Data report: Monte Carlo correlation of sediment records from core and downhole log measurements at Sites U1337 and U1338 (IODP Expedition 321)¹

Alberto Malinverno²

Chapter contents

Abstract
Introduction1
Materials and methods
Results
Acknowledgments5
References
Figures
Tables

Abstract

Site-to-site lithostratigraphic correlations are vital to building a composite record of equatorial Pacific sediment and constructing a common timescale. The work described here is aimed at establishing a detailed lithostratigraphic correlation between Sites U1337 and U1338 (Integrated Ocean Drilling Program Expedition 321) on the basis of high-resolution bulk density measurements from cores and downhole logs. Using both core and log measurements best constrains site-to-site correlations, but these two data types are measured on different depth scales. Reconciling these different depth scales requires a detailed correlation to precisely align the high-resolution core and log records at each site.

This study uses an automated Monte Carlo algorithm to align core and log records at the same site and to determine site-to-site correlations. The distinguishing feature of the method is that it does not produce a single optimal correlation, but rather a sample of possible correlations that give a good match. The average of the samples gives the best correlation, and their variability measures the uncertainty inherent to the correlation.

The Monte Carlo method is first applied to correlate core splice and downhole log data at each site, so that the data can be referred to the same depth scale. The resulting correlation is close to a uniform 11%–12% expansion of the composite core depth scale, but local differences up to several meters mean that a detailed correlation is necessary to match small-scale sedimentary features. Once the downhole log data are placed onto the core depth scale, consistent site-to-site correlations between Sites U1337 and U1338 are determined by matching core and log data.

Introduction

Sediments deposited in the equatorial Pacific Ocean store some of the best long-term records of Earth's climate. These sediments record ocean-wide variations, as shown by the observation that in this region sediment physical properties correlate over large distances (Moore and Pälike, 2006). These lithostratigraphic correlations complement bio-, chemo-, and magnetostratigraphic correlations and assist in the construction of a common timescale. Integrated Ocean Drilling Program (IODP) Expeditions 320 and 321 (Pacific Equatorial Age Transect) sampled the sediment

¹Malinverno, A., 2013. Data report: Monte Carlo correlation of sediment records from core and downhole log measurements at Sites U1337 and U1338 (IODP Expedition 321). *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/ 321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.320321.207.2013 ²Lamont-Doherty Earth Observatory of Columbia University, PO Box 1000, 61 Route 9W, Palisades NY 10964-1000, USA. **alberto@ldeo.columbia.edu**

Proc. IODP | Volume 320/321

mound deposited near the paleoequator to validate and extend the astronomical calibration of the Cenozoic geologic timescale and to improve, date, and intercalibrate stratigraphic datums (see the "Expedition 320/321 summary" chapter [Pälike et al., 2010]).

This data report applies a Monte Carlo method to obtain a detailed lithostratigraphic correlation by matching two sediment records. The distinguishing feature of the method is that it does not produce a single optimal correlation, but rather a sample of possible correlations that result in a good match. The average of these samples gives the best correlation, and their variability measures the uncertainty that is inherent to the correlation, highlighting intervals where the match is relatively poor and the correlation less reliable.

The method is applied to high-resolution bulk density measurements from core samples and downhole logs from Expedition 321 Sites U1337 and U1338, which targeted the early Miocene to present time interval and were drilled 600 km apart (see the "Expedition 320/321 summary" chapter [Pälike et al., 2010]). A combination of core and log measurements best constrains site-to-site correlations, but complications occur because these two data types are placed on different depth scales. The cumulative length of drill pipe is used for core depth, whereas the measured length of the wireline cable determines depth in downhole logs. Moreover, to obtain as complete a record as possible, a composite depth scale is constructed by splicing core sections taken from different holes at the same site. This process typically expands the actual thickness of the cored interval by 10%–15% (Lisiecki and Herbert, 2007; Westerhold et al., 2012). Reconciling these different depth scales requires a detailed correlation to precisely align the high-resolution core and log records at each site prior to site-to-site correlation. The Monte Carlo method is applied to first correlate core and downhole log data at each site, so that all data are placed on the same depth scale. Core and downhole log data are then used to obtain a reliable lithostratigraphic correlation between the two sites.

Materials and methods Core and downhole log data

The data used here consist of density core splices and downhole log data obtained at Sites U1337 and U1338. The density core splices were obtained from gamma ray attenuation (GRA) densities measured on whole-round core sections on the R/V JOIDES Resolu-

tion. The splices were painstakingly constructed by overlapping GRA density records from three holes at each site (Wilkens et al., in press). The downhole density log data were measured using the Schlumberger Hostile Environment Litho-Density Sonde (HLDS) wireline logging tool in Holes U1337A and U1338B.

The core splice and downhole log data have different depth coverages and measurement resolutions. Although the core splices span the full interval drilled, there are no downhole log data from the top of the hole. This is because the drill pipe is typically lowered to ~80 meters below seafloor (mbsf) during logging to avoid the near-seafloor interval where the borehole is enlarged and irregular. The GRA data have a nominal resolution of <1 cm (measurements were taken every 2.5 cm), whereas the downhole density log has a vertical resolution of ~20 cm. Detailed comparisons, however, show that the difference in resolution is minor and that the decimeterscale sedimentary features that are most useful for correlation are usually well resolved in both data sets. More details on the GRA and log measurements are in the "Methods" chapter (Expedition 320/321 Scientists, 2010).

