Data report: diatoms from Sites U1334 and U1338, Expedition 320/321¹

Jack G. Baldauf²

Chapter contents

Abstract
Introduction
Methods and materials
Results
Acknowledgments2
References
Figure
Tables

¹Baldauf, J.G., 2013. Data report: diatoms from Sites U1334 and U1338, Expedition 320/321. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.320321.215.2013 ²Department of Oceanography, Texas A&M University, College Station TX 77843. Baldauf@tamu.edu

Abstract

The total number of diatoms, radiolarians, and silicoflagellates were recorded from the Eocene–Oligocene sequence of Integrated Ocean Drilling Program Site U1334, Expedition 320, and the Neogene–recent sequence of Site U1338, Expedition 321, in order to document the variability in overall abundance through these sequences.

Introduction

During Integrated Ocean Drilling Program (IODP) Expeditions 320 and 321, a series of sites associated with the paleoequator was cored in order to reconstruct Eocene to Holocene paleoceanographic conditions. Two sites of particular interest to this study are Sites U1334 (7°59.998'N, 131°58.408'W; 4799 m water depth) and U1338 (2°30.469'N, 117°58.178'W; 4200 m water depth). Sediments from Site U1334 represent the Eocene–Oligocene transition and provide insight into the response of the equatorial Pacific region associated with the greenhouse–icehouse transition. Sediments from Site U1338 represent early–middle Miocene to recent paleoceanographic conditions in the equatorial Pacific region, in particular the significant increase in sedimentation during the early middle Miocene.

Diatoms were examined from both sites, the Eocene–Oligocene sequence of Site U1334 and the Neogene–recent sequence of Site U1338. The purpose of the study was to document the overall variability in total diatom, silicoflagellate, and radiolarian abundance, as well as the variation in diatom species throughout the examined intervals. The emphasis of this study concerns variations in the diatom flora.

Methods and materials

A total of 279 samples were examined from Holes U1334A–U1334C, and 418 samples were examined from Holes U1338A–U1338C. The meter subbottom depth scale references are based upon the original shipboard splice (see the "Expedition 320/321 summary" chapter [Pälike et al., 2010]). Wilkens et al. (2013) and Westerhold et al. (2012) subsequently revised the original shipboard splice.

Samples from Site U1334 were processed for semiqualitative analysis with strewn slides prepared following the methods of Baldauf (1984). The total number of diatoms, radiolarians, and silicoflagellates from typically the first 50 fields of view was tabulated. The relative percentage of diatom fragments was also estimated (<25%, 25%–50%, 50%–75%, or >75%) for each sample. Preservation (poor, moderate, or good) was defined based on the condition of the valve, breakage, and degree of silicification. For example,

- Poor = contains typically fragments, partial dissolution may be observed, and finely silicified forms typically are not observed.
- Moderate = significant fragmentation and finer silicified forms are present. Dissolution, if present, is much reduced when compared to the poorly preserved assemblages.
- Good = minimal fragmentation with a balance of finely and coarsely silicified assemblages typical for the late Eocene–early Oligocene.

Samples from Site U1338 were processed for qualitative analysis using a modified method described by Scherer (1994). The primary adjustment to Scherer's method was to process typically 0.1 g of sediment and neutralize the residue in the same vial. Once the residue was neutral, the entire vial content was decanted into a settling chamber. This eliminated the potential loss of residue. Typically, the total number of diatoms, radiolarians, and silicoflagellates was tabulated for the first 100 fields of view or the first 300 diatoms encountered. In the case where a significant number of diatoms was present, the total number of diatoms, radiolarians, and silicoflagellates was tabulated for 50 fields of view or the first 600 diatoms encountered. The total numbers of diatom valves per gram sediment, as well as radiolarian and silicoflagellate skeletons per gram sediment, was calculated following the procedures of Scherer (1994).

All samples (from both sites) were examined at 500× using a Zeiss Axio ImagerA2. Species identifications were completed at 1250×. The counting techniques of Gersonde and Schrader (1978) were utilized for all samples. The total number of diatoms was not tabulated for the few samples where diatoms were rare or absent.

