. Ine

complete table is available in ASCII.

Table T25. Cleaned magnetic susceptibility and gamma ray attenuation composite records from Site U1334 on rmcd (m revised CCSF-A).

Commo rou o	ttopustion	Magnatic que	contibility	Gamma ray a	attenuation	Magnetic sus	centibility	Gamma ray a	ttenuation	Magnetic sus	centibility
Depth (rmcd	llenuation	Depth (rmcd	ceptionity_	Depth (rmcd		Depth (rmcd	ceptionity	Depth (rmcd	tterruution	Depth (rmcd	ceptionity
[m revised CCSF-A])	Density (a/cm³)	[m revised CCSF-A])	(10 ⁻⁵)	[m revised CCSF-A])	Density (g/cm ³)	[m revised CCSF-A])	(10 ⁻⁵)	[m revised CCSF-A])	Density (g/cm ³)	[m revised CCSF-A])	(10 ⁻⁵)
	(9,)		(12)								
0.13	1.202	0.03	15.8	1.91	1.215	1.76	20.9	3.71	1.254	3.51	23.4
0.15	1.176	0.05	20.5	1.94	1.212	1.79	22.3	3./3	1.260	3.53	23.1
0.18	1.178	0.08	19.8	1.96	1.224	1.81	24.2	3.76	1.230	3.56	23.8
0.20	1.178	0.10	19.0	1.99	1.236	1.84	24.9	3.78	1.223	3.58	24.2
0.23	1.200	0.13	20.5	2.01	1.214	1.86	24.9	3.81	1.212	3.61	24.2
0.25	1.187	0.15	20.9	2.04	1.221	1.89	25.3	3.83	1.219	3.63	24.2
0.28	1.190	0.18	22.3	2.06	1.240	1.91	25.3	3.86	1.215	3.66	24.2
0.30	1.206	0.20	22.3	2.09	1.227	1.94	25.3	3.88	1.212	3.68	25.3
0.33	1.204	0.23	22.7	2.11	1.216	1.96	24.9	3.91	1.214	3.71	28.2
0.35	1.186	0.25	23.1	2.14	1.226	1.99	24.9	3.93	1.231	3.73	31.1
0.38	1.228	0.28	24.2	2.16	1.217	2.01	24.5	3.96	1.210	3.76	33.0
0.40	1.216	0.30	23.8	2.19	1.209	2.04	24.2	3.98	1.224	3.78	33.0
0.43	1.203	0.33	24.5	2.21	1.206	2.06	23.4	4.01	1.215	3.81	33.0
0.45	1.228	0.35	24.9	2.24	1.220	2.09	22.7	4.03	1.233	3.83	33.0
0.48	1.208	0.38	24.9	2.26	1.241	2.11	23.4	4.06	1.227	3.86	33.3
0.50	1.231	0.40	24.9	2.29	1.231	2.14	23.1	4.08	1.225	3.88	33.7
0.53	1.204	0.43	25.3	2.31	1.199	2.16	22.7	4.11	1.210	3.91	34.1
0.55	1.230	0.45	27.5	2.34	1.202	2.19	22.3	4.13	1.218	3.93	34.1
0.58	1.235	0.48	26.4	2.36	1.221	2.21	22.7	4.16	1.229	3.96	34.1
0.50	1 1 8 9	0.40	25.3	2.39	1.203	2.24	22.0	4.18	1.214	3.98	34.1
0.63	1 2 2 2	0.50	26.0	2.41	1.209	2.26	22.0	4.21	1.210	4.01	34.8
0.05	1.222	0.55	26.0	2 44	1 212	2 29	20.9	4 23	1 2 2 0	4 03	35.5
0.05	1.192	0.55	20.0	2.11	1 213	2 31	20.5	4 26	1 221	4.06	35.5
0.00	1.210	0.38	23.5	2.40	1.215	2.31	20.5	4.20	1.221	4.00	35.5
0.70	1.191	0.60	24.9	2.47	1.210	2.34	20.5	4.20	1.210	4.00	34.8
0.73	1.197	0.63	24.5	2.51	1.212	2.30	21.0	4.31	1.200	4.11	24.0
0.75	1.1/5	0.65	23.1	2.54	1.222	2.37	20.9	4.33	1.219	4.15	24.0
0.78	1.224	0.68	22.3	2.50	1.219	2.41	20.9	4.30	1.230	4.10	24.0
0.80	1.191	0.70	23.1	2.59	1.227	2.44	21.2	4.38	1.227	4.18	35.Z
0.83	1.202	0.73	23.4	2.61	1.209	2.46	20.9	4.41	1.219	4.21	35.2
0.85	1.201	0.75	23.1	2.64	1.203	2.49	20.1	4.43	1.232	4.23	35.5
0.88	1.196	0.78	23.1	2.66	1.208	2.51	20.1	4.46	1.216	4.26	36.3
0.90	1.231	0.80	23.1	2.69	1.216	2.54	20.9	4.48	1.253	4.31	35.9
0.93	1.231	0.83	23.4	2.71	1.217	2.56	19.8	4.54	1.231	4.33	36.3
0.95	1.211	0.85	24.2	2.74	1.211	2.59	19.0	4.57	1.227	4.36	37.0
0.98	1.204	0.88	23.8	2.76	1.199	2.61	18.7	4.59	1.240	4.38	36.6
1.00	1.215	0.90	23.4	2.79	1.224	2.64	19.0	4.62	1.220	4.41	37.4
1.03	1.223	0.93	23.1	2.81	1.234	2.66	19.4	4.64	1.207	4.43	38.1
1.05	1.227	0.95	23.1	2.84	1.224	2.69	19.8	4.67	1.216	4.46	37.4
1.08	1.231	0.98	23.1	2.86	1.244	2.71	20.9	4.69	1.222	4.54	37.4
1.10	1.219	1.00	23.8	2.89	1.239	2.74	22.3	4.72	1.198	4.57	38.5
1.13	1.237	1.03	24.2	2.91	1.265	2.76	23.1	4.74	1.201	4.59	38.1
1.15	1.219	1.05	24.5	3.08	1.207	2.79	23.8	4.77	1.206	4.64	36.3
1.18	1.224	1.08	24.9	3.11	1.248	2.81	24.9	4.79	1.203	4.67	35.5
1.20	1.222	1.10	24.5	3.13	1.205	2.84	27.5	4.82	1.220	4.69	35.2
1.23	1.198	1.15	24.9	3.16	1.241	2.86	29.3	4.84	1.210	4.72	34.8
1.25	1.211	1.18	24.5	3.18	1.238	2.89	29.3	4.87	1.218	4.74	34.8
1.28	1.198	1.20	24.2	3.21	1.257	2.91	27.8	4.89	1.221	4.77	34.1
1.30	1.216	1.23	23.4	3.23	1.238	3.03	28.6	4.92	1.219	4.79	33.7
1.33	1.219	1.25	23.1	3.26	1.233	3.06	29.7	4.94	1.222	4.82	33.7
1.35	1.213	1.28	24.2	3.28	1.240	3.08	31.1	4.97	1.234	4.84	34.1
1 38	1 1 9 3	1 30	23.1	3.31	1.241	3.11	30.8	4.99	1.230	4.87	34.4
1.50	1 206	1 33	24.2	3.33	1.241	3.13	30.8	5.02	1.214	4.89	34.8
1.40	1.200	1.35	23.4	3.36	1.256	3.16	30.8	5.04	1.224	4.92	34.1
1.50	1.210	1.35	23.7	3 38	1 239	3 18	30.0	5.07	1 218	4 94	34.4
1.57	1 210	1.30	22.1	3.30	1.268	3 21	29.7	5 09	1,224	4 97	35.2
1.01	1.210	1.40	22.0	2 / 2	1 267	2.22	30.4	5.10	1 225	4 00	33.2 34 R
1.04	1.200	1.45	∠1.∠ 20.1	2 16	1.207	2.25	20.7	5.12	1 221	5 A2	3/ /
1.00	1.228	1.45	20.1	2 40	1.200	2.20	27.5 27 5	J.14 5 17	1 220	5.02	2/1
1.69	1.222	1.54	20.1	5.40 5.51	1.230	J.∠Ö 2 21	21.J 26 4	5.17	1.229	5.04	24.I
1.71	1.223	1.56	21.2	3.31	1.200	5.51	∠0.4 25.4	5.19	1.220	5.07	54.4 27 2
1.74	1.212	1.59	20.9	3.53	1.248	5.55	23.0 22.1	5.22	1.222	5.09	33.Z
1.76	1.214	1.61	19.8	3.56	1.248	5.36	∠3.1	5.24	1.219	5.12	33.9
1.79	1.207	1.64	20.5	3.58	1.233	3.38	23.1	5.27	1.225	5.14	36.3
1.81	1.222	1.66	20.1	3.61	1.238	3.41	25.3	5.29	1.222	5.17	35.9
1.84	1.230	1.69	20.5	3.63	1.259	3.43	26.7				
1.86	1.206	1.71	20.5	3.66	1.262	3.46	24.9	Only a porti	on of this	table appears	here. Th
1.89	1.232	1.74	20.5	3.68	1.255	3.48	24.2	complete to		blo in ACCI	

e complete table is available in ASCII.

Table T26. Cleaned virtual geomagnetic pole latitude, magnetic susceptibility, and gamma ray attenuation from Site 1218 on corrected rmcd.

Virt	tual	Gamm	na ray	Magn	etic
geomagn	netic pole	attenu	ation	suscept	ibility
Depth		Depth		Depth	,
(corrected		(corrected	Densitv	(corrected	
rmcd)	Latitude	rmcd)	(g/cm^3)	rmcd)	(10-6)
0.75	524	0.42	1 000	0.40	10.4
0.65	-52.4	0.42	1.090	0.42	19.4
0.70	-42.5	0.44	1.067	0.44	20.0
0.75	-35.4	0.46	1.091	0.46	20.5
0.80	-27.4	0.48	1.114	0.48	20.7
0.85	-25.8	0.50	1.098	0.50	20.5
0.90	-28.3	0.52	1.081	0.52	20.4
0.95	-29.6	0.54	1.092	0.54	21.0
1.00	-15.2	0.56	1.104	0.56	22.0
1.05	-13.6	0.58	1.103	0.58	22.4
1 10	_19.3	0.60	1 100	0.60	22.2
1.10	23.0	0.60	1.100	0.00	22.2
1.15	-23.0	0.04	1.072	0.02	10 /
1.20	-20.2	0.00	1.030	0.04	10.4
1.25	-25./	0.70	1.054	0.66	18.5
1.30	-21.4	0.72	1.053	0.68	19.8
1.35	-25.8	0.74	1.078	0.70	21.3
1.40	-30.4	0.76	1.104	0.72	22.1
1.45	22.6	0.78	1.107	0.74	22.1
1.55	-16.4	0.80	1.107	0.76	22.3
1.60	_9.4	0.82	1.111	0.78	22.7
1 65	_6.7	0.84	1 1 1 6	0.80	23.0
1 70	11 5	0.04	1 114	0.00	23.0
1.70	-11.5	0.00	1.114	0.02	∠3.U
1.75	-9.1	0.88	1.111	0.84	∠3.1
1.80	-4.9	0.90	1.092	0.86	23.2
1.85	-8.7	0.92	1.074	0.88	23.0
1.90	-8.9	0.94	1.090	0.90	22.6
1.95	-13.2	0.96	1.108	0.92	22.4
2.00	-8.8	0.98	1.124	0.94	22.3
2.05	-4.7	1.00	1.138	0.96	22.5
2.10	-10.2	1.02	1.117	0.98	22.7
2.10	_& 3	1.02	1 093	1 00	22.0
2.13	-0.5	1.04	1.075	1.00	22.0
2.20	-/.1	1.00	1.000	1.02	22.2
2.25	-9.2	1.08	1.081	1.04	21.4
2.30	-6.6	1.10	1.090	1.06	20.7
2.35	-2.2	1.12	1.101	1.08	20.7
2.40	-5.4	1.14	1.108	1.10	20.7
2.45	-10.7	1.16	1.114	1.12	21.0
2.50	-8.3	1.18	1.100	1.14	20.7
2.55	-4.3	1.20	1.087	1.16	19.7
2.60	_7 4	1.22	1.093	1.18	19.6
2.00	_15 7	1 24	1 000	1 20	21.0
2.03	-15.7 15 A	1.24	1.022	1.20	21.0
2.70	-13.4	1.20	1.000	1.22	∠∠.5 22.0
2.75	-10.5	1.28	1.0/2	1.24	23.0
2.80	-11.5	1.30	1.089	1.26	23.6
2.85	-10.8	1.32	1.108	1.28	23.8
2.90	-9.0	1.34	1.117	1.30	23.5
2.95	-3.5	1.36	1.125	1.32	23.1
3.05	-13.1	1.58	1.136	1.34	23.0
3.10	-12.2	1.60	1.113	1.56	23.2
3,15	-13.3	1.62	1.090	1.58	23.8
3 20	_7 1	1 64	1.091	1 60	24.2
3.20	0.0	1 44	1 004	1.00	24.2
J.ZJ	-9.0	1.00	1.024	1.02	24.3
3.30	-14.6	1.68	1.103	1.64	24./
3.35	-8.8	1.70	1.099	1.66	24.1
3.40	-9.5	1.72	1.104	1.68	24.6
3.45	-12.7	1.74	1.119	1.70	25.0
3.50	-12.7	1.76	1.122	1.72	25.5
3.55	-38.2	1.78	1.112	1.74	26.5
3 60	-10.4	1.80	1.106	1 76	27.6
3 65	_5.9	1 82	1 107	1 78	28.1
2 70	-5.7	1.02	1 1107	1.70	20.1 27 2
5.70	-3./	1.04	1.110	1.00	21.2
3./5	-2.3	1.86	1.113	1.82	20.6
3.80	-1.6	1.88	1.108	1.84	26.8
3.85	2.0	1.90	1.103	1.86	27.3
3.90	3.1	1.92	1.102	1.88	27.2
3.95	3.5	1.94	1.101	1.90	26.4

Table T27. Cleaned virtual geomagnetic pole latitude, magnetic susceptibility, and gamma ray attenuation from Site 1219 on corrected rmcd.

Vir geomag	tual netic pole	Gamı atten	ma ray uation	Magr suscept	netic tibility
Depth		Depth	Density	Depth	<u> </u>
(rmcd)	Latitude	(rmcd)	(g/cm³́)	(rmcd)	(10 ⁻⁶)
0.45	70.9	0.68	1.096	0.68	24.2
0.50	64.8	0.70	1.100	0.70	24.0
0.55	60.6	0.72	1.104	0.72	23.9
0.60	53.2	0.74	1.102	0.74	23.5
0.65	54.2	0.76	1.100	0.76	23.1
0.70	59.4	0.78	1.084	0.78	22.9
0.75	66.1	0.80	1.067	0.80	22.8
0.80	53.6	1.00	1.080	0.82	22.9
0.85	49.1	1.02	1.081	0.98	23.3
0.90	60.2	1.04	1.083	1.00	22.8
1.00	-/6.4	1.06	1.098	1.02	22.5
1.05	-81.2	1.08	1.114	1.04	22.0
1.10	-04.2 97.1	1.10	1.115	1.00	23.1
1.15	-07.1	1.12	1.110	1.00	23.9
1.20	50.9	1.14	1.100	1.10	24.2
1.25	_81 7	1.10	1.020	1.12	24.2
1.30	-82.1	1.10	1.004	1.14	24.4
1.40	-80.3	1.20	1.085	1.18	24.3
1.45	-80.4	1.24	1.093	1.20	24.5
1.55	-69.5	1.26	1.102	1.22	24.6
1.60	-72.6	1.28	1.111	1.24	24.3
1.65	-78.4	1.30	1.108	1.26	24.2
1.70	-72.6	1.32	1.103	1.28	24.5
1.75	-70.9	1.34	1.090	1.30	24.7
1.80	-70.7	1.36	1.076	1.32	24.7
1.85	-66.1	1.38	1.076	1.34	24.8
1.90	-67.6	1.40	1.076	1.36	24.6
1.95	-73.4	1.58	1.084	1.38	24.6
2.00	-83.7	1.60	1.090	1.40	24.7
2.05	-79.2	1.62	1.096	1.42	24.6
2.10	46.4	1.64	1.084	1.56	24.6
2.15	77.6	1.66	1.072	1.58	24.9
2.20	66.8	1.68	1.077	1.60	25.0
2.25	-48.8	1.70	1.084	1.62	24.7
2.30	-/4.9	1./2	1.091	1.64	24.1
2.35	-//.5	1.74	1.099	1.00	23.5
2.40	-/8.5	1.70	1.106	1.08	23.1
2.45	-77.9	1.70	1.114	1.70	23.0
2.50	-78.0	1.80	1 1 2 3	1.72	22.7
2.55	_79.4	1.02	1.125	1.74	22.5
2.65	-82.2	1.86	1.110	1.78	22.1
2.70	-81.7	1.88	1.107	1.80	22.6
2.75	-79.9	1.90	1.104	1.82	23.4
2.80	-82.5	1.92	1.105	1.84	24.0
2.85	-88.8	1.94	1.106	1.86	24.4
2.90	43.7	1.96	1.098	1.88	24.5
2.95	77.6	1.98	1.088	1.90	24.4
3.05	79.0	2.00	1.072	1.92	24.3
3.10	79.3	2.02	1.058	1.94	24.5
3.15	78.8	2.04	1.081	1.96	24.9
3.20	77.1	2.06	1.106	1.98	25.0
3.25	77.6	2.08	1.110	2.00	25.1
3.30	80.9	2.10	1.112	2.02	25.3
3.35	87.9	2.12	1.110	2.04	25.3
3.40	51.9	2.14	1.10/	2.06	25.5
3.45	40.1	2.16	1.098	2.08	26.0
3.50	∠ŏ.ŏ 17 2	2.18	1.090	2.10	20.4 26 4
3.33	-17.5	2.20 2.20	1.100	2.1Z 2.17	20.4 26.1
3.60	10.1 60 0	2.22 2.21	1.122	2.14 2.14	∠0.1 25.0
3.03	7/1 2	2.24 2.26	1.110	2.10	25.9 25.6
3.75	79 5	2.20	1 079	2.10	25.0
3.80	76.1	2,30	1.064	2.22	24.5

Vir geomagi	tual netic pole	Gamr	ma ray uation	Magn	etic ibility
Danth		Denth	Density	Denth	
(rmcd)	Latitude	(rmcd)	(g/cm ³)	(rmcd)	(10-6)
3.85	-74.5	2.32	1.072	2.24	24.2
3.90	-73.4	2.34	1.080	2.26	23.6
3.95	-69.6	2.36	1.068	2.28	22.5
4.00	-71.3	2.38	1.055	2.30	21.9
4.05	-70.0	2.40	1.060	2.32	21.6
4.10	-66.9	2.42	1.065	2.34	21.4
4.15	-66.6	2.44	1.058	2.36	21.1
4.20	-69.0	2.46	1.050	2.38	21.1
4.25	-79.7	2.48	1.050	2.40	21.0
4.30	-73.1	2.50	1.051	2.42	20.5
4.35	-71.5	2.52	1.072	2.44	20.4
4.40	-73.6	2.54	1.093	2.46	20.6
4.45	-78.8	2.56	1.076	2.48	21.0
4.55	-72.0	2.58	1.057	2.50	21.1
4.60	-75.5	2.60	1.052	2.52	20.9
4.65	-66.6	2.62	1.049	2.54	21.0
4.70	-52.1	2.64	1.066	2.56	21.4
4.75	56.5	2.66	1.083	2.58	21.7
4.80	67.9	2.68	1.081	2.60	22.1
4.85	69.1	2.70	1.077	2.62	22.2
4.90	20.5	2.72	1.078	2.64	22.4
4.95	-80.5	2.74	1.080	2.66	22.5
5.00	-67.2	2.76	1.086	2.68	22.4
5.05	-73.0	2.78	1.091	2.70	22.2
5.10	-70.3	2.80	1.076	2.72	22.3
5.15	-63.2	2.82	1.060	2.74	22.1
5.20	58.3	2.84	1.052	2.76	22.1
5.25	69.1	2.86	1.044	2.78	22.4
5.30	59.1	3.08	1.102	2.80	22.5
5.35	-64.0	3.10	1.100	2.82	22.4
5.40	-67.4	3.12	1.098	2.84	22.3
5.45	-72.8	3.14	1.113	2.86	22.5
5.50	-66.9	3.16	1.128	2.88	22.9
5.55	-20.6	3.18	1.126	3.06	26.4
5.60	53.5	3.20	1.122	3.08	27.2
5.65	-59.0	3.22	1.120	3.10	28.1
5.70	-58.1	3.24	1.117	3.12	28.7
5.75	20.4	3.26	1.095	3.14	29.0
		3.28	1.074	3.16	28.7
6.45	-0.4	3.30	1.086	3.18	28.0
6.50	8.8	3.32	1.099	3.20	27.2
6.55	19.8	3.34	1.100	3.22	26.6
6.60	15.3	3.36	1.099	3.24	25.6
6.65	19.1	3.38	1.095	3.26	24.7
6.70	11.0	3.40	1.092	3.28	24.3
6.75	-9.7	3.42	1.103	3.30	24.5
6.80	86.5	3.44	1.114	3.32	25.2
6.85	/9.3	3.46	1.102	3.34	26.0
6.90	82.5	3.48	1.089	3.36	26.4
6.95	/4.3	3.50	1.104	3.38	26.8
7.00	/2.2	3.52	1.119	3.40	27.0
7.05	03.0	5.54	1.104	5.42	26.9
7.10	ŏ/.ŏ	3.56	1.088	5.44	20.5
7.15	/8.8	3.38	1.000	5.46	∠0.1 25.7
7.20	0U.4 70 0	5.0U 2 4 2	1.090	2 50	25./
7.20	/ 0.0 70.0	2 4	1.00/	3.30	23.U
7.50	/ 7.Z	2.04 2.44	1.004	5.5Z	24.U
7.55	01.7 80 0	3.00	1.000	3.54	23.3 23.0
7.40	66.0	3.00	1 00/	3.50	23.0 23.0
7 55	_86 1	3.70	1 105	3.50	23.0
	00.1	3.7 L		5.00	

Only a portion of this table appears here. The complete table is available in ASCII.

Table T28. Cleaned virtual geomagnetic pole latitude, magnetic susceptibility, and gamma ray attenuation from Site 1220 on corrected rmcd.

Vir	Virtual geomagnetic pole		na ray	Magr	netic
Denth		Depth	Density	Denth	libility
(rmcd)	Latitude	(rmcd)	(g/cm ³)	(rmcd)	(10 ⁻⁶)
0.10	-47.1	0.08	1.125	0.06	31.0
0.15	-37.0	0.12	1.142	0.08	29.0
0.20	-20.3	0.16	1.155	0.10	37.5
0.25	47.8	0.20	1.162	0.12	38.5
0.30	71.5	0.24	1.133	0.14	31.0
0.35	88.6	0.28	1.143	0.16	31.0
0.40	67.4	0.32	1.144	0.18	32.5
0.45	-39.9	0.36	1.153	0.20	39.5
0.50	-69.0	0.40	1.154	0.22	42.0
0.55	-69.8	0.44	1.163	0.24	35.0
0.60	-78.5	0.48	1.152	0.26	32.0
0.65	-//.6	0.52	1.164	0.28	31.5
0.70	-68./	0.56	1.165	0.30	32.0
0.75	-/1.3	0.60	1.161	0.32	32.0
0.80	-84.2	0.64	1.155	0.34	31.0
0.00	-/ð.9 70 1	U.68 0.72	1.131	0.30	21 0
0.90	-/0.4 75 1	0.72	1.130	0.38	220
0.95	-/ 3.1	0.70	1.133	0.40	32.0
1.00	-/0.3 _77 0	0.00	1.140	0.42	32.0
1.05	_//.Z _77 7	0.04	1.1.30	0.44	32.0
1.10	-//./ _70 7	0.00	1.140	0.40	32.0
1.15	-69.6	0.92	1 1 7 0	0.40	32.0
1.20	-55.2	1 00	1 1 5 2	0.50	33.0
1.20	-63.7	1.00	1 1 5 8	0.52	32.0
1.35	-77.2	1.08	1.179	0.56	32.0
1.40	-79.4	1.12	1.180	0.58	32.5
1.60	-83.5	1.16	1.175	0.60	32.0
1.65	-83.5	1.20	1.169	0.62	31.0
1.70	-78.9	1.24	1.165	0.64	30.0
1.75	-71.8	1.28	1.166	0.66	29.5
1.80	-75.3	1.32	1.167	0.68	30.0
1.85	-89.2	1.36	1.154	0.70	29.0
1.90	-82.2	1.40	1.189	0.72	29.0
1.95	-82.8	1.44	1.171	0.74	28.5
2.00	-85.0	1.58	1.173	0.76	29.0
2.05	-81.1	1.62	1.165	0.78	29.5
2.10	-77.6	1.66	1.169	0.80	29.0
2.15	-75.2	1.70	1.153	0.82	29.5
2.20	-82.5	1.74	1.147	0.84	29.5
2.25	-61.1	1.78	1.146	0.86	30.5
2.30	-72.8	1.82	1.174	0.88	29.5
2.35	-69.6	1.86	1.178	0.90	31.5
2.40	-64.6	1.90	1.155	0.92	30.5
2.45	-24.2	1.94	1.169	0.94	29.5
2.50	-78.1	1.98	1.160	0.96	24.0
2.55	-74.5	2.02	1.185	0.98	24.5
2.60	-84.0	2.06	1.153	1.00	28.0
2.65	-85.1	2.10	1.169	1.02	30.0
2.70	-87.4	2.14	1.191	1.04	30.0
2.75	54.1	2.18	1.200	1.06	30.0
2.80	31.0	2.22	1.185	1.08	29.0
2.85	-82.2	2.26	1.187	1.10	28.5
2.90	-/8.5	2.30	1.174	1.12	28.5
3.10	-/1.5	2.34	1.153	1.14	28.0
3.15	-58.4	2.38	1.182	1.16	29.0
3.20	45.0	2.42	1.189	1.18	29.5
3.25	23./	2.46	1.202	1.20	51.0
2.50	-04.Z	2.50	1.200 1.174	1.22	22.5 22.5
3 10	-//.1	2.34 2.50	1.1/4	1.24	32.0
5.4U 2 15	-/4.0	2.30	1.100	1.20	33.U 32 E
3.43	55.0	2.02	1.101	1.20	33.0
3.50	50 K	2.00 2.70	1.149	1 2 2	33.0
3.60	68.5	2.70	1.167	1 34	33.5
5.00	00.5	4./7	1.10/	1.54	ر ر ر

Vir geomag	tual netic pole	Gamı atten	ma ray uation	Magr suscept	etic ibility
Depth (rmcd)	Latitude	Depth (rmcd)	Density (g/cm ³)	Depth (rmcd)	(10-6)
3.65	36.2	2.78	1.171	1.36	33.5
3.70	15.0	2.82	1.183	1.38	33.0
3.75	13.5	2.86	1.181	1.40	32.5
3.80	15.6	2.90	1.163	1.42	33.5
3.85	3.9	2.94	1.165	1.44	33.5
3.90	-18.7	3.08	1.203	1.56	33.0
3.95	-77.7	3.12	1.166	1.58	33.0
4.00	6.6	3.16	1.219	1.60	33.5
4.05	58.5	3.20	1.194	1.62	34.0
4.10	59.0	3.24	1.1/6	1.64	34.5
4.15	56.0	3.28	1.18/	1.66	35.0
4.20	49.9	3.3Z	1.10/	1.00	33.0
4.23	40.1	3.30	1.211	1.70	34.0
4 35	48.7	3 44	1.120	1.72	33.5
4 40	38.1	3.48	1.198	1.76	33.0
4.60	40.4	3.52	1.194	1.78	34.0
4.65	43.8	3.56	1.208	1.80	33.5
4.70	43.6	3.60	1.190	1.82	33.0
4.75	44.7	3.64	1.187	1.84	34.0
4.80	49.6	3.68	1.189	1.86	34.0
4.85	8.0	3.72	1.206	1.88	34.0
4.90	-32.7	3.76	1.198	1.90	34.0
4.95	37.8	3.80	1.188	1.92	33.0
5.00	36.7	3.84	1.195	1.94	33.0
5.05	48.7	3.88	1.191	1.96	32.0
5.10	38.5	3.92	1.193	1.98	32.0
5.15	28.0	3.96	1.224	2.00	32.0
5.20	29.1	4.00	1.211	2.02	32.0
5.25	-30.9	4.04	1.209	2.04	33.0
5.30	15.9	4.08	1.207	2.00	33.5
5.35	-40.6	4.12	1.10/	2.06	34.0
5.40	-40.5	4.10	1.165	2.10	35.0
5.50	76.4	4.24	1.196	2.12	36.0
5.55	73.6	4.28	1.187	2.16	37.0
5.60	64.4	4.32	1.218	2.18	37.5
5.65	67.5	4.36	1.173	2.20	37.5
5.70	66.0	4.58	1.214	2.22	37.0
5.75	62.9	4.62	1.192	2.24	37.0
5.80	57.9	4.66	1.189	2.26	37.0
5.85	66.3	4.70	1.221	2.28	36.0
5.90	58.9	4.74	1.219	2.30	35.0
6.10	43.2	4.78	1.204	2.32	36.0
6.15	41.1	4.82	1.197	2.34	36.0
6.20	59.9	4.86	1.211	2.36	36.5
6.25	47.8	4.90	1.200	2.38	38.5
6.50	-46.0	4.94	1.202	2.40	59.5 41.5
6.40	-05.1	4.90	1.209	2.42	41.5
6 4 5	_72 Q	5.02	1 219	2.44	37.5
6.50	-64.6	5.10	1.206	2.48	37.0
6.55	-43.5	5,14	1.207	2.50	36.5
6.60	-85.6	5.18	1.213	2.52	37.0
6.65	-43.2	5.22	1.228	2.54	38.5
6.70	22.5	5.26	1.196	2.56	38.5
6.75	8.0	5.30	1.217	2.58	39.0
6.80	-50.5	5.34	1.209	2.60	37.5
6.85	-47.7	5.38	1.205	2.62	37.0
6.90	-44.3	5.42	1.204	2.64	38.0
6.95	-34.3	5.46	1.202	2.66	38.0

Only a portion of this table appears here. The complete table is available in ASCII.

Table T29. Correlation of Sites 1219, U1333, and U1334 to corrected rmcd of Site 1218. (Continued on next page.)

		Site U1333		Site U1334			C'1 1010	Site U1333	C': 1210	Site U1334	C': 1210
Sito 1210	Site 1218	depth (rmcd [m	Site 1218	depth (rmcd [m	Site 1218	Site 1219	Site 1218 depth	depth (rmcd [m	Site 1218 depth	depth (rmcd [m	Site 1218 depth
depth	(corrected	revised	(corrected	revised	(corrected	depth	(corrected	revised	(corrected	revised	(corrected
(rmcd)	rmcd)	CCSF-A])	rmcd)	CCSF-A])	rmcd)	(rmcd)	rmcd)	CCSF-A])	rmcd)	CCSF-A])	rmcd)
0.059	((00	2 5 0 7	65 111	0.820	5 440	55 158	08 235	50 366	140 384	50 371	67 647
0.938	7 798	2.307	66.830	0.830	7 700	55,580	98,780	52,244	143.350	60.507	68,494
1.178	8 310	4 228	68 099	1.130	8 310	56.090	99.660	53.632	145.509	61.450	69.069
2 100	10 020	5 097	69 299	1 880	10 020	56.669	100.678	54.561	146.945	62.241	69.522
2.330	11.730	5.673	70.117	2.030	11.730	58.191	104.578	55.415	148.029	62.863	69.888
2.895	13.817	6.183	70.984	4.080	21.680	59.180	106.870	56.581	149.398	63.550	70.237
3.614	16.280	6.663	71.477	5.280	23.510	59.400	107.180	57.605	150.978	64.501	70.805
3.850	17.980	7.566	72.896	5.730	24.240	60.050	108.020	58.240	151.630	65.420	71.330
4.700	18.960	8.341	73.930	5.930	24.760	60.582	109.037	58.818	152.464	66.113	71.788
4.880	19.490	8.734	74.641	6.330	25.790	62.291	111.617	59.799	153.536	67.889	72.890
5.180	20.290	9.960	76.260	6.920	27.030	63.096	113.109	61.044	154.832	68.673	73.481
5.400	20.520	10.654	77.814	7.220	27.270	63.730	117.022	62.865	156./29	69.789	74.127
5.550	20.830	10.990	78.486	7.270	27.310	64.446	117.023	63.645	157.841	70.533	74.004
5.650	20.990	11.597	/9.698	7.390	27.440	65 346	119 624	67 145	150.054	73.309	70.205
6./85 7.401	25.295	12.683	81.279	7.690	30.460	65 920	110.034	67.876	163 185	74.055	78 527
8 6 4 8	20.740	15.405	83 808	7.930	30.010	67.320	121.590	68,427	163,794	77.940	79.847
9 1 7 7	31 522	16 175	84 596	8 720	31 960	67.620	122.120	69.188	164.780	79.983	81.591
10,239	34,938	16.647	85.320	11.340	33,110	68.462	123.522	70.922	166.954	85.178	83.759
11.241	36.427	17.048	85.951	11.620	33.520	68.857	124.103	71.526	167.718	85.706	84.164
12.061	37.383	17.667	86.976	11.990	33.960	69.310	125.003	72.601	168.998	86.996	85.090
14.760	40.409	18.881	89.008	12.170	34.490	69.609	125.917	74.260	171.096	87.917	85.607
20.380	47.200	19.424	89.655	12.260	34.780	69.983	127.251	75.806	172.615	89.170	86.370
20.830	47.620	20.248	90.746	14.420	36.190	70.963	128.412	77.100	173.920	89.740	86.780
21.579	48.455	20.848	91.694	14.540	36.520	71.670	129.354	80.889	177.936	90.580	87.211
22.137	49.203	21.781	92.900	15.540	37.820	72.015	129.746	81.982	179.165	92.910	88.573
23.230	51.190	22.081	93.405	15.720	38.070	/2.883	131.338	83.989	181.6/1	94.625	89.8/2
24.040	52.040	22.716	94.336	16.790	38.900	/3./33	132.142	86.327	184.490	95.675	90.698
24.220	52.260	23.293	95.338	17.120	39.400	73.224	135.274	92 260	103.310	97.134	91.093
24.450	52.550	25.940	90.200	17.340	39.030 40.360	77 922	136 148	97 073	196 498	99 015	92.307
24.810	53 290	25.192	90.107	20 170	40.300	79.244	137.584	98.318	198.064	100.078	93.465
26.650	55.240	26.218	99,700	20.390	41.380	80.784	139.231	102.640	201.287	101.384	94.360
27.220	56.120	26.779	100.420	20.790	41.610	81.425	142.642	103.593	202.669	102.792	95.353
28.200	57.400	27.201	101.279	20.920	41.850	86.720	145.492	104.510	203.790	103.970	96.221
29.370	59.120	27.651	102.220	21.640	42.300	88.194	146.950	105.783	205.755	106.658	98.201
29.930	59.770	28.385	103.496	22.290	42.770	89.237	148.064	106.831	207.262	107.570	98.780
31.219	62.108	28.744	104.590	23.070	43.230	90.538	149.371	109.472	210.516	108.040	99.178
31.771	63.461	29.588	106.169	24.640	43.950	92.093	150.994	112.025	213.602	108.783	99.719
32.699	65.583	30.048	106.765	25.390	44.320	93.456	152.479	113.243	214.8//	110.077	100.653
33.460	66.830	30.350	107.180	26.740	44.980	94.539	155./45	117.247	218.396	110.626	101.037
33.942	6/.664	30.960	108.020	26.970	45.100	97.442	157.027	112 012	219.270	111.629	101.042
25 5 2 2	09.200 70.167	31.314	109.074	28.690	40.160	99 552	158 882	120 798	221.245	114 210	102.727
36 280	71 330	32.217	111 539	29.370	46.850	101.870	161.260	123.116	226.463	114.722	104.129
37.280	73.270	33.641	113.071	30.720	47.200	102.600	162.120	127.226	230.464	115.542	104.582
38.011	74.677	34.322	114.505	31.520	47.620	103.398	163.230	128.172	231.414	117.795	106.000
39.257	76.355	34.632	115.076	32.394	48.131	104.361	164.245	129.980	233.390	118.935	106.766
40.104	77.423	34.972	115.580	33.625	48.820	109.823	168.983	131.306	235.008	119.490	107.180
40.742	78.549	35.916	116.973	35.024	49.957	112.145	171.332	131.879	235.949	120.432	107.887
42.083	81.237	37.080	119.490	36.534	51.155	113.491	172.640	132.323	236.466	122.096	109.079
45.090	83.880	38.520	121.590	38.176	52.032	114.670	174.053	133.083	237.446	123.632	110.230
45.490	84.320	38.820	122.120	38.860	52.550	125.494	185.560	133.705	238.130	124.554	110.891
45.990	85.040	39.498	123.517	39.280	52.950	136./44	198.10/	134./00	239.128	125.680	112 172
47.078	86.637	39.803	124.134	39.690	53.290	141.892	202./15	135.424	240.3/3	127.724	113.1/3
47.499	0/.19/ 00 521	40.142	124.932	41./40	55.240	143.1/3	204.344 205.072	136 152	240./92 241 202	120.703 120 767	114.247
40.318 ⊿0 117	00.301 80 211	41.493 ⊿1.049	120.430 120.251	42./90 ⊿2 777	56 121	143.307	205.075	136 562	247 640	130 487	115 494
50 284	90 741	43 280	131 376	44 840	57 400	145,345	207 109	136.887	243 191	132 352	116 951
50.850	91.714	44.281	132.786	47.236	59.009	146.213	208.052	137.381	244.118	133.177	117.705
51.460	92.440	45.492	134.460	48.197	59.758	150.830	213.634	137.593	244.456	135.300	119.490
52.120	93.370	46.117	135.409	53.042	62.814	151.739	214.370	138.016	245.254	137.690	121.590
52.666	94.334	46.848	136.163	54.338	63.817	154.673	216.968	138.327	245.866	138.340	122.120
53.040	94.790	48.388	137.538	56.376	65.537	156.025	218.425	138.652	246.618	138.942	122.556
53.800	96.200	49.188	138.712	57.886	66.680	157.380	219.282	139.189	247.503	140.324	123.500

Table T29 (continued).