A major complication that prevents immediate correlation of core splice and downhole log data is that they are referred to different depth scales. The current IODP terminology (www.iodp.org/doc_download/ 3171-iodpdepthscaleterminologyv2) defines the depth scale of the core splices as composite core depth below seafloor (CCSF) and the depth scale of the processed downhole logs as wireline matched depth below seafloor (WMSF). The CCSF depth scale is determined starting from the seafloor by splicing the GRA density records measured in different core sections from different holes. The WMSF depth scale is determined by referring the depth measured by the wireline cable length to the seafloor (typically defined by a step change in the natural gamma radiation log). The wireline depths measured in different logging runs are then "matched" by small adjustments that align the natural gamma radiation log acquired in each run.

Reversible jump Monte Carlo sampling

The process of determining a mapping function that relates depth in one record to depth in another is illustrated in Figure F1. Solutions in the literature include the nonlinear optimization methods of Martinson et al. (1982) and Brüggemann (1992) and the exhaustive search method of Lisiecki and Lisiecki (2002). Whereas these approaches focus on obtaining an optimal result, the Monte Carlo method de-

scribed here also quantifies the uncertainty of the inferred mapping function. The mapping function will have a large uncertainty in intervals where the match between the records remains poor while the mapping function can vary significantly. This measure of uncertainty is important to quantify the accuracy of the correlation.

For comparison, the two records are rescaled to zero mean and unit standard deviation and their match is measured by a residual standard deviation (the standard deviation of the difference between the records). The mapping function is defined at any depth by linear interpolation between a number of nodes (Fig. F1). The problem is then to determine sets of nodes that give a good match between the two records (i.e., a small residual standard deviation). An additional requirement is that the gradient of the mapping function should not contain large fluctuations (Brüggemann, 1992; Lisiecki and Lisiecki, 2002). In the context of this study, large changes in the gradient of the mapping function would correspond to unrealistic measured depth errors (for core-log correlations at the same site) or excessive differences in sedimentation rate (for correlations between sites).

The requirements of a smooth mapping function and of a good data match can be combined in a Bayesian formulation, which defines a prior distribution and a likelihood of the mapping function. The value of the prior will be higher for mapping functions whose gradients have smaller fluctuations about their average. Mapping functions that result in closer matches between the records will have a higher value of likelihood. The posterior distribution of mapping functions is proportional to the product of prior and likelihood and balances the competing requirements of a smooth mapping function and of a close match of the records. This Bayesian formulation has been widely used in geophysical inverse problems (Tarantola and Valette, 1982; Jackson and Matsu'ura, 1985; Duijndam, 1988; Tarantola, 2005) and has been applied to cycle stratigraphy (Malinverno et al., 2010) and timescale construction (Malinverno et al., 2012).

A key feature of the correlation problem in Figure F1 is that the number of nodes in the mapping function is one of the unknowns. In the apt terminology of Sambridge et al. (2006), this is a "trans-dimensional" inverse problem. Green (1995) devised a general algorithm that can be applied to these problems, called reversible jump Markov chain Monte Carlo sampling. In the correlation problem treated here, the reversible jump algorithm begins from a starting

set of nodes that define an initial approximate correlation and continues as follows:

- 1. Propose a "candidate" mapping function by
 - Perturbing the coordinates of an existing node,
 - Adding a new node, or
- Deleting an existing node (except for the starting nodes).
- 2. Accept or reject the candidate mapping function on the basis of its posterior probability as in the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970). The posterior probability is higher for mapping functions that
 - Result in a better match (i.e., a smaller residual standard deviation) and
 - Have smaller fluctuations in their gradient.
- 3. Repeat from step 1.

This simple algorithm asymptotically draws samples from the posterior distribution of mapping functions. For examples of reversible jump sampling applied to geophysical inverse problems, see Malinverno (2002), Malinverno and Leaney (2005), Sambridge et al. (2006), Bodin and Sambridge (2009), and Piana Agostinetti and Malinverno (2010).

A sequence of 2000 sampling iterations of the reversible jump algorithm is shown in Figure F2. The residual standard deviation, which measures how close the match is between the two records, decreases as sampling progresses and becomes nearly constant after ~1000 iterations. The likelihood function correspondingly increases. On the other hand, the value of the prior distribution decreases, mostly because the number of nodes in the mapping function increases to achieve a better data match. The decrease in the prior distribution is compensated by a much larger increase in the likelihood, meaning that the cost of adding more nodes is much less than the gain because of better data matching so that the posterior probability of the mapping function increases during the sampling.