Results

Table **T1** records the total number of radiolarians, silicoflagellates (total and total *Naviculopsis*), and diatoms observed from Site U1334 samples representing the Eocene–Oligocene transition. Fragmentation, preservation, and the diatom/radiolarian ratio are also included for each sample, as is the percentage of diatom specimens observed for a given species, variety, or group. Note that the shaded samples reflect samples where <5 specimens, or no diatoms, were observed in 100 fields of view. See also **"Supplemen**tary material."

Table **T2** records the total number of radiolarians, silicoflagellates, and diatoms observed from Site U1338 samples representing the early middle Miocene to recent. The number of radiolarian and silicoflagellate skeletons, as well as the number of diatom valves per gram sediment, are also recorded for each sample (see Fig. **F1**). The specific number of diatom specimens observed for a given species, variety, or group is also recorded. Note that the shaded samples reflect samples where diatoms are sparse, so counts were not completed for such samples. See also DIATOMS in 215 in **"Supplementary material.**"

Table **T3** provides the sample depth (average core depth below seafloor [CSF] and composite core depth below seafloor [CCSF]) for Neogene diatom datums identified from Site U1338.

Table T4 provides the taxonomic list used in this report.

Acknowledgments

This research used samples and data provided by the Integrated Ocean Drilling Program (IODP). IODP is a sponsored by the U.S. National Science Foundation (NSF) and participating countries under the management of IODP Management International. Research was supported by the National Science Foundation, the Wenner-Gren Foundation, Stockholm University, and Texas A&M University.

References

- Baldauf, J.G., 1984. Cenozoic diatom biostratigraphy and paleoceanography of the Rockall Plateau region, North Atlantic, Deep Sea Drilling Project Leg 81. *In* Roberts, D.G., Schnitker, D., et al., *Init. Repts. DSDP*, 81: Washington, DC (U.S. Govt. Printing Office), 439–478. doi:10.2973/dsdp.proc.81.107.1984
- Pälike, H., Nishi, H., Lyle, M., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, 2010. Expedition 320/321 summary. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/ 321 Scientists, *Proc. IODP*, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.320321.101.2010
- Scherer, R.P., 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedi-

mentary particles. *J. Paleolimn.*, 12(2):171–179. doi:10.1007/BF00678093

- Schrader, H.J., and Gersonde, R., 1978. Diatoms and silicoflagellates. In Zachariasse, W.J., et al. (Eds.), Micropaleontological Counting Methods and Techniques: An Exercise of an Eight Metres Section of the Lower Pliocene of Cap Rossello, Sicily. Utrecht Micropaleontol. Bull., 17:129–176.
- Westerhold, T., Röhl, U., Wilkens, R., Pälike, H., Lyle, M., Jones, T.D., Bown, P., Moore, T., Kamikuri, S., Acton, G., Ohneiser, C., Yamamoto, Y., Richter, C., Fitch, P., Scher, H., Liebrand, D., and the Expedition 320/321 Scientists, 2012. Revised composite depth scales and integration of IODP Sites U1331–U1334 and ODP Sites 1218–1220. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/321: Tokyo (Integrated Ocean Drilling Pro-

gram Management International, Inc.). doi:10.2204/iodp.proc.320321.201.2012

Wilkens, R.H., Dickens, G.R., Tian, J., Backman, J., and the Expedition 320/321 Scientists, 2013. Data report: revised composite depth scales for Sites U1336, U1337, and U1338. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.320321.209.2013

Initial receipt: 18 January 2013 Acceptance: 30 July 2013 Publication: 27 September 2013 MS 320321-115

Figure F1. Number of radiolarian and silicoflagellate skeletons and number of diatom valves per gram sediment.

Table T1. Total number of radiolarians, silicoflagellates, and diatoms observed from Site U1334 representing the Eocene–Oligocene transition. This table is available in an **oversized format**.

Table T2. Total number of radiolarians, silicoflagellates, and diatoms observed from Site U1338 representing the early middle Miocene to recent. This table is available in an **oversized format**.