		Site U1333		Site U1334	
	Site 1218	depth	Site 1218	depth	Site 1218
Site 1219	depth	(rmcd [m	depth	(rmcd [m	depth
denth	(corrected	revised	(corrected	revised	(corrected
(rmcd)	rmcd)	CCSE-AI)	rmcd)	CCSE-AI)	rmcd)
(inica)	meay	CC3I-AJ)	meay	CC3I-AJ)	micuy
1 (0 0 0 0	224 420	120 702	240.212	1 41 220	104157
160.825	224.429	139.782	248.312	141.220	124.157
161.651	225.609	142.321	250.911	142.040	124.906
163.042	226.971	142.590	251.275	143.405	126.258
164 515	228 152	143 593	251 627	145 447	128 420
164.515	220.132	144 122	251.027	147160	120.420
103.6/1	229.430	144.152	251.774	147.160	129.555
166.274	229.806	145.345	252.454	147.877	129.741
167.031	230.468	145.933	252.696	148.533	130.195
167.937	231.362	146.915	253.321	149.892	131.113
168 601	232 063	147 338	253 860	152 204	132 717
160.001	232.005	147.950	255.000	152.204	122./1/
109.972	233.370	147.630	234.374	133.373	133.000
1/1.445	236.261	148.157	254.699	155.839	134.830
172.461	238.150	148.440	255.017	157.155	135.395
173.083	238.927	148.737	255.375	158.702	137.610
173 427	239 426	148 962	255 640	160 400	138 729
173.417	237.420	140.202	255.040	162.010	1 40 507
1/4.416	240.846	149.393	255.918	162.910	140.50/
177.591	243.969	149.852	256.280	166.656	143.504
178.511	244.878	150.897	257.431	169.298	145.530
180.057	246.446	151.575	258.003	173.489	148.528
181 784	248 586	152 465	258 727	177 560	151 630
101./04	240.300	152.403	230.727	100 277	151.050
182.520	249.211	152.663	258.8/3	180.377	153.8/3
183.070	249.600	152.931	259.123	183.909	156.780
187.470	252.525	153.184	259.415	185.170	157.770
188 920	253 710	154 381	260 296	190 100	161 260
102.040	255.710	154 793	260.270	101 259	167.200
193.940	258.080	154.782	260.628	191.338	162.069
194.890	258.723	155.688	261.468	193.303	163.587
195.452	259.174	157.197	262.379	194.050	164.090
197.595	261.503	157.926	263.076	198.243	167.370
108 070	262 430	158 510	263 656	201 603	169 824
100.770	202.430	1.0.00	203.030	201.023	171 202
199./51	263.056	160.685	264.847	203.823	1/1.303
203.627	266.398	161.392	265.427	205.282	172.317
204.476	267.402	161.891	265.883	207.560	173.934
206.920	269.794	162.458	266.440	212.750	178.050
207 470	270 238	162 017	266 885	219 800	18/ 320
207.470	270.230	162.217	200.005	217.000	107.320
211.500	2/2./21	163.335	267.415	221.330	185.310
213.480	275.424	163.891	267.967	230.040	190.140
214.349	276.645	164.428	268.492	237.380	194.921
216.345	278.641	164,951	268,899	242,719	198.071
217 641	270 500	165 280	260.077	240.048	202 601
217.041	279.390	103.309	209.301	249.940	202.091
218.387	280.477	165./13	269.517	251.281	203.428
218.978	280.952	166.448	270.071	254.529	205.729
219.440	281.731	168.891	272.197	254.996	206.107
219.841	282.340	172.210	274.760	255.734	206.523
220 404	283 080	172 919	275 202	256 200	206 867
220.404	203.007	172.010	27 5.202	250.500	200.00/
221./33	284.948	1/3.256	2/5.660	256.817	207.255
222.217	285.872	173.693	276.168	257.629	207.861
224.071	289.456	174.810	277.880	258.466	208.486
224.636	290.598	175.615	279.330	258.884	208.845
225.005	202 007	176 404	281 250	250.274	200.045
223.003	272.70/	170.494	201.230	237.370	207.322
		1/8.5/5	285.334	260.336	210.228
		179.507	286.865	261.664	211.144
		180.466	288.557	262.870	211.913
		181 341	290 189	263 402	212 371
		192 000	201 400	263.702	212 225
		102.009	271.400	204.300	213.223
		182.794	292.516	265.503	213.861
				266.610	214.875
				268.554	216.886
				270 153	218 /0/
				270.133	210.474
				272.048	220.114
				273.179	221.176
				274.114	221.934
				275 418	222 996
				277 479	224 729
				2//.4/0	224./20
				2/8.411	225.465
				279.439	226.341

		Site U1333		Site U1334	
	Site 1218	depth	Site 1218	depth	Site 1218
Site 1210	denth	(rmcd [m	denth	(rmcd [m	denth
donth	(corrected	(inicu [in	(corrected	(Inicu [III	(corrected
depth	(corrected		(corrected		(corrected
(rmca)	rmca)	CCSF-AJ)	rmca)	CCSF-A])	rmca)
				280.250	226.907
				283.318	229.156
				284.854	230.046
				286 495	231 405
				200.155	227.103
				200.330	232.731
				289.537	233.436
				290.605	234.208
				291.499	235.035
				292.538	235,965
				203 181	236 532
				204 (74	230.332
				294.074	237.833
				295.047	238.130
				296.025	239.121
				296.482	239.500
				297 600	240 233
				200 540	240 000
				290.302	240.800
				299.151	241.216
				299.476	241.450
				300.570	242.560
				300 762	242 799
				301 142	2/3 101
				301.103	243.171
				302.109	243.937
				303.023	244.846
				303.600	245.238
				304.057	245.488
				304 546	245 866
				205.004	245.000
				305.904	246.643
				306.457	246.999
				307.222	247.503
				308.476	248.312
				313 192	250 911
				212 617	250.211
				515.017	231.273
				314.913	251.627
				315.580	251.774
				317.418	252.454
				318.080	252.696
				319 329	253 321
				210 010	252 020
				517.710	233.000
				320.468	254.24/
				321.264	254.696
				321.530	255.001
				322.016	255.375
				322 331	255 640
				222.007	255.040
				323.03/	233.918
				323.753	256.280
				324.525	256.989
				325.631	257.431
				326.792	257.992
				328 503	258 727
				220.373	230.727
				328.939	230.8/3
				329.501	259.123
				329.962	259.415
				331.812	260.099
				332.866	260.621
				333 575	260 088
				224 200	260.200
				334.009	201.432
				335.355	261.968
				336.004	262.375
				336.737	263.057
				337 722	263 656
				330 052	264 144
				337.033	204.144
				340.377	264.538

Table T30. Correlation of Sites U1331 and U1332 to rmcd of Site 1220.

Site U1331		Site U1332	
depth	c:, 1000	depth	c:, 1220
(rmcd [m	Site 1220	(rmcd [m	Site 1220
	depth (rmcd)		depth (rmcd)
CC3F-AJ)	(inicu)	CC3F-AJ)	(inicu)
13 660	20 1 50	12 350	53 560
15.000	20.130	12.330	55 720
15.210	20.730	13.720	55.720
15.000	21.130	13.900	56.040
16.110	21.980	14.950	57.520
16.560	22.850	16.300	59.770
17.050	23.150	16.744	60.757
17.980	23.980	17.087	60.932
18.180	24.280	17.250	61.170
18.700	24.900	17.573	61.806
18.830	25.030	18.019	62.221
19.050	25,250	18 579	63 251
19 280	25 680	19 244	64 237
10 750	25.000	19.244	64 802
20.550	25.750	20.075	65 224
20.330	20.0/0	20.075	03.224
21./80	27.630	20.526	65.810
22.450	28.050	21.962	67.711
22.850	28.730	22.912	69.682
23.130	28.980	24.317	71.205
23.680	29.550	25.426	72.166
23.980	29.750	25.974	72.747
25.459	30.835	26.680	73.406
26.680	32,130	26.960	73.937
26 730	32 250	27 422	74 771
27.080	32,730	27.810	75 324
27.000	22.750	27.012	75.524
20.130	22./20	20.010	70.700
28.910	34./30	28.998	//.002
29.380	35.200	29.383	//.601
29.950	35.700	30.297	78.571
30.330	36.180	30.814	79.289
30.450	36.300	31.713	80.826
31.606	37.542	33.310	82.750
32.910	39.230	34.110	83.800
34.730	41.030	35.230	85.600
35.922	41.788	35.830	86.670
37,313	42.673	39,600	87,380
38 255	43 393	40 439	88 269
30.233	43.000	12 207	01 112
40 010	43.770	42.077	02 000
40.019	44.000	44.770	92.600
41.030	45./90	45.631	93.578
42.080	46.870	50.134	97.544
42.330	47.120	50.590	98.440
42.830	47.640	51.860	99.540
43.664	48.440	52.140	99.840
44.448	49.232	53.090	100.620
45.097	50.067	54.690	101,920
46 416	51,254	56 345	102.856
48 651	53 471	57 578	103 553
10.001	53 500	65 000	100.000
46.900	55.590	03.990	109.020
50.494	55.002	67.040	109.980
51.480	55.720	73.340	114.150
51.680	56.040	94.800	124.300
53.780	57.520	98.850	125.380
56.063	59.239	112.930	130.600
56.613	59.484	136.810	141.430

					Site 1218 depth			Site 1219 depth			Site 1220 depth		
				Expedition 320	Тор	Bottom	Middle	Тор	Bottom	Middle	Тор	Bottom	Middle
Chron	CK95	GPTS2004	Age	Source	rmcd)	(corrected rmcd)	(corrected rmcd)	(corrected rmcd)	(corrected rmcd)	(corrected rmcd)	(corrected rmcd)	(corrected rmcd)	(corrected rmcd)
C1n (y)	0.000	0.000	0.000	Lourens et al., 2004									
C1n (o)	0.780	0.781	0.781	Lourens et al., 2004			5.44	0.90	1.10	1.00			
C1r.1n (y)	0.990	0.988	0.988	Lourens et al., 2004			7.79	1.15	1.20	1.18			
C1r.1n (o)	1.070	1.072	1.072	Lourens et al., 2004			8.31	1.25	1.40	1.33			
C2n (y)	1.770	1.778	1.778	Lourens et al., 2004			10.02	2.00	2.20	2.10			
C2n (o)	1.950	1.945	1.945	Lourens et al., 2004			11.73	2.20	2.45	2.33			
C2r.1n (y)	2.140	2.128	2.128	Lourens et al., 2004									
C2r.1n (o)	2.150	2.148	2.148	Lourens et al., 2004									
C2An.1n (y)	2.581	2.581	2.581	Lourens et al., 2004			13.78	2.85	3.10	2.98			
C2An.1n (o)	3.040	3.032	3.032	Lourens et al., 2004									
C2An.2n (y)	3.110	3.116	3.116	Lourens et al., 2004									
C2An.2n (o)	3.220	3.207	3.207	Lourens et al., 2004									
C2An.3n (y)	3.330	3.330	3.330	Lourens et al., 2004			16.28						
C2An.3n (o)	3.580	3.596	3.596	Lourens et al., 2004			17.98	3.80	3.90	3.85			
C3n.1n (y)	4.180	4.187	4.187	Lourens et al., 2004	18.81	19.10	18.96	4.60	4.80	4.70			
C3n.1n (o)	4.290	4.300	4.300	Lourens et al., 2004	19.43	19.54	19.49	4.80	4.95	4.88			
C3n.2n (y)	4.480	4.493	4.493	Lourens et al., 2004	20.24	20.33	20.29	5.10	5.25	5.18			
C3n.2n (o)	4.620	4.631	4.631	Lourens et al., 2004	20.48	20.56	20.52	5.30	5.50	5.40			
C3n.3n (y)	4.800	4.799	4.799	Lourens et al., 2004	20.77	20.88	20.83	5.50	5.60	5.55			
C3n.3n (o)	4.890	4.896	4.896	Lourens et al., 2004	20.94	21.03	20.99	5.60	5.70	5.65			
C3n.4n (y)	4.980	4.997	4.997	Lourens et al., 2004	21.23	21.32	21.28						
C3n.4n (o)	5.230	5.235	5.235	Lourens et al., 2004	21.58	21.78	21.68						
C3An.1n (y)	5.894	6.033	6.033	Lourens et al., 2004	23.40	23.62	23.51	6.75	6.90	6.83			
C3An.1n (o)	6.137	6.252	6.252	Lourens et al., 2004	24.18	24.29	24.24						
C3An.2n (y)	6.269	6.436	6.436	Lourens et al., 2004	24.66	24.85	24.76						
C3An.2n (o)	6.567	6.733	6.733	Lourens et al., 2004	25.65	25.92	25.79	7.45	7.55	7.50			
C3Bn (y)	6.935	7.140	7.140	Lourens et al., 2004			27.03						
C3Bn (o)	7.091	7.212	7.212	Lourens et al., 2004			27.27						
C3Br.1n (y)	7.135	7.251	7.251	Lourens et al., 2004			27.31						
C3Br.1n (o)	7.170	7.285	7.285	Lourens et al., 2004			27.44						
C3Br.2n (y)	7.341	7.454	7.454	Lourens et al., 2004									
C3Br.2n (o)	7.375	7.489	7.489	Lourens et al., 2004									
C4n.1n (y)	7.432	7.528	7.528	Lourens et al., 2004	30.37	30.54	30.46	8.65	8.95	8.80			
C4n.1n (o)	7.562	7.642	7.642	Lourens et al., 2004	30.59	30.63	30.61						
C4n.2n (y)	7.650	7.695	7.695	Lourens et al., 2004	30.76	30.98	30.87						
C4n.2n (o)	8.072	8.108	8.108	Lourens et al., 2004	31.72	32.20	31.96	9.25	9.50	9.38			
C4r.1n (y)	8.225	8.254	8.254	Lourens et al., 2004									
C4r.1n (o)	8.257	8.300	8.300	Lourens et al., 2004									
C4An (y)	8.699	8.769	8.769	Lourens et al., 2004									
C4An (o)	9.025	9.098	9.098	Lourens et al., 2004									
C4Ar.1n (y)	9.230	9.312	9.312	Lourens et al., 2004	32.98	33.23	33.11						
C4Ar.1n (o)	9.308	9.409	9.409	Lourens et al., 2004	33.43	33.60	33.52						
C4Ar.2n (y)	9.580	9.656	9.656	Lourens et al., 2004	33.85	34.06	33.96						
C4Ar.2n (o)	9.642	9.717	9.717	Lourens et al., 2004	34.43	34.55	34.49						
C5n.1n (y)	9.740	9.779	9.779	Lourens et al., 2004	34.68	34.88	34.78						
C5n.1n (o)	9.880	9.934	9.934	Lourens et al., 2004				11.80	12.50	12.15			
C5n.2n (y)	9.920	9.987	9.987	Lourens et al., 2004									
C5n.2n (o)	10.949	11.040	11.040	Lourens et al., 2004									
C5r.1n (v)	11 052	11 118	11.118	Lourens et al. 2004	36.17	36.21	36 19						

Revised composite depth scales

Table T31 (continued). (Continued on next page.)

Line Logelition 120 Top Bottom Middle (mmcd) Top Bottom (mmcd) Middle (mmcd) Top (corrected (corrected) Bottom (mmcd) Middle (mmcd) Top (corrected) Bottom (mmcd) Middle (mmcd) Top (corrected) Bottom (mmcd) Middle (mmcd) Top (corrected) Bottom (corrected) Middle (mmcd) Top (corrected) Bottom (corrected) Middle (corrected) Top (corrected) Bottom (corrected) Middle (corrected) Top (corrected) Bottom (corrected) Middle (corrected) Bottom (corrected) Middle (corrected) Middle (corrected)<	-						Si	Site 1218 depth		Si	ite 1219 dep	th	Site 1220 depth		
							Тор	Bottom	Middle	Тор	Bottom	Middle	Тор	Bottom	Middle
Chen CK85 GP132004 Age Source mncd) mncd) <t< th=""><th></th><th></th><th></th><th></th><th></th><th>Expedition 320</th><th>(corrected</th><th>(corrected</th><th>(corrected</th><th>(corrected</th><th>(corrected</th><th>(corrected</th><th>(corrected</th><th>(corrected</th><th>(corrected</th></t<>						Expedition 320	(corrected	(corrected	(corrected	(corrected	(corrected	(corrected	(corrected	(corrected	(corrected
CSrLn (o) 11.099 11.154 Lorens et al. 2004 36.46 36.58 36.52 CSrLn (o) 11.331 11.541 11.554 Lourens et al. 2004 38.60 38.14 38.00 CSAn Lin (o) 12.078 12.116 Lourens et al. 2004 38.66 38.94 38.90 CSAn Lin (o) 12.078 12.116 12.011 Lourens et al. 2004 39.54 39.44 39.40 CSAn Lin (o) 12.401 12.415 12.401 12.415 Lourens et al. 2004 40.07 40.64 40.36 CSAnLin (o) 12.768 12.730 Lourens et al. 2004 41.30 41.46 41.38 1.67 41.61 CSAnLin (o) 12.785 12.878 Lourens et al. 2004 41.80 41.92 41.85 1.67 41.61 CSAnLin (o) 13.131 13.181 13.181 Lourens et al. 2004 42.21 42.38 42.30 1.64 1.64 1.65 1.65 1.66 1.65 1.66 1.66 1.65 1.66 1.65 1.66 1.65 1.66 1.66 1.65 1.66	_	Chron	CK95	GPTS2004	Age	Source	rmcd)	rmcd)	rmcd)	rmcd)	rmcd)	rmcd)	rmcd)	rmcd)	rmcd)
CS2.2n (b) 11.476 11.554 11.614 Lourens et al. 2004 38.02 38.14 38.07 CSAn (n) 11.931 11.614 Lourens et al. 2004 38.02 38.04 38.07 CSAn (n) 11.207 12.161 12.161 Lourens et al. 2004 39.33 39.44 39.40 CSAn 2n (n) 12.161 12.471 Lourens et al. 2004 39.53 39.22 39.63 CSAn 2n (n) 12.708 12.765 12.775 12.826 12.775 12.826 12.775 12.826 12.775 12.826 12.775 12.826 12.775 12.826 12.775 12.826 12.775 12.826 12.775 12.826 12.775 12.826 12.775		C5r.1n (o)	11.099	11.154	11.154	Lourens et al., 2004	36.46	36.58	36.52						
Ch2.n0 (n) 11.531 11.614 11.614 11.614 12.014 Lourem et al., 2004 38.80 38.14 38.90 CSAn.1 (n) 12.018 12.207 12.216 12.207 12.204 42.21 42.83 42.27 42.83 42.77 12.207 12.204 42.21 42.83 42.27 42.83 42.77 12.204 43.94 12.204 43.95 12.204 43.95 12.204 43.94 12.204 12.204 12.204		C5r.2n (y)	11.476	11.554	11.554	Lourens et al., 2004	37.78	37.86	37.82						
CSAn.In (n) 11.935 12.014 Lourens et al., 2004 39.38 39.44 39.40 CSAn.2n (n) 12.184 12.207 Lourens et al., 2004 39.53 39.42 39.40 CSAn.2n (n) 12.181 12.407 12.218 12.2		C5r.2n (o)	11.531	11.614	11.614	Lourens et al., 2004	38.02	38.14	38.07						
CSAn. In (n) 12.116 12.116 Lourens et al., 2004 39.253 39.44 39.72 39.63 CSAn. 2n (o) 12.418 12.415 Lourens et al., 2004 40.64 40.36 CSAn. 1n (o) 12.678 12.736 Lourens et al., 2004 41.18 41.22 CSAr. 1n (o) 12.768 12.736 Lourens et al., 2004 41.30 41.46 41.32 CSAr. 2n (o) 12.787 12.828 Lourens et al., 2004 41.80 41.92 41.85 CSAR (n) 12.819 13.013 Lourens et al., 2004 42.31 42.38 42.30 CSAR (n) 13.302 13.360 Lourens et al., 2004 42.81 43.23		C5An.1n (y)	11.935	12.014	12.014	Lourens et al., 2004	38.86	38.94	38.90						
CSAn.2n (b) 12.184 12.207 Lourens et al., 2004 40.04 40.36 CSAn.2n (b) 12.678 12.730 Lourens et al., 2004 41.18 41.26 41.28 CSAn.2n (b) 12.708 12.768 12.778 12.		C5An.1n (o)	12.078	12.116	12.116	Lourens et al., 2004	39.35	39.44	39.40						
CSAn.In (b) 12.401 12.415 Lourens et al., 2004 40.07 40.64 40.32 CSAn.In (b) 12.678 12.735 12.230 Lourens et al., 2004 41.13 41.46 41.32 CSAn.In (b) 12.757 12.280 12.281 Lourens et al., 2004 41.53 41.61 CSAn.27 (b) 12.819 13.015 13.015 Lourens et al., 2004 42.23 41.80 41.92 41.85 CSAn (b) 13.130 13.131 Lourens et al., 2004 42.21 42.38 42.71 -		C5An.2n (y)	12.184	12.207	12.207	Lourens et al., 2004	39.54	39.72	39.63						
CSAr. In (w) 12.678 12.730 Lourens et al., 2004 41.38 41.26 41.27 CSAr. In (w) 12.775 12.820 Lourens et al., 2004 41.30 41.46 41.81 CSAr. In (w) 12.175 12.820 Lourens et al., 2004 41.80 41.82 41.81 CSAM (w) 12.991 12.878 L2.878 Lourens et al., 2004 42.21 42.38 42.27 42.81 42.87 CSAM (w) 13.309 13.309 Lourens et al., 2004 43.18 43.28 42.27 42.83 42.77 CSAM (w) 13.001 13.007 Lourens et al., 2004 43.18 43.28 42.27 42.83 42.77 CSAM (w) 13.703 13.734 Lourens et al., 2004 45.05 45.15 45.16 45.20 45.98 45.93		C5An.2n (o)	12.401	12.415	12.415	Lourens et al., 2004	40.07	40.64	40.36						
GAA:Ln (m) 12.765 12.765 12.765 12.765 12.765 12.775 12.828 12.828 Lourens et al., 2004 41.80 41.92 41.81 GSAA:Ln (m) 12.919 13.015 13.015 13.015 Lourens et al., 2004 42.21 42.83 42.30 GSAAn (m) 13.130 Lourens et al., 2004 42.71 42.83 42.37 GSAAn (m) 13.005 13.050 Lourens et al., 2004 43.89 44.01 43.92 GSACn (m) 13.703 13.741 13.741 Lourens et al., 2004 44.90 45.05 45.05 45.15 GSACn (m) 14.075 14.095 Lourens et al., 2004 46.05 46.03 46.04 GSAn (m) 14.801 14.847 Lourens et al., 2004 46.76 46.97 46.60 46.60 GSBn.1n(m) 14.88 14.877 Lourens et al., 2004 47.75 47.62 20.70 20.45 20.38 GSGA.1n (m) 16.343 15.60 Lourens et al., 2004 52.06 52.11 22.41 24.42 24.12 24.12 24.12 24.2		C5Ar.1n (y)	12.678	12.730	12.730	Lourens et al., 2004	41.18	41.26	41.22						
CSA/2.n (n) 12.79 12.820 L2820 Lournes et al. 2004 41.65 41.67 41.67 41.67 CSA/2.n (n) 12.919 12.87 12.878 12.878 L2.878		C5Ar.1n (o)	12.708	12.765	12.765	Lourens et al., 2004	41.30	41.46	41.38						
GSA2.n (n) 12.878 12.878 Loures et al., 2004 41.80 41.92 41.85 GSAAn (n) 13.139 13.183 Loures et al., 2004 42.1 42.83 42.77 GSARn (n) 13.302 13.365 13.605 Loures et al., 2004 43.84 43.23 GSARn (n) 13.703 13.734 13.734 Loures et al., 2004 44.20 44.32 GSACn (n) 14.075 Loures et al., 2004 44.90 45.05 44.188 - GSACn (n) 14.178 14.194 L4.194 Loures et al., 2004 46.55 46.50 46.60 CSBn. In (n) 14.881 LA877 Loures et al., 2004 46.55 46.66 46.60 CSBn. In (n) 14.888 14.877 Loures et al., 2004 47.55 47.72 47.62 20.30 20.45 20.38 CSGAL (n) 16.388 16.377 Loures et al., 2004 47.55 47.72 47.62 20.70 20.95 20.38 CSGAL (n) 16.327 16.331 16.301 Loures et al., 2004 52.01 52.65 24.17 2		C5Ar.2n (y)	12.775	12.820	12.820	Lourens et al., 2004	41.55	41.67	41.61						
GSAAn (y) 12.99 13.015		C5Ar.2n (o)	12.819	12.878	12.878	Lourens et al., 2004	41.80	41.92	41.85						
CSARn (o) 13.183 13.183 Lourens et al., 2004 42.71 42.83 42.71 CSARn (o) 13.302 13.360 13.605 Lourens et al., 2004 43.89 44.01 43.95 CSARn (o) 13.703 13.734 13.734 Lourens et al., 2004 44.21 44.42 44.32 CSARn (o) 14.767 14.095 Lourens et al., 2004 45.05 44.98 - <td></td> <td>C5AAn (y)</td> <td>12.991</td> <td>13.015</td> <td>13.015</td> <td>Lourens et al., 2004</td> <td>42.21</td> <td>42.38</td> <td>42.30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		C5AAn (y)	12.991	13.015	13.015	Lourens et al., 2004	42.21	42.38	42.30						
CSABn (n) 13.369 13.369 13.369 13.369 13.369 13.369 13.369 13.369 13.369 13.369 13.369 13.369 13.369 13.369 13.374 13.272 12.37 12.31 12.31 13.31		C5AAn (o)	13.139	13.183	13.183	Lourens et al., 2004	42.71	42.83	42.77						
CSARn (o) 13.001 13.605 13.605 13.605 13.605 13.605 13.605 13.605 13.605 13.703 13.734 13.735 13.735 13.735 <td></td> <td>C5ABn (y)</td> <td>13.302</td> <td>13.369</td> <td>13.369</td> <td>Lourens et al., 2004</td> <td>43.18</td> <td>43.28</td> <td>43.23</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		C5ABn (y)	13.302	13.369	13.369	Lourens et al., 2004	43.18	43.28	43.23						
CSACn (n) 13.734 13.734 10.0rens et al., 2004 44.12 44.42 44.32 CSACn (n) 14.076 14.095 <t< td=""><td></td><td>C5ABn (o)</td><td>13.510</td><td>13.605</td><td>13.605</td><td>Lourens et al., 2004</td><td>43.89</td><td>44.01</td><td>43.95</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		C5ABn (o)	13.510	13.605	13.605	Lourens et al., 2004	43.89	44.01	43.95						
CSADn (b) 14.075 14.095 14.581 14.581 14.581 14.581 14.581 14.581 14.581 14.581 14.581 14.655 46.65 46.60 46.55 46.60 15.048 15.032 15.032 15.032 15.032 15.032 15.032 15.040 14.133 14.265 47.72 47.62 20.30 20.45 20.33 20.45 23.23 14.050 14.050 14.050 14.050 14.050 14.050 14.050 14.050 14.050 14.050 14.050 14.050 14.050 14.050 14.050 14.050 14.050 14.050 14.051 14.050 14.051 14.050 14.051 14.050 14.051 14.050 14.051 14.050 14.051 14.050 14.051 14.050 14.051 14.050 14.051 14.051 14.051 14.051 <td< td=""><td></td><td>C5ACn (y)</td><td>13.703</td><td>13.734</td><td>13.734</td><td>Lourens et al., 2004</td><td>44.21</td><td>44.42</td><td>44.32</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		C5ACn (y)	13.703	13.734	13.734	Lourens et al., 2004	44.21	44.42	44.32						
CSADn (y) 14.178 14.194 lourens et al., 2004 45.05 45.10 45.10 CSADn (y) 14.800 14.784 lourens et al., 2004 46.55 46.60 46.18 CSBn.1 (y) 14.800 14.784 lourens et al., 2004 45.75 46.65 46.60 CSBn.1 (y) 16.014 15.032 lourens et al., 2004 47.75 47.72 47.62 20.30 20.45 20.38 CSGn.1 (y) 16.014 15.974 lourens et al., 2004 47.55 47.72 47.62 20.70 20.95 20.83 CSGn.1 (y) 16.614 15.974 lourens et al., 2004 52.01 52.06 52.04 23.91 24.17 24.04 CSCn.2 (y) 16.323 16.633 locas lourens et al., 2004 52.11 52.16 24.52 24.17 24.22 CSCn.3 (y) 16.526 16.721 lourens et al., 2004 52.81 52.95 24.69 24.92 24.81 CSDn.1 (y) 16.717 17.235 lourens et al., 2004 55.19 55.29 55.42 24.52 <		C5ACn (o)	14.076	14.095	14.095	Lourens et al., 2004	44.90	45.05	44.98						
CSADn (io) 14.581 14.581 Lourens et al., 2004 46.15 46.65 46.60 CSBn. In (i) 14.880 14.774 14.877 Lourens et al., 2004 46.55 46.65 46.60 CSBn. In (i) 15.034 15.032 15.032 Lourens et al., 2004 47.10 47.34 47.20 20.30 20.45 20.38 CSBn.2n (i) 15.155 15.160 Lourens et al., 2004 47.15 47.72 47.62 20.70 20.95 20.83 CSCn.1n (i) 16.1628 16.268 Lourens et al., 2004 52.11 52.16 52.50 23.23 24.17 24.04 CSCn.2n (i) 16.327 16.303 Lourens et al., 2004 52.11 52.61 52.55 24.69 24.92 24.81 24.22 CSCn.2n (i) 16.6726 16.721 Lourens et al., 2004 52.81 52.95 24.69 24.92 24.81 25.16 25.16 25.17 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.11 55.14		C5ADn (y)	14.178	14.194	14.194	Lourens et al., 2004	45.05	45.15	45.10						
C3Bn.1 (n) 14.800 14.784 14.784 Lourens et al., 2004 46.55 46.60 C3Bn.1 (n) 14.888 14.877 14.877 Lourens et al., 2004 47.10 47.34 47.20 20.30 20.45 20.38 C3Bn.2 (n) 15.155 15.160 15.160 Lourens et al., 2004 47.15 47.72 47.62 20.30 20.45 20.33 23.23 C5Gn.1 (n) 16.014 15.974 Lourens et al., 2004 52.01 52.06 52.04 23.30 23.23 C5Gn.1 (n) 16.303 16.268 Lourens et al., 2004 52.11 52.26 24.17 24.27 24.42 C5Gn.2 (n) 16.488 16.472 Lourens et al., 2004 52.81 52.61 52.52 24.52 25.12 25.12 C5Gn.3 (n) 16.576 16.721 Lourens et al., 2004 55.19 55.24 27.22 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 25.12 2		C5ADn (o)	14.612	14.581	14.581	Lourens et al., 2004	46.15	46.20	46.18						
CSbn.1n (o) 14.887 14.877 Lourens et al., 2004 47.0 47.34 47.20 20.30 20.45 20.38 CSbn.2n (o) 15.153 15.160 Lourens et al., 2004 47.10 47.34 47.20 20.30 20.45 20.38 CS6n.1n (o) 16.014 15.974 Lourens et al., 2004 51.13 51.26 51.19 23.16 23.30 23.23 CS6n.1n (o) 16.283 16.268 Lourens et al., 2004 52.01 52.06 52.04 23.17 24.27 24.22 CS6n.2n (o) 16.484 Lot 472 Lourens et al., 2004 52.11 52.26 24.17 24.27 24.45 24.45 CS6n.3n (o) 16.556 16.543 Lot.71 Lourens et al., 2004 52.18 52.95 24.69 24.92 24.81 CS6n.3n (o) 17.277 17.235 17.235 Lourens et al., 2004 55.19 55.29 55.24 26.65 27.52 CSDn (o) 17.717 17.171 Lourens et al., 2004 57.28 57.58 57.40 28.30 27.33 CSbn (o) <		C5Bn.1n (y)	14.800	14.784	14.784	Lourens et al., 2004	46.55	46.65	46.60						
CSbn.2n (v) 15.034 15.032 15.032 15.043 15.043 15.043 15.043 15.045 15.160 Lourens et al., 2004 47.55 47.72 47.62 20.70 20.95 20.83 CScn.1n (v) 16.014 15.974 15.974 Lourens et al., 2004 52.11 52.16 51.91 23.16 23.30 23.23 CScn.2n (v) 16.323 16.303 Lourens et al., 2004 52.11 52.26 52.04 23.91 24.17 24.22 CScn.2n (v) 16.543 16.543 Lourens et al., 2004 52.51 52.26 52.95 24.62 24.92 24.81 CScn.3n (v) 17.277 17.235 17.235 Lourens et al., 2004 53.27 53.40 53.29 25.02 25.22 25.12 25.12 CSDn (v) 17.717 17.733 Lourens et al., 2004 55.19 55.29 55.24 26.65 25.52 25.22 25.22 25.12 25.12 27.53 CSDn (v) 17.717 17.740 Lourens et al., 2004 57.28 57.48 57.40 28.20 27.53		C5Bn.1n (o)	14.888	14.8//	14.8//	Lourens et al., 2004	46./6	46.97	46.85		<u> </u>				
CSGn. 10(0) 15.150 15.160 15.160 15.974 Lourens et al., 2004 51.13 51.26 51.19 23.16 23.23 CSCn. 1n (o) 16.293 16.208 16.303 Lourens et al., 2004 52.01 52.06 52.04 23.91 24.17 24.04 CSCn. 2n (v) 16.327 16.303 Lourens et al., 2004 52.11 52.61 52.25 24.32 24.57 24.45 CSCn. 3n (v) 16.556 16.543 16.472 Lourens et al., 2004 52.81 52.95 24.69 24.92 24.81 CSCn. 3n (v) 16.726 16.721 Lourens et al., 2004 53.27 53.40 53.29 25.02 25.22 25.12 55.24 CSDn (v) 17.777 17.235 Lourens et al., 2004 55.19 55.29 55.24 27.32 26.65 CSDn (v) 17.771 Lourens et al., 2004 56.09 56.14 56.12 27.22 27.53 CSDn (v) 17.717 Lourens et al., 2004 57.28 57.40 28.00 29.37 29.37 CSEn (v) 18.824 <t< td=""><td></td><td>C5Bn.2n (y)</td><td>15.034</td><td>15.032</td><td>15.032</td><td>Lourens et al., 2004</td><td>47.10</td><td>47.34</td><td>47.20</td><td>20.30</td><td>20.45</td><td>20.38</td><td></td><td></td><td></td></t<>		C5Bn.2n (y)	15.034	15.032	15.032	Lourens et al., 2004	47.10	47.34	47.20	20.30	20.45	20.38			
CSCn. In (y) 16.014 15.974 15.974 10.977 10.9937 10.974 10.974		C5Bn.2n (o)	15.155	15.160	15.160	Lourens et al., 2004	47.55	47.72	47.62	20.70	20.95	20.83			
CSCn. In (o) 16.293 16.268 16.204 16.303 Lourens et al., 2004 52.01 52.04 23.91 24.17 24.22 CSCn. 2n (o) 16.488 16.472 16.472 Lourens et al., 2004 52.51 52.61 52.55 24.32 24.57 24.45 CSCn. 3n (y) 16.556 16.543 16.472 Lourens et al., 2004 52.81 52.95 24.69 24.92 24.81 CSCn. 3n (y) 16.556 16.5721 Lourens et al., 2004 55.19 55.29 55.24 26.65 25.72 25.02 25.12 25.62 25.75 25.73 25.73 25.74 26.65 25.75 25.74 27.72 27.23 25.72 25.74 27.43 27.43 25.75 25.74 27.53 27.43 27.53 27.53 27.54 27.43 29.93 25.92 25.14 29.93 27.53 27.54 27.43 29.93 20.91 20.25 20.15 26.65 20.57 20.91 20.93 20.91 20.93 20.93 27.53 27.43 29.93 27.53 27.54 57.48 <td></td> <td>C3Cn.1n (y)</td> <td>16.014</td> <td>15.974</td> <td>15.9/4</td> <td>Lourens et al., 2004</td> <td>51.13</td> <td>51.26</td> <td>51.19</td> <td>23.16</td> <td>23.30</td> <td>23.23</td> <td></td> <td></td> <td></td>		C3Cn.1n (y)	16.014	15.974	15.9/4	Lourens et al., 2004	51.13	51.26	51.19	23.16	23.30	23.23			
CSCn.2n (y) 16.307 16.303 Lourens et al., 2004 52.11 52.61 52.26 24.17 24.27 24.45 CSCn.2n (o) 16.458 16.543 16.543 Lourens et al., 2004 52.88 52.95 24.69 24.92 24.81 CSCn.3n (o) 16.726 16.721 16.721 Lourens et al., 2004 55.19 55.29 55.24 26.65 CSDn (o) 17.533 17.533 Lourens et al., 2004 56.09 56.14 56.12 27.22 CSDn (o) 17.717 17.717 Lourens et al., 2004 57.28 57.58 57.40 28.20 CSDn (o) 17.741 17.717 Lourens et al., 2004 59.79 59.77 29.37 CSn (o) 18.781 18.524 18.524 Lourens et al., 2004 59.79 59.77 29.93 C6n (o) 20.131 19.722 19.722 Lourens et al., 2004 66.64 67.01 66.83 33.46 C6An.1n (r) 20.518 20.040 20.040 Lourens et al., 2004 70.21 70.31 70.25 35.63 20.60 20.85 <td></td> <td>C5Cn.1n (o)</td> <td>16.293</td> <td>16.268</td> <td>16.268</td> <td>Lourens et al., 2004</td> <td>52.01</td> <td>52.06</td> <td>52.04</td> <td>23.91</td> <td>24.17</td> <td>24.04</td> <td></td> <td></td> <td></td>		C5Cn.1n (o)	16.293	16.268	16.268	Lourens et al., 2004	52.01	52.06	52.04	23.91	24.17	24.04			
CSCn.2n (o) 16.472 16.472 Lourens et al., 2004 52.61 52.61 52.52 24.52 24.92 24.81 CSCn.3n (o) 16.726 16.721 16.721 Lourens et al., 2004 53.27 53.40 53.29 25.02 25.22 25.12 CSDn (y) 17.277 17.235 17.235 Lourens et al., 2004 56.09 56.14 56.12 27.22 CSDn (v) 17.717 17.717 Lourens et al., 2004 56.09 56.14 56.12 27.43 CSDn (v) 17.615 17.740 Lourens et al., 2004 57.98 57.40 28.20 27.43 CSDn (v) 18.281 18.056 18.056 Lourens et al., 2004 59.09 59.14 59.12 29.37 Cfn (v) 19.048 18.748 18.748 Lourens et al., 2004 59.09 59.14 59.12 29.37 Cfn (v) 20.131 19.722 19.722 29.37 25.63 33.66 20.05 20.25 20.15 C6An.1n (v) 20.518 20.404 20.44 69.26 63.88 69.32		CSCn.2n (y)	16.32/	16.303	16.303	Lourens et al., 2004	52.11	52.41	52.26	24.17	24.27	24.22			
CSCn.3n (y) 16.343 Lourens et al., 2004 52.98 52.95 24.69 24.92 24.81 CSCn.3n (y) 17.277 17.235 16.721 Lourens et al., 2004 55.19 55.29 55.24 26.65 CSDn (s) 17.717 17.733 17.533 Lourens et al., 2004 56.09 56.14 56.12 27.22 CSDn (s) 17.717 17.740 Lourens et al., 2004 57.28 57.58 57.40 28.20 CSEn (s) 18.781 18.056 Lourens et al., 2004 59.09 59.14 59.12 29.37 CSn (v) 18.281 18.056 Lourens et al., 2004 59.09 59.14 59.12 29.37 Cfn (v) 19.048 18.748 18.524 Lourens et al., 2004 59.74 59.79 29.37 Cfn (o) 20.131 19.722 19.722 Lourens et al., 2004 66.64 67.01 66.83 33.46 C6An.1 n (y) 20.518 20.040 Lourens et al., 2004 70.21 70.31 70.25 35.63 20.60 20.85 20.73 C6An.1 n (y) <td></td> <td>C5Cn.2n (o)</td> <td>16.488</td> <td>16.4/2</td> <td>16.4/2</td> <td>Lourens et al., 2004</td> <td>52.51</td> <td>52.61</td> <td>52.55</td> <td>24.32</td> <td>24.57</td> <td>24.45</td> <td></td> <td></td> <td></td>		C5Cn.2n (o)	16.488	16.4/2	16.4/2	Lourens et al., 2004	52.51	52.61	52.55	24.32	24.57	24.45			
CSDn. 3h (b) 16.724 16.721 16.721 16.721 16.721 16.721 16.721 17.235 17.240 17.740<		CSCn.3n(y)	16.336	16.543	16.543	Lourens et al., 2004	52.88	52.96	52.95	24.69	24.92	24.81			
CSDn (y) 17.27 17.23 17.233 10.208 53.19 53.29 53.24 26.65 CSDn (o) 17.533 17.233 Lourens et al., 2004 56.09 56.14 56.12 27.22 CSDn (n) 17.717 17.717 Lourens et al., 2004 56.09 57.46 27.43 CSEn (o) 18.281 18.056 18.056 Lourens et al., 2004 57.28 57.48 57.40 28.20 CSEn (o) 18.781 18.524 Lourens et al., 2004 59.09 59.14 59.12 29.37 C6n (o) 20.131 19.722 Lourens et al., 2004 59.79 59.77 29.93 C6n (o) 20.131 19.722 Lourens et al., 2004 69.26 69.38 69.32 35.66 20.05 20.25 20.15 C6An.1n (o) 20.725 20.213 20.213 Lourens et al., 2004 70.21 70.31 70.25 35.63 20.60 20.85 20.73 C6An.2n (o) 21.382 Lourens et al., 2004 76.21 76.31 76.26 22.80 22.90 22.85		CSCn.3n (0)	17.277	16./21	17.225	Lourens et al., 2004	53.27	53.40	53.29	25.02	25.22	25.12			
CSDr.10(9) 17.333 17.333 Lourens et al., 2004 56.09 36.14 56.12 27.42 CSDr.1n (o) 17.71 17.740 Lourens et al., 2004 27.43 27.53 CSEn (y) 18.281 18.056 Lourens et al., 2004 57.28 57.58 57.40 28.20 CSEn (o) 18.781 18.524 18.524 Lourens et al., 2004 59.09 59.14 59.12 29.37 C6n (o) 20.131 19.722 19.722 Lourens et al., 2004 69.66 67.01 66.83 33.46 C6An.1n (o) 20.725 20.213 20.213 Lourens et al., 2004 70.21 70.31 70.25 35.63 20.60 20.85 20.73 C6An.2n (o) 21.320 20.79 20.79 Lourens et al., 2004 71.6 71.49 71.33 36.28 21.05 21.20 21.13 C6An.2n (o) 21.320 20.79 20.79 Lourens et al., 2004 76.21 76.31 76.26 22.80 22.90 22.85 C6AAn.2n (o) 21.859 21.159 Lourens et al., 2004 76.21 <td></td> <td>CSDn (y)</td> <td>17.277</td> <td>17.233</td> <td>17.233</td> <td>Lourens et al., 2004</td> <td>55.19</td> <td>55.29</td> <td>55.24</td> <td></td> <td></td> <td>20.05</td> <td></td> <td></td> <td></td>		CSDn (y)	17.277	17.233	17.233	Lourens et al., 2004	55.19	55.29	55.24			20.05			
C5Dr.1n (y) 17.717 17.72 17.72 17.72		$C_{5}Dn(0)$		17.333	17.333	Lourens et al., 2004	56.09	30.14	30.12			27.22			
C5En (y) 18.281 18.056 18.056 Lourens et al., 2004 57.28 57.40 28.20 C5En (y) 18.781 18.524 Lourens et al., 2004 59.09 59.14 59.12 29.37 C6n (y) 19.048 18.748 18.748 Lourens et al., 2004 59.74 59.79 59.77 29.93 C6n (o) 20.131 19.722 19.722 Lourens et al., 2004 66.64 67.01 66.83 33.46 C6An.1n (o) 20.725 20.213 20.213 Lourens et al., 2004 70.21 70.31 70.25 35.66 20.05 20.25 20.15 C6An.2n (v) 20.996 20.439 Lourens et al., 2004 70.21 70.31 70.25 35.63 20.60 20.85 20.73 C6An.2n (v) 21.320 20.709 Lourens et al., 2004 71.16 71.49 71.33 36.28 21.05 21.20 21.13 C6AAn.9 (v) 21.768 21.083 Lourens et al., 2004 76.21 76.31 76.26 22.80 22.90 22.85 C6AAr.1n (v) 22.151 2		$C_{5}Dr_{1}n(q)$	17 615	17.717	17.717	Lourens et al., 2004						27.45			
C5En (o) 18.781 18.524 19.52 17.53 17.63		C3DI.111(0)	10 201	17.740	12 056	Lourens et al., 2004	57.28	57 59	57 40			27.35			
C6n (b)10.76110.32410.32410.10459.7959.7729.93C6n (y)19.04818.74818.748Lourens et al., 200459.7459.7959.7729.93C6n (o)20.13119.72219.722Lourens et al., 200466.6467.0166.8333.46C6An.1n (y)20.51820.04020.040Lourens et al., 200469.2669.3869.3235.6620.0520.2520.15C6An.1n (o)20.72520.21320.213Lourens et al., 200470.2170.3170.2535.6320.6020.8520.73C6An.2n (y)21.32020.70920.709Lourens et al., 200473.0973.4473.2737.2821.8522.1021.98C6AAn (o)21.85921.159Lourens et al., 200476.2176.3176.2622.8022.9022.85C6AAn (o)21.85921.159Lourens et al., 200477.6377.8077.7240.2723.1023.2023.15C6AAr.1n (o)22.24821.483Lourens et al., 200476.2176.3176.8077.7240.2723.1023.2023.15C6AAr.1n (o)22.24821.48321.483Lourens et al., 200476.8178.8383.8845.0924.8524.90C6AAr.1n (o)22.24821.48321.483Lourens et al., 200476.8378.8383.8445.0924.8524.90C6AAr.2n (y)22.45921.65921.659 </td <td></td> <td>C5En(o)</td> <td>10.201</td> <td>18.030</td> <td>18 5 24</td> <td>Lourons et al. 2004</td> <td>50.00</td> <td>50.14</td> <td>50 1 2</td> <td></td> <td></td> <td>20.20</td> <td></td> <td></td> <td></td>		C5En(o)	10.201	18.030	18 5 24	Lourons et al. 2004	50.00	50.14	50 1 2			20.20			
Con (y)19,04018,74018,74010,74011,74011,74011,3336,2821,15021,20021,20021,13021,10021,13021,10021,13021,10021,13021,10021,13021,10021,13021,10021,13021,10021,13021,10021,13021,10021,13021,10021,13021,10021,13021,10021,13021,10021,130		C_{2}	10.701	18.324	10.324	Lourons et al. 2004	59.09	50.70	59.12			29.37			
C6An.1n (y)20.73119.72219.72210.742		Con(y)	20 121	10.740	10.740	Lourons et al. 2004	55.74	67.01	66.83			29.93			
CoAn. In (y)20.31820.44020.44020.44020.44020.44020.44020.44020.45020.2320.2320.2320.2320.2320.2320.2320.2320.2320.2320.2320.2320.21321.2021.13C6An.2n (y)21.32020.70920.70920.709Lourens et al., 200473.0973.4473.2737.2821.8522.1021.98C6AAn (y)21.85921.15921.159Lourens et al., 200476.2176.3176.2622.8022.9022.85C6AAr.1n (y)22.15121.40321.403Lourens et al., 200477.6377.8077.7240.2723.1023.2023.15C6AAr.1n (y)22.24821.48321.483Lourens et al., 200477.6377.8077.7243.1424.2524.3024.28C6AAr.2n (y)22.45921.65921.659Lourens et al., 200483.8183.9483.8845.0924.8524.90C6AAr.2n (y)22.45921.65921.659Lourens et al., 200484.2584.3884.3245.4925.0025.0525.03C6Bn.1n (y)22.58821.6		C64n 1n (v)	20.131	20 040	20.040	Lourons et al. 2004	60.04	60.28	60.83			35.40	20.05	20.25	20.15
Cohn. Int (v)20.71320.21320.21320.21320.21320.00471.1671.4971.3336.2821.0521.0520.0320.79C6An.2n (v)21.32020.70920.709Lourens et al., 200471.1671.4971.3336.2821.8522.1021.98C6An (v)21.32020.709Lourens et al., 200476.2176.3176.2622.8022.9022.85C6An (v)21.85921.15921.159Lourens et al., 200477.6377.8077.7240.2723.1023.2023.15C6AAr.1n (v)22.15121.40321.403Lourens et al., 200477.6377.8077.7240.2723.1023.2023.98C6AAr.1n (v)22.15121.48321.483Lourens et al., 200477.6377.8077.7240.2723.1023.2023.98C6AAr.2n (v)22.45921.65921.659Lourens et al., 200483.8183.9483.8845.0924.8524.9024.85C6AAr.2n (v)22.45921.65921.658Lourens et al., 200484.2584.3884.3245.4925.0025.0525.03C6Bn.1n (v)22.58821.76721.767Lourens et al., 200484.2985.0885.0445.9925.2025.3025.25C6Bn.1n (v)22.75021.93621.936Lourens et al., 200486.3086.4386.3746.8925.6525.7025.68		C6An 1n (0)	20.310	20.040	20.040	Lourens et al. 2004	70.21	70.31	70.25			35.63	20.05	20.25	20.13
Cohn 21 (y)20.7920.7920.79Lourens et al., 200471.7071.7971.3330.2821.0521.0521.2021.79C6An.2n (o)21.32020.70920.709Lourens et al., 200473.0973.4473.2737.2821.8522.1021.98C6AAn (y)21.76821.8521.15921.15921.15921.03Lourens et al., 200476.2176.3176.2622.8022.9022.85C6AAn (o)21.85921.15921.403Lourens et al., 200477.6377.8077.7240.2723.1023.2023.15C6AAr.1n (y)22.24821.48321.483Lourens et al., 200477.6377.8077.7240.2723.9524.0023.98C6AAr.1n (o)22.24821.48321.483Lourens et al., 200483.8183.9483.8845.0924.8524.9524.90C6AAr.2n (o)22.49321.65921.659Lourens et al., 200484.2584.3884.3245.4925.0025.0525.03C6Bn.1n (y)22.58821.76721.767Lourens et al., 200484.9985.0885.0445.9925.2025.3025.25C6Bn.1n (o)22.75021.93621.936Lourens et al., 200486.3086.4386.3746.8925.6525.7025.68		C6An 2n (v)	20.723	20.213	20.213	Lourens et al. 2004	70.21	70.51	70.25			36.28	20.00	20.05	20.75
C6AAn (y)21.76821.08321.083Lourens et al., 200476.2176.3176.2621.8022.8022.9022.85C6AAn (o)21.85921.15921.083Lourens et al., 200477.6377.8077.7240.2723.0023.2023.15C6AAr.1n (o)22.24821.48321.483Lourens et al., 200477.6377.8077.7240.2723.9524.0023.98C6AAr.1n (o)22.24821.48321.483Lourens et al., 200477.6378.077.7243.1424.2524.3024.28C6AAr.1n (o)22.24821.48321.483Lourens et al., 200483.8183.9483.8845.0924.8524.9524.90C6AAr.2n (o)22.49321.68821.688Lourens et al., 200484.2584.3884.3245.4925.0025.0525.03C6Bn.1n (o)22.75021.93621.936Lourens et al., 200486.3086.4386.3746.8925.6525.7025.68		C6An 2n (o)	20.550	20.432	20.432	Lourens et al., 2004	73.09	73.44	73.27			37.28	21.05	27.20	21.15
C6AAn (o) 21.859 21.159 21.159 21.159 Lourens et al., 2004 77.63 77.80 77.72 40.27 23.10 23.20 23.15 C6AAr.1n (y) 22.151 21.403 21.403 Lourens et al., 2004 77.63 77.80 77.72 40.27 23.10 23.20 23.15 C6AAr.1n (o) 22.248 21.483 21.483 Lourens et al., 2004 43.14 24.25 24.30 24.28 C6AAr.2n (y) 22.459 21.659 Lourens et al., 2004 83.81 83.94 83.88 45.09 24.85 24.95 24.90 C6AAr.2n (o) 22.493 21.688 21.688 Lourens et al., 2004 84.25 84.38 84.32 45.49 25.00 25.05 25.03 C6Bn.1n (y) 22.588 21.767 21.767 Lourens et al., 2004 84.99 85.08 85.04 45.99 25.20 25.30 25.25 C6Bn.1n (o) 22.750 21.936 21.936 Lourens et al., 2004 86.30 86.43 86.37 46.89 25.65 25.70 25.68		C6AAn (v)	21.768	21.083	21.083	Lourens et al 2004	76 21	76 31	76.26			57.20	27.80	22.10	27.25
C6AAr.1n (y)22.15121.40321.403Lourens et al., 200477.6077.7242.3923.9524.0023.98C6AAr.1n (o)22.24821.48321.483Lourens et al., 200443.1424.2524.3024.92C6AAr.2n (o)22.45921.65921.659Lourens et al., 200483.8183.9483.8845.0924.8524.9524.90C6AAr.2n (o)22.49321.68821.688Lourens et al., 200484.2584.3884.3245.4925.0025.0525.03C6Bn.1n (y)22.58821.76721.767Lourens et al., 200484.9985.0885.0445.9925.2025.3025.25C6Bn.1n (o)22.75021.93621.936Lourens et al., 200486.3086.4386.3746.8925.6525.7025.68		C6AAn (a)	21.859	21.159	21.005	Lourens et al 2004	77.63	77 80	77 72			40 27	23.00	23.20	22.05
C6AAr.1n (o)22.24821.48321.483Lourens et al., 200483.8183.9483.8845.0924.8524.9524.90C6AAr.2n (o)22.49321.68821.688Lourens et al., 200484.2584.3884.3245.4925.0025.0525.03C6Bn.1n (o)22.75021.93621.936Lourens et al., 200484.9985.0885.0445.9925.2025.3025.25C6Bn.1n (o)22.75021.93621.936Lourens et al., 200486.3086.4386.3746.8925.6525.7025.68		C6AAr 1n (v)	22.151	21.403	21.137	Lourens et al 2004	,,	,,	,,,, <u>,</u>			42 39	23.95	24 00	23.98
C6Aar.2n (y)22.45921.65921.659Lourens et al., 200483.8183.9483.8845.0924.8524.90C6Aar.2n (o)22.49321.68821.688Lourens et al., 200484.2584.3884.3245.4925.0025.0525.03C6Bn.1n (y)22.58821.76721.767Lourens et al., 200484.9985.0885.0445.9925.2025.3025.25C6Bn.1n (o)22.75021.93621.936Lourens et al., 200486.3086.4386.3746.8925.6525.7025.68		C6AAr 1n (0)	22.248	21.483	21,483	Lourens et al. 2004						43.14	24.25	24.30	24.28
C6AAr.2n (o) 22.493 21.688 Lourens et al., 2004 84.25 84.38 84.32 45.49 25.00 25.05 25.03 C6Bn.1n (y) 22.588 21.767 21.767 Lourens et al., 2004 84.99 85.08 85.04 45.99 25.20 25.30 25.25 C6Bn.1n (o) 22.750 21.936 21.936 Lourens et al., 2004 86.30 86.43 86.37 46.89 25.65 25.70 25.68		C6AAr.2n(v)	22.459	21.659	21.659	Lourens et al., 2004	83.81	83.94	83.88			45.09	24.85	24.95	24.90
C6Bn.1n (y) 22.588 21.767 21.767 Lourens et al., 2004 84.99 85.08 85.04 45.99 25.20 25.30 25.25 C6Bn.1n (o) 22.750 21.936 21.936 Lourens et al., 2004 86.30 86.43 86.37 46.89 25.65 25.70 25.68		C6AAr.2n (0)	22,493	21,688	21,688	Lourens et al., 2004	84.25	84.38	84.32			45.49	25.00	25.05	25.03
C6Bn.1n (o) 22.750 21.936 21.936 Lourens et al., 2004 86.30 86.43 86.37 46.89 25.65 25.70 25.68		C6Bn.1n (v)	22.588	21.767	21.767	Lourens et al. 2004	84.99	85.08	85.04			45.99	25.20	25.30	25.25
		C6Bn.1n (o)	22.750	21.936	21.936	Lourens et al., 2004	86.30	86.43	86.37			46.89	25.65	25.70	25.68