The likelihood function and the prior distribution are controlled by target standard deviations of the data residuals and of the mapping function gradient, respectively. The relative size of these target standard deviations will weigh the competing needs of matching the data and minimizing changes in the mapping function gradient. The target standard deviation of the data residuals is set to be one of the unknown parameters as in a hierarchical Bayes formulation (Malinverno and Briggs, 2004). This means that this target standard deviation does not need to be predetermined; the algorithm samples it by iteratively perturbing its value and effectively adjusts it to

match the actual residual standard deviation achieved by the sampling (Fig. F2). Numerical experiments showed that a target standard deviation of the mapping function gradient equal to 20% of the mean gradient resulted in a reasonable trade-off between data match and smoothness of the mapping function.

The results described below were all obtained from 100 independent runs of the reversible jump algorithm. Each run consisted of 2000 sampling iterations. The mean mapping function and its standard deviation were determined from the 100 mapping functions obtained at the end of each run. This multiple run strategy minimizes the effect of sampling secondary modes of the posterior distribution. Although the Monte Carlo method will asymptotically sample the global mode of the posterior distribution, the sampling can still remain for a large number of iterations in a secondary mode.

Results

Correlations within Sites U1337 and U1338

The first step is to correlate core splices and downhole logs at Sites U1337 and U1338 so that both records can be placed on the same depth scale (Fig. **F1**). The Monte Carlo sampling started from eight nodes at Site U1337 and four nodes at Site U1338. These starting nodes were chosen to match major features in the two records; in particular, they correlate a thin 16–40 cm chert interval that was imaged in the downhole logs and that had poor core recovery. This distinctive "baby chert" was located at 240 m WMSF at Site U1337 and 281.6 m WMSF at Site U1338 (see Fig. **F47** in the "Expedition 320/321 summary" chapter [Pälike et al., 2010]).

The estimated mapping functions are close to a constant expansion of the composite core depth scale that is ~12% at Site U1337 and ~11% at Site U1338 (Figs. F3, F4). These values are consistent with the 9%-16% composite depth scale expansions determined for Expedition 320 Sites U1331-U1334 by Westerhold et al. (2012). However, differences between the estimated mapping functions and constant core expansion reach about ±5 m at Site U1337 and ±2 m at Site U1338 (Figs. F3, F4). Although the magnitude of these differences is not the same, the overall pattern is similar at the two sites. A possible explanation may be lithology variations. The shallower half of the interval drilled at both sites contains a sizable siliceous component, whereas the deeper half is dominated by calcareous nannofossil ooze grading downward to chalk. These different lithologies may result in different core expansions. On

the other hand, these differences are relative to the downhole log depth scale, which may itself be affected by errors (e.g., due to stretching of the wireline cable). Whatever the cause, results in Figures F3 and F4 show that a detailed correlation that goes beyond a constant core expansion is necessary to match small-scale features in the core and downhole log data.

Figures F5 and F6 show the close match of core splice and downhole log data that is achieved when both records are put on the same depth scale. The match is generally excellent, with the exception of the deepest intervals below ~350 m WMSF or ~400 m CCSF. Density variations are smaller in these deep intervals, making correlations more ambiguous. Also, in the deeper hole intervals, core recovery was lower and core conditions were poorer, making the splice data less robust. Outside of these deep intervals, the uncertainties of the mapping functions are generally <1 m (1 standard deviation; Figs. F3, F4).

Correlations between Sites U1337 and U1338

Figures **F7** and **F8** show the results of correlating core splice data and downhole log data between Sites U1337 and U1338. To obtain correlations that could be directly compared, the downhole log data were placed on the composite core depth scale (CCSF) using the mapping functions obtained previously (Figs. **F3**, **F4**). The Monte Carlo sampling started from six nodes for the core splice correlation and four nodes for the downhole log correlation. The site-to-site mapping functions obtained for core splice and downhole log data are illustrated in Figure **F9**. Once the two data sets are placed on the same depth scale, the site-to-site correlations are entirely consistent.

These lithostratigraphic correlations have the smallest uncertainties in the intervals 130-330 m CCSF at Site U1337 and 140–380 m CCSF at Site U1338. In these intervals, the match of small-scale features in the two records is excellent (Figs. F7, F8). The uncertainties of the mapping function outside this wellcorrelated interval reach several meters (1 standard deviation; Fig. F9). These uncertainties quantify the confidence of correlations based on lithostratigraphy. For example, a stratigraphic event observed at 400 m CCSF at Site U1338 can be correlated to a depth of 346 m CCSF at Site U1337, but this correlation has an inherent uncertainty of about ±5 m (1 standard deviation). To assist in building a composite sedimentary record in the equatorial Pacific Ocean, the mapping functions that correlate Sites U1337 and U1338 (Fig. F9) are provided in Table T1 (core splice data) and Table T2 (downhole log data).

Acknowledgments

This research was supported by grant JOI-T321A31 of the U.S. Science Support Program and used samples and data provided by the Integrated Ocean Drilling Program. The efforts of the *JOIDES Resolution* shipboard and drilling personnel and of the science parties of IODP Expeditions 320 and 321 are gratefully acknowledged. Special thanks to Roy Wilkens for providing the core density splice data used in this study.