Table T3. Total number of radiolarians, silicoflagellates, and diatoms, Site U1338.

	Hole, core, sect	ion, interval (cm)	Average depth (CSF [m])		Depth (C	CSF-A [m])
Diatoms	Тор	Bottom	Тор	Bottom	Тор	Bottom
	320/321-	320/321-				
T Fragilariopsis reinholdii	U1338A-2H-3, 45	U1338A-2H-3, 120	6.155	6.905	6.893	7.57
T Fragilariopsis fossilis	U1338A-2H-5, 120	U1338A-2H-6, 45	9.905	10.655	10.28	10.598
T Rhizosolenia matuyamai	U1338B-2H-3, 120	U1338B-2H-4, 45	11.805	12.555	11.825	12.502
B Rhizosolenia matuyamai	U1338B-2H-4, 45	U1338B-2H-4, 120	12.555	13.305	12.502	13.18
T Rhizosolenia praebergonii var. robusta	U1338B-3H-2, 120	U1338B-3H-3, 45	19.805	20.555	19.756	20.434
B Fragilariopsis doliolus	U1338B-3H-5, 120	U1338B-3H-6, 45	24.305	25.055	23.821	24.499
T Thalassiosira convexa var. convexa	U1338A-4H-4, 45	U1338A-4H-4, 120	26.655	27.405	27.344	28.022
T Nitzschia jouseae	U1338A-5H-1, 45	U1338A-5H-1, 120	31.655	32.405	33.74	34.417
B Rhizosolenia praebergonii var. robusta	U1338A-5H-4, 120	U1338A-5H-5, 45	36.905	37.655	38.482	39.16
T Actinocyclus ellipticus f. lanceolata	U1338B-5H-5, 45	U1338B-5H-5, 120	42.555	43.305	42.322	42.999
B Thalassiosira convexa var. convexa	U1338B-6H-2, 45	U1338B-6H-2, 120	47.555	48.305	47.606	48.284
B Asteromphalus elegans	U1338A-7H-2, 45	U1338A-7H-2, 120	52.155	52.905	52.719	53.397
T Fragilariopsis cylindrica	U1338A-7H-3, 120	U1338A-7H-4, 45	54.405	55.155	54.752	55.429
B Nitzschia jouseae	U1338B-8H-6, 45	U1338A-9H-1, 120	72.555	73.045	71.481	72.13
B Shionodiscus oestrupii	U1338B-10H-4, 45	U1338B-10H-5, 45	88.555	90.055	88.121	89.476
T Thalassiosira miocenica	U1338B-10H-5, 45	U1338A-11H-1, 45	90.055	88.655	89.476	90.05
T Asterolampra acutiloba	U1338B-11H-3, 45	U1338B-11H-3, 120	96.555	97.305	96.134	96.811
T Fragilariopsis miocenica	U1338A-12H-3, 45	U1338A-12H-3, 120	101.055	101.905	102.529	103.207
T Nitzschia miocenica var. elonaata	U1338B-12H-2, 45	U1338B-12H-2, 120	104.555	105.305	104.426	105.104
T Thalassiosira praeconvexa	U1338B-12H-6, 45	U1338A-13H-1, 120	110,555	108.305	109.846	110.32
T Rossiella praepaleacea	U1338C-14H-3, 122	U1338C-14H-4, 47	122.025	122,775	121,725	122.403
B Thalassiosira miocenica	U1338B-14H-2, 120	U1338B-14H-3, 120	124.305	125.805	124.074	125 429
B Thalassiosira convexa	U1338B-14H-2 120	U1338B-14H-3 120	124 305	125.805	124.074	125 429
B Thalassiosira praeconvexa	U1338A-15H-3 45	U1338A-15H-3 120	129.655	130 405	130 688	131 346
T Nitzschia porteri	U1338B-16H-5 120	U1338B-16H-6 45	147 805	148 555	148.04	148 717
B Fragilarionsis miocenica	1113384-16H-6 45	U13384-17H-2 45	148 555	140.355	148 717	149.26
T Rossiella naleacea	1113384-17H-3 45	U13384-17H-4 45	148 655	150 155	150 614	151 969