Proc. IODP | Volume 320/321

Revised composite depth scales

Table T31 (continued). (Continued on next page.)

					Site 1218 depth		Site 1219 depth			Site 1220 depth			
				Expedition 320	Тор	Bottom	Middle	Тор	Bottom	Middle	Тор	Bottom	Middle
Chron	СК95	GPT\$2004	Ade	Source	 (corrected rmcd) 	(corrected rmcd)	(corrected rmcd)	(corrected)	(corrected)	(corrected	(corrected)	(corrected)	(corrected)
Chion	CR75	01152004	Age	Source	medy	meay	meay	mea)	meay	medy	medy	meay	mica)
C6Bn.2n (y)	22.804	21.992	21.992	Lourens et al., 2004	86.73	86.82	86.78			47.16	25.70	25.80	25.75
C6Bn.2n (o)	23.069	22.268	22.268	Lourens et al., 2004	89.56	89.91	89.74			49.16	26.58	26.75	26.67
C6Cn.1n (y)	23.353	22.564	22.564	Lourens et al., 2004	92.31	92.56	92.44			51.46	27.60	27.65	27.63
C6Cn.1n (o)	23.535	22.754	22.754	Lourens et al., 2004	93.32	93.41	93.37			52.12	28.00	28.10	28.05
C6Cn.2n (y)	23.677	22.902	22.902	Lourens et al., 2004	94.42	95.15	94.79			53.04	28.70	28.75	28.73
C6Cn.2n (o)	23.800	23.030	23.030	Lourens et al., 2004	96.04	96.41	96.20			53.80	28.95	29.00	28.98
C6Cn.3n (y)	23.999	23.249	23.278	Pälike et al. 2006	98.73	98.83	98.78			55.58	29.50	29.60	29.55
C6Cn.3n (o)	24.118	23.375	23.340	Pälike et al. 2006	99.55	99.76	99.66			56.09	29.65	29.85	29.75
C7n.1n (y)	24.730	24.044	24.022	Pälike et al. 2006	106.81	106.92	106.87			59.18	32.10	32.15	32.13
C7n.1n (o)	24.781	24.102	24.062	Pälike et al. 2006	107.12	107.23	107.18			59.40	32.15	32.35	32.25
C7n.2n (y)	24.835	24.163	24.147	Pälike et al. 2006	107.72	108.32	108.02			60.05	32.65	32.80	32.73
C7n.2n (o)	25.183	24.556	24.459	Pälike et al. 2006	111.37	111.81	111.59			62.39	33.65	33.85	33.75
C7An (y)	25.496	24.915	24.756	Pälike et al. 2006	115.37	115.60	115.49	63.16	64.29	63.73	34.70	34.75	34.73
C7An (o)	25.648	25.091	24.984	Pälike et al. 2006	117.09	117.19	117.14	64.54	64.71	64.63	35.05	35.35	35.20
C8n.1n (y)	25.823	25.295	25.110	Pälike et al. 2006	119.41	119.56	119.49	65.74	66.09	65.92	35.65	35.75	35.70
C8n.1n (o)	25.951	25.444	25.248	Pälike et al. 2006	121.47	121.70	121.59	67.24	67.39	67.32	36.10	36.25	36.18
C8n.2n (y)	25.992	25.492	25.306	Pälike et al. 2006	122.00	122.23	122.12	67.44	67.79	67.62	36.25	36.35	36.30
C8n.2n (o)	26.554	26.154	26.032	Pälike et al. 2006	131.00	131.53	131.27	72.09	73.00	72.55	39.20	39.25	39.23
C9n (y)	27.027	26.714	26.508	Pälike et al. 2006	137.53	137.61	137.57	79.18	79.63	79.41	40.95	41.10	41.03
C9n (o)	27.972	27.826	27.412	Pälike et al. 2006	151.47	151.78	151.63	92.67	93.07	92.87	43.79	44.19	43.99
C10n.1n (v)	28.283	28.186	27.886	Pälike et al. 2006	157.76	157.78	157.77	98.47	99.12	98.80	45.69	45.89	45.79
C10n.1n (o)	28.512	28.450	28.126	Pälike et al. 2006	161.25	161.27	161.26	101.57	102.17	101.87	46.84	46.89	46.87
C10n.2n (v)	28.578	28.525	28.164	Pälike et al. 2006	161.85	162.38	162.12	102.37	102.82	102.60	47.09	47.14	47.12
C10n.2n (o)	28,745	28,715	28.318	Pälike et al. 2006	164.02	164.15	164.09	104.02	104.57	104.30	47.59	47.69	47.64
C11n.1n (v)	29,401	29.451	29.166	Pälike et al. 2006	177.41	178.69	178.05				53.54	53.64	53.59
C11n.1n (o)	29.662	29.740	29.467	Pälike et al. 2006	184.31	184.33	184.32				55.69	55.74	55.72
C11n 2n (v)	29.765	29.853	29.536	Pälike et al. 2006	185.19	185.43	185.31				55.99	56.09	56.04
C11n 2n (0)	30.098	30,217	29.957	Pälike et al. 2006	189.59	190.68	190.14				57.44	57.59	57.52
C12n(v)	30 479	30.627	30 617	Pälike et al. 2006	107.07	170.00	170.11	137 45	138 77	138 11	59.69	59.84	59.77
C12n(0)	30.939	31 116	31 021	Pälike et al. 2006				142 77	142.87	142.82	61.09	61 24	61 17
C12n(0)	33 058	33 266	33 232	Pälike et al. 2006				160 73	160.80	169 77	74.57	74.82	74 70
C13n(0)	22 5 4 5	22 728	22 705	Päliko et al. 2006				172 42	172 42	172 /2	76.80	77.02	76.07
C15n(0)	24 655	24 782	25 1 26	Palike et al. 2006				17 3.42	17 3.43	173.43	20.03 80.70	22 79	20.97 82.75
C15n(y)	34.033	34.782	25 254	Palike et al. 2006				Coro gan	100.21	180.10	82.72	84.07	82.75
C1511(0)	25 242	25 404	25 220	Palike et al. 2006				101 74	101 04	101 70	05.32	04.07 95 77	05.00 95.60
C16n.1n(y)	25.242	35.404	33.3Z0	Palike et al. 2006				101./4	101.04	101.79	85.4Z	85.77	85.60
C16n.1n(0)	35.526	35.56/	35.554	Palike et al. 2006				182.49	182.54	182.52	86.52	86.82	86.67
C16n.2n (y)	35.685	35.707	35.643	Palike et al. 2006				183.04	183.09	183.07	87.25	87.50	87.38
C16n.2n (o)	36.341	36.276	36.355	Palike et al. 2006				187.39	187.54	187.47	91.25	91.35	91.30
C1/n.1n (y)	36.618	36.512	36.668	Palike et al. 2006				188.89	188.94	188.92	92.75	92.85	92.80
C1/n.1n (o)	37.473	37.235	37.520	Palike et al. 2006				193.89	193.99	193.94	97.71	97.76	97.74
C17n.2n (y)	37.604	37.345	37.656	Pälike et al. 2006				194.69	195.09	194.89	98.36	98.51	98.44
C17n.2n (o)	37.848	37.549	37.907	Pälike et al. 2006				195.84	196.29	196.07	99.46	99.61	99.54
C17n.3n (y)	37.920	37.610	37.956	Pälike et al. 2006				196.29	196.54	196.42	99.81	99.86	99.84
C17n.3n (o)	38.113	37.771	38.159	Pälike et al. 2006				197.29	197.44	197.37	100.57	100.67	100.62
C18n.1n (y)	38.426	38.032	38.449	Pälike et al. 2006				198.69	199.24	198.97	101.87	101.97	101.92
C18n.1n (o)	39.552	38.975	39.554	Pälike et al. 2006				206.87	206.97	206.92	108.92	109.12	109.02
C18n.2n (y)	39.631	39.041	39.602	Pälike et al. 2006				207.37	207.57	207.47	109.83	110.12	109.98
C18n.2n (o)	40.130	39.464	40.084	Pälike et al. 2006				211.27	211.72	211.50	114.10	114.20	114.15
C19n (y)	41.257	40.439	41.358	Pälike et al. 2006				224.09	224.64	224.37	124.20	124.40	124.30

Table T31 (continued).

					S	Site 1218 depth			ite 1219 dep	th	S	ite 1220 dep	th
Chron	CK95	CPT\$2004	Expedition 320		Top (corrected rmcd)	Bottom (corrected	Middle (corrected rmcd)	Top (corrected rmcd)	Bottom (corrected	Middle (corrected rmcd)	Top (corrected	Bottom (corrected	Middle (corrected
СШОП	CK75	01132004	Age	300100	inica)	inica)	inica)	inica)	inica)	micu)	inica)	inica)	micu)
C19n (o)	41.521	40.671	41.510	Pälike et al. 2006				225.89	226.19	226.04	125.35	125.40	125.38
C20n (y)	42.536	41.590	42.536	Cande and Kent, 1995				232.19	232.39	232.29	130.45	130.75	130.60
C20n (o)	43.789	42.774	43.789	Cande and Kent, 1995				243.64	244.59	244.12	141.38	141.48	141.43
C21n (y)	46.264	45.346	46.264	Cande and Kent, 1995									
C21n (o)	47.906	47.235	47.906	Cande and Kent, 1995									
C22n (y)	49.037	48.599	49.037	Cande and Kent, 1995									
C22n (o)	49.714	49.427	49.714	Cande and Kent, 1995									
C23n.1n (y)	50.778	50.730	50.778	Cande and Kent, 1995									
C23n.1n (o)	50.946	50.932	50.946	Cande and Kent, 1995									
C23n.2n (y)	51.047	51.057	51.047	Cande and Kent, 1995									
C23n.2n (o)	51.743	51.901	51.743	Cande and Kent, 1995									

Site 1219 data is from Pälike et al. (2005).
Table T32. Site U1331 radiolarian datums. (Continued on next page.)

			Age*	Core, section	ı, interval (cm)	De (mbsf [n	pth n CSF-A])	Depth m re	n (rmcd [ad evised CCSF	justed A])	Error	De	pth Site 12 (rmcd)	20	Error
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)	Тор	Bottom	Mean	(m)
				320-U1331A-	320-U1331A-										
Ship	B Theocyrtis annosa	RP21	28.330	2H-2.104-106	2H-4, 104–106	7.75	10.75	9.25	12.25	10.75	1.50				
Ship	T Tristylospyris triceros $>$ Dorcadospyris ateuchus		28.600	2H-4, 104–106	2H-CC	10.75	14.81	12.25	16.37	14.31	2.06		59.93		
Ship	B Dorcadospyris cheeres y 2 oreadospyris accuertas		29.501	2H-4, 104–106	2H-CC	10.75	14.81	12.25	16.37	14.31	2.06		59.93		
Ship	B Dorcadospyris circulus		29.960	2H-CC	3H-3, 126–128	14.81	18.97	16.37	21.88	19.13	2.76	59.93	67.60	63.76	3.84
Ship	T Lithocyclia crux		30,130	2H-CC	3H-3, 126–128	14.81	18.97	16.37	21.88	19.13	2.76	59.93	67.60	63.76	3.84
Ship	B Eucyrtidium plesiodianhanes		30,567	2H-CC	3H-3, 126–128	14.81	18.97	16.37	21.88	19.13	2.76	59.93	67.60	63.76	3.84
Ship	B Lophocyrtis (C) pegetrum		30.675	2H-CC	3H-3 126-128	14.81	18.97	16.37	21.88	19.13	2.76	59.93	67.60	63.76	3.84
Ship	T Lophocyrtis (S) oberhaenslige		30 740	3H_3 126_129	3H-5 121_124	18.97	21.92	21.88	24.83	23.36	1 48	67.60	71 65	69.63	2.02
Ship	B Dorcadospyris spinosa		30.842	3H-3 126-129	3H-5 121-124	18.97	21.92	21.88	24.83	23.36	1.10	67.60	71.65	69.63	2.02
Shin	T Dorcadospyris spiriosa		30.842	3H-3 126-129	3H-5 121-124	18.97	21.92	21.00	24.03	23.36	1 48	67.60	71.65	69.63	2.02
Ship	T Centrobotry's gravida	PP20	30.893	3H-5, 120-127 3H-5, 121, 124	3H-CC	21 02	21.72	21.00	27.03	25.50	1.10	71 65	7/ 1/	72.80	1.24
Ship	B Theocyrtis tuberosa	NI 20	31 000	3H-CC	JH-2 104 106	21.72	24.12	27.05	27.07	29.75	1.12	74.14	78.27	76.20	2.07
Ship	B Dorcadospyris pseudopapilio		31.000	3H-CC	4H-2 104 106	24.12	26.75	27.07	30.01	20.54	1.47	74.14	78.27	76.20	2.07
Ship	B Controbotas gravida		21 002	311-00	411-2, 104-100	24.12	20.75	27.07	30.01	20.34	1.47	74.14	78.27	76.20	2.07
Ship	B Lithocyclia crux		21.000	311-00	411-2, 104-100	24.12	20.75	27.07	30.01	20.34	1.47	74.14	78.27	76.20	2.07
Ship	T Calogulatta anakathan		22 652	311-00	411-2, 104-100	24.12	20.75	27.07	20.01	20.34	1.47	74.14	78.27	76.20	2.07
Ship	T Lophogurtic (1) jacchia		22 602	311-00	411-2, 104-100	24.12	20.75	27.07	20.01	20.54	1.47	74.14	70.27	76.20	2.07
Ship	T Distumente armadille		22 602	30-00	40-2,104-106	24.12	20.75	27.07	20.01	20.34	1.47	74.14	70.27	76.20	2.07
Ship	T Dictyoprora annualito		22.092	30-00	40-2,104-106	24.12	20.75	27.07	20.01	20.34	1.47	74.14	70.27	76.20	2.07
Sub	Lithe suelis spintetelie . Lithe suelis suscess		22,722	311-00	411-2, 104-106	24.12	26.75	27.07	20.01	20.54	1.47	74.14	70.27	76.20	2.07
Sub	Litriocyclia aristotelis > Litriocyclia arigusta		24.125	3H-CC	411-2, 104-106	24.12	20.75	27.07	30.01	20.54	1.4/	74.14	/0.2/	/0.20	2.07
Sub	B Litriocyclia angusta	RP19	34.123	411-2, 104-106	411-4, 104-106	20.75	29.75	20.01	22.01	21.21	1.50	/0.2/	02.39	80.33	2.00
Snip	T Calocyclas banayca		34.010	4H-2, 104–106	4H-4, 104–106	26.75	29.75	30.01	33.01	31.51	1.50	/8.2/	82.39	80.33	2.06
Snip	T Thyrsocyrtis (P.) tetracantha		35.300	4H-4, 104–106	4H-CC	29.75	33.95	33.01	37.ZI	35.11	2.10	82.39	86.93	84.66 00.21	2.27
Snip	B Lopnocyrtis (C.) naara	0010	35.338	4H-CC	5H-2, 104-106	33.95	36.25	37.21	41.50	39.30	2.15	86.93	89.50	88.21	1.28
Snip	T Lycnnocanoma turgiaum	KP18	35.//2	4H-CC	5H-2, 104–106	33.95	36.25	37.21	41.50	39.30	2.15	86.93	89.50	88.21	1.28
Ship	Lycnnocanoma ampnitrite		36.499	5H-4, 104–106	SH-CC	39.25	42.77	44.50	48.16	46.33	1.83	92.56	95.81	94.18	1.62
Ship	B Calocyclas bandyca		36./44	5H-4, 104–106	SH-CC	39.25	42.77	44.50	48.16	46.33	1.83	92.56	95.81	94.18	1.62
Ship	B Lopnocyrtis (L.) jacchia	RP17	37.065	5H-4, 104–106	SH-CC	39.25	42.77	44.50	48.16	46.33	1.83	92.56	95.81	94.18	1.62
Ship	B Thyrsocyrtis (P.) lochites		37.519	6H-2, 105–107	6H-4, 105–107	45.75	48.75	52.91	55.91	54.41	1.50	100.47	102.61	101.54	1.07
Ship	B Cryptocarpium azyx		37.519	6H-2, 105–107	6H-4, 105–107	45.75	48.75	52.91	55.91	54.41	1.50	100.47	102.61	101.54	1.07
Ship	Anthocyrtoma spp.		37.916	6H-4, 105–107	6H-CC	48.75	52.46	55.91	59.65	57.78	1.8/	102.61	104.90	103.75	1.14
Ship	B Thyrsocyrtis (1.) bromia		38.068	6H-4, 105–107	6H-CC	48.75	52.46	55.91	59.65	57.78	1.8/	102.61	104.90	103.75	1.14
Ship	B Thyrsocyrtis (P.) tetracantha		38.118	6H-4, 105–10/	6H-CC	48.75	52.46	55.91	59.65	57.78	1.8/	102.61	104.90	103.75	1.14
Ship	I Dorcadospyris anastasis	RP16	38.44/	6H-CC	/H-2, 95–97	52.46	55.16	59.65	64.97	62.31	2.66	104.90	108.36	106.63	1./3
Ship	B Calocyclas turris		38.667	6H-CC	7H-2, 95–97	52.46	55.16	59.65	64.97	62.31	2.66	104.90	108.36	106.63	1.73
Ship	B Lithocyclia aristotelis gr.		39.725	7H-2, 95–97	7H-4, 95–97	55.16	58.16	64.97	67.97	66.47	1.50	108.36	110.60	109.48	1.12
Ship	B Dorcadospyris anastasis		39.979	7H-4, 95–97	7H-CC	58.16	62.49	67.97	72.30	70.14	2.17	110.60	113.46	112.03	1.43
Ship	B Podocyrtis goetheana		40.156	7H-4, 95–97	7H-CC	58.16	62.49	67.97	72.30	70.14	2.17	110.60	113.46	112.03	1.43
Ship	T Lophocyrtis biaurita	RP15	40.362	8H-4, 104–106	8H-CC	67.75	72.00	78.52	82.77	80.65	2.13	116.60	118.61	117.61	1.01
Ship	Podocyrtis mitra > Podocyrtis chalara		40.700	9H-4, 105–107	9H-CC	77.26	81.47	88.62	92.83	90.73	2.11	121.38	123.37	122.37	1.00
Ship	T Podocyrtis trachodes		41.227	10H-2, 95–97	10H-4, 95–97	83.66	86.66	94.54	97.54	96.04	1.50	124.18	125.03	124.60	0.43
Ship	B Podocyrtis chalara		41.542	10H-4, 95–97	10H-CC	86.66	90.29	97.54	100.92	99.23	1.69	125.03	126.15	125.59	0.56
Ship	B Cryptocarpium ornatum		42.098	10H-CC	11H-3, 106–108	90.29	93.95	100.92	106.57	103.75	2.83	126.15	128.24	127.19	1.05
Ship	B Sethochytris triconiscus		42.403	11H-3, 106–108	11H-5, 106–108	93.95	96.95	106.57	110.17	108.37	1.80	128.24	129.58	128.91	0.67
Ship	T Eusyringium lagena	RP14	42.687	11H-5, 106–108	11H-CC	96.95	99.32	110.17	112.54	111.36	1.19	129.58	130.46	130.02	0.44
Ship	B Theocyrtis perpumila		42.972	11H-CC	12H-2, 106–108	99.32	102.77	112.54	118.85	115.70	3.15	130.46	133.28	131.87	1.41
Ship	T Podocyrtis helenae		43.053	12H-2, 106–108	12H-4, 106–108	102.77	105.77	118.85	121.90	120.38	1.53	133.28	134.67	133.98	0.69
Ship	B Podocyrtis trachodes		43.219	12H-4, 106–108	12H-CC	105.77	109.99	121.90	126.46	124.18	2.28	134.67	136.74	135.70	1.03
Ship	B Zygocircus cimelium		43.351	12H-4, 106–108	12H-CC	105.77	109.99	121.90	126.46	124.18	2.28	134.67	136.74	135.70	1.03

Table T32 (continued).

Source Event	Zone			interitar (enti)	(mbst [m	n CSF-A])	m re	vised CCSF	-A])	Error (±)	DC	(rmcd)	20	Error (±)
Source Event		(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)	Тор	Bottom	Mean	(m)
ShipPodocyrtis sinuosa > Podocyrtis mitrShipB Podocyrtis helenaeShipT Podocyrtis phyxisShipT Podocyrtis phyxis > Podocyrtis ampleShipT Theocotyle venezuelensisShipT Theocotyle venezuelensisShipT Theocotyle cryptocephalaShipB Thyrsocyrtis nitrottaShipT Thyrsocyrtis hirsutaShipB Thyrsocyrtis hirsutaShipB Rhopalocanium ornatumShipB Thyrsocyrtis (P) triacanthaShipB Losyringium lagenaShipB Dictyoprora mongolieriShipB Dictyoprora mongolieri	a RP13	43.840 44.145 44.444 44.770 45.164 45.616 46.013 46.160 46.185 46.435 47.419 47.419 47.419 48.141 48.500	13H-2, 104-106 13H-4, 104-106 13H-CC 14H-2, 104-106 14H-4, 104-106 14H-CC 15H-2, 94-96 15H-CC 15H-CC 16X-1, 50-52 16X-CC 16X-CC 16X-CC 17X-4, 104-106 19X-2, 25-27	13H-4, 104–106 13H-CC 14H-2, 104–106 14H-4, 104–106 14H-CC 15H-2, 94–96 15H-4, 94–96 16X-1, 50–52 16X-CC 17X-2, 104–106 17X-2, 104–106 17X-2, 104–106 17X-2, 104–106 19X-CC 19X-CC	112.25 115.25 119.38 121.72 124.72 128.58 131.15 138.47 138.47 138.71 139.27 139.27 139.27 139.27 153.15 161.75	115.25 119.38 121.72 124.72 128.58 131.15 134.15 134.15 138.71 139.27 150.15 150.15 150.15 162.10 162.10	130.22 133.22 137.35 140.81 143.81 147.62 151.73 159.43 159.43 158.52 159.08 159.08 159.08 159.08 159.08	133.22 137.35 140.81 143.81 147.62 151.73 155.03 158.52 158.52 159.08 170.55 170.55 170.55 182.50 182.50	131.72 135.29 139.08 142.31 145.72 149.68 153.38 158.98 158.98 158.98 158.98 158.98 158.98 164.82 164.82 164.82 164.82 164.82 164.82	1.50 2.07 1.73 1.50 1.91 2.05 1.65 -0.45 0.28 5.74 5.74 4.47 0.17	138.44 139.80	139.80	139.12	0.68

Table T33. Site U1332 radiolarian datums. (Continued on next page.)