References

- Bodin, T., and Sambridge, M., 2009. Seismic tomography with the reversible jump algorithm. *Geophys. J. Int.*, 178(3):1411–1436. doi:10.1111/j.1365-246X.2009.04226.x
- Brüggemann, W., 1992. A minimal cost function method for optimizing the age-depth relation of deep-sea sediment cores. *Paleoceanography*, 7(4):467–487. doi:10.1029/92PA01235
- Duijndam, A.J.W., 1988. Bayesian estimation in seismic inversion, Part I: Principles. *Geophys. Prosp.*, 36(8):878– 898. doi:10.1111/j.1365-2478.1988.tb02198.x
- Expedition 320/321 Scientists, 2010. Methods. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/ 321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ iodp.proc.320321.102.2010
- Green, P.J., 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. *Biometrika*, 82(4):711–732. doi:10.1093/biomet/ 82.4.711
- Hastings, W.K., 1970. Monte Carlo sampling methods using Markov chains and their applications. *Biometrika*, 57(1):97–109. doi:10.1093/biomet/57.1.97
- Jackson, D.D., and Matsu'ura, M., 1985. A Bayesian approach to nonlinear inversion. J. Geophys. Res., [Solid Earth], 90(B1):581–591. doi:10.1029/JB090iB01p00581
- Lisiecki, L.E., and Herbert, T.D., 2007. Automated composite depth scale construction and estimates of sediment core extension. *Paleoceanography*, 22(4):PA4213. doi:10.1029/2006PA001401

Lisiecki, L.E., and Lisiecki, P.A., 2002. Application of dynamic programming to the correlation of paleoclimate records. *Paleoceanography*, 17(4):1049. doi:10.1029/2001PA000733

- Malinverno, A., 2002. Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. *Geophys. J. Int.*, 151(3):675–688. doi:10.1046/ j.1365-246X.2002.01847.x
- Malinverno, A., and Briggs, V.A., 2004. Expanded uncertainty quantification in inverse problems: hierarchical Bayes and empirical Bayes. *Geophysics*, 69(4):1005–1016. doi:10.1190/1.1778243

- Malinverno, A., Erba, E., and Herbert, T.D., 2010. Orbital tuning as an inverse problem: chronology of the early Aptian oceanic anoxic Event 1a (Selli Level) in the Cismon APTICORE. *Paleoceanography*, 25(2):PA2203. doi:10.1029/2009PA001769
- Malinverno, A., Hildebrandt, J., Tominaga, M., and Channell, J.E.T., 2012. M-sequence geomagnetic polarity time scale (MHTC12) that steadies global spreading rates and incorporates astrochronology constraints. *J. Geophys. Res., [Solid Earth]*, 117(B6):B06104. doi:10.1029/ 2012JB009260
- Malinverno, A., and Leaney, W.S., 2005. Monte-Carlo Bayesian look-ahead inversion of walkaway vertical seismic profiles. *Geophys. Prosp.*, 53(5):689–703. doi:10.1111/j.1365-2478.2005.00496.x
- Martinson, D.G., Menke, W., and Stoffa, P., 1982. An inverse approach to signal correlation. *J. Geophys. Res., [Solid Earth],* 87(B6):4807–4818. doi:10.1029/ JB087iB06p04807
- Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., 1953. Equation of state calculations by fast computing machines. *J. Chem. Phys.*, 21(6):1087–1092. doi:10.1063/1.1699114
- Moore, T., and Pälike, H., 2006. Time is of the essence. *Oceanography*, 19(4):22–27. doi:10.5670/ oceanog.2006.01
- Pälike, H., Nishi, H., Lyle, M., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, 2010. Expedition 320/321 summary. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/ 321 Scientists, *Proc. IODP*, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.320321.101.2010
- Piana Agostinetti, N., and Malinverno, A., 2010. Receiver function inversion by trans-dimensional Monte Carlo sampling. *Geophys. J. Int.*, 181(2):858–872. doi:10.1111/ j.1365-246X.2010.04530.x
- Sambridge, M., Gallagher, K., Jackson, A., and Rickwood, P., 2006. Trans-dimensional inverse problems, model comparison, and the evidence. *Geophys. J. Int.*, 167(2):528–542. doi:10.1111/j.1365-246X.2006.03155.x
- Tarantola, A., 2005. Inverse Problem Theory and Methods for Model Parameter Estimation: Philadelphia (Soc. Ind. Appl. Math.). doi:10.1137/1.9780898717921
- Tarantola, A., and Valette, B., 1982. Inverse problems = quest for information. *J. Geophys.*, 50:159–170. http:// www.ipgp.fr/~tarantola/Files/Professional/ Papers_PDF/IP_QI_original.pdf
- Westerhold, T., Röhl, U., Wilkens, R., Pälike, H., Lyle, M., Jones, T.D., Bown, P., Moore, T., Kamikuri, S., Acton, G., Ohneiser, C., Yamamoto, Y., Richter, C., Fitch, P., Scher, H., Liebrand, D., and the Expedition 320/321 Scientists, 2012. Revised composite depth scales and integration of IODP Sites U1331–U1334 and ODP Sites 1218–1220. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/321: Tokyo (Integrated Ocean Drilling Pro-

gram Management International, Inc.). doi:10.2204/ iodp.proc.320321.201.2012

Wilkens, R.H., Dickens, G.R., Tian, J., Backman, J., and the Expedition 320/321 Scientists, in press. Data report: revised composite depth scales for Sites U1336, U1337, and U1338. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and Expedition 320/321 Scientists, *Proc. IODP*, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.).

Initial receipt: 21 June 2012 Acceptance: 14 December 2012 Publication: 19 February 2013 MS 320321-207

Figure F1. A spliced core density record (red) can be closely correlated to a downhole density log (black); correlations of discrete features are shown by dashed gray lines. The conversion between core depth and log depth is given by a mapping function (thick gray curve) defined by a few nodes (gray dots).

Figure F2. Progress of the reversible jump Monte Carlo algorithm in 2000 iterations. The residual standard deviation, which measures the mismatch between the two records, progressively decreases and the likelihood correspondingly increases. The red line shows the value of the target residual standard deviation, which is one of the unknown parameters and is adjusted by the algorithm during sampling. The value of the prior distribution decreases as the number of nodes necessary to improve the match between the two records increases.

Figure F3. Mapping function between core splice and downhole log data (top) and residual of mapping function over the average core expansion (bottom) at Site U1337. The average mapping function is shown by a thick red line, and uncertainty bounds (±1 standard deviation) by thin red lines. The thick blue dashed line shows the average core expansion, and the gray dots are the starting nodes for the correlation.

Figure F4. Mapping function between core splice and downhole log data (top) and residual of mapping function over the average core expansion (bottom) at Site U1338. The average mapping function is shown by a thick red line, and uncertainty bounds (±1 standard deviation) by thin red lines. The thick blue dashed line shows the average core expansion, and the gray dots are the starting nodes for the correlation.

0

Data report: correlation of sediment records

A. Malinverno

 \exists

0

Data report: correlation of sediment records

A. Malinverno

12

A. Malinverno

Data report: correlation of sediment records

Figure F7. Results of Monte Carlo correlation of core splice records between Sites U1337 (red) and U1338 (black). The core splice data are plotted on the same depth scale (m CCSF at Site U1337 and U1338).

 $\frac{1}{3}$

Figure F8. Results of Monte Carlo correlation of downhole log records between Sites U1337 (red) and U1338 (black). The downhole log data are plotted on the same depth scale (m CCSF at Site U1337 and U1338).

A. Malinverno

Figure F9. Mapping functions that correlate CCSF depths of core splice (red) and downhole log data (blue) between Sites U1337 and U1338. The light red and light blue regions show the uncertainty bands of the mapping functions (±1 standard deviation).

Table T1. Mapping function that correlates depths in the core density splices of Sites U1337 and U1338. (Continued on next page.)