			Aae*	Core, sectio	n, interval (cm)	De (mbsf [n	epth n CSF-A])	Depth m re	n (rmcd [ad] evised CCSF	usted -A])	Error (±)	De	epth Site 12 (rmcd)	20	Error (±)
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)	Тор	Bottom	Mean	(m)
				320-U1332A-	320-U1332A-										
Ship	B Cyrtocapsella cornuta	RN1	22.260	3H-2, 93–95	3H-4, 93–95	15.87	18.83	16.52	19.48	18.00	1.48	22.77	25.71	24.24	1.47
Ship	B Cyrtocapsella tetrapera		22.350	3H-4, 93–95	3H-CC	18.83	23.52	19.48	23.65	21.57	2.09	25.71	29.52	27.61	1.90
Ship	T Artophormis gracilis		22.620	3H-4, 93–95	3H-CC	18.83	23.52	19.48	23.65	21.57	2.09	25.71	29.52	27.61	1.90
Ship	B Didymocyrtis bassanii		22.930	3H-4, 93–95	3H-CC	18.83	23.52	19.48	23.65	21.57	2.09	25.71	29.52	27.61	1.90
Ship	B Eucyrtidium diaphanes		22.950	3H-4, 93–95	3H-CC	18.83	23.52	19.48	23.65	21.57	2.09	25.71	29.52	27.61	1.90
Ship	T Dorcadospyris cyclacantha	RP22	22.980	3H-4, 93–95	3H-CC	18.83	23.52	19.48	23.65	21.57	2.09	25.71	29.52	27.61	1.90
Ship	T Dorcadospyris riedeli		23.010	3H-4, 93–95	3H-CC	18.83	23.52	19.48	23.65	21.57	2.09	25.71	29.52	27.61	1.90
Ship	B Dorcadospyris cyclacantha		23.290	3H-CC	4H-2, 105–107	23.52	25.50	23.65	28.05	25.85	2.20	29.52	33.67	31.60	2.08
Ship	T Liriospyris longicornuta		24.120	4H-2, 105–107	4H-4, 105–107	25.50	28.45	28.05	31.00	29.53	1.48	33.67	36.89	35.28	1.61
Ship	B Lychnocanoma elongata		25.050	4H-4, 105–107	4H-CC	28.45	32.96	31.00	35.85	33.43	2.43	36.89	41.74	39.32	2.43
Ship	B Dorcadospyris praeforcipata		25.270	4H-4, 105–107	4H-CC	28.45	32.96	31.00	35.85	33.43	2.43	36.89	41.74	39.32	2.43
Ship	B Calocycletta (C.) robusta		25.270	4H-4, 105–107	4H-CC	28.45	32.96	31.00	35.85	33.43	2.43	36.89	41.74	39.32	2.43
Ship	B Didymocyrtis tubaria		25.270	4H-2, 105–107	4H-4, 105–107	25.50	28.45	28.05	31.00	29.53	1.48	33.67	36.89	35.28	1.61
Ship	B Liriospyris longicornuta		25.290	4H-4, 105–107	4H-CC	28.45	32.96	31.00	35.85	33.43	2.43	36.89	41.74	39.32	2.43
Ship	B Dorcadospyris scambos	0021	25.330	4H-4, 105–107	4H-CC	28.45	32.96	31.00	35.85	33.43	2.43	36.89	41.74	39.32	2.43
Ship	T Dorcadospyris circulus (continuous)	RPZI	26.170	4H-4, 105–107	4H-CC	28.45	32.96	31.00	35.85	33.43	2.43	36.89	41.74	39.32	2.43
Ship	T Eucyrtidium plesiodiaphanes		26.400	4H-CC	5H-2, 110–112	32.96	35.04	35.85	39.98	37.92	2.07	41.74	44.84	43.29	1.55
Ship	T Lithocyclia angusta		27.680	5H-2, 110–112	5H-4, 105–107	35.04	37.94	39.98	43.02	41.50	1.52	44.84	47.82	46.33	1.49
Ship	T Theocyrtis setanios		28.210	5H-4, 105–107	5H-CC	37.94	42.48	43.02	47.44	45.23	2.21	47.82	52.27	50.04	2.23
Ship	B Theocyrtis annosa		28.330	6H-2, 105–107	6H-4, 105–107	44.46	47.46	49.96	52.96	51.46	1.50	54.53	56.94	55.74	1.21
Ship	Tristylospyris triceros > Dorcadospyris ateuchus		28.600	5H-CC	6H-2, 105–107	42.48	44.46	47.44	49.96	48.70	1.26	52.27	54.53	53.40	1.13
Ship	B Dorcadospyris ateuchus		29.503	6H-2, 105–107	6H-4, 105–107	44.46	47.46	49.96	52.96	51.46	1.50	54.53	56.94	55.74	1.21
Ship	B Eucyrtidium mitodes		29.410	6H-4, 105–107	6H-CC	47.46	51.98	52.96	57.46	55.21	2.25	56.94	59.94	58.44	1.50
Ship	B Dorcadospyris circulus		29.960	6H-4, 105–107	6H-CC	47.46	51.98	52.96	57.46	55.21	2.25	56.94	59.94	58.44	1.50
Ship	T Theocyrtis tuberosa		30.130	6H-CC	7H-3, 100–102	51.98	55.40	57.46	63.02	60.24	2.78	59.94	64.60	62.27	2.33
Ship	T Lithocyclia crux		30.130	6H-CC	7H-3, 100–102	51.98	55.40	57.46	63.02	60.24	2.78	59.94	64.60	62.27	2.33
Ship	B Eucyrtidium plesiodiaphanes		30.370	6H-CC	7H-3, 100–102	51.98	55.40	57.46	63.02	60.24	2.78	59.94	64.60	62.27	2.33
Ship	T Lophocyrtis (S.) oberhaensliae		30.740	7H-3, 100–102	7H-5, 100–102	55.40	58.41	63.02	66.04	64.53	1.51	64.60	66.88	65.74	1.14
Ship	B Dorcadospyris spinosa		30.840	7H-5, 100–102	7H-CC	58.41	61.50	66.04	68.64	67.34	1.30	66.88	68.81	67.85	0.96
Ship	T Dorcadospyris pseudopapilio		30.840	7H-CC	8H-2, 105–107	61.50	63.45	68.64	70.85	69.75	1.11	68.81	70.45	69.63	0.82
Ship	T Centrobotrys gravida	RP20	30.890	7H-CC	8H-2, 105–107	61.50	63.45	68.64	70.85	69.75	1.11	68.81	70.45	69.63	0.82
Ship	B Lithocyclia crux		31.000	8H-4, 105–107	8H-CC	66.45	71.01	73.80	78.03	75.92	2.12	73.65	77.04	75.35	1.69
Ship	B Theocyrtis tuberosa		31.000	8H-4, 105–107	8H-CC	66.45	71.01	73.80	78.03	75.92	2.12	73.65	77.04	75.35	1.69
Ship	B Dorcadospyris pseudopapilio		31.000	9H-1, 92–98	9H-3, 92–98	71.35	74.38	73.77	76.98	75.38	1.61	73.63	76.17	74.90	1.27
Ship	B Centrobotrys gravida		31.010	8H-4, 105–107	8H-CC	66.45	71.01	73.80	78.03	75.92	2.12	73.65	77.04	75.35	1.69
Ship	T Thyrsocyrtis (P.) triacantha		33.340	9H-3, 92–98 (8H-4, 105)	9H-5, 92–98 (8H-CC)	74.37	77.34	76.98	79.97	78.48	1.50	76.17	79.43	77.80	1.63
Ship	T Lithocyclia aristotelis gr.		33.510	9H-3, 92–98	9H-5, 92–98	74.37	77.34	76.98	79.97	78.48	1.50	76.17	79.43	77.80	1.63
Ship	T Calocyclas hispida		33.620	9H-3, 92–98	9H-5, 92–98	74.37	77.34	76.98	79.97	78.48	1.50	76.17	79.43	77.80	1.63
Ship	T Cryptocarpium ornatum		33.620	9H-3, 92–98	9H-5, 92–98	74.37	77.34	76.98	79.97	78.48	1.50	76.17	79.43	77.80	1.63
Ship	T Lychnocanoma babylonis		33.750	9H-3, 92–98	9H-5, 92–98	74.37	77.34	76.98	79.97	78.48	1.50	76.17	79.43	77.80	1.63
Ship	Lithocyclia aristotelis > Lithocyclia angusta		33.820	9H-5, 92–98	9H-CC	77.34	80.52	79.97	83.15	81.56	1.59	79.43	83.70	81.56	2.13
Ship	T Dorcadospyris copelata		33.840	9H-5, 92–98	9H-CC	77.34	80.52	79.97	83.15	81.56	1.59	79.43	83.70	81.56	2.13
Ship	B Lithocyclia angusta	RP19	34.130	9H-CC	10H-2, 94–96	80.52	82.34	83.15	86.09	84.62	1.47	83.70	87.29	85.49	1.80
Ship	T Calocyclas bandyca		34.620	9H-CC	10H-2, 94–96	80.52	82.34	83.15	86.09	84.62	1.47	83.70	87.29	85.49	1.80
Ship	T Thyrsocyrtis (P.) tetracantha		35.300	9H-CC	10H-2, 94–96	80.52	82.34	83.15	86.09	84.62	1.47	83.70	87.29	85.49	1.80
Ship	B Lophocyrtis (C.) hadra	RP18	35.340	10H-2, 94–96	10H-4, 94–96	82.34	85.34	86.09	88.76	87.43	1.34	87.29	90.73	89.01	1.72
Ship	B Calocyclas bandyca		36.740	10H-4, 94–96	10H-CC	85.34	89.90	88.76	93.20	90.98	2.22	90.73	95.25	92.99	2.26
Ship	B Lophocyrtis (L.) jacchia	RP17	37.060	10H-CC	11H-2, 105–107	89.90	91.94	93.20	95.32	94.26	1.06	95.25	97.22	96.24	0.98

Revised composite depth scales

Table T33 (continued).

			Age*	Core, section,	interval (cm)	De (mbsf [n	pth ո CSF-A])	Depth m re	(rmcd [ad	justed F-A])	Error	De	pth Site 12 (rmcd)	.20	Error
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)	Тор	Bottom	Mean	(m)
Ship	B Cryptocarpium azyx		37.520	11H-2, 105–107	11H-4, 105–107	91.94	94.94	95.32	98.32	96.82	1.50	97.22	100.33	98.77	1.55
Ship	T Anthocyrtoma spp.		37.920	11H-4, 105–107	11H-CC	94.94	98.53	98.32	101.91	100.12	1.80	100.33	103.56	101.94	1.62
Ship	B Thyrsocyrtis (T.) bromia		38.070	11H-4, 105–107	11H-CC	94.94	98.53	98.32	101.91	100.12	1.80	100.33	103.56	101.94	1.62
Ship	B Thyrsocyrtis (P.) tetracantha		38.120	11H-4, 105–107	11H-CC	94.94	98.53	98.32	101.91	100.12	1.80	100.33	103.56	101.94	1.62
Ship	T Dorcadospyris anastasis	RP16	38.450	12H-2, 105–107	12H-4, 105–107	101.46	104.46	107.68	110.68	109.18	1.50	108.60	112.03	110.32	1.71
Ship	B Calocyclas turris		38.670	11H-CC	12H-2, 105–107	98.53	101.46	101.91	107.68	104.80	2.89	103.56	108.60	106.08	2.52
Ship	B Lithocyclia aristotelis gr.		39.730	12H-2, 105–107	12H-4, 105–107	101.46	104.46	107.68	110.68	109.18	1.50	108.60	112.03	110.32	1.71
Ship	B Dorcadospyris anastasis		39.980	12H-4, 105–107	12H-CC	104.46	108.46	110.68	115.16	112.92	2.24	112.03	116.07	114.05	2.02
Ship	B Podocyrtis goetheana		40.160	12H-4, 105–107	12H-CC	104.46	108.46	110.68	115.16	112.92	2.24	112.03	116.07	114.05	2.02
Ship	T Lophocyrtis biaurita	RP15	40.360	12H-4, 105–107	12H-CC	104.46	108.46	110.68	115.16	112.92	2.24	112.03	116.07	114.05	2.02
Ship	Podocyrtis mitra > Podocyrtis chalara		40.700	13H-CC	14H-2, 104–106	118.39	120.44	127.31	133.22	130.27	2.96	124.80	127.63	126.21	1.41
Ship	T Podocyrtis trachodes		41.230	13H-CC	14H-2, 104–106	118.39	120.44	127.31	133.22	130.27	2.96	124.80	127.63	126.21	1.41
Ship	B Podocyrtis chalara		41.540	14H-2, 104–106	14H-4, 104–106	120.44	123.45	133.22	136.45	134.84	1.61	127.63	129.39	128.51	0.88
Ship	B Cryptocarpium ornatum		42.100	14H-4, 104–106	14H-CC	123.45	126.29	136.45	139.97	138.21	1.76	129.39	131.96	130.68	1.29
Ship	B Sethochytris triconiscus		42.400	14H-CC	15X-3, 42–44	126.29	129.36	139.97	142.86	141.42	1.45	131.96			
Ship	T Eusyringium lagena	RP14	42.690	14H-CC	15X-3, 42–44	126.29	129.36	139.97	142.86	141.42	1.45	131.96			
Ship	B Theocyrtis perpumila		42.970	14H-CC	15X-3, 42–44	126.29	129.36	139.97	142.86	141.42	1.45	131.96			
Ship	T Podocyrtis helenae		43.050	14H-CC	15X-3, 42–44	126.29	129.36	139.97	142.86	141.42	1.45	131.96			
Ship	B Podocyrtis trachodes		43.220	16X-1, 41–49	16X-1, 112–120	135.94	136.66	149.44	150.16	149.80	0.36				
Ship	B Zygocircus cimelium		43.350	15X-5, 40–42	15X-CC	132.30	132.93	145.80	146.43	146.12	0.31				
Ship	Podocyrtis sinuosa > Podocyrtis mitra		43.840	16X-1, 112–120	16X-2, 37–44	136.66	137.36	150.16	150.86	150.51	0.35				
				320-U1332C-	320-U1332C-										
Ship	B Podocyrtis helenae		44.140	15X-CC	16X-CC	127.43	134.43	138.58	146.25	142.42	3.83				
Ship	T Podocyrtis phyxis		44.440	15X-CC	16X-CC	127.43	134.43	138.58	146.25	142.42	3.83				
Ship	T Podocyrtis diamesa	0010	44.440	15X-CC	16X-CC	127.43	134.43	138.58	146.25	142.42	3.83				
Ship	B Podocyrtis mitra	KP13	44.770	16X-CC	17X-CC	134.43	139.85	146.25	151.67	148.96	2.71				
Ship	B Podocyrtis ampla		44.770	16X-CC	17X-CC	134.43	139.85	146.25	151.67	148.96	2.71				
Ship	Podocyrtis phyxis > Podocyrtis ampla		44.770	16X-CC	17X-CC	134.43	139.85	146.25	151.67	148.96	2.71				

Proc. IODP | Volume 320/321

* = Nigrini et al. (2006). T = top, B = bottom.

Depth (rmcd [adjusted

			Age*	Core, section	, interval (cm)	De mbsf [n)	pth n CSF-A])	Depth m re	n (rmcd [ad evised CCSI	justed A])	Error	De (cc	pth Site 12 rrected rm	18 cd)	Error
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(=) (m)	Тор	Bottom	Mean	(m)
				320-1113334-	320-1113334-										
Ship	B Stichocorvs delmontensis		20,680	1H-2, 104–106	1H-4 104–106	2.55	5.55	7.21	10.21	8.71	1.50	72.34	76.82	74.58	2.24
Ship	T Lophocyrtis (C) peaetrum	RN2	20.890	1H-4, 104–106	1H-CC	5.55	9.92	10.21	14.62	12.42	2.21	76.82	85.40	81.11	4.29
Shin	T Theocyrtis annosa		21 380	1H-4 104–106	1H-CC	5 5 5	9.92	10.21	14 62	12.42	2 21	76.82	85.40	81 11	4 29
Shin	B Calocycletta (C) virainis		21 390	1H-4 104–106	1H-CC	5 5 5	9.92	10.21	14 62	12.42	2 21	76.82	85 40	81 11	4 29
Ship	B Lonhocyrtis (C) lentetrum		21.370	2H-4 104-106	2H-CC	15.05	19.52	18 58	23.05	20.82	2.21	88 50	103.69	96.10	7 59
Ship	T Eucyrtidium mitodes	RN1	21.120	2H-2 104-106	2H-4 104-106	12.05	15.04	15.50	18 57	17 14	1 44	83.85	92.27	88.06	4 21
Ship	B Calocycletta (C) serrata		22.040	1H-4, 104–106	1H-CC	5.55	9.92	10.21	14.62	12.42	2.21	76.82	85.40	81.11	4.29
Ship	B Cyrtocansella cornuta		22.010	2H-4 104-106	2H-CC	15.05	19.52	18 58	23.05	20.82	2.21	88 50	103.69	96.10	7 59
Ship	B Cyrtocapsella tetrapera		22.200	2H-4 104-106	2H-CC	15.05	19.57	18.58	23.05	20.82	2.21	88 50	103.69	96.10	7 59
Shin	T Artonhormis aracilis		22.550	2H-4 104_106	2H-CC	15.05	19.57	18.58	23.05	20.02	2.21	88 50	103.69	96.10	7 59
Shin	B Didymocyrtis bassanii		22.020	2H-4, 104-106	2H-CC	15.05	19.57	18.50	23.05	20.02	2.24	88 50	103.69	96.10	7 59
Shin	B Eucyrtidium dianhanes		22.950	3H-2 105-107	3H-4 105_107	21.56	24.56	28.25	31.08	20.02	1 4 2	103.26	114 54	108.90	5 64
Shin	T Dorcadospyris cyclacantha		22.950	2H-CC	3H_2 105_107	19.57	21.50	26.23	28.25	27.33	0.92	99.95	105 75	102.85	2 90
Shin	T Dorcadospyris ciedeli		23 010	4H-5 106_108	4H-CC	35.57	38.60	42 35	45 17	43.76	1 41	129.95	137.22	133 58	3 64
Shin	B Dorcadospyris ricacii B Dorcadospyris cyclacantha	RP22	23.290	3H-2 105-107	3H-4 105_107	21 56	24 56	28.25	31.08	29.67	1 4 2	103.26	114 54	108.90	5.64
Shin	T Dorcadospyris cyclacanina		23.270	3H-2, 105-107 3H-2, 105-107	3H-4, 105-107 3H-4, 105-107	21.50	24.50	20.25	31.00	29.67	1.42	103.20	114.54	108.90	5.64
Shin	T Liriospyris longicornuta		23.310	3H-2, 105-107 3H-2, 105-107	3H-4, 105-107 3H-4, 105-107	21.50	24.50	20.25	31.00	29.67	1.42	103.20	114.54	108.90	5.64
Shin	T Acrocubus octopylus		24.120	3H-4 105-107	3H-CC	21.50	28.87	31.08	35 38	22.07	2.15	103.20	122.10	115 18	6.93
Shin	T Lychnocanoma anodora		24.500	3H-4, 105-107	3H-CC	24.50	28.87	31.00	35.30	33.23	2.15	108.25	122.10	115.10	6.93
Shin	B Lychnocanoma elongata		25.050	4H-3 106-108	4H-5 106_108	32 57	35.57	40.25	42 35	41 30	1.05	125 21	132 72	128.97	3 75
Shin	B Acrocubus octopylus		25.000	4H-5, 106-108	4H-CC	35 57	38.60	42 35	45 17	43.76	1.05	129.21	137.22	133 58	3.64
Shin	B Dorcadospyris praeforcipata		25.070	5H-4 105-107	5H-CC	43 55	47.65	53 14	57.26	55 20	2.06	122.23	157.14	150.94	6.20
Shin	B Calocycletta (C) robusta		25 270	4H-5 106-108	4H-CC	35 57	38.60	42 35	45 17	43 76	1 41	129.95	137.14	133.58	3 64
Shin	B Didymocyrtis tubaria		25 270	4H-5, 106-108	41-00	35.57	38.60	42.35	45.17	43.76	1 41	129.95	137.22	133.50	3.64
Shin	B Liriospyris longicornuta		25 290	4H-3 106-108	4H-5 106_108	32.57	35.57	40.25	42 35	41 30	1.41	125.55	132 72	128.97	3.75
Shin	B Dorcadospyris scambos		25 330	4H-3 106-108	4H-5, 106-108	32.57	35.57	40.25	42.35	41.30	1.05	125.21	132.72	128.97	3 75
Shin	B Lychnocanoma anodora		25.550	4H-5, 106-108	4H-CC	35 57	38.60	42 35	45 17	43.76	1.05	129.21	137.22	133 58	3.64
Shin	T Dorcadospyris circulus (continuous)	RP21	26 170	4H-5, 106-108	41-00	35.57	38.60	42.35	45.17	43.76	1 41	129.95	137.22	133.50	3.64
Shin	B Dorcadospyris circulus (continuous)		26 200	5H-4 105-107	5H-CC	43 56	47.65	53 15	57.26	55 21	2.06	144 76	157.14	150.95	6 1 9
Ship	T Fucyrtidium plesiodianhanes		26 400	5H-4 105-107	5H-CC	43 56	47.65	53.15	57.26	55 21	2.00	144 76	157.14	150.95	6 1 9
Ship	T Lithocyclia angusta		27 680	6H-3 95-97	6H-5 95-97	51 46	54 46	63 21	66 21	64 71	1 50	157 22	162.91	160.07	2.85
Ship	T Theocyclic angusta		28 210	6H-5 95-97	6H-CC	54 46	57.27	66 21	69.02	67.62	1 41	160.94	169.65	165.29	4 36
Ship	B Theocyrtis annosa		28 330	7H-4 95-97	7H-CC	62.46	66 55	75 45	80.01	77 73	2.28	172.26	180.01	176 14	3.87
Ship	B Dorcadospyris ateuchus		29.503	7H-4, 95–97	7H-CC	62.46	66.55	75.45	80.01	77.73	2.28	172.26	180.01	176.14	3.87
Ship	Tristylospyris triceros > Dorcadospyris ateuchus		28.600	7H-4, 95–97	7H-CC	62.46	66.55	75.45	80.01	77.73	2.28	172.26	180.01	176.14	3.87
Ship	B Fucyrtidium mitodes		29,410	8H-2, 108–110	8H-4_108-110	68.89	71.89	84.27	87.17	85.72	1.45	182.01	188.18	185.10	3.09
Ship	B Theocyrtis setanios		29.510	9H-2, 105–107	9H-4, 105–107	78.55	81.56	96.28	99.29	97.79	1.51	195.45	203.30	199.38	3,93
Ship	B Dorcadospyris circulus		29.960	9H-2, 105–107	9H-4, 105–107	78.55	81.56	96.28	99.29	97.79	1.51	195.45	203.30	199.38	3.93
Ship	T Theocyrtis tuberosa		30,130	9H-CC	10H-2, 105–107	85.87	88.06	103.60	107.48	105.54	1.94	202.68	212.05	207.36	4.69
Ship	T Lithocyclia crux		30.130	9H-CC	10H-2, 105–107	85.87	88.06	103.60	107.48	105.54	1.94	202.68	212.05	207.36	4.69
Ship	B Eucyrtidium plesiodiaphanes		30.370	9H-CC	10H-2, 105–107	85.87	88.06	103.60	107.48	105.54	1.94	202.68	212.05	207.36	4.69
Ship	T Lophocyrtis (S.) oberhaensliae		30.740	9H-CC	10H-2, 105–107	85.87	88.06	103.60	107.48	105.54	1.94	202.68	212.05	207.36	4.69
Ship	B Dorcadospyris spinosa	RP20	30.840	11X-2, 95-97	11X-4, 95–97	97.46	100.46	118.18	121.18	119.68	1.50	220.31	228.23	224.27	3.96
Ship	T Dorcadospyris pseudopapilio		30.840	11X-2, 95–97	11X-4, 95–97	97.46	100.46	118.18	121.18	119.68	1.50	220.31	228.23	224.27	3.96
Ship	T Centrobotrys gravida		30.890	11X-4, 95–97	11X-CC	100.46	101.17	121.18	121.89	121.54	0.35	224.18	225.02	224.60	0.42
Ship	B Lychnocanoma plesioelonaata			11X-CC	12X-2, 105–107	101.17	103.26	121.89	124.97	123.43	1.54	225.02	230.52	227.77	2.75
Ship	B Lithocyclia crux		31.000	12X-2, 105–107	12X-4, 105–107	103.26	106.26	124.97	128.40	126.69	1.72	228.27	237.19	232.73	4.46
Ship	B Theocyrtis tuberosa		31.000	12X-4, 105–107	12X-CC	106.26	107.99	128.40	130.19	129.30	0.89	231.66	235.85	233.76	2.09
Ship	B Dorcadospyris pseudopapilio		31.000	12X-2, 105–107	12X-4, 105–107	103.26	106.26	124.97	128.40	126.69	1.72	228.27	237.19	232.73	4.46

T. Westerhold et al.

Table T34 (continued).

			Aae*	Core, section,	interval (cm)	De (mbsf [n	pth ո CSF-A])	Depth m re	n (rmcd [ad evised CCSI	justed F-A])	Error (±)	De (cc	pth Site 12 prrected rm	:18 cd)	Error (±)
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)	Тор	Bottom	Mean	(m)
Ship	B Centrobotrys gravida		31.010	12X-2, 105–107	12X-4, 105–107	103.26	106.26	124.97	128.40	126.69	1.72	228.27	237.19	232.73	4.46
Ship	T Thyrsocyrtis (P.) triacantha		33.340	13X-5, 8–16	13X-5, 96–104	116.42	117.30	139.77	140.65	140.21	0.44	248.30	249.81	249.05	0.76
Ship	T Lithocyclia aristotelis gr.		33.510	13X-2, 37–44	13X-2, 88–95	112.21	112.72	135.11	135.74	135.43	0.31	239.83	241.42	240.62	0.79
Ship	T Calocyclas hispida	0020	33.620	13X-2, 37–44	13X-2, 88–95	112.21	112.72	135.11	135.74	135.43	0.31	239.83	241.42	240.62	0.79
Ship	T Cryptocarpium ornatum	RP20	33.620	13X-1, 127–134	13X-2, 37–44	111.61	112.21	134.25	135.11	134.68	0.43	238.68	241.55	240.11	1.43
Ship	T Lophocyrtis (C.) hadra		33.750	13X-2, 105–107	13X-3, 0–8	112.86	113.20	135.89	136.24	136.07	0.18	240.87	242.60	241.74	0.87
Ship	T Lychnocanoma amphitrite		33.750	13X-2, 37–44	13X-2, 88–95	112.21	112.72	135.11	135.74	135.43	0.31	239.83	241.42	240.62	0.79
Ship	T Lychnocanoma babylonis		33.750	13X-2, 105–107	13X-3, 0–8	112.86	113.34	135.89	136.38	136.14	0.25	240.87	243.06	241.97	1.10
Ship	Lithocyclia aristotelis > Lithocyclia angusta		33.820	13X-2, 88–95	13X-2, 105–107	112.72	112.86	135.74	135.89	135.82	0.07	240.69	241.55	241.12	0.43
Ship	T Dorcadospyris copelata		33.840	12X-CC	13X-1, 127–134	107.99	111.57	130.19	134.21	132.20	2.01	233.65	242.37	238.01	4.36
Ship	B Lithocyclia angusta		34.130	13X-3, 0–8	13X-3, 122–129	113.34	114.07	136.38	137.14	136.76	0.38	242.06	245.03	243.55	1.49
Ship	T Calocyclas bandyca		34.620	13X-4, 105–107	13X-4, 120–128	115.86	116.04	139.21	139.39	139.30	0.09	247.53	247.78	247.66	0.12
Ship	T Calocyclas turris	DD10	34.830	13X-2, 105–107	13X-3, 0–8	112.86	113.20	135.89	136.24	136.07	0.17	240.87	242.61	241.74	0.87
Ship	T Eusyringium fistuligerum	NF 1.2	34.930	13X-CC	14X-2, 95–97	119.93	122.46	143.52	146.03	144.78	1.26	251.60	254.89	253.24	1.64
Ship	T Thyrsocyrtis (T.) bromia		33.936	13X-4, 120–128	13X-5, 8–16	116.04	116.42	139.39	139.77	139.58	0.19	247.78	248.30	248.04	0.26
Ship	T Thyrsocyrtis (P.) lochites		34.125	13X-4, 120–128	13X-5, 8–16	116.04	116.42	139.39	139.77	139.58	0.19	247.78	248.30	248.04	0.26
Ship	T Cryptocarpium azyx		35.070	13X-4, 105–107	13X-4, 120–128	114.07	116.04	137.14	139.39	138.26	1.13	243.66	250.92	247.29	3.63
Ship	T Thyrsocyrtis (P.) tetracantha		35.300	13X-4, 120–128	13X-5, 8–16	116.04	116.42	139.39	139.77	139.58	0.19	247.78	248.30	248.04	0.26
Ship	B Lophocyrtis (C.) hadra	RP18	35.340	13X-4, 72–80	13X-4, 96–104	115.52	115.76	138.87	139.11	138.99	0.12	246.98	247.37	247.18	0.20
Ship	B Calocyclas bandyca		36.740	13X-CC	14X-2, 95–97	119.93	125.45	143.52	148.84	146.18	2.66	251.60	262.70	257.15	5.55
Ship	B Lophocyrtis (L.) jacchia	RP17	37.060	14X-2, 95–97	14X-4, 95–97	122.45	125.46	146.02	148.84	147.43	1.41	252.75	258.78	255.77	3.02
Ship	B Cryptocarpium azyx		37.520	14X-4, 95–97	14X-CC	125.46	129.80	148.84	153.80	151.32	2.48	255.50	263.14	259.32	3.82
Ship	T Anthocyrtoma spp.		37.920	14X-CC	15X-2, 96–98	129.80	132.07	153.80	158.86	156.33	2.53	259.87	266.76	263.32	3.45
Ship	B Thyrsocyrtis (T.) bromia		38.070	14X-CC	15X-2, 96–98	129.80	132.07	153.80	158.86	156.33	2.53	259.87	266.76	263.32	3.45
Ship	B Thyrsocyrtis (P.) tetracantha		38.120	14X-CC	15X-2, 96–98	129.80	132.07	153.80	158.86	156.33	2.53	259.87	266.76	263.32	3.45
Ship	T Dorcadospyris anastasis	PD16	38.450	14X-CC	15X-2, 96–98	129.80	132.07	153.80	158.86	156.33	2.53	259.87	266.76	263.32	3.45
Ship	B Calocyclas turris	Ki IO	38.670	14X-CC	15X-2, 96–98	129.80	132.07	153.80	158.86	156.33	2.53	259.87	266.76	263.32	3.45
Ship	B Lithocyclia aristotelis gr.		39.730	15X-4, 96–98	15X-CC	135.07	139.14	161.91	166.89	164.40	2.49	265.90	274.42	270.16	4.26
Ship	T Podocyrtis mitra		39.850	15X-CC	16X-2, 104–106	139.14	141.75	166.89	169.12	168.01	1.12	270.46	274.26	272.36	1.90
Ship	B Dorcadospyris anastasis		39.980	15X-CC	16X-2, 104–106	139.14	141.75	166.89	169.12	168.01	1.12	270.46	274.26	272.36	1.90
Ship	B Podocyrtis goetheana		40.160	16X-2, 104–106	16X-4, 104–106	141.75	144.75	169.12	172.78	170.95	1.83	272.37	277.59	274.98	2.61
Ship	T Lophocyrtis biaurita	RP15	40.360	16X-CC	17X-2, 105–107	149.09	151.36	177.60	181.40	179.50	1.90	283.42	298.14	290.78	1.69
Ship	Podocyrtis mitra > Podocyrtis chalara		40.700	17X-2, 105–107	17X-4, 105–107	151.36	154.36	181.40	183.80	182.60	1.20	290.28			
Ship	T Podocyrtis trachodes		41.230	17X-2, 105–107	17X-4, 105–107	151.36	154.36	181.40	183.80	182.60	1.20	290.28			
Ship	B Podocyrtis chalara		41.540	17X-4, 105–107	17X-CC	154.36	158.46	183.80	186.78	185.29	1.49				
Ship	B Cryptocarpium ornatum		42.100	17X-4, 105–107	17X-CC	154.36	158.46	183.80	186.78	185.29	1.49				
Ship	B Sethochytris triconiscus		42.400	18X-1, 95–97	17X-CC	158.46	159.36	186.78	186.26	186.52	0.26				
Ship	T Eusyringium lagena	NF 14	42.690	18X-1, 95–97	18X-4, 95–97	159.36	163.20	186.26	190.10	188.18	1.92				
Ship	B Theocyrtis perpumila		42.970	18X-1, 95–97	18X-4, 95–97	159.36	163.20	186.26	190.10	188.18	1.92				
Ship	B Podocyrtis trachodes		43.220	18X-1, 95–97	18X-4, 95–97	159.36	163.20	186.26	190.10	188.18	1.92				
Ship	B Zygocircus cimelium		43.350	18X-1, 95–97	18X-4, 95–97	159.36	163.20	186.26	190.10	188.18	1.92				
Ship	Podocyrtis sinuosa > Podocyrtis mitra		43.840	18X-CC	19X-1, 104–106	163.86	169.05	190.76	194.80	192.78	2.02				
Ship	T Podocyrtis phyxis		44.440	19X-1, 104–106	19X-3, 104–106	169.05	172.30	194.80	198.05	196.43	1.63				
Ship	B Podocyrtis ampla	RP13	44.770	19X-1, 104–106	19X-3, 104–106	169.05	172.30	194.80	198.05	196.43	1.63				
Ship	Podocyrtis phyxis > Podocyrtis ampla		44.770	19X-1, 104–106	19X-3, 104–106	169.05	172.30	194.80	198.05	196.43	1.63				

Proc. IODP | Volume 320/321

T. Westerhold et al.

Revised composite depth scales

Table T35. Site U1334	radiolarian	datums.	(Continued	on next	two	pages.)
Iddle 100. 0100 1	iudioiuliuli	autums.	(Continueu	on nem		puges.

			Age*	Hole, core, sectio	on, interval (cm)	De (mbsf [m	pth ո CSF-A])	Depth m re	(rmcd [ac vised CCS	ljusted F-A])	Error	Dej (co	oth Site 12 rrected rm	218 cd)	Error
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)	Тор	Bottom	Mean	(m)
				320-	320-										
Ship	T Diartus petterssoni	RN7	8.629	U1334A-1H-4, 105–107	U1334A-1H-CC	5.56	8.19	5.56	8.25	6.91	1.35	23.96	31.21	27.59	3.62
Ship	Diartus petterssoni > Diartus hughesi		8.760	U1334A-1H-CC	U1334A-2H-2, 105–107	8.19	10.75	8.25	11.63	9.94	1.69	31.21	33.53	32.37	1.16
Ship	B Spongaster berminghami	DNIC	8.760	U1334A-1H-CC	U1334A-2H-2, 105–107	8.19	10.76	8.25	11.63	9.94	1.69	31.21	33.53	32.37	1.16
Ship	B Diartus hughesi	KING	8.992	U1334A-1H-CC	U1334A-2H-2, 105–107	8.19	10.76	8.25	11.63	9.94	1.69	31.21	33.53	32.37	1.16
Ship	B Diartus petterssoni		12.111	U1334A-2H-4, 105–107	U1334A-2H-CC	13.76	18.11	14.63	18.98	16.81	2.18	36.64	40.65	38.64	2.00
Ship	B Lithopera neotera		12.950	U1334A-2H-CC	U1334A-3H-2, 105–107	18.11	20.25	18.98	22.22	20.60	1.62	40.65	42.72	41.68	1.04
Ship	T Stichocorys armata	RN5	13.500	U1334A-3H-2, 105–107	U1334A-3H-4, 105–107	20.25	23.25	22.22	25.22	23.72	1.50	42.72	44.24	43.48	0.76
Ship	T Acrocubus octopyle		13.880	U1334A-3H-2, 105–107	U1334A-3H-4, 105–107	20.25	23.25	22.22	25.22	23.72	1.50	42.72	44.24	43.48	0.76
Ship	Dorcadospyris dentata > Dorcadospyris alata		14.780	U1334A-3H-4, 105–107	U1334A-3H-CC	23.25	27.65	25.22	29.62	27.42	2.20	44.24	46.63	45.43	1.20
Ship	B Dorcadospyris alata		15.075	U1334A-3H-CC	U1334A-4H-2, 105–107	27.65	29.76	29.62	33.37	31.49	1.88	46.63	48.68	47.66	1.02
Ship	B Liriospyris parkerae		15.034	U1334A-4H-2, 105–107	U1334A-4H-4, 105–107	29.76	32.76	33.37	36.24	34.81	1.44	48.68	50.92	49.80	1.12
Ship	T Carpocanopsis cingulata	RN4	15.129	U1334A-4H-2, 105–107	U1334A-4H-4, 105–107	29.76	32.76	33.37	36.24	34.81	1.44	48.68	50.92	49.80	1.12
Ship	T Lychnocanoma elongata		15.151	U1334A-4H-4, 105–107	U1334A-4H-CC	32.76	37.18	36.24	40.60	38.42	2.18	50.92	54.16	52.54	1.62
Ship	B Lithopera renzae		16.770	U1334A-4H-CC	U1334A-5H-2, 104–106	37.18	39.24	40.60	44.18	42.39	1.79	54.16	56.80	55.48	1.32
Ship	B Calocycletta costata		17.490	U1334A-5H-2, 104–106	U1334A-5H-4, 104–106	39.24	42.24	44.18	47.01	45.60	1.41	56.80	58.86	57.83	1.03
Ship	B Dorcadospyris dentata		17.720	U1334A-5H-2, 104–106	U1334A-5H-4, 104–106	39.24	42.24	44.18	47.01	45.60	1.41	56.80	58.86	57.83	1.03
Ship	B Liriospyris stauropora	KIND	17.724	U1334A-5H-4, 104–106	U1334A-5H-CC	42.24	46.78	47.01	51.45	49.23	2.22	58.86	61.81	60.33	1.48
Ship	B Stichocorys wolffii		18.570	U1334A-5H-4, 104–106	U1334A-5H-CC	42.24	46.78	47.01	51.45	49.23	2.22	58.86	61.81	60.33	1.48
Ship	B Dorcadospyris forcipata		18.610	U1334A-5H-4, 104–106	U1334A-5H-CC	42.24	46.78	47.01	51.45	49.23	2.22	58.86	61.81	60.33	1.48
Ship	T Dorcadospyris simplex s.s.		18.687	U1334A-5H-4, 104–106	U1334A-5H-CC	42.24	46.78	47.01	51.45	49.23	2.22	58.86	61.81	60.33	1.48
Ship	T Dorcadospyris praeforcipata		19.770	U1334A-6H-4, 104–106	U1334A-6H-CC	51.74	56.20	58.67	63.16	60.92	2.25	67.19	70.04	68.61	1.42
Ship	B Dorcadospyris simplex	DNID	20.340	U1334A-7H-2, 105–107	U1334A-7H-4, 105–107	58.25	61.25	65.81	68.67	67.24	1.43	71.59	73.48	72.53	0.95
Ship	B Stichocorys delmontensis	KINZ	20.680	U1334A-7H-2, 105–107	U1334A-7H-4, 105–107	58.25	61.25	65.81	68.67	67.24	1.43	71.59	73.48	72.53	0.95
Ship	T Lophocyrtis (C.) pegetrum		20.890	U1334A-7H-4, 105–107	U1334A-7H-CC	61.25	65.66	68.67	73.08	70.88	2.21	73.48	76.00	74.74	1.26
Ship	B Calocycletta (C.) virginis		21.390	U1334A-7H-CC	U1334A-8H-2, 105–107	65.66	67.76	73.08	76.82	74.95	1.87	76.00	79.03	77.51	1.52
Ship	B Lophocyrtis (C.) leptetrum		21.420	U1334A-7H-CC	U1334A-8H-2, 105–107	65.66	67.76	73.08	76.82	74.95	1.87	76.00	79.03	77.51	1.52
Ship	T Theocyrtis annosa		21.380	U1334A-8H-4, 105–107	U1334A-8H-CC	70.75	75.06	79.81	84.12	81.97	2.16	81.44	83.32	82.38	0.94
Ship	T Eucyrtidium mitodes		21.950	U1334A-9H-2, 105–107	U1334A-9H-4, 105–107	77.25	80.25	88.47	91.47	89.97	1.50	85.94	87.73	86.84	0.89
Ship	B Calocycletta (C.) serrata	RN1	22.040	U1334A-9H-2, 105–107	U1334A-9H-4, 105–107	77.25	80.25	88.47	91.47	89.97	1.50	85.94	87.73	86.84	0.89
Ship	B Cyrtocapsella cornuta		22.260	U1334A-10H-2, 105–107	U1334A-10H-4, 105–107	86.75	89.75	98.13	101.06	99.60	1.47	92.36	94.14	93.25	0.89
Ship	B Cyrtocapsella tetrapera		22.350	U1334A-10H-2, 105–107	U1334A-10H-4, 105–107	86.75	89.75	98.13	101.06	99.60	1.47	92.36	94.14	93.25	0.89
Ship	T Artophormis gracilis		22.620	U1334A-10H-2, 105–107	U1334A-10H-4, 105–107	86.75	89.75	98.13	101.06	99.60	1.47	92.36	94.14	93.25	0.89
Ship	B Didymocyrtis bassanii		22.930	U1334A-10H-2, 105–107	U1334A-10H-4, 105–107	86.75	89.75	98.13	101.06	99.60	1.47	92.36	94.14	93.25	0.89
Ship	B Eucyrtidium diaphanes		22.950	U1334A-10H-4, 105–107	U1334A-10H-CC	89.75	93.95	101.06	105.26	103.16	2.10	94.14	97.17	95.65	1.52
Ship	T Dorcadospyris cyclacantha		22.980	U1334A-10H-CC	U1334A-11H-2, 105–107	93.95	96.25	105.26	109.14	107.20	1.94	97.17	99.98	98.57	1.40
Ship	T Dorcadospyris riedeli (upper)	PD2 2	23.010	U1334A-10H-CC	U1334A-11H-2, 105–107	93.95	96.25	105.26	109.14	107.20	1.94	97.17	99.98	98.57	1.40
Ship	T Dorcadospyris papilio	111 22	23.310	U1334A-10H-CC	U1334A-11H-2, 105–107	93.95	96.25	105.26	109.14	107.20	1.94	97.17	99.98	98.57	1.40
Ship	B Dorcadospyris cyclacantha		23.290	U1334A-11H-2, 105–107	U1334A-11H-4, 105–107	96.25	99.25	109.14	112.17	110.66	1.52	99.98	102.12	101.05	1.07
Ship	T Liriospyris longicornuta		24.120	U1334A-11H-4, 105–107	U1334A-11H-CC	99.25	103.75	112.17	116.51	114.34	2.17	102.12	105.19	103.66	1.54
Ship	T Acrocubus octopylus (lower)		24.380	U1334A-13H-2, 105–107	U1334A-13H-4, 105–107	114.25	117.25	129.74	132.82	131.28	1.54	114.86	117.38	116.12	1.26
Ship	T Lychnocanoma apodora		24.500	U1334A-13H-2, 105–107	U1334A-13H-4, 105–107	114.25	117.25	129.74	132.82	131.28	1.54	114.86	117.38	116.12	1.26
Ship	B Lychnocanoma elongata		25.050	U1334A-13H-4, 105–107	U1334A-13H-CC	117.25	122.55	132.82	137.99	135.41	2.59	117.38	121.83	119.61	2.23
Ship	B Dorcadospyris praeforcipata		25.270	U1334A-13H-CC	U1334A-14H-2, 105–107	122.55	124.75	137.99	142.01	140.00	2.01	121.83	124.88	123.36	1.52
Ship	B Didymocyrtis tubaria (lower)		25.270	U1334A-13H-CC	U1334A-14H-2, 105–107	122.55	124.75	137.99	142.01	140.00	2.01	121.83	124.88	123.36	1.52
Ship	B Dorcadospyris scambos	RP21	25.330	U1334C-13H-CC	U1334A-14H-CC	123.72	131.96	148.69	150.23	149.46	0.77	130.30	131.34	130.82	0.52
Ship	B Calocycletta (C.) robusta		25.270	U1334A-14H-4, 105–107	U1334A-14H-CC	127.75	131.96	145.67	150.23	147.95	2.28	128.54	131.34	129.94	1.40
Ship	B Liriospyris longicornuta		25.290	U1334A-14H-4, 105–107	U1334A-14H-CC	127.25	131.96	145.67	150.23	147.95	2.28	128.54	131.34	129.94	1.40
Ship	B Lychnocanoma apodora		25.550	U1334A-15H-4, 105–107	U1334A-15H-CC	137.25	141.20	156.24	160.31	158.28	2.04	135.00	138.67	136.84	1.83

115

Table T35 (continued). (Continued on next page.)