Site U1338	Site U1337	Site U1337	5	ite U1338	Site U1337	Site U1337
splice depth	splice depth	standard deviation	sp	olice depth	splice depth	standard deviation
(m CCSF)	(m CCSF)	(m)		(m CCSF)	(m CCSF)	(m)
0	1.28388	3.31408	1	52.854	142.572	2.01456
2.28141	3.84603	3.00754	1	55.136	144.328	1.74694
4.56281	6.41/4/	2.7483	1	57.417	145.863	1.50946
6.84422	9.00798	2.4/61	1	59.698	147.331	1.31029
9.12563	11.6412	2.33072	1	61.98	148.795	1.192/1
11.407	14.3104	2.30436	1	64.261	150.27	1.13018
13.6884	16.9884	2.41982	1	66.543	151.772	1.13323
15.9698	19.6142	2.581/3	1	68.824	153.316	1.13/58
18.2513	22.1322	2.56567	1	71.106	154.928	1.02027
20.5327	24.5/28	2.46581	1	73.387	156.565	0.935048
22.8141	26.9531	2.46445	1	75.668	158.253	0.847408
25.0955	29.2971	2.59239	1	77.95	159.94	0.81594
27.3769	31.6824	2./2611	1	80.231	161.664	0.812485
29.6583	34.0662	2.97691	1	82.513	163.426	0.806787
31.9397	36.4646	3.23/03	1	84.794	165.186	0.83375
34.2211	39.0765	3.48905	1	87.075	166.95	0.954526
36.5025	41.8469	3.73096	1	89.357	168.72	1.13948
38.7839	44.682	3.83419	1	91.638	170.494	1.33343
41.0653	47.4388	3.64707	1	93.92	172.286	1.39258
43.3467	50.0899	3.63056	1	96.201	174.099	1.49169
45.6281	52.6086	3.48884	1	98.482	175.91	1.51038
47.9095	55.0019	3.49701	2	:00.764	177.749	1.53017
50.191	57.1852	3.4782	2	:03.045	179.634	1.54687
52.4724	59.2051	3.4671	2	:05.327	181.54	1.546
54.7538	61.1676	3.56511	2	:07.608	183.494	1.53044
57.0352	63.1005	3.79647	2	:09.889	185.474	1.54754
59.3166	65.0634	4.20693	2	:12.171	187.497	1.57202
61.598	67.0955	4.77488	2	14.452	189.536	1.53381
63.8794	69.194	5.47067	2	16.734	191.596	1.52506
66.1608	71.3026	6.22947	2	19.015	193.694	1.55435
68.4422	73.4713	6.97877	2	21.296	195.82	1.58287
70.7236	75.5712	7.66733	2	23.578	197.988	1.58296
73.005	77.5344	8.27714	2	25.859	200.197	1.56087
75.2864	79.3701	8.80967	2	28.141	202.448	1.56452
77.5678	81.1948	9.30452	2	30.422	204.766	1.58171
79.8492	83.1502	9.55819	2	32.704	206.997	1.54244
82.1307	85.2876	9.68201	2	:34.985	209.18	1.43417
84.4121	87.5345	9.69717	2	37.266	211.415	1.4087
86.6935	89.8244	9.5662	2	39.548	213.565	1.35075
88.9749	92.1395	9.19264	2	41.829	215.538	1.1786
91.2563	94.5385	8.69128	2	.44.111	217.455	0.969104
93.5377	97.0311	8.18219	2	46.392	219.351	0.764728
95.8191	99.5897	7.70321	2	48.673	221.197	0.604229
98.1005	102.159	7.37389	2	50.955	222.987	0.463438
100.382	104.678	7.16303	2	53.236	224.755	0.342255
102.663	107.074	7.15388	2	55.518	226.535	0.24922
104.945	109.331	7.36019	2	57.799	228.309	0.187123
107.226	111.239	7.60291	2	60.08	230.078	0.170661
109.508	112./66	/./630/	2	62.362	231.85	0.182373
111.789	114.077	7.87423	2	.64.643	233.621	0.176838
114.07	115.269	7.94462	2	.66.925	235.39	0.187012
116.352	116.425	7.98157	2	.69.206	237.15	0.19184
118.633	117.556	7.95899	2	.71.487	238.892	0.175212
120.915	118.726	7.81833	2	73.769	240.379	0.780353
123.196	120.006	7.48026	2	.76.05	241.821	1.57368
125.4//	121.263	7.1179	2	.78.332	243.271	2.24466
127.759	122.485	6.3845	2	80.613	244.698	2.65889
130.04	123.739	5.55726	2	82.894	246.113	2.9839
132.322	124.987	4./9608	2	85.176	247.497	3.0751
134.603	126.256	3.91786	2	87.457	248.888	3.01314
136.884	127.525	3.10163	2	89.739	250.329	2.96357
139.166	128.904	2.42374	2	.92.02	251.796	2.98039
141.447	130.641	1.91209	2	.94.302	253.128	2.88875
143.729	133.093	1.39506	2	96.583	254.492	2.73647
146.01	135.97	1.56/47	2	98.864	255.916	2.5327
148.291	138.693	2.14053	3	01.146	257.527	2.10323
150.573	140.743	2.21325	3	03.427	259.256	1.5386

Table T1 (continued).

Site U1338	Site U1337	Site U1337
splice depth	splice depth	standard deviation
(m CCSF)	(m CCSF)	(m)
		0.00//05
305.709	261.048	0.994405
307.99	262.908	0.530724
310.271	264.867	0.184158
312.553	266.98	0.679106
314.834	269.445	1.02094
317 116	272 787	1 11626
210 207	272.707	1.55210
201 (70	273.027	1.33310
321.678	2/8.464	2.01858
323.96	280.767	2.35361
326.241	282.757	2.3623
328.523	284.546	2.0471
330.804	286.361	1.69418
333.085	288.17	1.41619
335 367	289 992	1 2607
337 648	201 852	1 28611
220.02	201.002	1.20011
559.95	293.722	1.40455
342.211	295.598	1.52835
344.492	297.494	1.58839
346.774	299.408	1.52345
349.055	301.338	1.51983
351.337	303.324	1.59476
353.618	305.311	1.73181
355.899	307.318	1.87858
358 181	309 385	1 91 266
360.462	311 514	1 79407
262 744	212 676	1.7 2407
302.744	215.070	1.30004
365.025	315.859	1.1850/
367.307	318.107	1.12235
369.588	320.487	1.34326
371.869	323.015	1.78777
374.151	325.592	2.17731
376.432	328.24	2.3615
378.714	330.71	2.50114
380.995	332.819	2.56814
383.276	334.6	2,4592
385 558	336 255	2 38882
387 830	337 795	2.30002
200 1 21	220 282	2.45227
202 402	240 719	2.72114
392.402	340.718	5.04/25
394.683	342.084	3.51293
396.965	343.4/4	4.068//
399.246	345.058	4.75506
401.528	347.128	5.90653
403.809	349.429	7.1415
406.09	351.809	8.10669
408.372	354.004	8.58024
410.653	356.231	8.78619
412 935	358 726	8 72905
415 216	361 744	8 07842
417.407	265 210	7 2044
417.497	303.319	7.2900
419.779	369.666	6.90547
422.06	3/4.539	6./5152
424.342	379.513	6.88071
426.623	384.391	7.07593
428.905	389.02	7.27034
431.186	393.111	7.47794
433.467	396.293	7.36256
435.749	398.789	6.89603
438.03	401.076	6.58076
440 312	402.83	6 53 5 28
110.512	102.05	6 7099
442.373	404.293	0.7000
444.8/4	405.56/	7.0/006
44/.156	406./3	7.54/32
449.43/	407.896	8.04927
451.719	409.227	8.44684
454	410.627	8.92487

This mapping function is plotted in Figure F9. The three columns contain the depth at Site U1338 (m CCSF), the correlated depth at Site U1337 (m CCSF), and the uncertainty in correlated depth at Site U1337 (1 standard deviation [m]).