			Age*	Hole, core, section	on, interval (cm)	De (mbsf [n	pth n CSF-A])	Depth m re	(rmcd [ac vised CCS	ljusted F-A])	Error (±)	De (co	oth Site 12 rrected rm	218 icd)	Error (±)
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)	Тор	Bottom	Mean	(m)
Ship Ship Ship Ship Ship Ship Ship	T Dorcadospyris circulus (continuous) T Dorcadospyris riedeli (upper) B Eucyrtidium plesiodiaphanes T Lithocyclia angusta (continuous) B Dorcadospyris ateuchus B Theocyrtis annosa Tristylospyris triceros > Dorcadospyris ateuchus	RP21	26.170 26.200 26.400 27.680 29.503 28.330 28.600	U1334A-16H-2, 104–106 U1334A-16H-2, 104–106 U1334A-16H-2, 104–106 U1334A-17H-CC U1334B-20H-CC U1334A-20H-CC U1334A-20H-CC	U1334A-16H-4, 104–106 U1334A-16H-4, 104–106 U1334A-16H-4, 104–106 U1334A-18H-2, 105–107 U1334C-20H-CC U1334A-21H-2, 105–107 U1334A-21H-2, 105–107	143.74 143.74 143.74 158.97 191.55 188.63 188.63	146.74 146.74 146.74 162.70 189.97 191.25 191.25	164.41 164.41 164.41 181.52 221.91 229.09 229.09	167.38 167.38 167.38 186.77 223.30 232.41 232.41	165.90 165.90 165.90 184.15 222.61 230.75 230.75	1.49 1.49 1.49 2.63 0.69 1.66 1.66	141.71 141.71 141.71 154.81 185.63 189.61 189.61	144.06 144.06 144.06 158.90 186.40 191.68 191.68	142.88 142.88 142.88 156.86 186.02 190.65 190.65	1.18 1.18 1.18 2.04 0.39 1.04 1.04
Ship Ship Revised Revi	 B Eucyrtidium mitodes B Dorcadospyris circulus T Dorcadospyris circulus T Dorcadospyris spinosa T Lithocyclia crux T Lophocyrtis (C.) milowi T Theocyrtis tuberosa T Dorcadospyris quadripes B Eucyrtidium plesiodiaphanes T Lophocyrtis (S.) oberhaensliae B Dorcadospyris pseudopapilio T Centrobotrys gravida B Centrobotrys gravida B Centrobotrys gravida B Lithocyclia crux B Dorcadospyris pseudopapilio T Artophormis barbadensis T Artophormis dominasinensis B Lophocyrtis (S.) oberhaensliae T Dorcadospyris pseudopapilio T Centrobotrys gravida Centrobotrys gravida B Lithocyclia crux B Dorcadospyris pseudopapilio T Artophormis barbadensis T Artophormis dominasinensis B Lophocyrtis (S.) oberhaensliae T Cryptocarpium ornatum B Theocyrtis tuberosa T Lychnocanoma amphitrite T Dictyoprora mongolfieri T Lophocyclia aristotelis gr. 	RP20	29.410 29.960 30.535 30.130 29.534 30.130 30.535 30.370 30.740 30.840 30.840 30.840 30.840 30.840 30.909 30.968 30.954 31.010 31.000 33.974 33.510 33.620 31.000 33.750 33.180 33.510	U1334A-21H-4, 105–107 U1334A-22H-4, 105–107 U1334A-22H-3, 80–81 U1334A-22H-3, 110–111 U1334C-19H-CC U1334A-22H-5, 140–141 U1334A-23X-4, 70–71 U1334A-23X-4, 70–71 U1334A-23X-4, 70–71 U1334A-25X-2, 130–131 U1334C-25X-2, 130–131 U1334A-25X-5, 10–111 U1334A-25X-6, 10–11 U1334A-25X-7, 35–36 U1334A-26X-4, 40–41 U1334B-26X-4, 40–41 U1334B-26X-4, 40–41 U1334B-26X-4, 70–71 U1334B-26X-5, 10–11 U1334B-26X-5, 70–71 U1334B-26X-5, 70–71 U1334B-26X-5, 130–131 U1334B-26X-5, 130–131	U1334A-21H-CC U1334A-21H-CC U1334A-22H-3, 110–111 U1334B-22H-CC U1334A-20H-CC U1334A-22H-6, 20–21 U1334A-23X-4, 100–101 U1334A-23X-4, 100–101 U1334A-23X-4, 100–101 U1334A-25X-3, 10–11 U1334C-25X-3, 10–11 U1334A-25X-5, 100–111 U1334A-25X-5, 40–41 U1334A-25X-6, 70–71 U1334A-25X-6, 70–71 U1334A-26X-4, 80–81 U1334A-26X-4, 80–81 U1334A-26X-5, 20–21 U1334B-26X-4, 70–71 U1334B-26X-4, 70–71 U1334B-26X-4, 100–101 U1334B-26X-5, 100–101 U1334B-26X-5, 100–101 U1334B-26X-5, 40–41 U1334C-28X-1, 40–41 U1334C-28X-1, 40–41 U1334C-28X-1, 40–41 U1334B-26X-5, 40–41	194.25 194.25 202.01 202.31 180.68 205.61 217.61 212.41 216.17 226.41 230.21 230.21 231.71 233.46 238.61 239.51 239.51 243.11 243.11 243.41 244.41 244.41 245.51 245.51 245.51 249.21	198.48 198.48 202.31 211.10 188.63 205.91 207.91 212.71 217.05 226.71 230.91 230.51 232.31 233.79 238.91 239.81 243.41 243.41 243.41 243.71 244.61 249.21 249.21 249.21 249.21	235.41 235.41 244.47 244.77 213.20 248.56 252.52 257.13 260.39 272.74 272.74 272.74 277.00 279.64 281.14 282.53 288.25 289.15 289.15 289.15 295.43 295.43 295.43 295.63 297.92 297.92 297.92 297.92 297.92 297.92	239.72 239.72 244.77 245.01 229.09 248.87 252.65 257.43 264.73 273.04 273.04 273.04 273.04 273.04 279.94 281.74 282.72 288.55 289.45 289.45 289.45 295.73 295.73 295.73 296.03 297.52 298.23 298.23 298.23 298.23 298.23	237.57 237.57 244.62 244.89 221.15 248.72 252.59 257.28 262.56 272.89 277.89 277.8 262.56 279.79 281.44 282.62 288.40 289.30 295.58 295.58 295.58 295.58 295.58 295.58 296.78 298.08 298.08 298.08 298.08	2.16 2.16 0.15 0.12 7.95 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1	193.64 193.64 199.19 199.38 178.45 201.81 207.49 210.27 220.76 224.33 226.46 228.57 232.55 233.17 233.17 238.52 238.52 238.52 238.52 238.52 238.52 238.52 238.52 238.52 239.60 239.99 240.42 240.42 240.42 240.42	196.30 199.38 199.54 189.61 202.00 204.40 207.71 213.34 221.04 221.04 224.59 226.60 228.72 232.75 233.38 238.82 238.82 238.82 239.13 239.73 240.18 240.61 240.61 240.61 240.61	194.97 194.97 199.29 199.46 184.03 201.90 204.35 207.60 211.80 220.90 224.46 226.90 224.46 226.90 227.78 228.65 233.27 238.67 238.67 238.67 238.67 238.67 238.67 238.97 238.67 238.09 240.09 240.02 240.52 240.52 240.52 240.52 240.52	1.33 1.33 0.10 0.08 5.58 0.10 0.05 0.11 1.53 0.14 0.13 0.14 0.14 0.13 0.10 0.22 0.07 0.10 0.10 0.10 0.15 0.15 0.15 0.10 0.09 0.09 0.09 0.09
Revised Revised Revised Revised Revised Revised Revised Revised	 T Lychnocanoma babylonis Lithocyclia aristotelis gr. > Lithocyclia angusta T Dictyoprora armadillo T Zealithapium mitra B Lophocyrtis (C.) milowi T Dorcadospyris copelata T Calocycletta (C.) anekathen T Lophocyrtis (C.) hadra B Lithocyclia angusta B Pteropilium sp. aff. Pterocanium contiguum T Dorcadospuri combase (unport) 	RP19	33.750 33.820 33.693 33.974 34.125 33.840 33.753 33.750 34.130 34.251	U1334C-28X-1, 40–41 U1334C-28X-1, 40–41 U1334C-28X-1, 40–41 U1334C-28X-1, 40–41 U1334C-28X-1, 40–41 U1334C-28X-1, 70–71 U1334C-28X-1, 70–71 U1334C-28X-1, 100–101 U1334B-26X-7, 10–11 U1334B-26X-7, 10–11	U1334B-26X-6, 40–41 U1334B-26X-6, 40–41 U1334B-26X-6, 40–41 U1334B-26X-6, 40–41 U1334B-26X-6, 40–41 U1334B-26X-6, 70–71 U1334B-26X-6, 70–71 U1334B-26X-7, 35–36 U1334B-26X-7, 35–36	249.21 249.21 249.21 249.21 249.21 249.21 249.51 249.51 249.81 247.31 247.31	246.11 246.11 246.11 246.11 246.11 246.41 246.41 250.11 247.56 247.56	298.23 298.23 298.23 298.23 298.23 298.65 298.65 298.65 299.00 299.85 299.85	298.58 298.58 298.58 298.58 298.58 298.58 298.88 299.34 300.09 300.09	298.40 298.40 298.40 298.40 298.77 298.77 299.17 299.97 299.97	0.17 0.17 0.17 0.17 0.17 0.11 0.11 0.17 0.12 0.12	240.61 240.61 240.61 240.61 240.61 240.86 240.86 241.11 241.83 241.83	240.81 240.81 240.81 240.81 240.81 241.02 241.02 241.02 241.35 242.07 242.07	240.71 240.71 240.71 240.71 240.71 240.94 240.94 241.23 241.95 241.95	0.10 0.10 0.10 0.10 0.10 0.08 0.08 0.12 0.12 0.12
Revised	T Thyrsocyrtis (P.) lochites (continuous)		34.298	U1334A-27X-CC	U1334B-27X-2, 40–41	247.87 250.74	240.24 248.71	300.40 301.84	302.16	301.28	0.88	242.39 243.72	243.98 244.66	243.19 244.19	0.80

Table T35 (continued).

			Age*	Hole, core, section	on, interval (cm)	De (mbsf [n	pth n CSF-A])	Depth m re	(rmcd [ac vised CCS	djusted F-A])	Error (±)	De (co	oth Site 12 rrected rm	218 1cd)	Error (±)
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)	Тор	Bottom	Mean	(m)
Revised	T Cryptocarpium azyx		35.070	U1334B-27X-3, 10–11	U1334B-27X-3, 70–71	250.91	251.51	305.64	305.64	305.64	0.00	246.49	246.49	246.49	0.00
Revised	Calocyclas turris	0010	34.830	UI334B-2/X-3, I30–I31	UI334B-2/X-4, 40–41	252.11	252.71	306.81	306.81	306.81	0.00	247.23	247.23	247.23	0.00
Revised	B Lophocyrtis (C.) hadra	RPT9	35.340	UI334B-2/X-4, /0–/1	UI334B-27X-4, 100–101	253.01	253.31	307.38	307.38	307.38	0.00	247.61	247.61	247.61	0.00
Revised	l Thyrsocyrtis (T.) bromia (continuous)		33.936	UI334B-2/X-4, 100–101	UI334B-2/X-4, 130–131	253.31	253.61	307.68	307.68	307.68	0.00	247.80	247.80	247.80	0.00
Revised	T Thyrsocyrtis (P.) tetracantha (continuous)		35.300	U1334B-27X-4, 100–101	U1334B-27X-4, 130–131	253.31	253.61	307.68	307.68	307.68	0.00	247.80	247.80	247.80	0.00
Revised	T Calocyclas bandyca		34.620	U1334B-27X-4, 100–101	U1334B-27X-4, 130–131	253.31	253.61	307.68	307.68	307.68	0.00	247.80	247.80	247.80	0.00
Revised	T Thyrsocyrtis (P.) krooni		35.440	U1334B-27X-5, 100–101	U1334B-27X-5, 130–131	254.81	255.11	309.18	309.18	309.18	0.00	248.70	248.70	248.70	0.00
Revised	T Thyrsocyrtis (T.) rhizodon		35.402	U1334B-27X-6, 10–11	U1334B-27X-6, 40–41	255.41	255.71	309.78	309.78	309.78	0.00	249.03	249.03	249.03	0.00
Revised	T Calocyclas hispida		33.620	U1334A-28X-5, 10–11	U1334A-28X-5, 40–41	258.71	258.91	312.01	312.21	312.11	0.10	250.26	250.37	250.31	0.06
Revised	T Thyrsocyrtis (P.) triacantha		33.340	U1334A-28X-5, 10–11	U1334A-28X-5, 40-41	258.71	258.91	312.01	312.21	312.11	0.10	250.26	250.37	250.31	0.06
	(continuous)	RP18													
Revised	T Lithocyclia ocellus gr.		33.373	U1334A-28X-5, 73–74	U1334A-28X-5, 105–107	259.54	259.85	312.84	313.15	312.99	0.16	250.72	250.89	250.80	0.09
Revised	T Thyrsocyrtis (P.) orthotenes		36.893	U1334A-28X-6, 10–11	U1334A-28X-6, 40–41	260.40	260.71	313.70	314.01	313.85	0.15	251.30	251.38	251.34	0.04
Revised	B Artophormis gracilis		36.138	U1334A-28X-6, 40–41	U1334A-28X-7, 40–41	260.71	262.21	314.01	315.47	314.74	0.73	251.38	251.75	251.56	0.18
Revised	B Lychnocanoma amphitrite		36.490	U1334A-29X-3, 30–31	U1334A-29X-3, 60–61	264.22	264.52	318.43	318.69	318.56	0.13	252.87	253.00	252.94	0.06
Revised	T Theocyrtis perpumila		36.716	U1334A-29X-3, 60–61	U1334A-29X-3, 90–91	264.52	264.82	318.69	318.95	318.82	0.13	253.00	253.13	253.07	0.06
Revised	B Calocyclas bandyca		36.740	U1334A-29X-4, 120–121	U1334A-29X-4, 149–150	266.62	266.91	320.70	320.95	320.82	0.12	254.38	254.52	254.45	0.07
Revised	B Calocycletta (C.) anekathen		36.413	U1334A-29X-5, 30–31	U1334A-29X-5, 60–61	267.22	267.52	321.24	321.55	321.39	0.16	254.68	255.02	254.85	0.17
Revised	B Lophocyrtis (L.) jacchia		37.065	U1334B-28H-CC	U1334A-29X-5, 145–146	267.29	268.37	322.21	322.40	322.30	0.09	255.54	255.67	255.60	0.06
Ship	B Calocyclas turris	RP17	38.667	U1334A-29X-CC	U1334C-29H-CC	272.00	268.26	326.42	326.54	326.48	0.06	257.81	257.87	257.84	0.03
Ship	B Thyrsocyrtis (P.) lochites		37.519	U1334C-29H-CC	U1334A-30X-2, 120–122	268.26	274.80	326.54	330.01	328.27	1.73	257.87	259.43	258.65	0.78
Ship	B Thyrsocyrtis (P.) tetracantha		38.118	U1334C-29H-CC	U1334A-30X-2, 120–122	268.26	274.80	326.54	330.01	328.27	1.73	257.87	259.43	258.65	0.78

Proc. IODP | Volume 320/321

			Ace*	Hole, core, sect	ion, interval (cm)	I Pälike et	Depth fron al. (2005	n) (rmcd)	De (co	pth adjust rrected rm	ed cd)	Error
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Mean	Тор	Bottom	Mean	(<u>+</u>) (m)
				199-	199-							
Nigrini et al., 2006	T Dorcadospyris praeforcipata		20.070	1218A-7H-4, 46–48	1218A-7H-5, 40-42	68.97	70.32	69.65	68.97	70.32	69.65	0.67
Nigrini et al., 2006	B Didymocyrtis violina		20.070	1218A-7H-4, 46–48	1218A-7H-5, 40–42	68.97	70.32	69.65	68.97	70.32	69.65	0.67
Nigrini et al., 2006	B Didymocyrtis tubaria (upper)		20.070	1218A-7H-4, 46–48	1218A-7H-5, 40-42	68.97	70.32	69.65	68.97	70.32	69.65	0.67
Nigrini et al., 2006	B Dorcadospyris simplex		20.565	1218A-7H-6, 46–48	1218A-7H-7, 46–48	71.65	73.37	72.51	71.65	73.37	72.51	0.86
Nigrini et al., 2006	T Calocycletta (C.) serrata	RN2	20.565	1218A-7H-6, 46-48	1218A-7H-7, 46-48	71.65	73.37	72.51	71.65	73.37	72.51	0.86
Nigrini et al. 2006	B Stichocorvs delmontensis		21.175	1218A-8H-3, 46-48	1218A-8H-4, 45–47	76.64	78.15	77.40	76.64	78.15	77.40	0.76
Nigrini et al., 2006	T Lophocyrtis (C) pegetrum		21.175	1218A-8H-3, 46-48	1218A-8H-4, 45–47	76.64	78.15	77.40	76.64	78.15	77.40	0.76
Nigrini et al. 2006	B Carpocanonsis bramlettei		21.175	1218A-8H-6 46-48	1218A-8H-8-CC	81 21	82 19	81 70	81 21	82 19	81 70	0.49
Nigrini et al., 2006	T Theocyrtis annosa		21.550	12184-8H-CC	1218B-9H-3 45_47	82.19	82.19	82.19	82.19	82.19	82 19	0.00
Nigrini et al. 2006	B Calocycletta (C) virginis		21.570	1210A-0H-3 45_47	12188-9H-4 45-47	82.19	83.69	82.12	82.19	83.69	82.12	0.00
Nigrini et al., 2006	B Lonbocyrtis (C) lentetrum		21.660	1218B_9H_3 /5 /7	12188-9H-4 45 47	82.12	83.60	82.04	82.12	83.60	82.04	0.75
Nigrini et al., 2006	T Didymocyrtis tubaria (lower)		21.000	1218B_9H_5_45_47	12180-911-1, 13-17	8/ 10	85.67	8/ 03	8/ 10	85.67	8/ 03	0.73
Nigrini et al., 2000	T Eucyrtidium mitodas	RN1	21.030	12180-911-3, 43-47 12184-9H-2, 71, 72	12184-9H-4 74 75	87.07	90.20	88.64	87.07	90.20	88.64	1 5 7
Nigrini et al., 2000	R Caloovelatta (C) sarrata		22.233			87.07	00.20	88.64	87.07	00.20	88.64	1.57
Nigrini et al., 2000	B Curtocansalla cornuta		22.233	1210A-311-2, 71-72	12188-311-4, 74-75	01.07	02.00	02.04	07.07	02.00	02.04	0.60
Nigrini et al., 2000	B Cyrtocapsella tetrapera		22.303	1210A-311-3, 74-73	1218B-10H-2,70-72	91.70	92.90	92.30	01 70	92.90	92.30	0.00
Nigrini et al., 2006	T Artonbormic gracilic		22.303	1210A-91-3, 74-73	12100-100-2,70-72	91.70	92.90	92.30	91.70	92.90	92.30	0.00
Nigrini et al., 2006	T Antophonnis grucins B. Eusertidium dianhanas		22.723	1210A-91-0, 03-03	12180-100-3, 40-46	93.29	94.10	93.73	95.29	94.10	93.73	0.45
Nigrini et al., 2006	B Eucyrtiaium aiapnanes		23.103	12100-100-3, 40-40	1218A-10H-1, 74-75	97.10	97.25	97.20	97.10	97.25	97.20	0.04
Nigrini et al., 2006	B Diaymocyrtis bassanii		22.910	1218A-9H-CC	1218B-10H-4, 46–48	95.04	95.66	95.35	95.04	95.66	95.35	0.31
Nigrini et al., 2006	T Dorcadospyris cyclacantna		23.105	1218B-10H-5, 46–48	1218A-10H-1, 74–75	97.16	97.23	97.20	97.10	97.23	97.20	0.04
Nigrini et al., 2006	1 Dorcadospyris riedeli (upper)		23.165	1218A-10H-1, 74–75	1218B-10H-6, 74-75	97.23	104.34	100.79	97.23	104.34	100.79	3.36
Nigrini et al., 2006	B Dorcadospyris cyclacantha	RP22	23.385	1218B-10H-7, 46-48	1218A-10H-4, 74–75	100.11	101.34	100.73	100.11	101.34	100.73	0.62
Nigrini et al., 2006	T Dorcadospyris circulus (max)		23.5/5	1218A-10H-4, 74-76	1218A-10H-6, 74–75	101.34	104.34	102.84	101.34	104.34	102.84	1.50
Nigrini et al., 2006	1 Dorcadospyris papilio		23.760	1218A-10H-6, 74-75	1218A-10H-CC	104.34	105.49	104.92	104.34	105.49	104.92	0.57
Nigrini et al., 2006	Liriospyris longicornuta		23./60	1218A-10H-6, /4–/5	1218A-10H-CC	104.34	105.49	104.92	104.34	105.49	104.92	0.57
Nigrini et al., 2006	B Carpocanopsis cingulata		24.435	1218A-11H-3, 44–46	1218A-11H-4, 44–46	110.46	112.04	111.25	110.46	112.04	111.25	0.79
Nigrini et al., 2006	Acrocubus octopylus (lower)		24.6/5	1218A-11H-5, 45–47	1218A-11H-6, 45–47	113.55	115.05	114.30	113.55	115.05	114.30	0.75
Nigrini et al., 2006	T Lychnocanoma apodora		24.800	1218A-11H-6, 45–47	1218A-11H-7, 45–47	115.05	116.55	115.80	115.05	116.55	115.80	0.75
Nigrini et al., 2006	B Lychnocanoma elongata		25.165	1218A-12H-2, 45–47	1218A-12H-3, 45–47	119.62	121.12	120.37	119.62	121.12	120.37	0.75
Nigrini et al., 2006	B Acrocubus octopylus (lower)		25.270	1218A-12H-3, 45–47	1218A-12H-4, 45–47	121.12	122.62	121.87	121.12	122.62	121.87	0.75
Nigrini et al., 2006	B Didymocyrtis tubaria (lower)		25.505	1218A-12H-5, 45–47	1218A-12H-6, 45–47	124.12	125.75	124.94	124.12	125.75	124.94	0.81
Nigrini et al., 2006	B Calocycletta (C.) robusta		25.505	1218A-12H-5, 45–47	1218A-12H-6, 45–47	124.12	125.75	124.94	124.12	125.75	124.94	0.81
Nigrini et al., 2006	B Dorcadospyris praeforcipata		25.505	1218A-12H-5, 45–47	1218A-12H-6, 45–47	124.12	125.75	124.94	124.12	125.75	124.94	0.81
Nigrini et al., 2006	B Liriospyris longicornuta		25.795	1218A-13H-1, 45–47	1218A-13H-2, 45–47	128.40	129.40	128.90	128.40	129.40	128.90	0.50
Nigrini et al., 2006	B Dorcadospyris scambos		26.010	1218A-13H-3, 45–47	1218A-13H-4, 45–47	130.69	132.56	131.63	130.69	132.56	131.63	0.94
Nigrini et al., 2006	T Theocorys puriri		26.125	1218A-13H-4, 45–47	1218A-13H-5, 45–47	132.56	134.06	133.31	132.56	134.06	133.31	0.75
Nigrini et al., 2006	B Acrobotrys disolenia		26.125	1218A-13H-4, 45–47	1218A-13H-5, 45–47	132.56	134.06	133.31	132.56	134.06	133.31	0.75
Nigrini et al., 2006	B Dorcadospyris papilio	RP21	26.125	1218A-13H-4, 45–47	1218A-13H-5, 45–47	132.56	134.06	133.31	132.56	134.06	133.31	0.75
Nigrini et al., 2006	B Lychnocanoma apodora	111 2 1	26.125	1218A-13H-4, 45–47	1218A-13H-5, 45–47	132.56	134.06	133.31	132.56	134.06	133.31	0.75
Nigrini et al., 2006	T Dorcadospyris circulus (continuous)		26.385	1218A-13H-7, 38–40	1218A-13H-CC	136.89	137.57	137.23	136.89	137.57	137.23	0.34
Nigrini et al., 2006	B Dorcadospyris riedeli (upper)		26.505	1218A-14H-1, 45–47	1218A-14H-2, 45–47	138.18	139.57	138.88	138.18	139.57	138.88	0.69
Nigrini et al., 2006	T Eucyrtidium plesiodiaphanes		27.355	1218A-15H-2, 45–47	1218A-15H-3, 45–47	149.87	151.37	150.62	149.87	151.37	150.62	0.75
Nigrini et al., 2006	T Lithocyclia angusta (continuous)		28.015	1218A-16H-1, 45–47	1218A-16H-2, 45–47	159.21	160.76	159.99	159.21	160.76	159.99	0.77
Nigrini et al., 2006	T Theocyrtis setanios		28.810	1218A-17H-3, 45–47	1218A-17H-4, 45–47	171.49	172.75	172.12	171.49	172.75	172.12	0.63
Nigrini et al., 2006	T Theocyrtis perysinos		29.075	1218A-17H-6, 45–47	1218A-17H-7, 45–47	175.51	177.01	176.26	175.51	177.01	176.26	0.75
Nigrini et al., 2006	T Tristylospyris triceros		29.075	1218A-17H-6, 45–47	1218A-17H-7, 45–47	175.51	177.01	176.26	175.51	177.01	176.26	0.75
Nigrini et al., 2006	B Theocyrtis annosa		29.130	1218A-17H-7, 45–47	1218A-17H-CC	177.01	177.55	177.28	177.01	177.55	177.28	0.27
Nigrini et al., 2006	Tristylospyris triceros > Dorcadospyris ateuchus		29.310	1218A-18H-1, 46–48	1218A-18H-2, 46–48	180.52	182.27	181.40	180.52	182.27	181.40	0.88

Table T36 (continued). (Continued on next page.)

				Hole core section	n interval (cm)	[Päliko ot	Depth from	n) (rmcd)	De	pth adjust	ed	Error
C	Front	7	Age* .				. al. (2005) (IIIICU)		Detter III	NA	. (±)
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Mean	Тор	Bottom	Mean	(m)
Nigrini et al., 2006	B Eucyrtidium mitodes		29.515	1218A-18H-3, 46–48	1218A-18H-4, 46–48	184.22	185.72	184.97	184.22	185.72	184.97	0.75
Nigrini et al., 2006	B Theocyrtis pervsinos		29.735	1218A-18H-5, 46-48	1218A-18H-6, 46–48	187.14	188.58	187.86	187.14	188.58	187.86	0.72
Nigrini et al., 2006	B Dorcadospyris ateuchus		30.175	1218A-19H-3, 46–48	1218A-19H-4, 46–48	193.54	195.04	194.29	193.54	195.04	194.29	0.75
Nigrini et al., 2006	B Theocyrtis setanios		29.830	1218A-18H-6, 46–48	1218A-18H-CC	188.58	190.22	189.40	188.58	190.22	189.40	0.82
Nigrini et al., 2006	T Lophocyrtis (C.) milowi		30.280	1218A-19H-4, 46–48	1218A-19H-5, 46–48	195.04	196.54	195.79	195.04	196.54	195.79	0.75
Nigrini et al., 2006	B Didymocyrtis prismatica		30.510	1218A-19H-6, 46-48	1218A-19H-7, 46-48	198.04	199.11	198.58	198.04	199.11	198.58	0.54
Nigrini et al., 2006	B Dorcadospyris circulus		30.710	1218A-19H-CC	1218A-20H-1, 38-40	199.72	201.86	200.79	199.72	201.86	200.79	1.07
Nigrini et al., 2006	T Lophocyrtis (S.) oberhaensliae		30.885	1218A-20H-1, 38-40	1218A-20H-2, 45–47	201.86	203.43	202.65	201.86	203.43	202.65	0.78
Revised	T Theocyrtis tuberosa		30.710	1218B-20X-4, 98–99	1218B-20X-4, 123–124	201.28	201.74	201.51	201.28	201.74	201.51	0.23
Revised	T Lithocyclia crux		30.710	1218B-20X-3, 49–50	1218B-20X-3, 98–99	199.30	199.78	199.54	199.30	199.78	199.54	0.24
Revised	T Dorcadospyris spinosa		31.015	1218A-20H-1, 38–40	1218B-20X-5, 48–49	201.86	202.28	202.07	201.86	202.28	202.07	0.21
Revised	T Dorcadospyris quadripes		31.015	1218A-20H-2, 45–47	1218A-20H-6, 50–51	203.43	203.80	203.62	203.43	204.93	204.18	0.75
Revised	B Eucyrtidium plesiodiaphanes		31.125	1218A-20H-3, 100–101	1218A-20H-3, 144–145	205.48	205.93	205.71	205.48	205.93	205.71	0.23
Nigrini et al., 2006	B Lophocyrtis (C.) pegetrum		31.340	1218A-20H-5, 45–47	1218B-21X-2, 45–47	207.93	209.27	208.60	207.93	209.09	208.51	0.58
Nigrini et al., 2006	B Spirocyrtis subtilis		31.340	1218A-20H-5, 45–47	1218B-21X-2, 45–47	207.93	209.27	208.60	207.93	209.09	208.51	0.58
Revised	T Dorcadospyris pseudopapilo		32.165	1218C-15X-6, 49–50	1218C-15X-6, 141–142	222.02	223.02	222.52	220.86	221.72	221.29	0.43
Revised	B Dorcadospyris spinosa	RP20	32.165	1218A-22X-2, 45–47	1218C-15X-6, 49–50	220.15	220.02	220.09	220.78	221.72	221.25	0.47
Revised	T Centrobotrys gravida		32.405	1218B-22X-4, 143–144	1218A-22X-5, 49–50	223.36	223.92	223.64	223.99	224.55	224.27	0.28
Revised	B Centrobotrys petrushevskayae		32.645	1218A-22X-CC	1218B-22X-7, 83–84	225.88	227.10	226.49	226.51	227.52	227.02	0.51
Revised	B Dorcadospyris quadripes		32.645	1218C-16X-3, 143–144	1218A-23X-1, 48–51	229.14	230.22	229.68	228.54	228.62	228.58	0.04
Nigrini et al., 2006	B Lychnodictyum audax		32.885	1218A-23X-1, 48-51	1218A-23X-2, 105–107	230.22	231.82	231.02	228.62	230.69	229.66	1.04
Revised	T Theocyrtis careotuberosa		32.885	1218C-16X-3, 49-50	1218C-16X-3, 143–144	228.20	229.14	228.67	227.60	228.54	228.07	0.47
Revised	B Theocyrtis tuberosa		33.125	1218C-17X-3, 73-74	1218C-17X-3, 99–100	237.60	237.86	237.73	237.00	237.26	237.13	0.13
Revised	B Dorcadospyris pseudopapilio		33.025	1218C-15X-5, 50-51	1218C-15X-5, 143–144	219.87	221.01	220.44	219.47	220.34	219.90	0.44
Revised	B Lithocyclia crux		33.125	1218B-23X-4, 98–99	1218A-23X-4, 45–47	233.65	233.89	233.77	232.97	233.09	233.03	0.06
Revised	B Centrobotrys gravida		33.125	1218A-23X-3, 115–117	1218B-23X-4, 98–99	233.19	233.65	233.42	232.29	232.97	232.63	0.34
Revised	T Dictyoprora mongolfieri		33.235	1218C-17X-4, 123-124	1218C-17X-4, 141–142	239.60	239.78	239.69	239.00	239.18	239.09	0.09
Revised	T Lithocyclia ocellus gr.		33.355	1218C-17X-4, 141–142	1218C-17X-5, 24–25	239.78	240.10	239.94	239.18	239.50	239.34	0.16
Revised	T Lithocyclia aristotelis gr.		33.530	1218C-17X-4, 123-124	1218C-17X-4, 141–142	239.60	239.78	239.69	239.00	239.18	239.09	0.09
Revised	B Lophocyrtis (S.) oberhaensliae		33.125	1218C-17X-5, 49–51	1218A-24X-1, 45–47	240.35	240.66	240.51	239.75	240.03	239.89	0.14
Revised	T Cryptocarpium ornatum		33.530	1218C-17X-4, 141–142	1218C-17X-5, 24–25	239.78	240.10	239.94	239.18	239.50	239.34	0.16
Revised	T Calocyclas hispida		33.530	1218B-24X-6, 50-51	1218B-24X-6, 78–79	248.16	248.44	248.30	247.56	247.84	247.70	0.14
Revised	Lithocyclia aristotelis gr. > Lithocyclia angusta		33.585	1218C-17X-5, 117-118	1218C-17X-6, 23–24	241.04	241.28	241.16	240.44	240.70	240.57	0.13
Revised	T Calocycletta (C.) anekathen		33.655	1218C-17X-4, 24–25	1218C-17X-5, 49–51	240.10	240.35	240.23	239.50	239.75	239.63	0.13
Revised	T Lophocyrtis (L.) jacchia		33.720	1218C-17X-6, 52–54	1218A-24X-2, 45–47	241.50	241.76	241.63	241.01	241.24	241.13	0.12
Nigrini et al., 2006	T Dictyoprora pirum		33.720	1218C-17X-5, 49–51	1218A-24X-1, 45–47	240.35	240.61	240.48	239.75	240.03	239.89	0.14
Revised	T Dictyoprora armadillo		33.720	1218C-17X-5, 117–118	1218C-17X-6, 23–24	241.04	241.28	241.16	240.44	240.70	240.57	0.13
Revised	T Lychnocanoma babylonis		33.720	1218C-17X-5, 117–118	1218C-17X-6, 23–24	241.04	241.28	241.16	240.44	240.70	240.57	0.13
Revised	T Lophocyrtis (C.) hadra		33.720	1218C-17X-6, 23–24	1218C-17X-6, 52–54	241.28	241.50	241.39	240.70	241.01	240.86	0.16
Revised	T Lychnocanoma amphitrite		33.720	1218C-17X-5, 117–118	1218C-17X-6, 23–24	241.04	241.28	241.16	240.44	240.70	240.57	0.13
Revised	T Lophocyrtis (L.) exitelus		33.720	1218C-17X-6, 23–24	1218C-17X-6, 52–54	241.28	241.50	241.39	240.70	241.01	240.86	0.16
Revised	T Dorcadospyris copelata	RP19	33.720	1218C-17X-6, 23–24	1218C-17X-6, 52–54	241.28	241.50	241.39	240.70	241.01	240.86	0.16
Revised	T Zealithapium mitra		33.720	1218C-17X-6, 23–24	1218C-17X-6, 52–54	241.28	241.50	241.39	240.70	241.01	240.86	0.16
Revised	T Artophormis barbadensis		33.720	1218C-17X-4, 123–124	1218C-17X-4, 141–142	239.60	239.78	239.69	239.00	239.18	239.09	0.09
Revised	B Lithocyclia angusta		34.035	1218C-17X-6, 123–124	1218C-17X-6, 144–145	242.29	242.52	242.41	241.81	242.00	241.90	0.10
Revised	B Lophocyrtis (C.) milowi		34.035	1218C-17X-6, 123–124	1218C-17X-6, 144–145	242.29	242.52	242.41	241.81	242.00	241.90	0.10
Nigrini et al., 2006	B Pteropilium sp. aff. Pterocanium contiguum		34.035	1218A-24X-2, 98–100	1218A-24X-3, 54–56	242.21	243.04	242.63	241.61	242.44	242.03	0.42
Revised	T Dorcadospyris ombros (upper)		34.245	1218C-17X-7, 23–24	1218A-24X-3, 54–56	242.85	243.04	242.95	242.30	242.44	242.37	0.07
Revised	B Lophocyrtis (L.) exitelus		34.245	1218B-24X-3, 48-49	1218B-24X-3, 98–99	243.64	244.14	243.89	243.04	243.54	243.29	0.25
Revised	T Calocyclas bandyca		34.420	1218B-24X-6, 22–23	1218C-18X-1, 50–52	247.88	247.99	247.94	247.28	247.45	247.36	0.08

Table T36 (continued). (Continued on next page.)