Table T2. Mapping function that correlates depths converted to m CCSF in the downhole density logs of Sites U1337 and U1338. (Continued on next page.)

Cite 111220	Cite 111227	Cite 111227	Site 111229	Site 111227	Cito 111 227
SITE UI 338	Site UI 337	Site UT337	Site UI 536	Sile UT557	Sile UI 557
log depth	log depth	standard deviation	log depth	log depth	standard deviation
(m CCSF)	(m CCSF)	(m)	(m CCSF)	(m CCSF)	(m)
138	128.559	2.07607	242.709	216.125	1.33528
120 542	120.156	1 45 26 2	244 271	217 525	1 21542
139.303	150.156	1.05202	244.271	217.333	1.21343
141.126	131.746	1.25769	245.834	218.889	1.09118
142.688	133.325	0.918699	247.397	220.187	0.97938
144 251	13/ 896	0 71 28 0 3	248 96	221 456	0 876122
144.231	134.090	0.712095	240.70	221.430	0.070122
145.814	136.445	0.738443	250.523	222./09	0./8304
147.377	137.886	0.886192	252.085	223.929	0.696907
148 94	139 209	1 07082	253 648	225 128	0 61 3 7 1 7
150.502	140.425	1.07.002	2551010	2201120	0.541264
150.505	140.425	1.21000	233.211	220.321	0.341204
152.065	141.556	1.30077	256.774	227.507	0.475552
153.628	142.585	1.24014	258.337	228.686	0.409684
155 101	142 568	1 1 / / 9 9	250 800	220 865	0 352471
155.171	141.500	1.14400	257.077	227.005	0.332471
156./54	144.538	1.05357	261.462	231.047	0.297974
158.317	145.493	0.963895	263.025	232.227	0.245284
159 879	146 444	0 86491	264 588	233 405	0.206861
161 442	147 412	0.00121	26 150	2231100	0 1 6 7 9 5
101.442	147.412	0.748289	200.131	234.30/	0.10763
163.005	148.402	0.627226	267.714	235.774	0.148588
164.568	149.413	0.504916	269.276	236.961	0.17027
166 121	150 420	0 4 208 2 2	270 839	238 1/10	0 208887
100.131	130.439	0.420032	270.037	230.142	0.200007
167.693	151.495	0.359971	2/2.402	239.338	0.2/2/9/
169.256	152.573	0.319189	273.965	240.51	0.347421
170 819	153 667	0 323905	275 528	241 673	0 425237
170.012	153.007	0.323703	275.520	241.075	0.425257
1/2.382	154.//2	0.377227	277.09	242.831	0.509/14
173.945	155.893	0.459405	278.653	243.994	0.606631
175.508	157.014	0.568588	280.216	245.164	0.735092
173.500	159.011	0.000000	2001210	246 225	0 070065
177.07	136.133	0.691072	201.779	240.555	0.0/9003
178.633	159.321	0.817906	283.342	247.523	1.03179
180.196	160.532	0.90395	284.905	248.716	1.20972
181 750	161 777	0 882583	286 467	249 912	1 40416
101.752	161.777	0.002303	200.407	249.912	1.40410
183.322	163.028	0.838265	288.03	251.11	1.60371
184.884	164.27	0.813164	289.593	252.274	1.66458
186.447	165.534	0.759095	291.156	253.417	1.73429
199.01	166 820	0 70772	202 710	254 545	1 80647
100.01	100.029	0.70772	202.717	255.545	1.00047
189.573	168.138	0./42354	294.281	255.668	1.8/28/
191.136	169.456	0.835022	295.844	256.763	1.90536
192 698	170 79	0 961559	297 407	257.844	1.9756
104 2/1	170.72	1.00592	209.07	257.015	2 09/02
194.201	1/2.15/	1.09585	290.97	230.943	2.06092
195.824	173.467	1.1459	300.533	260.044	2.23057
197.387	174.807	1.15388	302.095	261.12	2.32344
198 95	176 177	1 14531	303 658	262 156	2 33463
170.75	170.177	1.14551	205.050	202.150	2.33403
200.513	177.549	1.1646	305.221	263.179	2.31632
202.075	178.911	1.18783	306.784	264.253	2.26928
203.638	180.268	1.23973	308.347	265.333	2.22659
205 201	191 627	1 21995	309.91	266 425	2 11666
203.201	101.027	1.51005	211 472	200.425	1.05524
206./64	182.985	1.418/1	311.472	267.558	1.95534
208.327	184.341	1.48215	313.035	268.9	1.74957
209.889	185.683	1.45326	314.598	270.502	1.45194
211 /52	187.02	1 12205	216 161	272 222	1 05520
211.452	107.03	1.42295	217.724	272.332	1.03337
213.015	188.383	1.38628	317./24	2/4.061	0.8308/3
214.578	189.737	1.35069	319.286	275.666	0.750716
216.141	191.097	1.32165	320.849	277.16	0.777198
217 704	102 464	1 20171	322 /12	278 595	0 80076
217.704	192.404	1.30171	322.412	278.393	0.09070
219.266	193.84	1.2794	323.975	2/9.994	1.04636
220.829	195.231	1.26414	325.538	281.381	1.19839
222 392	196.633	1.26202	327,101	282.788	1.24821
222.072	100 070	1 27/42	220 (12	202.700	1 20444
223.933	190.078	1.2/045	528.003	204.192	1.29040
225.518	199.53	1.33012	330.226	285.589	1.33462
227.08	200.971	1.35111	331.789	286.984	1.39996
228 643	202 418	1 4043	222 252	288 361	1 45146
220.045	202.410	1.40770	333.332	200.001	1 5 2 2 7 1
230.206	203.877	1.48/72	334.915	289./3	1.533/1
231.769	205.375	1.58104	336.477	291.081	1.64079
233.332	206.903	1.68751	338.04	292.43	1.75401
221 201	208 141	1 72/71	220 602	202 747	1 87302
234.094	200.404	1./ 34/ 1	557.005	273./0/	1.0/ 372
236.457	210.042	1.69035	341.166	295.106	1.99472
238.02	211.609	1.60061	342.729	296.426	2.09854
230 583	213 171	1 51722	344 201	297 725	2 14584
202.000	213.1/1	1.31/23	245.05	227.723	2.17307
241.146	214.6/8	1.44541	345.854	299.019	2.15013