				* Hole, core, section, interval (cm)			Depth from	n) (rmcd)	De (co	pth adjust	.ed (cd)	Error
Source	Event	Zone	Age* . (Ma)	Top	Bottom	Top	Bottom	Mean	Top	Bottom	Mean	(±) (m)
Source	Event	Zone	(IVIU)	юр	Dottom	юр	Bottom	wicun	юр	Dottom	Ivicuit	(11)
Revised	T Calocyclas turris		34.420	1218B-24X-6, 50–51	1218B-24X-6, 78–79	248.16	248.44	248.30	247.56	247.84	247.70	0.14
Revised	T Cryptocarpium azyx	RP19	34.420	1218B-24X-5, 27–28	1218B-24X-5, 48–49	246.42	246.64	246.53	245.82	246.04	245.93	0.11
Revised	T Thyrsocyrtis (T.) bromia (continuous)		35.405	1218B-24X-6, 22–23	1218C-18X-1, 50–52	247.88	247.99	247.94	247.28	247.45	247.36	0.08
Revised	T Thyrsocyrtis (P.) tetracantha (continuous)		35.405	1218B-24X-5, 143–144	1218A-24X-7, 15–17	247.60	247.83	247.72	247.00	247.23	247.12	0.12
Revised	B Lophocyrtis (C.) hadra		35.405	1218C-18X-1, 50–52	1218B-24X-6, 50–51	247.98	248.16	248.07	247.44	247.56	247.50	0.06
Revised	T Thyrsocyrtis (P.) lochites (continuous)		35.405	1218B-24X-3, 123–124	1218B-24X-3, 143–144	244.40	244.60	244.50	243.80	244.00	243.90	0.10
Revised	T Thyrsocyrtis (T.) rhizodon		35.405	1218B-24X-6, 50–51	1218B-24X-6, 78–79	248.16	248.44	248.30	247.56	247.84	247.70	0.14
Revised	T Thyrsocyrtis (P.) krooni		35.520	1218B-24X-6, 104–106	1218B-24X-6, 78–79	248.91	248.44	248.68	244.16	247.84	246.00	1.84
Revised	T Thyrsocyrtis (P.) triacantha (continuous)		35.405	1218B-25X-1, 99–100	1218C-18X-4, 45–47	252.05	252.45	252.25	251.51	251.91	251.71	0.20
Revised	T Artophormis dominasinensis	RP18	35.563	1218C-18X-3, 20–22	1218A-25X-1, 24–26	250.69	251.14	250.92	250.15	250.60	250.38	0.23
Revised	T Eusyringium fistuligerum	11110	33.910	1218B-25X-1, 144–145	1218A-25X-2, 82–84	252.77	253.07	252.92	252.23	252.39	252.31	0.08
Revised	B Artophormis gracilis		36.100	1218B-25X-1, 20–21	1218B-25X-1, 50–52	251.35	251.92	251.64	250.81	251.26	251.04	0.22
Revised	T Lychnocanoma turgidum		35.195	1218B-24X-5, 143–144	1218A-24X-7, 15–17	247.60	247.83	247.72	247.00	247.23	247.12	0.12
Revised	B Calocycletta (C.) anekathen		36.830	1218B-25X-3, 101–102	1218A-25X-4, 63–65	255.25	255.96	255.61	254.78	255.32	255.05	0.27
Revised	T Theocyrtis perpumila		36.830	1218A-25X-2, 82–84	1218B-25X-2, 50–51	253.07	253.33	253.20	252.39	252.70	252.54	0.15
Revised	B Lychnocanoma amphitrite		36.100	1218B-25X-2, 100–101	1218B-25X-2, 137–138	253.83	254.21	254.02	253.21	253.63	253.42	0.21
Revised	B Calocyclas bandyca		36.830	1218B-25X-3, 50–51	1218B-25X-3, 74–75	254.73	254.97	254.85	254.20	254.47	254.34	0.13
Revised	B Lophocyrtis (L.) jacchia		36.830	1218A-25X-4, 63–65	1218B-26X-1, 50–51	255.96	256.41	256.19	255.32	255.87	255.59	0.28
Revised	T Thyrsocyrtis (P.) orthotenes	RP17	36.315	1218B-25X-1, 99–100	1218C-18X-4, 45–47	252.30	252.45	252.38	251.76	251.91	251.84	0.07
Revised	T Podocyrtis (P.) papalis (continuous)		36.830	1218B-26X-3, 73–74	1218B-26X-3, 100–101	259.15	259.41	259.28	258.61	258.87	258.74	0.13
Revised	B Cryptocarpium azyx		37.475	1218B-26X-3, 73–74	1218B-26X-3, 100–101	259.15	259.41	259.28	258.61	258.87	258.74	0.13
Revised	B Thyrsocyrtis (P.) lochites		37.475	1218B-26X-2, 97–98	1218B-26X-3, 23–24	258.39	258.65	258.52	257.85	258.11	257.98	0.13
Revised	T Anthocyrtoma spp.		37.925	1218B-26X-3, 22–23	1218A-26X-1, 46–48	260.15	261.28	260.72	259.61	260.72	260.16	0.55
Revised	B Dorcadospyris copelata		38.095	1218B-26X-4, 73–74	1218B-26X-4, 100–101	260.05	260.91	260.48	259.51	260.37	259.94	0.43
Revised	T Calocycloma ampulla		38.095	1218B-26X-4, 73–74	1218B-26X-4, 100–101	260.05	260.91	260.48	259.51	260.37	259.94	0.43
Revised	T Rhopalocanium ornatum		38.095	1218B-26X-4, /3–/4	1218A-25X-CC	260.05	261.06	260.56	259.51	259.89	259.70	0.19
Revised	B Botryocella sp. gr.		38.095	1218B-26X-4, /3-/4	1218A-25X-CC	260.05	261.06	260.56	259.51	259.89	259.70	0.19
Revised	Spongatractus pachystylus		38.095	1218B-26X-4, 100-101	1218B-26X-4, 123-124	260.91	261.15	261.03	260.37	260.61	260.49	0.12
Revised	B Thyrsocyrtis (T.) bromia		38.095	1218B-26X-4, 123-124	1218B-26X-4, 143-144	261.15	261.35	261.25	260.61	260.81	260.71	0.10
Revised	B Thyrsocyrtis (P.) tetracantha		38.245	1218B-26X-5, /3-/4	1218A-26X-2, 45-4/	262.15	262.34	262.25	261.61	261.78	261.70	0.08
Revised	B Theocyrtis careotuberosa		38.245	12188-268-6, 24-25	12188-268-6, 50-51	263.30	263.61	203.40	262.61	262.87	262.74	0.13
Revised	I Zygocircus cimelium		38.6/3	1218A-26X-3, 123-124	1218A-26X-3, 144-145	264.61	264.81	264.71	264.07	264.27	264.17	0.10
Revised	B Dorcadospyris ombros (upper)		38.245	1218B-26X-5, 23-24	12188-268-5, 50-51	261.65	261.91	201.78	201.11	201.37	261.24	0.13
Revised	B Artopriormis dominasinensis		20.224	12100-207-4, 123-124	12180-207-4, 143-144	201.15	201.33	201.25	200.01	200.01	200.71	0.10
Revised	B Thistylospyris theeros T Theocothelises figure		30.243 20.405	1210D-20A-3, 143-144	1210D-20A-0, 24-23	262.94	203.30	203.12	202.31	202.01	202.40	0.15
Revised	T Theocolylissa licus	RPIO	20.402	1210D-20A-3, 123-124	1210D-20A-3, 143-144	202.70	202.94	202.02	202.11	202.31	202.21	0.10
Revised	P Calocuclas turris		28 485	12100-207-3, 123-124	12100-207-3, 143-144	262.70	202.94	202.02	265.07	265.22	262.21	0.10
Povised	T Podocyrtis (L) chalara (continuous)		20.403	1210A-20A-4, 73-74	12184-207-4, 100-101	265.01	203.07	203.74	265.07	205.55	203.20	0.15
Revised	T Podocyrtis (L) chalara (continuous)		38 675	1218A-26X-3, 23-24	12184-268-7 23 24	264.61	200.03	264 71	264.07	200.29	264.17	0.11
Nigrini et al 2006	T Dictyophimus craticula		38 860	1218A-26X-3, 123-124	12184-268-5 16 18	265 32	266.83	266.08	264.07	266 20	265 54	0.10
Revised	B Thyrsocyrtis (P) krooni		30.000	12184-268-6 144 145	12184-268-7 9 11	269.32	260.05	260.00	268.65	268 70	268 72	0.70
Revised	T Podocyrtis (P) aneza		39 355	1218R-26X-5 73_74	12184-26X-2 45-47	262.15	262.34	262.35	261.61	261 78	261 70	0.07
Nigrini et al 2006	B Dictyoprora pirum		39 355	12180-26X-6 45-47	12184-268-7 9-11	268 31	269 41	268.86	267.75	268 79	268.27	0.00
Revised	T Lithochytris vespertilio		39,355	1218A-26X-6 144_145	1218A-26X-7 9_11	269.31	269 41	269.33	268.65	268 79	268 72	0.07
Nigrini et al. 2006	T Sethochytris triconiscus		39.535	1218A-26X-7_9_11	1218A-26X-CC_0	269.41	270.38	269.90	268.79	269.45	269.12	0.33
Nigrini et al., 2006	B Lithocyclia aristotelis ar.		39.625	1218A-26X-CC	1218A-27X-1, 45-47	270.38	270.64	270.51	269.45	270.10	269.78	0.32
Nigrini et al., 2006	T Dorcadospyris ombros (lower)		39.730	1218A-27X-1, 45-47	1218A-27X-2, 45–57	270.64	272.02	271.33	270.10	271.47	270.79	0.69
Nigrini et al., 2006	T Podocyrtis (L.) mitra		39.730	1218A-27X-1, 45–47	1218A-27X-2, 45–57	270.64	272.02	271.33	270.10	271.47	270.79	0.69
Nigrini et al., 2006	B Dorcadospyris anastasis		39.930	1218A-27X-2, 45–57	1218A-27X-3, 52–54	272.02	273.55	272.79	271.47	273.01	272.24	0.77

Table T36 (continued).

			Aae*	Hole, core, section, interval (cm)			Depth fron t al. (2005	n) (rmcd)	De (co	pth adjust	:ed າcd)	Error (±)
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Mean	Тор	Bottom	Mean	(m)
Nigrini et al., 2006	B Dictyoprora armadillo	RP16	38.860	1218A-26X-4, 45–47	1218A-26X-5, 46–48	265.32	266.83	266.08	264.78	266.29	265.54	0.76
Nigrini et al., 2006	B Podocyrtis (L.) goetheana		39.930	1218A-27X-2, 45–57	1218A-27X-3, 52–54	272.02	273.55	272.79	271.47	273.01	272.24	0.77
Nigrini et al., 2006	T Lophocyrtis biaurita	RP15	40.345	1218A-27X-4, 40–42	1218A-27X-5, 45–47	274.93	275.98	275.46	274.39	275.44	274.92	0.53
Nigrini et al., 2006	Podocyrtis (L.) mitra > Podocyrtis (L.) chalara		41.335	1218A-29X-1, 51–53	1218A-29X-3, 49–51	288.98	291.96	290.47	288.44	291.42	289.93	1.49
Nigrini et al., 2006	B Podocyrtis (P.) apeza	RP14	41.335	1218A-29X-1, 51–53	1218A-29X-3, 49–51	288.98	291.96	290.47	288.44	291.42	289.93	1.49

Table T37. Site 1219 radiolarian datums.	(Continued on	next four pages.)
--	---------------	-------------------

			Ace*	Hole, core, secti	on, interval (cm)	De (m	epth icd)	[Pälike et	Depth fron t al. (2005	n) (rmcd)	De (co	pth Site 12 rrected rm	218 1cd)	Error
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	Тор	Bottom	Mean	(<u>+</u>) (m)
				199-	199-									
Nigrini et al., 2006	T Dorcadospyris praeforcipata			1219A-4H-6, 46-48	1219A-4H-7, 46-48	33.84	35.34	67.41	69.89	68.65	67.49	69.86	68.67	1.19
Nigrini et al., 2006	B Didvmocvrtis violina			1219A-4H-6, 46-48	1219A-4H-7, 46–48	33.84	35.34	67.41	69.89	68.65	67.49	69.86	68.67	1.19
Nigrini et al., 2006	B Didymocyrtis tubaria (upper)			1219A-4H-7, 46–48	1219A-4H-CC	35.34	35.75	69.89	70.61	70.25	69.86	70.52	70.19	0.33
Nigrini et al., 2006	B Dorcadospyris simplex			1219A-4H-CC	1219A-5H-1, 45–47	35.75	37.24	70.61	73.18	71.90	70.52	73.19	71.85	1.34
Nigrini et al. 2006	T Calocycletta (C.) serrata	RN2		1219A-5H-1_45-47	1219A-5H-2, 55–57	37.24	38.84	73.18	75.68	74.43	73.19	75.79	74 49	1.30
Nigrini et al. 2006	B Stichocorvs delmontensis			1219A-5H-2, 55-57	1219A-5H-3, 46–48	38.84	38.84	75.68	75.68	75.68	75 79	75.79	75.79	0.00
Nigrini et al. 2006	T Lophocyrtis (C) peaetrum			1219A-5H-2, 55–57	1219A-5H-3, 45-47	38.84	40.24	75.68	77.71	76.70	75 79	77.66	76.73	0.93
Nigrini et al., 2006	B Carpocanopsis bramlettei			1219A-5H-4, 45–47	1219A-5H-5, 45–47	41.74	43.24	80.66	82.26	81.46	80.55	82.25	81.40	0.85
Nigrini et al., 2006	T Theocyrtis annosa			1219A-5H-4, 45-47	1219A-5H-5, 45-47	41.74	43.24	80.66	82.26	81.46	80.55	82.25	81.40	0.85
Nigrini et al., 2006	B Calocycletta (C.) virainis			1219A-5H-4, 45-47	1219A-5H-5, 45-47	41.74	43.24	80.66	82.26	81.46	80.55	82.25	81.40	0.85
Nigrini et al., 2006	B Lonhocyrtis (C) lentetrum			1219A-5H-6, 45-47	1219A-5H-7, 45-47	44.74	46.24	83.33	85.52	84.43	83.57	85.41	84.49	0.92
Nigrini et al., 2006	T Didymocyrtis tubaria (lower)			1219A-5H-CC. 14–18	1219A-6H-1, 45–47	46.76	48.47	86.24	88.14	87.19	86.17	88.50	87.33	1.16
Nigrini et al., 2006	T Fucyrtidium mitodes	RN1		1219A-5H-CC 14-18	1219A-6H-1, 45–47	46.76	48.47	86.24	88.14	87.19	86.17	88.50	87.33	1.16
Nigrini et al., 2006	B Calocycletta (C.) serrata			1219A-6H-2, 45–47	1219A-6H-3, 45–47	49.97	51.47	90.32	92.54	91.43	90.36	92.45	91.41	1.04
Nigrini et al., 2006	B Cyrtocapsella cornuta			1219A-6H-2, 45–47	1219A-6H-3, 45–47	49.97	51.47	90.32	92.54	91.43	90.36	92.45	91.41	1.04
Nigrini et al., 2006	B Cyrtocapsella tetrapera			1219A-6H-3, 45–47	1219A-6H-4, 45–47	51.47	52.97	92.54	95.54	94.04	92.45	94.70	93.58	1.13
Nigrini et al., 2006	T Artophormis aracilis			1219A-6H-3, 45–47	1219A-6H-4, 45–47	51.47	52.97	92.54	95.54	94.04	92.45	94.70	93.58	1.13
Nigrini et al., 2006	B Eucyrtidium diaphanes			1219A-6H-4, 45–47	1219A-6H-5, 45–47	52.97	54.97	95.54	97.31	96.43	94.70	97.95	96.33	1.62
Nigrini et al., 2006	B Didvmocvrtis bassanii			1219A-6H-5, 45-47	1219A-6H-6, 45-47	54.97	55.97	97.31	99.42	98.37	97.95	99.45	98.70	0.75
Nigrini et al., 2006	T Dorcadospyris cyclacantha			1219A-6H-5, 45-47	1219A-6H-6, 45-47	54.97	55.97	97.31	99.42	98.37	97.95	99.45	98.70	0.75
Nigrini et al., 2006	T Dorcadospyris riedeli (upper)			1219A-6H-5, 45-47	1219A-6H-6, 45–47	54.97	55.97	97.31	99.42	98.37	97.95	99.45	98.70	0.75
Nigrini et al., 2006	B Dorcadospyris cyclacantha			1219A-6H-7, 18–20	1219A-6H-CC, 18–23	57.20	57.92	101.24	101.98	101.61	102.04	103.88	102.96	0.92
Nigrini et al., 2006	T Dorcadospyris circulus (max)	RP22		1219A-6H-7, 18–20	1219A-6H-CC, 18–23	57.20	57.92	101.24	101.98	101.61	102.04	103.88	102.96	0.92
Nigrini et al., 2006	T Dorcadospyris papilio			1219A-6H-7, 18–20	1219A-6H-CC, 18–23	57.20	57.92	101.24	101.98	101.61	102.04	103.88	102.96	0.92
Nigrini et al., 2006	T Liriospyris longicornuta			1219A-7H-6, 45–47	1219A-7H-CC, 24–29	63.36	65.01	114.03	118.01	116.02	114.10	117.98	116.04	1.94
Nigrini et al., 2006	B Carpocanopsis cinqulata			1219A-7H-6, 45–47	1219A-7H-CC, 24–29	63.36	65.01	114.03	118.01	116.02	114.10	117.98	116.04	1.94
Nigrini et al., 2006	T Acrocubus octopylus (lower)			1219A-7H-6, 45–47	1219A-7H-CC, 24–29	63.04	65.01	114.03	118.01	116.02	113.01	117.98	115.49	2.49
Nigrini et al., 2006	T Lychnocanoma apodora			1219A-7H-6, 45–47	1219A-7H-CC, 24–29	63.36	65.01	114.03	118.01	116.02	114.10	117.98	116.04	1.94
Nigrini et al., 2006	B Lychnocanoma elongata			1219A-8H-1, 43–45	1219B-6H-3, 46–48	66.48	66.80	120.31	120.88	120.60	120.33	120.81	120.57	0.24
Nigrini et al., 2006	B Acrocubus octopylus (lower)			1219A-8H-1, 43–45	1219B-6H-3, 46–48	66.48	66.80	120.31	120.88	120.60	120.33	120.81	120.57	0.24
Nigrini et al., 2006	B Didymocyrtis tubaria (lower)			1219A-8H-2, 45–47	1219A-8H-4, 45–47	68.00	71.00	123.01	128.45	125.73	122.75	128.46	125.61	2.85
Nigrini et al., 2006	B Calocycletta (C.) robusta			1219A-8H-2, 45–47	1219A-8H-4, 45–47	68.00	71.00	123.01	128.45	125.73	122.75	128.46	125.61	2.85
Nigrini et al., 2006	B Dorcadospyris praeforcipata			1219A-8H-2, 45–47	1219A-8H-4, 45–47	68.00	71.00	123.01	128.45	125.73	122.75	128.46	125.61	2.85
Nigrini et al., 2006	B Liriospyris longicornuta			1219A-8H-2, 45–47	1219A-8H-4, 45–47	68.00	71.00	123.01	128.45	125.73	122.75	128.46	125.61	2.85
Nigrini et al., 2006	B Dorcadospyris scambos			1219A-8H-4, 45–47	1219A-8H-6, 45–47	71.00	74.00	128.45	132.30	130.38	128.46	132.33	130.40	1.94
Nigrini et al., 2006	T Theocorys puriri			1219A-8H-4, 45–47	1219A-8H-6, 45–47	71.00	74.00	128.45	132.30	130.38	128.46	132.33	130.40	1.94
Nigrini et al., 2006	B Acrobotrys disolenia			1219A-8H-4, 45–47	1219A-8H-6, 45–47	71.00	74.00	128.45	132.30	130.38	128.46	132.33	130.40	1.94
Nigrini et al., 2006	B Dorcadospyris papilio	DD21		1219A-8H-6, 45–47	1219A-8H-CC, 20–24	74.00	76.10	132.30	134.25	133.28	132.33	134.23	133.28	0.95
Nigrini et al., 2006	B Lychnocanoma apodora	RF Z I		1219A-8H-6, 45–47	1219A-8H-CC, 20–24	74.00	76.10	132.30	134.25	133.28	132.33	134.23	133.28	0.95
Nigrini et al., 2006	T Dorcadospyris circulus (continuous)			1219A-9H-5, 46–48	1219A-9H-CC, 10–14	86.33	89.72	143.32	148.56	145.94	145.28	148.55	146.92	1.63
Nigrini et al., 2006	B Dorcadospyris riedeli (upper)			1219A-9H-5, 46–48	1219A-9H-CC, 10–14	86.33	89.72	143.32	148.56	145.94	145.28	148.55	146.92	1.63
Nigrini et al., 2006	T Eucyrtidium plesiodiaphanes			1219A-9H-5, 46–48	1219A-9H-CC, 10–14	86.33	89.72	143.32	148.56	145.94	145.28	148.55	146.92	1.63
Nigrini et al., 2006	T Lithocyclia angusta (continuous)			1219A-10H-4, 45–47	1219A-10H-CC, 27–32	95.92	100.54	155.96	160.33	158.15	155.19	159.90	157.54	2.35
Nigrini et al., 2006	T Theocyrtis setanios			1219A-11H-2, 45–47	1219A-11H-4, 45–47	106.86	109.86	163.88	166.63	165.26	166.41	169.02	167.72	1.30
Nigrini et al., 2006	T Theocyrtis perysinos			1219A-11H-7, 45–47	1219A-11H-CC, 11–17	114.36	114.54	170.66	170.85	170.76	173.68	173.90	173.79	0.11
Nigrini et al., 2006	T Tristylospyris triceros			1219A-12H-4, 45–47	1219A-12H-5, 45–47	121.08	122.58	177.46	178.98	178.22	180.87	182.46	181.66	0.80
Nigrini et al., 2006	B Theocyrtis annosa			1219A-12H-5, 45–47	1219A-12H-6, 45–47	122.58	124.08	178.98	180.60	179.79	182.46	184.06	183.26	0.80
Nigrini et al., 2006	Tristylospyris triceros > Dorcadospyris ateuchus			1219A-12H-6, 45–47	1219A-12H-7, 45–47	124.08	125.58	180.60	182.26	181.43	184.06	185.66	184.86	0.80

Table T37 (continued). (Continued on next page.)

			Age*	Hole, core, sectio	n, interval (cm)	De (m	pth cd)	[Pälike et	Depth fror al. (2005	n) (rmcd)	Dej (coi	oth Site 12 rected rm	218 icd)	Error
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	Тор	Bottom	Mean	(m)
Nigrini et al., 2006	B Eucyrtidium mitodes			1219A-12H-CC, 24–30	1219A-13H-5, 45–47	126.21	136.10	182.96	193.91	188.44	186.36	197.39	191.87	5.52
Nigrini et al., 2006	B Theocyrtis perysinos			1219A-13H-5, 45–47	1219A-13H-CC, 7–12	136.10	139.67	193.91	198.15	196.03	197.39	200.73	199.06	1.67
Nigrini et al., 2006	B Dorcadospyris ateuchus			1219A-12H-7, 45–47	1219A-12H-CC, 24–30	125.58	126.21	182.26	182.96	182.61	185.66	186.36	186.01	0.35
Nigrini et al., 2006	B Theocyrtis setanios			1219A-12H-CC, 24–30	1219A-13H-5, 45–47	126.21	136.10	182.96	193.91	188.44	186.36	197.39	191.87	5.52
Nigrini et al., 2006	T Lophocyrtis (C.) milowi			1219A-12H-CC, 24–30	1219A-13H-3, 45–47	126.21	133.10	182.96	190.59	186.78	186.36	194.04	190.20	3.84
Nigrini et al., 2006	B Theocorys puriri			1219A-13H-5, 45–47	1219A-13H-CC, 7–12	136.10	139.67	193.91	198.15	196.03	197.39	200.73	199.06	1.67
Nigrini et al., 2006	B Didymocyrtis prismatica			1219A-13H-5, 45–47	1219A-13H-CC, 7–12	136.10	139.67	193.91	198.15	196.03	197.39	200.73	199.06	1.67
Nigrini et al., 2006	B Dorcadospyris circulus			1219A-13H-CC, 7–12	1219A-14H-2, 45–47	139.67	143.40	198.15	201.17	199.66	200.73	204.74	202.73	2.01
Nigrini et al., 2006	T Lophocyrtis (S.) oberhaensliae			1219A-13H-CC, 7–12	1219A-14H-2, 45–47	139.67	143.40	198.15	201.17	199.66	200.73	204.74	202.73	2.01
Nigrini et al., 2006	T Theocyrtis tuberosa			1219A-14H-2, 45–47	1219A-14H-4, 45–47	143.40	146.40	201.17	204.84	203.01	204.74	208.28	206.51	1.77
Nigrini et al., 2006	T Lithocyclia crux			1219A-14H-2, 45–47	1219A-14H-4, 45–47	143.40	146.40	201.17	204.84	203.01	204.74	208.28	206.51	1.77
Nigrini et al., 2006	T Dorcadospyris spinosa			1219A-14H-2, 45–47	1219A-14H-4, 45–47	143.40	146.40	201.17	204.84	203.01	204.74	208.28	206.51	1.77
Nigrini et al., 2006	T Dorcadospyris quadripes			1219A-14H-2, 45–47	1219A-14H-4, 45–47	143.40	146.40	201.17	204.84	203.01	204.74	208.28	206.51	1.77
Nigrini et al., 2006	B Eucyrtidium plesiodiaphanes			1219A-14H-2, 45–47	1219A-14H-4, 45–47	143.40	146.40	201.17	204.84	203.01	204.74	208.28	206.51	1.77
Nigrini et al., 2006	B Lophocyrtis (C.) pegetrum			1219A-14H-6, 45–47	1219A-14H-CC, 14–18	149.40	151.42	208.41	210.95	209.68	211.91	214.11	213.01	1.10
Nigrini et al., 2006	T Dorcadospyris riedeli (lower)			1219A-14H-CC, 14–18	1219A-15H-2, 46–48	151.42	154.31	210.95	214.43	212.69	214.11	216.65	215.38	1.27
Nigrini et al., 2006	B Spirocyrtis subtilis			1219A-14H-CC, 14–18	1219A-15H-2, 46–48	151.42	154.31	210.95	214.43	212.69	214.11	216.65	215.38	1.27
Nigrini et al., 2006	T Dorcadospyris pseudopapilo	0020		1219A-15H-4, 46–48	1219A-15H-6, 46–48	157.31	160.31	218.00	223.33	220.67	219.24	223.66	221.45	2.21
Nigrini et al., 2006	B Dorcadospyris spinosa	RP20		1219A-15H-4, 46–48	1219A-15H-6, 46–48	157.31	160.31	218.00	223.33	220.67	219.24	223.66	221.45	2.21
Nigrini et al., 2006	B Dorcadospyris riedeli (lower)			1219A-15H-CC	1219A-16H-2, 45-47	162.06	165.34	223.62	227.17	225.40	226.01	228.93	227.47	1.46
Nigrini et al., 2006	T Centrobotrys gravida			1219A-15H-CC	1219A-16H-2, 45-47	162.06	165.34	223.62	227.17	225.40	226.01	228.93	227.47	1.46
Nigrini et al., 2006	B Centrobotrys petrushevskayae			1219A-15H-6, 46–48	1219A-15H-CC	160.31	162.06	223.33	223.62	223.48	223.66	226.01	224.83	1.17
Nigrini et al., 2006	B Dorcadospyris quadripes			1219A-16H-3, 45–47	1219A-16H-4, 45–47	166.84	168.34	228.60	229.47	229.04	230.30	231.79	231.04	0.74
Nigrini et al., 2006	B Lychnodictyum audax			1219A-16H-2, 45–47	1219A-16H-3, 45-47	165.34	166.84	227.17	228.60	227.89	228.93	230.30	229.62	0.68
Nigrini et al., 2006	T Theocyrtis careotuberosa			1219A-16H-3, 45–47	1219A-16H-4, 45–47	166.84	168.34	228.60	229.47	229.04	230.30	231.79	231.04	0.74
Nigrini et al., 2006	B Theocyrtis tuberosa			1219A-16H-5, 45–47	1219A-16H-6, 45–47	169.89	171.39	230.47	231.91	231.19	233.30	236.15	234.73	1.43
Nigrini et al., 2006	B Dorcadospyris pseudopapilio			1219A-16H-6, 45–47	1219A-16H-7, 45–47	171.39	172.89	231.91	235.53	233.72	236.15	238.69	237.42	1.27
Nigrini et al., 2006	B Lithocyclia crux			1219A-16H-6, 45–47	1219A-16H-7, 45–47	171.39	172.89	231.91	235.53	233.72	236.15	238.69	237.42	1.27
Nigrini et al., 2006	B Centrobotrys gravida			1219A-16H-6, 45–47	1219A-16H-7, 45–47	171.39	172.89	231.91	235.53	233.72	236.15	238.69	237.42	1.27
Nigrini et al., 2006	T Dictyoprora mongolfieri			1219A-16H-6, 45–47	1219A-16H-7, 45–47	171.39	172.89	231.91	235.53	233.72	236.15	238.69	237.42	1.27
Nigrini et al., 2006	T Thyrsocyrtis (P.) triacantha (max)			1219A-17H-2, 20–22	1219A-17H-3, 45–47	175.53	176.55	239.04	240.60	239.82	241.94	242.95	242.44	0.50
Nigrini et al., 2006	T Lithocyclia ocellus gr.			1219A-17H-2, 20–22	1219A-17H-3, 45–47	175.53	176.55	239.04	240.60	239.82	241.94	242.95	242.44	0.50
Nigrini et al., 2006	T Lithocyclia aristotelis gr.			1219A-17H-2, 20–22	1219A-17H-3, 45–47	175.53	176.55	239.04	240.60	239.82	241.94	242.95	242.44	0.50
Nigrini et al., 2006	B Lophocyrtis (S.) oberhaensliae			1219A-17H-2, 20–22	1219A-17H-3, 45–47	175.53	176.55	239.04	240.60	239.82	241.94	242.95	242.44	0.50
Nigrini et al., 2006	T Cryptocarpium ornatum			1219A-17H-2, 20–22	1219A-17H-3, 45–47	175.53	176.55	239.04	240.60	239.82	241.94	242.95	242.44	0.50
Nigrini et al., 2006	T Calocyclas hispida			1219A-17H-2, 20–22	1219A-17H-3, 45–47	175.53	176.55	239.04	240.60	239.82	241.94	242.95	242.44	0.50
Nigrini et al., 2006	Lithocyclia aristotelis gr. > Lithocyclia			1219A-17H-2, 20–22	1219A-17H-3, 45–47	175.53	176.55	239.04	240.60	239.82	241.94	242.95	242.44	0.50
Nigripi et al 2007	$T_{calocyclotta}(C)$ analystatic			10104 174 0 00 00	12104 174 2 45 47	175 53	17655	220.04	240 60	220 02	241.04	242.05	242 44	0.50
Nigrini et al., 2006	T Calocycletta (C.) anekathen			1219A-17H-2, 20-22	1219A-17H-5, 45-47	175.55	170.55	239.04	240.60	239.82	241.94	242.95	242.44	0.50
Nigrini et al., 2006	T Lopriocyrtis (L.) Jaccrita			1219A-17H-2, 20-22	1219A-17H-5, 45-47	175.55	170.55	239.04	240.60	239.82	241.94	242.95	242.44	0.50
Nigrini et al., 2006	T Dictyoprora pirum			1219A-17H-2, 20-22	1219A-17H-5, 45-47	175.55	170.55	239.04	240.60	239.82	241.94	242.95	242.44	0.50
Nigrini et al., 2006	T Dictyoprora armadilio			1219A-17H-2, 20-22	1219A-17H-5, 45-47	170.00	170.00	239.04	240.00	239.82	241.94	242.95	242.44	0.50
Nigrini et al., 2006	Lychnocanoma Dabyionis			1217A-17H-3, 43-47	1219A-1/17-4, 43-4/	170.33	177.34	240.60	241.00	240.03	242.93	243.72	∠43.33 242.22	0.39
Nigrini et al., 2006	T Lucha concerna ana hituita	RP19		1219A-1/11-3, 43-4/	1219A-1/17-4, 43-47	170.33	177.34	240.60	241.00	∠40.83	242.93	243.72	∠43.33 242.22	0.39
Nigrini et al., 2006	T Lophocurtic (L) avitativa			1217A-17H-3, 43-47	1219A-1/17-4, 43-4/	170.33	177.34	240.60	241.00	240.03	242.93	243.72	∠43.33 242.22	0.39
Nigrini et al., 2006	T Derendospuris (L.) exitetus			1219A-17H-3, 43-47	1∠19A-1/Π-4, 43-4/	177.33	170.01	240.60	241.00	24U.83	242.93	245.72	243.33 24455	0.39
Nigrini et al., 2006	T Zaplithanium mitur			1219A-1/H-4, 43-4/	1219A-1/H-3, 32-34	177.54	170.01	241.06	242.92	241.99	245.72	243.38	244.55	0.83
Nigrini et al., 2006	T Artonhormic harbedensis			1219A-17H 4 45 47	1219A-1/IT-3, 32-34	177.54	170.01	241.06	242.92	241.99	245./2	243.30	244.33	0.03
Nigrini et al., 2006	i Antopriorinis Darbadensis			1219A-1/11-4, 43-4/	1219A-1/1-5, 32-34	177.54	170.01	241.06	242.92	241.99	243.72	243.38	244.33	0.03
Nigrini et al., 2006	ь Litriocyclia arigusta	1		1∠19A-1/Π-4, 43–4/	1219A-1/N-3, 32-34	177.54	179.01	241.06	242.92	241.99	243./2	∠4 <u>3.</u> 38	244.33	0.03

Table T37 (continued). (Continued on next page.)

			Age* Hole, core, section, interval (cm)			De (m	pth cd)	[Pälike et	Depth fron t al. (2005	n) (rmcd)	Dej (coi	oth Site 12 rrected rm	218 icd)	Error
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	Тор	Bottom	Mean	(<u>+</u>) (m)
Nigrini et al., 2006	B Lophocyrtis (C.) milowi			1219A-17H-4, 45–47	1219A-17H-5, 32–34	177.34	179.01	241.06	242.92	241.99	243.72	245.38	244.55	0.83
Nigrini et al., 2006	B Pteropilium sp.aff. Pterocanium			1219A-17H-5, 32–34	1219A-17H-6, 45–47	179.01	180.65	242.92	244.68	243.80	245.38	247.18	246.28	0.90
Nigrini et al., 2006	T Dorcadospyris ombros (upper)			1219A-17H-6, 45–47	1219A-17H-7, 45–47	180.65	182.15	244.68	246.28	245.48	247.18	248.90	248.04	0.86
Nigrini et al., 2006	B Lophocyrtis (L.) exitelus	RP19		1219A-17H-6, 45–47	1219A-17H-7, 45–47	180.65	182.15	244.68	246.28	245.48	247.18	248.90	248.04	0.86
Nigrini et al., 2006	T Calocyclas bandyca			1219A-17H-6, 45–47	1219A-17H-7, 45–47	180.65	182.15	244.68	246.28	245.48	247.18	248.90	248.04	0.86
Nigrini et al., 2006	T Calocyclas turris			1219A-17H-7, 45–47	1219A-17H-CC, 12–17	182.15	183.22	246.28	247.38	246.83	248.90	249.70	249.30	0.40
Nigrini et al., 2006	T Cryptocarpium azyx			1219A-17H-CC, 12–17	1219A-18H-1, 45–47	183.22	184.78	247.38	248.62	248.00	249.70	250.74	250.22	0.52
Nigrini et al., 2006	T Thyrsocyrtis (T.) bromia (continuous)			1219A-17H-CC, 12–17	1219A-18H-1, 45–47	183.22	184.78	247.38	248.62	248.00	249.70	250.74	250.22	0.52
Nigrini et al., 2006	T Thyrsocyrtis (P.) tetracantha (continuous)			1219A-17H-CC, 12–17	1219A-18H-1, 45–47	183.22	184.78	247.38	248.62	248.00	249.70	250.74	250.22	0.52
Nigrini et al., 2006	B Lophocyrtis (C.) hadra			1219A-17H-CC, 12–17	1219A-18H-1, 45–47	183.22	184.78	247.38	248.62	248.00	249.70	250.74	250.22	0.52
Nigrini et al., 2006	T Thyrsocyrtis (P.) lochites (continuous)			1219A-17H-CC, 12–17	1219A-18H-1, 45–47	183.22	184.78	247.38	248.62	248.00	249.70	250.74	250.22	0.52
Nigrini et al., 2006	T Thyrsocyrtis (T.) rhizodon			1219A-17H-CC, 12–17	1219A-18H-1, 45–47	183.22	184.78	247.38	248.62	248.00	249.70	250.74	250.22	0.52
Nigrini et al., 2006	T Thyrsocyrtis (P.) krooni			1219A-17H-CC, 12–17	1219A-18H-1, 45–47	183.22	184.78	247.38	248.62	248.00	249.70	250.74	250.22	0.52
Nigrini et al., 2006	T Thyrsocyrtis (P.) triacantha (continuous)			1219A-17H-CC, 12–17	1219A-18H-1, 45–47	183.22	184.78	247.38	248.62	248.00	249.70	250.74	250.22	0.52
Nigrini et al., 2006	T Artophormis dominasinensis	RP18		1219A-17H-CC, 12–17	1219A-18H-1, 45–47	183.22	184.78	247.38	248.62	248.00	249.70	250.74	250.22	0.52
Nigrini et al., 2006	T Eusyringium fistuligerum			1219A-18H-1, 45–47	1219A-18H-2, 45–47	184.78	186.28	248.62	249.19	248.91	250.74	251.73	251.24	0.50
Nigrini et al., 2006	B Artophormis gracilis			1219A-18H-3, 45–47	1219A-18H-4, 45–47	187.78	189.28	250.69	252.23	251.46	252.78	254.02	253.40	0.62
Nigrini et al., 2006	T Lychnocanoma turgidum			1219A-18H-4, 45–47	1219A-18H-5, 45–47	189.28	190.78	252.23	253.62	252.93	254.02	255.33	254.68	0.65
Nigrini et al., 2006	B Calocycletta (C.) anekathen			1219A-18H-5, 45–47	1219A-18H-6, 45–47	190.78	192.28	253.62	255.10	254.36	255.33	256.63	255.98	0.65
Nigrini et al., 2006	T Theocyrtis perpumila			1219A-18H-CC, 17–22	1219A-19H-1, 45–47	194.30	195.25	256.40	257.03	256.72	258.32	259.01	258.67	0.34
Nigrini et al., 2006	B Lychnocanoma amphitrite			1219A-18H-5, 45–47	1219A-18H-6, 45–47	190.78	192.28	253.62	255.10	254.36	255.33	256.63	255.98	0.65
Nigrini et al., 2006	B Calocyclas bandyca			1219A-18H-5, 45–47	1219A-18H-6, 45–47	190.78	192.28	253.62	255.10	254.36	255.33	256.63	255.98	0.65
Nigrini et al., 2006	B Lophocyrtis (L.) jacchia			1219A-18H-CC, 17–22	1219A-19H-1, 45–47	194.30	195.25	256.40	257.03	256.72	258.32	259.01	258.67	0.34
Nigrini et al., 2006	T Thyrsocyrtis (P.) orthotenes	RP17		1219A-18H-CC, 17–22	1219A-19H-1, 45–47	194.30	195.25	256.40	257.03	256.72	258.32	259.01	258.67	0.34
Nigrini et al., 2006	T Podocyrtis (P.) papalis (continuous)			1219A-19H-1, 45–47	1219A-19H-2, 45–47	195.25	196.78	257.03	258.40	257.72	259.01	260.62	259.81	0.80
Nigrini et al., 2006	B Cryptocarpium azyx			1219A-19H-1, 45–47	1219A-19H-2, 45–47	195.25	196.78	257.03	258.40	257.72	259.01	260.62	259.81	0.80
Nigrini et al., 2006	B Thyrsocyrtis (P.) lochites			1219A-19H-1, 45–47	1219A-19H-2, 45–47	195.25	196.78	257.03	258.40	257.72	259.01	260.62	259.81	0.80
Nigrini et al., 2006	T Anthocyrtoma spp.			1219A-19H-3, 45–47	1219A-19H-4, 45–47	198.28	199.78	259.79	260.97	260.38	261.96	263.08	262.52	0.56
Nigrini et al., 2006	B Dorcadospyris copelata			1219A-19H-3, 45–47	1219A-19H-4, 45–47	198.28	199.78	259.79	260.97	260.38	261.96	263.08	262.52	0.56
Nigrini et al., 2006	T Calocycloma ampulla			1219A-19H-3, 45–47	1219A-19H-4, 45–47	198.28	199.78	259.79	260.97	260.38	261.96	263.08	262.52	0.56
Nigrini et al., 2006	T Rhopalocanium ornatum			1219A-19H-3, 45–47	1219A-19H-4, 45–47	198.28	199.78	259.79	260.97	260.38	261.96	263.08	262.52	0.56
Nigrini et al., 2006	B <i>Botryocella</i> sp. gr.			1219A-20H-6, 45–47	1219A-20H-7, 45–47	212.86	214.36	272.52	263.87	268.20	274.58	276.66	275.62	1.04
Nigrini et al., 2006	T Spongatractus pachystylus			1219A-19H-3, 45–47	1219A-19H-4, 45–47	198.28	199.78	259.79	260.97	260.38	261.96	263.08	262.52	0.56
Nigrini et al., 2006	B Thyrsocyrtis (T.) bromia			1219A-19H-3, 45–47	1219A-19H-4, 45–47	198.28	199.78	259.79	260.97	260.38	261.96	263.08	262.52	0.56
Nigrini et al., 2006	B Thyrsocyrtis (P.) tetracantha			1219A-19H-3, 45–47	1219A-19H-4, 45–47	198.28	199.78	259.79	260.97	260.38	261.96	263.08	262.52	0.56
Nigrini et al., 2006	B Theocyrtis careotuberosa			1219A-19H-4, 45–47	1219A-19H-5, 45–47	199.78	201.28	260.97	262.23	261.60	263.08	264.37	263.73	0.65
Nigrini et al., 2006	T Zygocircus cimelium	RP16		1219A-19H-4, 45–47	1219A-19H-5, 45–47	199.78	201.28	260.97	262.23	261.60	263.08	264.37	263.73	0.65
Nigrini et al., 2006	B Dorcadospyris ombros (upper)			1219A-19H-4, 45–47	1219A-19H-5, 45–47	199.78	201.28	260.97	262.23	261.60	263.08	264.37	263.73	0.65
Nigrini et al., 2006	B Artophormis dominasinensis			1219A-19H-5, 45–47	1219A-19H-6, 45–47	201.28	202.78	262.23	263.77	263.00	264.37	265.67	265.02	0.65
Nigrini et al., 2006	B Iristylospyris triceros			1219A-19H-5, 45–47	1219A-19H-6, 45–47	201.28	202.78	262.23	263.77	263.00	264.37	265.67	265.02	0.65
Nigrini et al., 2006	T Ineocotylissa ficus			1219A-19H-5, 45-47	1219A-19H-6, 45–47	201.28	202.78	262.23	263.77	263.00	264.37	265.67	265.02	0.65
Nigrini et al., 2006	I Dorcadospyris anastasis			1219A-19H-5, 45-47	1219A-19H-6, 45–47	201.28	202.78	262.23	263.77	263.00	264.37	265.67	265.02	0.65
Nigrini et al., 2006	B Calocyclas turris			1219A-19H-5, 45-47	1219A-19H-6, 45–47	201.28	202.78	262.23	263.77	263.00	264.37	265.67	265.02	0.65
Nigrini et al., 2006	I Podocyrtis (L.) chalara (continuous)			1219A-19H-6, 45-47	1219A-19H-CC, 0–3	202.78	204.31	263.77	265.30	264.54	265.67	267.21	266.44	0.//
Nigrini et al., 2006	(continuous)			1219A-19H-6, 45-47	1219A-19H-CC, 0–3	202.78	204.31	263./7	265.30	264.54	265.67	267.21	266.44	0.//
Nigrini et al., 2006	I Dictyophimus craticula	I		1219A-19H-CC, 0–3	1219A-20H-1, 45–47	204.31	205.78	265.30	266.76	266.03	267.21	268.68	267.94	0.74

Table T37 (continued). (Continued on next page.)