Table T2 (continued).

Sito 111338	Sito 111337	Site 111337
3110 01 330		3110 01337
log depth	log depth	standard deviation
(m CCSF)	(m CCSF)	(m)
	, ,	
247 417	200 225	2 1 2 4 6 5
547.417	500.525	2.12403
348.98	301.613	2.0702
350 543	302 881	1 96528
JJ0.JHJ	302.001	1.20520
352.106	304.158	1.85214
353.668	305.451	1.71848
255.000	206.750	1.55004
355.231	306./38	1.55984
356.794	308.083	1.41159
258 257	200 452	1 27114
550.557	309.433	1.27114
359.92	310.845	1.17262
361 482	312,248	1,11332
262.045	212.210	1.00074
363.045	313.68/	1.088/4
364.608	315.178	1.14855
366 171	316 781	1 22/27
500.171	510.701	1.22427
367.734	318.492	1.28519
369.296	320.247	1.44276
270.950	222.012	1 70070
570.639	322.012	1.70079
372.422	323.79	1.97364
373 985	325 563	2 23835
375.540	227.254	2.25055
5/5.548	327.354	2.43888
377.111	329.146	2.58955
378 672	330 852	2 70202
5/0.0/5	330.033	2.70302
380.236	332.513	2.77065
381,799	334,114	2,7947
202.262	225.562	2 7 (01 2
383.36Z	333.362	2.76912
384.925	336.881	2.82989
386 487	338 178	2 97809
500.407	550.170	2.97609
388.05	339.375	3.22442
389.613	340.517	3.57737
201 176	241 644	2 09911
391.170	341.044	3.98611
392.739	342.761	4.43956
394 302	343 866	4 86641
205.064	244.00	5 22245
395.864	344.98	5.32245
397.427	346.103	5.78197
208 00	247 210	6 1 2 8 0 2
370.77	547.519	0.13892
400.553	348.564	6.50022
402,116	349 868	6.83795
402.070	251 241	7 10(52
403.678	351.241	7.10652
405.241	352.66	7.35654
406 804	354 096	7 55206
+00.00+	554.070	7.55200
408.367	355.677	7.56879
409.93	357.684	6.9196
411 402	250.042	5 0971 (
411.492	559.042	3.98/10
413.055	362.005	5.07058
414 618	364 192	4 19774
112 101	266 420	2 20022
410.101	500.4Zō	5.59055
417.744	368.756	2.59916
419.307	371.116	1.86949
420.040	272 522	1 20022
420.869	3/3.523	1.38022
422.432	375.947	1.21128
423 005	378 10/	1 1 2 8 2 0
TZ J.77J	5/0.174	1.13027
425.558	380.39	1.06387
427,121	382.581	1.07832
128 202	28/ 771	1 10000
420.003	504.//1	1.10000
430.246	386.928	1.32372
431 809	389 052	1,48439
422.272	201 1 1 1	1 (0205
433.3/2	391.164	1.68305
434.935	393.244	1.87712
136 107	305 262	2 01522
430.49/	575.202	2.01322
438.06	397.233	2.10228
439,623	399 129	2,17404
111 101	400.027	2 20022
441.186	400.937	2.29032
442.749	402.698	2.45713
444 312	404 47	2 6401 2
		2.07/12
445.874	406.126	2.91616
447.437	407.851	3.2303
440	400 577	2 50001
449	409.577	3.39081

This mapping function is plotted in Figure F9. The three columns contain the depth at Site U1338 (m CCSF), the correlated depth at Site U1337 (m CCSF), and the uncertainty in correlated depth at Site U1337 (1 standard deviation [m]).