			Age*	Hole, core, secti	on, interval (cm)	De (m	pth cd)	D Pälike et	Depth fror al. (2005	n) (rmcd)	De (co	pth Site 1. rrected rn	218 ncd)	Error
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	Тор	Bottom	Mean	(m)
Nigrini et al., 2006 Nigrini et al., 2006	B Thyrsocyrtis (P.) krooni T Podocyrtis (P.) apeza			1219A-19H-CC, 0–3 1219A-20H-1, 45–47	1219A-20H-1, 45–47 1219A-20H-2, 45–47	204.31 205.78	205.78 207.28	265.30 266.76	266.76 267.99	266.03 267.38	267.21 268.68	268.68 270.08	267.94 269.38	0.74 0.70
Nigrini et al., 2006	B Dictyoprora pirum			1219A-20H-5, 45–47	1219A-20H-6, 45–47	211.36	212.86	271.19	272.52	271.86	272.63	274.58	273.61	0.97
Nigrini et al., 2006	T Sethochytris triconiscus			1219A-20H-5, 43-47	1219A-20H-6, 43-47	211.30	212.00	271.19	272.32	271.00	272.03	274.30	273.01	0.97
Nigrini et al., 2006	B Lithocyclia gristotelis gr	RP16		1210A-20H-5, 45 47	1210A-20H-6 45 47	211.30	212.00	271.12	272.52	271.00	272.03	274.50	273.61	0.27
Nigrini et al., 2006	T Dorcadospyris ombros (lower)			1219A-20H-4 45_47	1219A-20H-5 45_47	209.81	212.00	269.95	272.32	270.57	272.03	277.63	273.01	0.27
Nigrini et al. 2006	T Podocyrtis (1) mitra			1219A-20H-5 45-47	1219A-20H-6 45-47	202.01	211.50	207.75	272 52	271.86	272.63	274 58	272.10	0.40
Nigrini et al., 2006	B Dorcadospyris anastasis			1219A-20H-6, 45-47	1219A-20H-7, 45-47	212.86	212.00	272.52	263.87	268.20	274.58	276.66	275.62	1.04
Nigrini et al., 2006	B Dictyoprora armadillo			1219A-20H-6, 45-47	1219A-20H-7, 45-47	212.86	214.36	272.52	263.87	268.20	274.58	276.66	275.62	1.04
Nigrini et al., 2006	B Podocyrtis (L.) goetheang			1219A-20H-6, 45–47	1219A-20H-7, 45–47	212.86	214.36	272.52	263.87	268.20	274.58	276.66	275.62	1.04
Nigrini et al., 2006	T Lophocyrtis biaurita			1219A-21H-1, 45–47	1219A-21H-2, 45–47	216.28	217.78	276.20	277.70	276.95				
Nigrini et al., 2006	T Podocyrtis (L.) trachodes	RP15		1219A-22H-1, 46–48	1219A-22H-2, 46–48	226.79	228.29	290.43	292.62	291.53				
Nigrini et al., 2006	Podocyrtis (L.) mitra > Podocyrtis (L.) chalara			1219A-22H-1, 46–48	1219A-22H-2, 46–48	226.79	228.29	290.43	292.62	291.53				
Nigrini et al., 2006	B Dorcadospyris ombros (lower)			1219A-22H-1, 46–48	1219A-22H-2, 46–48	226.79	228.29	290.43	292.62	291.53				
Nigrini et al., 2006	B Artophormis barbadensis			1219A-22H-1, 46–48	1219A-22H-2, 46–48	226.79	228.29	290.43	292.62	291.53				
Nigrini et al., 2006	B Podocyrtis (P.) apeza			1219A-22H-1, 46–48	1219A-22H-2, 46–48	226.79	228.29	290.43	292.62	291.53				
Nigrini et al., 2006	B Podocyrtis (L.) chalara			1219A-22H-2, 46–48	1219A-22H-3, 46–48	228.29	299.79	292.62	294.86	293.74				
Nigrini et al., 2006	T Podocyrtis (P.) ampla			1219A-22H-3, 46–48	1219A-22H-4, 46–48	299.79	231.29	294.86	296.78	295.82				
Nigrini et al., 2006	B Zealithapium mitra			1219A-22H-4, 46–48	1219A-22H-5, 46–48	231.29	232.79	296.78	298.09	297.44				
Nigrini et al., 2006	T Zealithapium anoectum			1219A-22H-4, 46–48	1219A-22H-5, 46–48	231.29	232.79	296.78	298.09	297.44				
Nigrini et al., 2006	B Cryptocarpium ornatum			1219A-22H-5, 46–48	1219A-22H-6, 46–48	232.79	234.29	298.09						
Nigrini et al., 2006	B Sethochytris triconiscus			1219A-22H-5, 46–48	1219A-22H-6, 46–48	232.79	234.29	298.09						
Nigrini et al., 2006	T Eusyringium lagena	RP14		1219A-23H-1, 45-47	1219A-23H-2, 45-47	237.28	238.78							
Nigrini et al., 2006	T Zaalithaaiyoo alaamaaaatha			1219A-23H-1, 45-47	1219A-23H-2, 45-47	237.28	238.78							
Nigrini et al., 2006	T Zeallinapium piegmacanina			1219A-23H-1, 43-47	1219A-23H-2, 43-47	237.20	230./0							
Nigrini et al., 2006	7 rouocyrus (L.) sinuosu Zaalithanium plaamacantha			1219A-23H-1, 43-47	1219A-23H-2, 43-47	237.20	230.70							
Nigrini et al., 2006	Zealithapium anoectum			1219A-23H-1, 43-47	12104 221 2 12 14	237.20	241.02							
Nigrini et al., 2006	T Podocyrtis (1) helenge			1219A-23H-2, 43-47	1219A-23H-3, 12-14	230.70	239.93							
Nigrini et al., 2006	B Lychnocanoma turaidum			1219A-23H-3, 12-14	1219A-23H-4, 49-50	239.95	241.02							
Nigrini et al., 2006	Eusyringium lagena > Eusyringium fistuligerum			1219A-23H-2, 45–47	1219A-23H-4, 49–50	238.78	241.82							
Nigrini et al., 2006	Podocyrtis (L.) sinuosa > Podocyrtis (L.) mitra			1219A-23H-4, 49–50	1219A-23H-5, 45–47	241.82	243.28							
Nigrini et al., 2006	B Podocyrtis (L.) trachodes			1219A-23H-5, 45–47	1219A-23H-6, 45–47	243.28	244.78							
Nigrini et al., 2006	B Zygocircus cimelium			1219A-23H-7, 45–47	1219A-23H-CC, 23–27	246.28	246.76							
Nigrini et al., 2006	B Podocyrtis (L.) fasciolata			1219A-24H-1, 45–47	1219A-24H-2, 45–47	247.78	249.28							
Nigrini et al., 2006	B Podocyrtis (L.) helenae	RP13		1219A-24H-1, 45–47	1219A-24H-2, 45–47	247.78	249.28							
Nigrini et al., 2006	T Podocyrtis (P.) diamesa			1219A-24H-2, 45–47	1219A-24H-3, 45–47	249.28	250.78							
Nigrini et al., 2006	T Podocyrtis (P.) phyxis			1219A-24H-2, 45–47	1219A-24H-3, 45–47	249.28	250.78							
Nigrini et al., 2006	T Spongatractus balbis			1219A-24H-2, 45–47	1219A-24H-3, 45–47	249.28	250.78							
Nigrini et al., 2006	B Podocyrtis (L.) mitra			1219A-24H-2, 45–47	1219A-24H-3, 45–47	249.28	250.78							
Nigrini et al., 2006	Podocyrtis (P.) phyxis > Podocyrtis (P.) ampla			1219A-24H-2, 45–47	1219A-24H-3, 45–47	249.28	250.78							
Nigrini et al., 2006	B Podocyrtis (P.) ampla			1219A-24H-2, 45–47	1219A-24H-3, 45–47	249.28	250.78							
Nigrini et al., 2006	B Eusyringium fistuligerum	RP12		1219A-24H-2, 45–47	1219A-24H-3, 45–47	249.28	250.78							
Nigrini et al., 2006	I Theocotyle venezuelensis			1219A-24H-3, 45–47	1219A-24H-4, 45–47	250.78	252.28							

Table T37 (continued).

			Age*	Hole, core, section, interval (cm)			pth cd)	Pälike e	Depth from et al. (2005)	n) (rmcd)	De (cc	pth Site 12 prrected rm	218 cd)	Error (±)
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	Тор	Bottom	Mean	(m)
Nigrini et al., 2006	B Zealithapium anoectum			1219A-24H-3, 45–47	1219A-24H-4, 45–47	250.78	252.28							
Nigrini et al., 2006	T Theocotyle conica			1219A-24H-3, 45–47	1219A-24H-4, 45–47	250.78	252.28							
Nigrini et al., 2006	T Theocotyle cryptocephala			1219A-24H-4, 45–47	1219A-24H-5, 45–47	252.28	253.83							
Nigrini et al., 2006	B Thyrsocyrtis (P.) orthotenes			1219A-24H-5, 45–47	1219A-24H-6, 45–47	253.83	255.33							
Nigrini et al., 2006	T Thyrsocyrtis (T.) robusta			1219A-24H-5, 45–47	1219A-24H-6, 45–47	253.83	255.33							
Nigrini et al., 2006	Podocyrtis (P.) diamesa > Podocyrtis (P.) phyxis	RP12		1219A-24H-5, 45–47	1219A-24H-6, 45–47	253.83	255.33							
Nigrini et al., 2006	B Podocyrtis (P.) phyxis			1219A-24H-6, 45–47	1219A-24H-7, 45–47	255.33	256.83							
Nigrini et al., 2006	T Periphaena tripyramis triangula			1219A-24H-6, 45–47	1219A-24H-7, 45–47	255.33	256.83							
Nigrini et al., 2006	T Periphaena delta			1219A-24H-7, 45–47	1219A-24H-CC, 21–24	256.83	257.21							
Nigrini et al., 2006	T Lamptonium fab. chaunothorax			1219A-24H-7, 45–47	1219A-24H-CC, 21–24	256.83	257.21							
Nigrini et al., 2006	T Lamptonium fab. constrictum			1219A-25X-2, 45–47	1219A-25X-CC, 35–40	259.78	259.40							

T. Westerhold et al.

Revised composite depth scales

Table T38. Site	1220 radiolarian	datums.	(Continued	on next fo	our pages.)
14010 1000010		aareannor	(0011111404	011 110110 10	Pageon)

			Age* Hole, core, section, interval (cm)				Depth fron t al. (2005)	n) (rmcd)	adj	Depth usted (rm	cd)	Error
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Mean	Тор	Bottom	Mean	(m)
				199-	199-							
Nigrini et al., 2006	T Theocyrtis annosa			1220A-3H-4, 45–47	1220A-3H-5, 45–47	23.90	24.90	24.40	23.90	24.90	24.40	0.50
Nigrini et al., 2006	T Eucyrtidium mitodes n. sp.	DN 11		1220A-3H-6, 45–47	1220A-3H-CC	26.40	28.94	27.67	26.40	28.80	27.60	1.20
Nigrini et al., 2006	B Cyrtocapsella cornuta	RNT		1220A-3H-6, 45–47	1220A-3H-CC	26.40	28.94	27.67	26.40	28.80	27.60	1.20
Nigrini et al., 2006	B Cyrtocapsella tetrapera			1220A-3H-6, 45–47	1220A-3H-CC	26.40	28.94	27.67	26.40	28.80	27.60	1.20
Nigrini et al., 2006	T Artophormis gracilis			1220A-3H-6, 45–47	1220A-3H-CC	26.40	28.94	27.67	26.40	28.80	27.60	1.20
Nigrini et al., 2006	B Eucyrtidium diaphanes			1220A-3H-6, 45–47	1220A-3H-CC	26.40	28.94	27.67	26.40	28.80	27.60	1.20
Nigrini et al., 2006	T Dorcadospyris circulus (max)	0000		1220A-3H-CC	1220A-4H-2, 45–47	28.94	32.70	30.82	28.80	32.70	30.75	1.95
Nigrini et al., 2006	T Dorcadospyris papilio	RPZZ		1220A-3H-CC	1220A-4H-2, 45–47	28.94	32.70	30.82	28.80	32.70	30.75	1.95
Nigrini et al., 2006	T Liriospyris longicornuta			1220A-3H-CC	1220A-4H-2, 45-47	28.94	32.70	30.82	28.80	32.70	30.75	1.95
Nigrini et al., 2006	T Acrocubus octopylus (upper)			1220A-4H-2, 45–47	1220A-4H-4, 45–47	32.70	35.70	34.20	32.70	35.70	34.20	1.50
Nigrini et al., 2006	B Lychnocanoma elongata			1220A-4H-2, 45–47	1220A-4H-3, 45-47	32.70	34.20	33.45	32.70	34.20	33.45	0.75
Nigrini et al., 2006	B Acrocubus octopylus (lower)			1220A-4H-4, 45–47	1220A-4H-6, 45–47	35.70	38.70	37.20	35.70	38.70	37.20	1.50
Nigrini et al., 2006	B Didymocyrtis tubaria (lower)			1220A-3H-CC	1220A-4H-2, 45–47	28.94	32.70	30.82	28.80	32.70	30.75	1.95
Nigrini et al., 2006	B Calocycletta (C.) robusta			1220A-4H-4, 45–47	1220A-4H-6, 45–47	35.70	38.70	37.20	35.70	38.70	37.20	1.50
Nigrini et al., 2006	B Liriospyris longicornuta			1220A-4H-4, 45–47	1220A-4H-6, 45–47	35.70	38.70	37.20	35.70	38.70	37.20	1.50
Nigrini et al., 2006	B Dorcadospyris scambos n. sp.			1220A-4H-6, 45–47	1220A-4H-CC	35.70	38.70	37.20	35.70	38.70	37.20	1.50
Nigrini et al., 2006	T Theocorys puriri			1220A-4H-6, 45–47	1220A-4H-CC	35.70	38.70	37.20	35.70	38.70	37.20	1.50
Nigrini et al., 2006	B Dorcadospyris papilio			1220A-4H-6, 45–47	1220A-4H-CC	38.70	40.39	39.55	38.70	40.34	39.52	0.82
Nigrini et al., 2006	T Dorcadospyris circulus (continuous)	0021		1220A-4H-CC	1220A-5H-2, 45–47	38.70	43.24	40.97	38.70	43.24	40.97	2.27
Nigrini et al., 2006	B Dorcadospyris riedeli (upper)	KPZ I		1220A-5H-2, 45–47	1220B-1H-CC	43.24	43.47	43.36	43.24	43.81	43.53	0.29
Nigrini et al., 2006	T Eucyrtidium plesiodiaphanes			1220B-1H-CC	1220A-5H-4, 45–47	43.47	46.24	44.86	43.81	46.24	45.03	1.21
Nigrini et al., 2006	T Lithocyclia angusta (continuous)			1220A-5H-4, 45–47	1220A-5H-6, 45–47	46.24	49.24	47.74	46.24	48.87	47.56	1.32
Nigrini et al., 2006	T Theocyrtis setanios n. sp.			1220A-5H-4, 45–47	1220A-5H-6, 45–47	46.24	49.24	47.74	46.24	48.87	47.56	1.32
Nigrini et al., 2006	T Theocyrtis perysinos n. sp.			1220A-5H-4, 45–47	1220A-5H-6, 45–47	46.24	49.24	47.74	46.24	48.87	47.56	1.32
Nigrini et al., 2006	T Tristylospyris triceros			1220A-5H-CC	1220A-6H-1, 45–47	51.29	53.90	52.60	50.65	53.29	51.97	1.32
Nigrini et al., 2006	B Theocyrtis annosa			1220A-5H-CC	1220A-6H-1, 45–47	51.29	53.90	52.60	50.65	53.29	51.97	1.32
Nigrini et al., 2006	Tristylospyris triceros > Dorcadospyris ateuchus			1220A-5H-CC	1220A-6H-1, 45–47	51.29	53.90	52.60	50.65	53.29	51.97	1.32
Nigrini et al., 2006	B Eucyrtidium mitodes n. sp.			1220A-6H-4, 45–47	1220A-6H-6, 45–47	57.79	60.79	59.29	57.79	60.79	59.29	1.50
Nigrini et al., 2006	B Theocyrtis perysinos n. sp.			1220A-6H-2, 45–47	1220B-2H-CC	54.79	55.93	55.36	54.79	55.93	55.36	0.57
Nigrini et al., 2006	B Dorcadospyris ateuchus			1220B-2H-CC	1220A-6H-4, 45–47	55.93	57.79	56.86	55.93	57.79	56.86	0.93
Nigrini et al., 2006	B Theocyrtis setanios n. sp.			1220B-2H-CC	1220A-6H-4, 45–47	55.93	57.79	56.86	55.93	57.79	56.86	0.93
Nigrini et al., 2006	T Lophocyrtis (C.) milowi			1220A-6H-4, 45–47	1220A-6H-6, 45–47	57.79	60.79	59.29	57.79	60.79	59.29	1.50
Nigrini et al., 2006	B Theocorys puriri			1220A-6H-2, 45–47	1220B-2H-CC	54.79	55.93	55.36	54.79	55.93	55.36	0.57
Nigrini et al., 2006	B Didymocyrtis prismatica			1220A-6H-4, 45–47	1220A-6H-6, 45–47	57.79	60.79	59.29	57.79	60.79	59.29	1.50
Nigrini et al., 2006	B Dorcadospyris circulus			1220A-6H-4, 45–47	1220A-6H-6, 45–47	57.79	60.79	59.29	57.79	60.79	59.29	1.50
Nigrini et al., 2006	T Lophocyrtis (S.) oberhaensliae			1220A-6H-4, 45–47	1220A-6H-6, 45–47	57.79	60.79	59.29	57.79	60.79	59.29	1.50
Nigrini et al., 2006	T Theocyrtis tuberosa			1220A-6H-4, 45–47	1220A-6H-6, 45–47	57.79	60.79	59.29	57.79	60.79	59.29	1.50
Nigrini et al., 2006	T Lithocyclia crux			1220A-6H-6, 45–47	1220A-6H-CC	60.79	62.68	61.74	60.79	62.94	61.87	1.08
Nigrini et al., 2006	T Dorcadospyris spinosa	RP20		1220A-6H-4, 45–47	1220A-6H-6, 45–47	57.79	60.79	59.29	57.79	60.79	59.29	1.50
Nigrini et al., 2006	T Dorcadospyris quadripes			1220A-6H-6, 45–47	1220A-6H-CC	60.79	62.68	61.74	60.79	62.94	61.87	1.08
Nigrini et al., 2006	B Eucyrtidium plesiodiaphanes			1220A-6H-6, 45–47	1220A-6H-CC	60.79	62.68	61.74	60.79	62.94	61.87	1.08
Nigrini et al., 2006	B Lophocyrtis (C.) pegetrum			1220A-6H-CC	1220A-7H-2, 45–47	62.68	65.26	63.97	62.94	65.26	64.10	1.16
Nigrini et al., 2006	T Dorcadospyris riedeli (lower)			1220A-6H-CC	1220A-7H-2, 45–47	62.68	65.26	63.97	62.94	65.26	64.10	1.16
Nigrini et al., 2006	B Spirocyrtis subtilis			1220B-3H-CC	1220A-7H-4, 45–47	65.94	68.22	67.08	65.94	68.22	67.08	1.14
Nigrini et al., 2006	T Dorcadospyris pseudopapilo			1220A-7H-4, 45–47	1220A-7H-6, 45–47	68.22	71.22	69.72	68.22	71.22	69.72	1.50
Nigrini et al., 2006	B Dorcadospyris spinosa			1220A-7H-4, 45–47	1220A-7H-6, 45–47	68.22	71.22	69.72	68.22	71.22	69.72	1.50
Nigrini et al., 2006	B Dorcadospyris riedeli (lower)			1220A-7H-4, 45–47	1220A-7H-6, 45–47	68.22	71.22	69.72	68.22	71.22	69.72	1.50
Nigrini et al., 2006	T Centrobotrys gravida			1220A-7H-4, 45–47	1220A-7H-6, 45–47	68.22	71.22	69.72	68.22	71.22	69.72	1.50
Nigrini et al., 2006	B Centrobotrys petrushevskayae	1		1220A-7H-4, 45–47	1220A-7H-6, 45–47	68.22	71.22	69.72	68.22	71.22	69.72	1.50

127

Table T38 (continued). (Continued on next page.)

			Age* Hole, core, section, interval (cm)			l Pälike e	Depth fron t al. (2005)	n) (rmcd)	adj	Depth justed (rm	cd)	Error
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Mean	Тор	Bottom	Mean	(m)
Nigrini et al., 2006	B Dorcadospyris quadripes			1220A-7H-4, 45–47	1220A-7H-6, 45–47	68.22	71.22	69.72	68.22	71.22	69.72	1.50
Nigrini et al., 2006	B Lychnodictyum audax			1220A-7H-CC	1220A-8H-1, 46–48	72.99	74.60	73.80	72.99	74.60	73.80	0.81
Nigrini et al., 2006	T Theocyrtis careotuberosa n. sp.			1220A-7H-CC	1220A-8H-1, 46–48	72.99	74.60	73.80	72.99	74.60	73.80	0.81
Nigrini et al., 2006	B Theocyrtis tuberosa			1220A-8H-1, 46–48	1220A-8H-2, 20–22	74.60	75.84	75.22	74.60	75.84	75.22	0.62
Nigrini et al., 2006	B Dorcadospyris pseudopapilio			1220A-7H-CC	1220A-8H-1, 46–48	72.99	74.60	73.80	72.99	74.60	73.80	0.81
Nigrini et al., 2006	B Lithocyclia crux			1220A-7H-CC	1220A-8H-1, 46–48	72.99	74.60	73.80	72.99	74.60	73.80	0.81
Nigrini et al., 2006	B Centrobotrys gravida	PP20		1220A-7H-CC	1220A-8H-1, 46–48	72.99	74.60	73.80	72.99	74.60	73.80	0.81
Nigrini et al., 2006	T Dictyoprora mongolfieri	KF 20		1220A-7H-CC	1220A-8H-1, 46–48	72.99	74.60	73.80	72.99	74.60	73.80	0.81
Nigrini et al., 2006	T Thyrsocyrtis (P.) triacantha (max)			1220A-7H-CC	1220A-8H-1, 46–48	72.99	74.60	73.80	72.99	74.60	73.80	0.81
Nigrini et al., 2006	T Lithocyclia ocellus gr.			1220A-7H-CC	1220A-8H-1, 46–48	72.99	74.60	73.80	72.99	74.60	73.80	0.81
Nigrini et al., 2006	T Lithocyclia aristotelis gr.			1220A-8H-1, 46–48	1220A-8H-2, 20–22	74.60	75.84	75.22	74.60	75.84	75.22	0.62
Nigrini et al., 2006	B Lophocyrtis (S.) oberhaensliae			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	T Cryptocarpium ornatum			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	T Calocyclas hispida			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	Lithocyclia aristotelis gr. > Lithocyclia angusta			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	T Calocycletta (C.) anekathen n. sp.			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	T Lophocyrtis (L.) jacchia			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	T Dictyoprora pirum			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	T Dictyoprora armadillo			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	T Lychnocanoma babylonis			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	T Lophocyrtis (C.) hadra			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	T Lychnocanoma amphitrite			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	T Lophocyrtis (L.) exitelus			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	T Dorcadospyris copelata n. sp.			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	T Zealithapium mitra			1220A-8H-3, 46–48	1220B-4H-CC	77.60	79.08	78.34	77.60	79.15	78.38	0.78
Nigrini et al., 2006	T Artophormis barbadensis			1220A-8H-3, 46–48	1220B-4H-CC	77.60	79.08	78.34	77.60	79.15	78.38	0.78
Nigrini et al., 2006	T Thyrsocyrtis (T.) bromia (max)	RP19										
Nigrini et al., 2006	T Thyrsocyrtis (P.) lochites (max)			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	B Lithocyclia angusta			1220A-8H-3, 46–48	1220B-4H-CC	77.60	79.08	78.34	77.60	79.15	78.38	0.78
Nigrini et al., 2006	B Lophocyrtis (C.) milowi			1220A-8H-3, 46–48	1220B-4H-CC	77.60	79.08	78.34	77.60	79.15	78.38	0.78
Nigrini et al., 2006	T Thyrsocyrtis (P.) tetracantha (max)			1220A-8H-3, 46–48	1220B-4H-CC	77.60	79.08	78.34	77.60	79.15	78.38	0.78
Nigrini et al., 2006	B Pteropilium sp.aff. Pterocanium contiguum			1220A-8H-4, 46–48	1220A-8H-5, 46–48	79.10	80.60	79.85	79.10	80.60	79.85	0.75
Nigrini et al., 2006	T Dorcadospyris ombros n. sp.			1220A-8H-2, 20–22	1220A-8H-3, 46–48	75.84	77.60	76.72	75.84	77.60	76.72	0.88
Nigrini et al., 2006	B Lophocyrtis (L.) exitelus			1220A-8H-5, 46–48	1220A-8H-6, 46–48	80.60	82.10	81.35	80.60	82.10	81.35	0.75
Nigrini et al., 2006	T Calocyclas bandyca			1220A-8H-4, 46–48	1220A-8H-5, 46–48	79.10	80.60	79.85	79.10	80.60	79.85	0.75
Nigrini et al., 2006	T Calocyclas turris			1220A-8H-5, 46–48	1220A-8H-6, 46–48	80.60	82.10	81.35	80.60	82.10	81.35	0.75
Nigrini et al., 2006	T Cryptocarpium azyx			1220A-8H-7, 46–48	1220A-8H-CC	83.60	84.12	83.86	83.79	84.31	84.05	0.26
Nigrini et al., 2006	T Thyrsocyrtis (T.) bromia (continuous)			1220A-8H-5, 46–48	1220A-8H-6, 46–48	80.60	82.10	81.35	80.60	82.10	81.35	0.75
Nigrini et al., 2006	T Thyrsocyrtis (P.) tetracantha (continuous)			1220A-8H-6, 46–48	1220A-8H-7, 46–48	82.10	83.60	82.85	82.10	83.79	82.95	0.85
Nigrini et al., 2006	B Lophocyrtis (C.) hadra			1220A-8H-7, 46–48	1220A-8H-CC	83.60	84.12	83.86	83.79	84.31	84.05	0.26
Nigrini et al., 2006	T Thyrsocyrtis (P.) lochites (continuous)			1220A-8H-7, 46–48	1220A-8H-CC	83.60	84.12	83.86	83.79	84.31	84.05	0.26
Nigrini et al., 2006	T Thyrsocyrtis (T.) rhizodon			1220A-8H-CC	1220A-9H-2, 45–47	84.12	86.44	85.28	84.31	86.61	85.46	1.15
Nigrini et al., 2006	T Thyrsocyrtis (P.) krooni			1220A-8H-CC	1220A-9H-2, 45–47	84.12	86.44	85.28	84.31	86.61	85.46	1.15
Nigrini et al., 2006	T Thyrsocyrtis (P.) triacantha (continuous)			1220A-9H-2, 45–47	1220A-9H-4, 45–47	86.44	89.44	87.94	86.61	89.60	88.11	1.49
Nigrini et al., 2006	T Artophormis dominasinensis	RP18		1220A-9H-2, 45–47	1220A-9H-4, 45–47	86.44	89.44	87.94	86.61	89.60	88.11	1.49
Nigrini et al., 2006	T Eusyringium fistuligerum			1220A-8H-6, 46–48	1220A-8H-7, 46–48	82.10	83.60	82.85	82.10	83.79	82.95	0.85
Nigrini et al., 2006	B Artophormis gracilis			1220A-9H-6, 45–47	1220A-9H-7, 45–47	92.44	93.94	93.19	92.60	94.10	93.35	0.75
Nigrini et al., 2006	T Lychnocanoma turgidum			1220A-9H-2, 45–47	1220A-9H-4, 45–47	86.44	89.44	87.94	86.61	89.60	88.11	1.49
Nigrini et al., 2006	B Calocycletta (C.) anekathen n. sp.			1220A-9H-2, 45–47	1220A-9H-4, 45–47	86.44	89.44	87.94	86.61	89.60	88.11	1.49
Nigrini et al., 2006	T Theocyrtis perpumila n. sp.			1220A-9H-4, 45–47	1220B-5H-CC	89.44	90.46	89.95	89.60	90.69	90.15	0.55

Table T38 (continued). (Continued on next page.)

			Age* Hole, core, section, interval (cm)			l Pälike e	Depth fron t al. (2005	n) (rmcd)	adj	Depth usted (rm	cd)	Error
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Mean	Тор	Bottom	Mean	(<u>+</u>) (m)
Nigrini et al., 2006	B Lychnocanoma amphitrite	RP18		1220A-9H-6, 45–47	1220A-9H-7, 45–47	92.44	93.94	93.19	92.60	94.10	93.35	0.75
Nigrini et al., 2006	B Calocyclas bandyca			1220A-9H-6, 45-47	1220A-9H-7, 45-47	92.44	93.94	93.19	92.60	94.10	93.35	0.75
Nigrini et al., 2006	B Lophocyrtis (L.) jacchia			1220A-9H-CC	1220A-10H-2, 45-47	94.35	96.77	95.56	94.51	97.06	95.79	1.28
Nigrini et al., 2006	T Thyrsocyrtis (P.) orthotenes n. sp.	RP17		1220A-9H-CC	1220A-10H-2, 45–47	94.35	96.77	95.56	94.51	97.06	95.79	1.28
Nigrini et al., 2006	T Podocyrtis (P.) papalis (continuous)			1220A-10H-2, 45–47	1220A-10H-4, 45–47	96.77	99.77	98.27	97.06	100.06	98.56	1.50
Nigrini et al., 2006	B Cryptocarpium azyx			1220A-10H-2, 45–47	1220A-10H-4, 45–47	96.77	99.77	98.27	97.06	100.06	98.56	1.50
Nigrini et al., 2006	B Thyrsocyrtis (P.) lochites			1220A-10H-2, 45–47	1220A-10H-4, 45–47	96.77	99.77	98.27	97.06	100.06	98.56	1.50
Nigrini et al., 2006	T Anthocyrtoma spp.			1220A-10H-4, 45–47	1220A-10H-5, 45–47	99.77	101.27	100.52	100.06	101.38	100.72	0.66
Nigrini et al., 2006	B Dorcadospyris copelata n. sp.			1220A-10H-2, 45–47	1220A-10H-4, 45–47	96.77	99.77	98.27	97.06	100.06	98.56	1.50
Nigrini et al., 2006	T Calocycloma ampulla			1220A-10H-4, 45–47	1220A-10H-5, 45–47	99.77	101.27	100.52	100.06	101.38	100.72	0.66
Nigrini et al., 2006	T Rhopalocanium ornatum			1220A-10H-6, 45-47	1220A-10H-CC	102.77	104.51	103.64	102.72	104.41	103.56	0.85
Nigrini et al., 2006	B Botryocella sp. gr.			1220A-11H-4, 45–47	1220A-11H-6, 45–47	109.37	112.37	110.87	109.55	112.21	110.88	1.33
Nigrini et al., 2006	T Spongatractus pachystylus			1220A-10H-2, 45-47	1220A-10H-4, 45-47	96.77	99.77	98.27	97.06	100.06	98.56	1.50
Nigrini et al., 2006	B Thyrsocyrtis (T.) bromia			1220A-10H-4, 45-47	1220A-10H-5, 45-47	99.77	101.27	100.52	100.06	101.38	100.72	0.66
Nigrini et al., 2006	B Thyrsocyrtis (P.) tetracantha			1220A-10H-4, 45–47	1220A-10H-5, 45-47	99.77	101.27	100.52	100.06	101.38	100.72	0.66
Nigrini et al., 2006	B Theocyrtis careotuberosa n. sp.			1220A-10H-5, 45-47	1220B-6H-CC	101.27	101.52	101.40	101.38	101.81	101.59	0.22
Nigrini et al., 2006	T Zygocircus cimelium			1220A-10H-2, 45-47	1220A-10H-4, 45–47	96.77	99.77	98.27	97.06	100.06	98.56	1.50
Nigrini et al., 2006	B Dorcadospyris ombros n. sp.			1220A-10H-5, 45-47	1220B-6H-CC	101.27	101.52	101.40	101.38	101.81	101.59	0.22
Nigrini et al., 2006	B Artophormis dominasinensis			1220A-10H-4, 45–47	1220A-10H-5, 45–47	99.77	101.27	100.52	100.06	101.38	100.72	0.66
Nigrini et al., 2006	B Tristylospyris triceros			1220A-10H-4, 45–47	1220A-10H-5, 45–47	99.77	101.27	100.52	100.06	101.38	100.72	0.66
Nigrini et al., 2006	T Theocotylissa ficus	DD14		1220A-10H-5, 45–47	1220B-6H-CC	101.27	101.52	101.40	101.38	101.81	101.59	0.22
Nigrini et al., 2006	T Dorcadospyris anastasis n. sp.	KPTO		1220A-10H-5, 45–47	1220B-6H-CC	101.27	101.52	101.40	101.38	101.81	101.59	0.22
Nigrini et al., 2006	B Calocyclas turris			1220A-10H-CC	1220A-11H-2, 45–47	104.51	106.37	105.44	104.41	106.55	105.48	1.07
Nigrini et al., 2006	T Podocyrtis (L.) chalara (continuous)			1220A-10H-CC	1220A-11H-2, 45–47	104.51	106.37	105.44	104.41	106.55	105.48	1.07
Nigrini et al., 2006	T Podocyrtis (L.) goetheana continuous)			1220A-10H-6, 45–47	1220A-10H-CC	102.77	104.51	103.64	102.72	104.41	103.56	0.85
Nigrini et al., 2006	T Dictyophimus craticula			1220A-10H-2, 45–47	1220A-10H-4, 45–47	96.77	99.77	98.27	97.06	100.06	98.56	1.50
Nigrini et al., 2006	B Thyrsocyrtis (P.) krooni			1220A-11H-6, 45–47	1220B-7H-CC	112.37	112.73	112.55	112.21	112.66	112.43	0.22
Nigrini et al., 2006	T Podocyrtis (P.) apeza			1220A-10H-5, 45–47	1220B-6H-CC	101.27	101.52	101.40	101.38	101.81	101.59	0.22
Nigrini et al., 2006	B Dictyoprora pirum			1220A-11H-4, 45–47	1220A-11H-6, 45–47	109.37	112.37	110.87	109.64	112.21	110.92	1.29
Nigrini et al., 2006	T Lithochytris vespertilio			1220A-11H-4, 45–47	1220A-11H-6, 45–47	109.37	112.37	110.87	109.64	112.21	110.92	1.29
Nigrini et al., 2006	T Sethochytris triconiscus			1220A-11H-4, 45–47	1220A-11H-6, 45–47	109.37	112.37	110.87	109.64	112.21	110.92	1.29
Nigrini et al., 2006	B Lithocyclia aristotelis gr.			1220A-11H-4, 45–47	1220A-11H-6, 45–47	109.37	112.37	110.87	109.64	112.21	110.92	1.29
Nigrini et al., 2006	T Dorcadospyris ombros n. sp.			1220A-11H-4, 45–47	1220A-11H-6, 45–47	109.37	112.37	110.87	109.64	112.21	110.92	1.29
Nigrini et al., 2006	T Podocyrtis (L.) mitra			1220B-7H-CC	1220A-11H-7, 45–47	112.73	113.87	113.30	112.66	113.87	113.27	0.61
Nigrini et al., 2006	B Dorcadospyris anastasis n. sp.			1220B-7H-CC	1220A-11H-7, 45–47	112.73	113.87	113.30	112.66	113.87	113.27	0.61
Nigrini et al., 2006	B Dictyoprora armadillo			1220B-7H-CC	1220A-11H-7, 45–47	112.73	113.87	113.30	112.66	113.87	113.27	0.61
Nigrini et al., 2006	B Podocyrtis (L.) goetheana	-		1220A-11H-CC	1220A-12H-2, 45–47	114.51	121.32	117.92	114.77	120.55	117.66	2.89
Nigrini et al., 2006	T Lophocyrtis biaurita	RP15		1220A-11H-CC	1220A-12H-2, 45–47	114.51	121.32	117.92	114.77	120.55	117.66	2.89
Nigrini et al., 2006	T Podocyrtis (L.) trachodes			1220A-12H-2, 45–47	1220B-8H-CC	121.32	123.71	122.52	120.55	123.46	122.00	1.45
Nigrini et al., 2006	Podocyrtis (L.) mitra > Podocyrtis (L.) chalara	-		1220B-9H-1, 45–47	1220A-12H-5, 45–47	125.38	125.82	125.60	124.40	125.05	124.73	0.32
Nigrini et al., 2006	B Dorcadospyris ombros n. sp. (lower)			1220B-9H-2, 45–47	1220A-12H-6, 45–47	126.88	127.33	127.11	125.90	126.50	126.20	0.30
Nigrini et al., 2006	B Artophormis barbadensis			1220A-12H-6, 45–47	1220A-12H-CC	127.33	129.20	128.27	126.50	128.26	127.38	0.88
Nigrini et al., 2006	B Podocyrtis (P.) apeza			1220A-12H-CC	1220B-9H-4, 45–47	129.20	129.88	129.54	128.26	128.90	128.58	0.32
Nigrini et al., 2006	B Podocyrtis (L.) chalara			1220A-12H-5, 45-47	1220B-9H-2, 45–47	125.82	126.88	126.35	125.05	125.90	125.48	0.43
Nigrini et al., 2006	Podocyrtis (P.) ampla	RP14		1220A-12H-5, 45–47	1220B-9H-2, 45–47	125.82	126.88	126.35	125.05	125.90	125.48	0.43
Nigrini et al., 2006	B Zealithapium mitra			1220A-12H-6, 45–47	1220A-12H-CC	127.33	129.20	128.27	126.50	128.26	127.38	0.88
Nigrini et al., 2006	I Zealithapium anoectum			1220A-12H-6, 45-47	1220A-12H-CC	127.33	129.20	128.27	126.50	128.26	127.38	0.88
Nigrini et al., 2006	B Cryptocarpium ornatum			1220A-12H-6, 45-47	1220A-12H-CC	127.33	129.20	128.27	126.50	128.26	127.38	0.88
Nigrini et al., 2006	B Setnocnytris triconiscus			1220B-9H-4, 45-47	1220B-9H-6, 45-47	129.88	132.88	131.38	128.90	131.98	130.44	1.54
Nigrini et al., 2006	i Eusyringium lagena	I		i 220в-ун-4, 45–47	1220в-9н-6, 45-47	129.88	132.88	131.38	128.90	131.98	130.44	1.54

Table T38 (continued). (Continued on next page.)

			Age* Hole, core, section, interval (cm)				Depth fron t al. (2005	n) (rmcd)	adj	Error		
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Mean	Тор	Bottom	Mean	(m)
Nigrini et al., 2006	T Podocyrtis (L.) fasciolata			1220B-9H-6, 45–47	1220B-9H-CC	132.88	134.12	133.50	131.98	133.26	132.62	0.64
Nigrini et al., 2006	T Zealithapium plegmacantha			1220B-9H-6, 45–47	1220B-9H-CC	132.88	134.12	133.50	131.98	133.26	132.62	0.64
Nigrini et al., 2006	T Podocyrtis (L.) sinuosa			1220B-9H-CC	1220B-10H-2, 45–47	134.12	136.08	135.10	133.26	135.19	134.22	0.97
Nigrini et al., 2006	Zealithapium plegmacantha > Zealithapium anoectum	DD14		1220B-9H-CC	1220B-10H-4, 45–47	134.12	139.02	136.57	133.26	138.13	135.69	2.44
Nigrini et al., 2006	B Theocyrtis perpumila n. sp.	KP 14		1220B-9H-CC	1220B-10H-2, 45–47	134.12	136.08	135.10	133.26	135.19	134.22	0.97
Nigrini et al., 2006	T Podocyrtis (L.) helenae			1220B-9H-CC	1220B-10H-2, 45–47	134.12	136.08	135.10	133.26	135.19	134.22	0.97
Nigrini et al., 2006	B Lychnocanoma turgidum			1220B-9H-CC	1220B-10H-2, 45–47	134.12	136.08	135.10	133.26	135.19	134.22	0.97
Nigrini et al., 2006	Eusyringium lagena > Eusyringium fistuligerum			1220B-10H-3, 45-47	1220B-10H-4, 45–47	137.52	139.02	138.27	136.63	138.13	137.38	0.75
Nigrini et al., 2006	Podocyrtis (L.) sinuosa ?Podocyrtis (L.) mitra			1220B-10H-3, 45-47	1220B-10H-4, 45–47	137.52	139.02	138.27	136.63	138.13	137.38	0.75
Nigrini et al., 2006	B Podocyrtis (L.) trachodes			1220B-10H-4, 45–47	1220B-10H-6, 45–47	139.02	142.02	140.52	138.13	141.13	139.63	1.50
Nigrini et al., 2006	B Zygocircus cimelium			1220B-9H-CC	1220B-10H-2, 45–47	134.12	136.08	135.10	133.26	135.19	134.22	0.97
Nigrini et al., 2006	B Podocyrtis (L.) fasciolata			1220B-10H-3, 45-47	1220B-10H-4, 45–47	137.52	139.02	138.27	136.63	138.13	137.38	0.75
Nigrini et al., 2006	B Podocyrtis (L.) helenae	0012		1220B-10H-6, 45-47	1220B-10H-CC	142.02	144.25	143.14	141.13	143.36	142.25	1.12
Nigrini et al., 2006	T Podocyrtis (P.) diamesa	KP I S		1220B-10H-6, 45–47	1220B-10H-CC	142.02	144.25	143.14	141.13	143.36	142.25	1.12
Nigrini et al., 2006	T Podocyrtis (P.) phyxis			1220B-10H-6, 45–47	1220B-10H-CC	142.02	144.25	143.14	141.13	143.36	142.25	1.12
Nigrini et al., 2006	T Spongatractus balbis			1220B-11H-1, 45–47	1220B-11H-2, 45–47	148.64	150.14	149.39	147.75	149.25	148.50	0.75
Nigrini et al., 2006	B Podocyrtis (L.) mitra			1220B-11H-1, 45–47	1220B-11H-2, 45–47	148.64	150.14	149.39	147.75	149.25	148.50	0.75
Nigrini et al., 2006	Podocyrtis (P.) phyxis > Podocyrtis (P.) ampla			1220B-11H-1, 45–47	1220B-11H-2, 45–47	148.64	150.14	149.39	147.75	149.25	148.50	0.75
Nigrini et al., 2006	B Podocyrtis (P.) ampla			1220B-11H-1, 45–47	1220B-11H-2, 45–47	148.64	150.14	149.39	147.75	149.25	148.50	0.75
Nigrini et al., 2006	B Eusyringium fistuligerum			1220B-11H-2, 45–47	1220B-11H-4, 45–47	150.14	153.14	151.64	149.25	152.25	150.75	1.50
Nigrini et al., 2006	T Theocotyle venezuelensis			1220B-11H-2, 45-47	1220B-11H-4, 45–47	150.14	153.14	151.64	149.25	152.25	150.75	1.50
Nigrini et al., 2006	B Zealithapium anoectum			1220B-11H-4, 45-47	1220B-11H-6, 45-47	153.14	156.14	154.64	152.25	155.25	153.75	1.50
Nigrini et al., 2006	T Theocotyle conica			1220B-11H-4, 45-47	1220B-11H-6, 45-47	153.14	156.14	154.64	152.25	155.25	153.75	1.50
Nigrini et al., 2006	T Thyrsocyrtis (P.) tensa			1220B-11H-6, 45-47	1220B-11H-CC	156.14	158.25	157.20	155.25	157.36	156.31	1.06
Nigrini et al., 2006	T Theocotyle cryptocephala			1220C-11H-3, 10-12	1220C-11H-4, 10–12	161.95	163.45	162.70	161.05	162.55	161.80	0.75
Nigrini et al., 2006	B Thyrsocyrtis (P.) orthotenes n. sp.			1220B-11H-CC	1220C-11H-3, 10–12	158.25	161.95	160.10	157.36	161.05	159.21	1.85
Nigrini et al., 2006	T Thyrsocyrtis (T.) robusta			1220B-11H-CC	1220C-11H-3, 10–12	158.25	161.95	160.10	157.36	161.05	159.21	1.85
Nigrini et al., 2006	Podocyrtis (P.) diamesa > Podocyrtis (P.) phyxis			1220B-11H-CC	1220C-11H-3, 10–12	158.25	161.95	160.10	157.36	161.05	159.21	1.85
Nigrini et al., 2006	B Podocyrtis (P.) phyxis	RP12		1220B-11H-CC	1220C-11H-3, 10–12	158.25	161.95	160.10	157.36	161.05	159.21	1.85
Nigrini et al., 2006	T Periphaena tripyramis triangula			1220B-11H-4, 45–47	1220B-11H-6, 45–47	153.14	156.13	154.64	152.25	155.25	153.75	1.50
Nigrini et al., 2006	T Periphaena delta			1220C-11H-3, 10–12	1220C-11H-4, 10–12	161.95	163.45	162.70	161.05	162.55	161.80	0.75
Nigrini et al., 2006	T Lamptonium fab. chaunothorax			1220B-11H-CC	1220C-11H-3, 10–12	158.25	161.95	160.10	157.36	161.05	159.21	1.85
Nigrini et al., 2006	T Theocorys anaclasta			1220B-11H-CC	1220C-11H-3, 10–12	158.25	161.95	160.10	157.36	161.05	159.21	1.85
Nigrini et al., 2006	T Lamptonium fab. constrictum			1220B-11H-CC	1220C-11H-3, 10–12	158.25	161.95	160.10	157.36	161.05	159.21	1.85
Nigrini et al., 2006	T Lamptonium fab. fabaeforme			1220C-11H-3, 10–12	1220C-11H-4, 10–12	161.95	163.45	162.70	161.05	162.55	161.80	0.75
Nigrini et al., 2006	T Thyrsocyrtis (T.) hirsuta			1220C-11H-4, 10–12	1220C-11H-5, 57-59	163.45	167.82	165.64	162.55	164.52	163.54	0.98
Nigrini et al., 2006	T Calocycloma castum			1220B-12H-CC	1220B-13H-1, 45–47	168.99	169.16	169.08	168.10	168.27	168.19	0.09
Nigrini et al., 2006	B Thyrsocyrtis (P.) triacantha			1220B-12H-CC	1220B-13H-1, 45–47	168.99	169.16	169.08	168.10	168.27	168.19	0.09
Nigrini et al., 2006	B Rhopalocanium ornatum			1220B-12H-CC	1220B-13H-1, 45–47	168.99	169.16	169.08	168.10	168.27	168.19	0.09
Nigrini et al., 2006	B Eusyringium lagena			1220B-12H-CC	1220B-13H-1, 45–47	168.99	169.16	169.08	168.10	168.27	168.19	0.09
Nigrini et al., 2006	T Buryella clinata	DD11		1220B-13H-1, 45–47	1220B-13H-CC	169.16	177.87	173.52	168.27	176.98	172.63	4.35
Nigrini et al., 2006	T Phormocyrtis striata striata	NF 11		1220B-13H-1, 45–47	1220B-13H-CC	169.16	177.87	173.52	168.27	176.98	172.63	4.35
Nigrini et al., 2006	T Amphicraspedum murrayanum			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	T Dendrospyris fragoides			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Dictyophimus craticula			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Dictyoprora mongolfieri			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	T Diploplegma somphum	RP11-RP8		1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	T Giraffospyris lata			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Lamptonium fab. constrictum			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	T Lamptonium pennatum			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47

Table T38 (continued).

			Age* Hole, core, section, interval (cm) P				Depth fron t al. (2005	n) (rmcd)	Depth adjusted (rmcd)			Error
Source	Event	Zone	(Ma)	Тор	Bottom	Тор	Bottom	Mean	Тор	Bottom	Mean	(±) (m)
Nigrini et al., 2006	T Lamptonium sanfilippoae			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Zealithapium plegmacantha			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	T Lithochytris archaea			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Lithochytris vespertilio			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Lithocyclia ocellus gr.			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Lophocyrtis biaurita			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	T Lychnocanoma auxilla			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Periphaena tripyramis triangula			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	T Phormocyrtis cubensis			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	T Phormocyrtis striata exquisita			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Podocyrtis (L.) sinuosa			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Podocyrtis (P.) diamesa			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	T Pterocodon tenellus	KI 11-KI 0		1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Spongatractus pachystylus			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Theocorys anaclasta			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Theocotyle conica			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Theocotyle cryptocephala			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	Theocotyle nigriniae > Theocotyle cryptocephala			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	T Theocotyle nigriniae			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Theocotyle venezuelensis			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	T Theocotylissa alpha			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	T Theocotylissa fimbria			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Thyrsocyrtis (T.) rhizodon			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	B Thyrsocyrtis (T.) robusta			1220B-13H-CC	1220B-16X-1, 100–102	177.87	188.81	183.34	176.98	187.92	182.45	5.47
Nigrini et al., 2006	T Buryella tetradica			1220B-16X-1, 100–102	1220B-16X-2, 12–14	188.81	189.43	189.12	187.92	188.54	188.23	0.31
Nigrini et al., 2006	T Lychnocanoma pileus			1220B-16X-1, 100–102	1220B-16X-2, 12–14	188.81	189.43	189.12	187.92	188.54	188.23	0.31
Nigrini et al., 2006	B Periphaena delta			1220B-16X-2, 12–14	1220B-16X-3, 45–47	189.43	191.26	190.35	188.54	190.37	189.46	0.92
Nigrini et al., 2006	Theocotylissa alpha > Theocotylissa ficus			1220B-16X-3, 45–47	1220B-16X-4, 46–48	191.26	192.77	192.02	190.37	191.88	191.13	0.75
Nigrini et al., 2006	B Lamptonium sanfilippoae			1220B-16X-4, 46–48	1220C-14X-4, 60–62	192.77	194.75	193.76	191.88	196.82	194.35	2.47
Nigrini et al., 2006	B Spongatractus balbis			1220B-16X-4, 46–48	1220C-14X-4, 60–62	192.77	194.75	193.76	191.88	196.82	194.35	2.47
Nigrini et al., 2006	B Thyrsocyrtis (P.) tensa			1220B-16X-6, 46–48	1220B-16X-7, 15–17	195.77	196.96	196.37	194.88	196.07	195.48	0.59
Nigrini et al., 2006	T Pterocodon anteclinata	RP8		1220B-16X-7, 15–17	1220B-16X-CC	196.96	197.45	197.21	196.07	196.56	196.32	0.25
Nigrini et al., 2006	B Lychnocanoma babylonis	N O		1220B-16X-CC	1220C-14X-6, 60–62	197.45	197.75	197.60	196.56	196.85	196.71	0.14
Nigrini et al., 2006	B Theocotylissa ficus			1220C-14X-6, 60–62	1220B-18X-2, 10–12	197.75	208.21	202.98	196.85	207.32	202.09	5.24
Nigrini et al., 2006	B Anthocyrtoma spp.			1220C-14X-6, 60–62	1220B-18X-2, 10–12	197.75	208.21	202.98	196.85	207.32	202.09	5.24
Nigrini et al., 2006	T Phormocyrtis turgida			1220C-14X-6, 60–62	1220B-18X-2, 10–12	197.75	208.21	202.98	196.85	207.32	202.09	5.24
Nigrini et al., 2006	T Pterocodon ampla			1220C-14X-6, 60–62	1220B-18X-2, 10–12	197.75	208.21	202.98	196.85	207.32	202.09	5.24
Nigrini et al., 2006	B Phormocyrtis striata striata			1220C-14X-6, 60–62	1220B-18X-2, 10–12	197.75	208.21	202.98	196.85	207.32	202.09	5.24
Nigrini et al., 2006	B Theocotylissa fimbria			1220C-14X-6, 60–62	1220B-18X-2, 10–12	197.75	208.21	202.98	196.85	207.32	202.09	5.24
Nigrini et al., 2006	Pterocodon anteclinata > Buryella clinata			1220C-14X-6, 60–62	1220B-18X-2, 10–12	197.75	208.21	202.98	196.85	207.32	202.09	5.24
Nigrini et al., 2006	B Buryella clinata	RP7		1220C-14X-6, 60–62	1220B-18X-2, 10–12	197.75	208.21	202.98	196.85	207.32	202.09	5.24

Table T39. Site U1331 calcareous nannofossil datums.

			Core, section, interval (cm)		Depth (mbsf [m CSF-A])		Depth (rmcd [adjusted m revised CCSF-A])			Error	Depth Site 1220 (rmcd)			Error (±)
Source	Event	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)	Тор	Bottom	Mean	(m)
			320-U1331A-	320-U1331A-										
Ship	B Sphenolithus distentus	30.00	2H-4, 70	2H-5, 70	10.40	11.90	11.90	13.40	12.65	0.75		55.22		
Ship	T Reticulofenestra umbilicus	32.00	3H-5, 110	3H-6, 110	21.80	23.30	24.71	26.22	25.47	0.75	71.55	72.98	72.26	0.71
Ship	T Coccolithus formosus	32.90	3H-6, 110	3H-CC	23.30	24.34	26.22	27.29	26.76	0.53	72.98	74.53	73.75	0.78
Ship	T Discoaster saipanensis	34.40	4H-1, 110	4H-7, 10	25.30	33.30	28.56	36.56	32.56	4.00	76.35	86.81	81.58	5.23
Ship	T Chiasmolithus grandis	37.10	6H-5, 70	6H-7, 9	49.90	51.79	57.06	59.08	58.07	1.01	103.26	104.53	103.89	0.63
Ship	B Dictyococcites bisectus	38.00	6H-CC	7H-1, 30	52.60	53.00	59.87	62.81	61.34	1.47	105.04	106.95	106.00	0.96
Ship	T Chiasmolithus solitus	40.40	7H-2, 30	8H-6, 50	54.50	70.20	64.31	80.97	72.64	8.33	107.93	117.76	112.84	4.92
Ship	B Reticulofenestra umbilicus >14 μm	42.50	11H-4, 30	11H-5, 30	94.68	96.18	107.90	109.40	108.65	0.75	128.74	129.29	129.01	0.28
Ship	T Nannotetrina fulgens	43.40	13H-2, 5	13H-5, 70	111.25	116.40	129.12	134.37	131.75	2.63	137.94	140.32	139.13	1.19
			320-U1331C-	320-U1331C-										
Ship	T Tribrachiatus orthostylus	50.70	17H-3, 100	17H-3, 109	188.00	188.09	210.75	210.84	210.80	0.05				

* = Expedition 320/321 Scientists (2010a). T = top, B = bottom.

 Table T40. Site U1332 calcareous nannofossil datums.

		Age*	* Core, section, interval (cm)		De (mbsf [n	pth n CSF-A])	Depth m re	n (rmcd [ad evised CCSI	justed A])	Error	Depth Site 1220 (rmcd)			Error
Source	Event	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)	Тор	Bottom	Mean	(m)
			320-U1332A-	320-U1332A-										
Ship	T Triquetrorhabdulus carinatus	18.28	3H-4, 100	3H-5, 100	18.90	20.40	19.55	20.95	20.25	0.70	25.72	26.98	26.35	0.63
Ship	T Sphenolithus delphix	23.11	3H-7, 60	3H-CC	23.00	23.51	23.14	23.52	23.33	0.19	28.99	29.38	29.19	0.20
Ship	B Sphenolithus delphix	23.21	3H-CC	4H-2, 60	23.51	23.50	23.52	26.05	24.79	1.27	29.38	31.46	30.42	1.04
Ship	X Triquetrorhabdulus longus/ Triquetrorhabdulus carinatus	24.70	4H-2, 60	4H-3, 60	25.00	26.50	27.55	29.05	28.30	0.75	33.19	34.87	34.03	0.84
Ship	T ac Coccolithus abisectus	25.50	4H-2, 60	4H-3, 60	25.00	26.50	27.55	29.05	28.30	0.75	33.19	34.87	34.03	0.84
Ship	T Sphenolithus predistentus	26.90	4H-CC	5H-1, 80	32.95	33.20	35.72	37.80	36.76	1.04	41.66	43.04	42.35	0.69
Ship	T Sphenolithus pseudoradians	29.10	5H-3, 80	5H-4, 80	36.20	37.70	41.30	42.80	42.05	0.75	46.07	47.61	46.84	0.77
Ship	B Sphenolithus distentus	30.00	6H-5, 70	6H-6, 70	48.60	50.10	54.10	55.60	54.85	0.75	57.76	58.89	58.33	0.56
Ship	T Reticulofenestra umbilicus	32.00	7H-6, 80	7H-7, 80	59.69	61.18	67.06	68.36	67.71	0.65	67.65	68.61	68.13	0.48
Ship	T Coccolithus formosus	32.90	8H-4, 50	8H-5, 50	65.90	67.40	73.39	74.71	74.05	0.66	73.26	74.44	73.85	0.59
Ship	T Discoaster saipanensis	34.40	9H-4, 110	10H-3, 80	76.00	83.70	78.63	87.45	83.04	4.41	77.86	89.04	83.45	5.59
Ship	T Chiasmolithus grandis	37.10	11H-5, 70	11H-6, 70	96.10	97.60	99.48	100.98	100.23	0.75	101.47	102.80	102.14	0.66
Ship	B Dictyococcites bisectus	38.00	11H-CC	12H-2, 100	98.52	101.40	101.90	107.62	104.76	2.86	103.56	108.55	106.05	2.50
Ship	T Chiasmolithus solitus	40.40	12H-2, 100	13H-1, 140	101.40	109.80	107.62	118.46	113.04	5.42	108.55	118.54	113.54	5.00
Ship	T Nannotetrina spp.	42.30	14H-5, 40	14H-6, 35	124.30	125.74	137.63	139.39	138.51	0.88	130.20	131.51	130.86	0.66
Ship	B Reticulofenestra umbilicus > 14 μm	42.50	14H-CC	15X-1, 113	126.28	127.03	139.96	140.53	140.25	0.28	131.96	132.40	132.18	0.22
Ship	T Nannotetrina fulgens	43.40	15X-2, 137	15X-3, 66	128.77	129.56	142.27	143.06	142.67	0.39				
Ship	B Nannotetrina fulgens	46.80	16X-2, 39	16X-CC	137.39	138.20	150.89	151.70	151.30	0.41				
			320-U1332B-	320-U1332B-										
Ship	T Discoaster lodoensis	48.40	17X-CC	18X-2, 48	135.06	145.88	153.14	161.78	157.46	4.32				

132

Table T41. Site U1333 calcareous nannofossil datums.

			Core, section	n, interval (cm)	De mbsf [n)	pth ո CSF-A])	Depth m re	n (rmcd [ad evised CCSI	justed A])	Error (±)	De (cc	pth Site 12 prrected rm	18 cd)	Error (±)
Source	Event	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)	Тор	Bottom	Mean	(m)
			320-U1333A-	320-U1333A-										
Ship	B Sphenolithus disbelemnos	22.76	2H-5, 70	2H-6, 70	16.20	17.70	19.68	21.18	20.43	0.75	89.99	93.96	91.98	1.98
Ship	T Sphenolithus delphix	23.11	2H-7, 70	2H-CC	19.20	19.57	22.68	23.05	22.86	0.19	94.28	96.02	95.15	0.87
Ship	B Sphenolithus delphix	23.21	2H-CC	3H-1, 70	19.57	19.70	23.05	26.54	24.79	1.75	94.92	104.61	99.76	4.85
Ship	T Sphenolithus ciperoensis	24.40	4H-5, 70	4H-6, 70	35.20	36.70	42.08	43.18	42.63	0.55	129.53	131.21	130.37	0.84
Ship	X Triquetrorhabdulus longus/ Triquetrorhabdulus carinatus	24.70	3H-CC	4H-1, 70	28.87	29.20	35.38	37.16	36.27	0.89	116.18	122.68	119.43	3.25
Ship	T ac Coccolithus abisectus	25.50	3H-5, 70	3H-6, 70	25.70	27.20	32.19	33.62	32.91	0.72	110.15	116.01	113.08	2.93
Ship	T Sphenolithus distentus	26.80	5H-2, 70	5H-3, 70	40.20	41.70	49.94	51.36	50.65	0.71	139.78	143.81	141.80	2.02
Ship	T Sphenolithus predistentus	26.90	5H-3, 70	5H-4, 70	41.70	43.20	51.36	52.80	52.08	0.72	141.95	147.14	144.55	2.59
Ship	B Sphenolithus ciperoensis	27.10	5H-4, 70	5H-6, 70	43.20	46.20	52.80	55.72	54.26	1.46	144.22	152.12	148.17	3.95
Ship	T Sphenolithus pseudoradians	29.10	6H-4, 70	6H-6, 70	52.70	55.70	64.45	67.45	65.95	1.50	158.80	167.87	163.34	4.54
Ship	B Sphenolithus distentus	30.00	9H-3, 50	9H-4, 50	79.50	81.00	97.23	98.73	97.98	0.75	196.70	199.30	198.00	1.30
Ship	T Reticulofenestra umbilicus	32.00	11X-4, 70	11X-CC	100.20	101.17	120.92	121.89	121.41	0.48	223.87	225.02	224.44	0.57
Ship	T Coccolithus formosus	32.90	12X-3, 70	12X-4, 70	104.40	105.90	126.16	127.92	127.04	0.88	229.43	235.29	232.36	2.93
Ship	T Discoaster saipanensis	34.40	13X-3, 70	13X-3, 140	114.00	114.70	137.06	137.90	137.48	0.42	243.52	246.36	244.94	1.42
Ship	T Chiasmolithus grandis	37.10	14X-6, 70	14X-CC	128.20	129.80	151.89	153.80	152.85	0.96	258.26	261.05	259.66	1.40
Ship	B Dictyococcites bisectus	38.00	15X-5, 70	15X-6, 70	136.30	137.80	163.38	165.25	164.32	0.94	267.44	270.64	269.04	1.60
Ship	T Chiasmolithus solitus	40.40	16X-4, 40	16X-5, 40	144.10	145.60	171.71	173.78	172.75	1.04	274.37	281.28	277.82	3.45
Ship	T Nannotetrina spp.	42.30	17X-6,110	17X-CC	157.40	158.46	185.82	186.78	186.30	0.48				
Ship	B Reticulofenestra umbilicus > 14 μm	42.50	18X-1, 60	18X-2, 34	159.00	160.24	185.90	187.14	186.52	0.62				
Ship	T Nannotetrina fulgens	43.40	18X-4, 88	18X-CC	163.12	163.86	190.02	190.76	190.39	0.37				
Ship	B Nannotetrina fulgens	46.80	20X-1, 73	20X-2, 50	178.33	179.60	204.08	205.35	204.72	0.63				
Ship	B Sphenolithus furcatolithoides	45.80	20X-2, 50	20X-CC	179.60	180.12	205.35	205.87	205.61	0.26				
Ship	B Nannotetrina spp.	48.00	20X-2, 50	20X-CC	179.60	180.12	205.35	205.87	205.61	0.26				
			320-U1333B-	320-U1333B-										
Ship	B Sphenolithus furcatolithoides	45.80	20X-1, 46	20X-2, 86	172.76	174.66	198.76	200.66	199.71	0.95				
Ship	B Nannotetrina spp.	48.00	20X-3, 102	20X-4, 37	176.32	177.17	202.32	203.17	202.75	0.42				

* = Expedition 320/321 Scientists (2010a). T = top, B = bottom, X = crossover, ac = acme.

Table T42. Site U1334 calcareous nannofossil datums.

		Age*	e* Core, section, interval (cm)		De (mbsf [n	pth n CSF-A])	Depth (rmcd [adjusted m revised CCSF-A])			Error	De (co	Depth Site 1218 (corrected rmcd)		Error
Source	Event	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(<u>_</u>) (m)	Тор	Bottom	Mean	(m)
			320-U1334A-	320-U1334A-										
Ship	Coronocyclus nitescens present	>12.12		2H-6, 120		16.90*		17.77	17.77			39.93		
Ship	Calcidiscus premacintyrei present	>12.45		2H-6, 120		16.90*		17.77	17.77			39.93		
Ship	T ac Cyclicargolithus floridanus	13.33	3H-2, 15	3H-3, 50	19.35	21.20	21.32	23.17	22.25	0.93	42.10	43.28	42.69	0.59
Ship	T Sphenolithus heteromorphus	13.53	3H-4, 50	3H-5, 50	22.70	24.20	24.67	26.17	25.42	0.75	43.96	44.70	44.33	0.37
Ship	B Discoaster petaliformis	15.70	3H-CC	4H-2, 70	27.65	29.40	29.62	33.05	31.34	1.72	46.64	48.50	47.57	0.93
Ship	T Discoaster deflandrei	15.80	3H-CC	4H-2, 70	27.65	29.40	29.62	33.05	31.34	1.72	46.64	48.50	47.57	0.93
Ship	B Sphenolithus heteromorphus	17.71	4H-6, 20	4H-7, 15	34.90	36.35	38.38	39.81	39.09	0.71	52.19	53.40	52.80	0.61
Ship	T Triquetrorhabdulus carinatus	18.28	5H-3, 100	5H-4, 120	40.70	42.40	45.56	47.17	46.37	0.80	57.89	58.97	58.43	0.54
Ship	T ac Triquetrorhabdulus carinatus	22.09	9H-3, 20	9H-4, 100	77.90	80.20	89.12	91.42	90.27	1.15	86.34	87.70	87.02	0.68
Ship	B Sphenolithus disbelemnos	22.80	9H-7, 30	9H-CC	84.00	84.74	94.97	95.61	95.29	0.32	90.14	90.64	90.39	0.25
Ship	T Sphenolithus delphix	23.11	10H-7, 30	10H-CC	93.50	93.95	104.65	104.97	104.81	0.16	96.72	96.95	96.84	0.12
Ship	B Sphenolithus delphix	23.21	11H-1, 20	11H-2, 20	94.70	96.20	107.53	109.09	108.31	0.78	98.75	99.94	99.35	0.59
Ship	T Sphenolithus ciperoensis	24.40	12H-7, 30	12H-CC	112.27	112.58	126.42	126.73	126.58	0.16	112.16	112.40	112.28	0.12
Revised	X Triquetrorhabdulus longus/ Triquetrorhabdulus carinatus	24.70	12H-7, 30	12H-CC	112.27	112.58	126.42	126.73	126.58	0.16	112.16	112.40	112.28	0.12
Ship	T ac Cyclicargolithus abisectus	25.50	12H-CC	13H-1, 45	112.58	113.15	126.73	128.63	127.68	0.95	112.40	113.95	113.17	0.77
Ship	T Sphenolithus distentus	26.80	16H-6, 40	16H-CC	149.10	149.57	169.92	170.39	170.16	0.23	145.97	146.31	146.14	0.17
Ship	T Sphenolithus predistentus	26.90	16H-6, 40	16H-CC	149.10	149.57	169.92	170.39	170.16	0.23	145.97	146.31	146.14	0.17
Ship	B Sphenolithus ciperoensis	27.10	18H-CC	19H-CC	170.17	178.49	194.27	204.91	199.59	5.32	164.26	172.06	168.16	3.90
Ship	T Sphenolithus pseudoradians	29.10	19H-CC	20H-CC	178.49	188.63	204.91	229.09	217.00	12.09	172.06	189.61	180.84	8.78
Ship	B Sphenolithus distentus	30.00	21H-CC	22H-2, 70	198.48	200.40	239.72	242.86	241.29	1.57	196.30	198.16	197.23	0.93
Ship	T Reticulofenestra umbilicus	32.00	24X-CC	25X-1, 80	224.22	224.90	271.90	274.19	273.05	1.15	219.99	222.00	220.99	1.00
Revised	T Ismolithus recurvus	32.50	26X-6, 100	26X-CC	242.10	243.36	291.74	293.00	292.37	0.63	235.25	236.37	235.81	0.56
Ship	T Coccolithus formosus	32.90	26X-2, 100	26X-3, 100	236.10	237.60	285.87	287.24	286.55	0.69	230.88	231.89	231.39	0.50
Ship	T Discoaster saipanensis	34.40	27X-5, 150	27X-CC	249.70	250.76	300.80	301.86	301.33	0.53	242.84	243.74	243.29	0.45
Revised	T Reticulofenestra reticulata	35.20	27X-CC	28X-CC	250.76	262.62	301.86	315.88	308.87	7.01	243.74	251.88	247.81	4.07
Ship	B Ismolithus recurvus	36.60	29X-CC	30X-1, 66	272.00	272.76	326.42	327.70	327.06	0.64	257.81	258.36	258.09	0.28
Revised	T Chiasmolithus oamaruensis	37.00	29X-8, 36	29X-CC	271.44	272.00	325.86	326.42	326.14	0.28	257.54	257.81	257.68	0.14
Ship	T Chiasmolithus grandis	37.10	30X-1, 66	30X-2, 74	272.76	274.34	327.70	329.50	328.60	0.90	258.36	259.12	258.74	0.38
Ship	Dictyococcites bisectus present	<38.0		32X-CC		285.21*		340.99	340.99					

* = Expedition 320/321 Scientists (2010a). T = top, B = bottom, X = crossover, ac = acme.

Table T43. Site 1218 calcareous nannofossil datums.

		Age*	Core, section	n, interval (cm)	Depth	(mbsf)	De (co	Error (±)		
Source	Event	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)
			199-1218A-	199-1218A-						
Pälike et al., 2005	B Catinaster coalitus	10.89	4H-7, 50	4H- CC	36.70	37.08	40.90	41.18	41.04	0.14
Pälike et al., 2005	T Sphenolithus heteromorphus	13.53	5H-7, 15	5H- CC	45.85	46.40	50.65	51.20	50.93	0.28
Pälike et al., 2005	T ac Discoaster deflandrei	15.80	5H-7, 15	5H- CC	45.85	46.40	50.65	51.20	50.93	0.28
Pälike et al., 2005	T Triquetrorhabdulus carinatus	18.28	6H CC	7H-1, 120	55.32	56.90	62.35	64.91	63.63	1.28
Pälike et al., 2005	T ac Triquetrorhabdulus carinatus	22.09	9H-2, 80	9H-2, 130	77.00	77.50	87.26	87.76	87.51	0.25
Pälike et al., 2005	B Sphenolithus disbelemnos	22.80	9H-4, 80	9H-4, 130	80.00	80.50	90.26	90.76	90.51	0.25
Pälike et al., 2005	T Sphenolithus delphix	23.10	10H-1, 140	10H-2, 10	85.60	85.80	97.44	97.65	97.55	0.11
Pälike et al., 2005	B Sphenolithus delphix	23.20	10H-3, 120	10H-3, 140	88.40	88.60	100.30	100.50	100.40	0.10
Pälike et al., 2005	T Sphenolithus ciperoensis	24.40	11H-2, 130	11H-3, 130	96.50	98.00	109.85	111.27	110.56	0.71
Pälike et al., 2005	T ac Cyclicargolithus abisectus	25.50	11H-4, 130	11H-5, 38	99.50	100.08	112.90	113.48	113.19	0.29
Pälike et al., 2005	T Sphenolithus distentus	26.80	13H-3, 75	13H-4, 45	116.45	117.65	131.42	132.56	131.99	0.57
Pälike et al., 2005	B Sphenolithus ciperoensis	27.10	14H-5, 80	14H-6, 80	129.00	130.50	144.42	145.92	145.17	0.75
Pälike et al., 2005	B Sphenolithus distentus	30.00	18H-CC	19H-1, 120	169.54	170.90	190.10	191.28	190.69	0.59
Pälike et al., 2005	T Reticulofenestra umbilicus > 14 µm	32.00	22X-2, 70	22X-2, 147	198.10	198.87	221.03	221.80	221.42	0.39
Pälike et al., 2005	T Coccolithus formosus	32.90	23X-2, 148	23X-3, 35	208.48	208.85	231.12	231.49	231.31	0.19
Pälike et al., 2005	T Discoaster saipanensis	34.40	24X-4, 78	24X-4, 90	219.98	220.10	244.46	244.58	244.52	0.06
Pälike et al., 2005	T Discoaster barbadiensis	34.80	24X-5, 56	24X-5, 85	221.26	221.55	245.74	246.03	245.89	0.15
Pälike et al., 2005	T Chiasmolithus grandis	37.10	25X-7, 70	25X-CC	233.90	234.31	259.63	260.04	259.84	0.21
Pälike et al., 2005	B Dictyococcites bisectus	38.00	26X-5, 60	26X-6, 125	240.90	243.05	266.43	268.58	267.51	1.07
Pälike et al., 2005	T Chiasmolithus solitus	40.40	27X-CC	28X-1, 50	250.11	254.00	275.70	278.53	277.12	1.41
Pälike et al., 2005	T Nannotetrina spp.	42.30	30X-2, 90	30X-3, 2	273.10	273.72	296.73	297.35	297.04	0.31
			199-1218B-	199-1218B-						
Pälike et al., 2005	T Cyclicargolithus floridanus	13.33	5H-7, 45	5H- CC	41.85	42.42	47.75	48.38	48.07	0.32
Pälike et al., 2005	T Sphenolithus delphix	23.10	10H-4, 140	10H-5, 70	85.80	86.60	96.60	97.40	97.00	0.40
Pälike et al., 2005	B Sphenolithus delphix	23.20	10H-6, 70	10H6, 140	88.10	88.80	98.90	99.60	99.25	0.35
Pälike et al., 2005	T Sphenolithus ciperoensis	24.40	11H-5, 80	11H-6, 80	96.20	97.70	109.58	111.08	110.33	0.75
Pälike et al., 2005	T Sphenolithus distentus	26.80	13H-6, 100	13H-6, 130	116.90	117.20	132.39	132.69	132.54	0.15
Pälike et al., 2005	B Sphenolithus ciperoensis	27.10	15H-1, 100	15H-1, 120	128.40	128.60	146.22	146.42	146.32	0.10

* = Expedition 320/321 Scientists (2010a). T = top, B = bottom, ac = acme.

Table T44. Site 1219 calcareous nannofossil datums.

		Age*	Core, section, interval (cm)		Depth (mbsf)		Depth from Pälike et al. (2005) (rmcd)			Error	Depth Site 1218 (corrected rmcd)			Error
Source	Event	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)	Тор	Bottom	Mean	(m)
			199-1219A-	199-1219A-										
Pälike et al., 2005	T Cyclicargolithus floridanus	13.33	3H-3, 92	3H-3, 138	19.42	19.88	19.48	19.93	19.71	0.23	46.11	46.66	46.38	0.27
Pälike et al., 2005	T Sphenolithus heteromorphus	13.53	3H-3, 138	3H-4, 145	19.88	21.45	19.93	21.48	20.71	0.78	46.66	48.34	47.50	0.84
Pälike et al., 2005	T ac Discoaster deflandrei	15.80	3H-5, 25	3H-6, 26	21.75	23.62	21.77	23.64	22.71	0.94	48.71	51.62	50.17	1.45
Pälike et al., 2005	T Triquetrorhabdulus carinatus	18.28	4H-4, 92	4H-4, 140	30.42	30.90	31.30	31.78	31.54	0.24	62.31	63.48	62.89	0.59
Pälike et al., 2005	T ac Triquetrorhabdulus carinatus	22.09	5H-CC	6H-1, 90	44.47	44.90	46.76	48.91	47.84	1.08	86.17	89.07	87.62	1.45
Pälike et al., 2005	B Sphenolithus disbelemnos	22.76	6H-2, 40	6H-2, 105	45.90	46.55	50.08	50.71	50.40	0.32	90.50	91.47	90.98	0.49
Pälike et al., 2005	T Sphenolithus delphix	23.11	6H-5, 30	6H-5, 90	50.30	50.90	54.35	54.93	54.64	0.29	97.02	97.89	97.46	0.43
Pälike et al., 2005	B Sphenolithus delphix	23.21	6H-6, 120	6H-7, 20	52.70	53.20	56.60	56.99	56.80	0.20	100.56	101.50	101.03	0.47
Pälike et al., 2005	T Sphenolithus ciperoensis	24.40	7H-5, 10	7H-5, 80	59.44	60.14	61.45	62.20	61.83	0.38	110.35	111.48	110.91	0.57
Pälike et al., 2005	T ac Cyclicargolithus abisectus	25.50	7H-5, 80	7H-6, 90	60.14	61.74	62.20	64.00	63.10	0.90	111.48	116.07	113.77	2.29
Pälike et al., 2005	T Sphenolithus distentus	26.80	8H-3, 100	8H-4, 100	67.00	68.50	70.05	71.55	70.80	0.75	127.33	129.19	128.26	0.93
Pälike et al., 2005	B Sphenolithus ciperoensis	27.10	9H-2, 140	9H-3, 140	75.40	76.90	82.77	84.27	83.52	0.75	143.37	144.17	143.77	0.40
Pälike et al., 2005	T Sphenolithus pseudoradians	29.10	12H-5, 80	12H-6, 80	107.80	109.30	120.31	121.77	121.04	0.73	180.05	181.60	180.82	0.78
Pälike et al., 2005	B Sphenolithus distentus	30.00	13H-3, 80	13H-4, 80	113.86	115.36	133.45	134.95	134.20	0.75	194.43	196.11	195.27	0.84
Pälike et al., 2005	T Reticulofenestra umbilicus > 14 μm	32.00	15H-5, 140	15H-6, 10	136.90	137.10	159.75	159.95	159.85	0.10	222.82	223.12	222.97	0.15
Pälike et al., 2005	T Coccolithus formosus	32.90	16H-4, 140	16H-5, 140	144.96	146.51	169.29	170.84	170.07	0.78	232.72	235.08	233.90	1.18
Pälike et al., 2005	T Discoaster saipanensis	34.40	17H-2, 90	19H-7, 5	150.90	176.55	176.23	203.88	190.06	13.83	242.63	266.70	254.66	12.03
Pälike et al., 2005	T Discoaster barbadiensis	34.80	17H-2, 90	19H-7, 5	150.90	176.55	176.23	203.88	190.06	13.83	242.63	266.70	254.66	12.03
Pälike et al., 2005	T Chiasmolithus grandis	37.10	17H-2, 90	20H-1, 114	150.90	178.14	176.23	206.47	191.35	15.12	242.63	269.35	255.99	13.36
Pälike et al., 2005	B Dictyococcites bisectus	38.00	20H-2, 52	21H-3, 80	179.02	190.30	207.35	219.63	213.49	6.14	270.14	282.02	276.08	5.94
Pälike et al., 2005	B Reticulofenestra umbilicus > 14 μm	42.50	22H-3, 49	22H-3, 125	199.49	200.25	229.82	230.58	230.20	0.38				
Pälike et al., 2005	Nannotetrina spp. present	>42.3	22H-CC	24H-1, 36	205.84	215.36	236.17	247.69	241.93	5.76				
Pälike et al., 2005	T Fasciculithus tympaniformis	54.70	26X-3, 52	27X-CC	237.62	244.92	271.95	280.25	276.10	4.15				
			199-1219B-	199-1219B-										
Pälike et al., 2005	T Sphenolithus delphix	23.11	4H-CC	5H-1, 30	48.75	49.80	52.86	54.70	53.78	0.92	94.57	97.55	96.06	1.49
Pälike et al., 2005	B Sphenolithus delphix	23.21	5H-2, 80	5H-2, 90	51.80	51.90	56.70	56.80	56.75	0.05	100.76	101.01	100.89	0.13
Pälike et al., 2005	T Sphenolithus ciperoensis	24.40	5H-CC	6H-1, 60	58.79	59.60	63.81	64.14	63.98	0.16	115.66	116.37	116.01	0.35
Pälike et al., 2005	T Sphenolithus pseudoradians	29.10	11H-3, 85	11H-3, 120	110.35	110.70	121.78	122.11	121.95	0.16	181.61	181.96	181.79	0.18
Pälike et al., 2005	T Reticulofenestra umbilicus > 14 µm	32.00	14H-7, 40	14H-7, 70	144.40	144.70	161.69	161.99	161.84	0.15	225.65	225.94	225.79	0.15
Pälike et al., 2005	T Coccolithus formosus	32.90	15H-5, 76	15H-5, 104	150.82	151.10	170.17	170.45	170.31	0.14	233.77	234.31	234.04	0.27

* = Expedition 320/321 Scientists (2010a). T = top, B = bottom, ac = acme.

Table T45. Site 1220 calcareous nannofossil datums.

			Core, sectio	n, interval (cm)	Depth	(mbsf)	D	Error (±)		
Source	Event	(Ma)	Тор	Bottom	Тор	Bottom	Тор	Bottom	Mean	(m)
			199-1220A-	199-1220A-						
Lyle et al., 2002	T ac Triquetrorhabdulus carinatus	22.90	3H-5, 60	3H-6, 40	25.05	26.35	25.05	26.35	25.70	0.65
Lyle et al., 2002	B Sphenolithus ciperoensis	27.10	5H-1, 60	5H-1, 140	38.60	39.40	41.89	42.60	42.25	0.36
Lyle et al., 2002	T Sphenolithus pseudoradians	29.10	5H-4, 60	5H-5, 45	43.10	44.46	46.39	47.75	47.07	0.68
Lyle et al., 2002	B Sphenolithus distentus	30.00	6H-3, 100	6H-4, 80	51.50	52.80	56.84	58.14	57.49	0.65
Lyle et al., 2002	T Reticulofenestra umbilicus >14 µm	32.00	7H-4, 70	7H-4, 140	62.16	62.86	68.47	69.17	68.82	0.35
			199-1220B-	199-1220B-						
Lyle et al., 2002	B Sphenolithus distentus	30.40	3H-1, 60	3H-1, 90	53.60	53.90	57.16	57.44	57.30	0.14
Lyle et al., 2002	T Coccolithus formosus	32.90	4H-3, 60	4H-3, 100	68.10	68.50	73.42	73.82	73.62	0.20
Lyle et al., 2002	B Tribrachiatus bramlettei	53.90	19X-CC	20X-1, 20	193.73	197.61	211.55	215.43	213.49	1.94
Lyle et al., 2002	T Fasciculithus spp.	54.10	20X-1, 90	20X-1, 115	198.30	198.56	216.12	216.38	216.25	0.13
Lyle et al., 2002	B Rhomboaster spp.	54.10	20X-1, 125	20X-2, 1	198.65	198.91	216.47	216.73	216.60	0.13

* = Expedition 320/321 Scientists (2010a). T = top, B = bottom, ac = acme.