T Thalassiosira hurchliana	111338A-18H-3 45	U1338A-18H-3 120	158 155	158 905	160.28	160.958
T Azneitia nodulifera var. cyclona	111338A-18H-6 45	U1338R-18H-5 45	162 655	166.055	164 345	165 800
B Eragilarionsis reinholdii	111338B-10H-2 120	111338B-10H-3 45	166 905	167 655	169 015	169 693
T Actinocyclus allinticus var igyanica	111338B-18H-5 45	U1338B-18H-5 120	166 055	166 805	165 800	166 576
B Alvaus marinus	111338B-10H-2 120	111338B-10H-3 //5	166 905	167 555	169.075	160.570
T Thalassiosira vahai	111338B-18H-5 45	U1338B-18H-5 120	166 055	166 805	165 800	166 578
B Fragilarionsis cylindrica	111338A-10H-5 45	U1338A-10H-5 120	170 655	171 405	172 403	173.08
B Aznaitia podulifara yar, cyclona		112200 10H 5 45	172 155	175 555	172.705	175.00
T Thalassiosira vahai yar, allintica	112288 10H 5 120	U1330D-1911-3, 43	176.305	177.055	175.750	176 222
T Thalassiosira temperai yar, delicata		112284 204 2 45	176.305	177.035	179.12	170.332
P. Fragilarionsis fossilis	UI336A-20H-2, IZU	UI 330A-201-3, 43	170.303	177.133	170.15	1/0.000
B Flughunopsis lossilis B Thalassiosira vahai var alliptica	UI 336A-20H-3, 43	UI 330A-20-H3, 120	176 405	100.903	170.000	102
B Thalassiosing burghling	UI336A-20H-2, IZU	UI 330A-2011-5, 43	170.403	120.005	170.15	1/0.000
B Trialassiosira Durckilaria	UI 338A-20H-3, 43	UI336A-20H-3, 120	177.155	160.905	1/0.000	102
T Actinocyclus moronensis	UI 336D-22H-0, 7U	UI336A-24H-2, 106	203.833	214.363	191.919	211.09
T Denticulopsis simonsenii	UI 338A-21H-2, 45	UI338A-21H-1, 120	185.155	185.905	187.218	187.89
T Cavitatus jouseana	UI 338B-25H-5, 45	UI 338A-26H-2, 45	232.333	232.633	233.659	240.042
T Craspeaoaiscus coscinoaiscus	UI338C-28H-1, 122	UI338C-28H-2, 47	248.025	248.775	248.266	248.943
T Actino quelus alliati accurationali	UI338C-28H-1, 122	UI 338C-28H-2, 4/	248.025	248.//5	248.266	248.943
Actinocyclus ellipticus var. spiralis	UI338C-28H-6, 4/	UI338C-28H-6, 122	254.775	255.525	254.363	255.041
B Hemidiscus cuneiformis	U1338B-28H-1, 120	U1338B-28H-4, 45	258.305	262.055	258.311	261.698
1 Actinocyclus ingens	U1338C-28H-7, 47	U1338C-29H-1, 4/	256.275	256.775	255./18	256.17
T Crucidenticula nicobarica	U1338B-33H-5, 120	U1338B-33H-6, 45	299.605	300.355	298.103	298.78
T Annellus californicus	U1338B-32H-7, 45	U1338C-33H-1, 47	292.155	292.875	291.03	291.156
B Coscinodiscus gigas var. diorama	U1338B-34H-4, 45	U1338C-35H-1, 47	306.875	307.375	305.601	306.64
T Araniscus lewisianus	U1338B-34H-1, 45	U1338B-34H-2, 45	302.355	303.865	301.518	302.882
I Thalassiosira tappanae	U1338B-35H-3, 120	U1338B-35H-4, 45	315.605	316.355	314.706	315.384
B Azpeitia nodulitera	U1338C-36H-4, 47	U1338B-36H-1, 120	321.355	321.375	320.54	320.81
B Denticulopsis simonsenii	U1338C-38H-4, 122	U1338C-38H-5, 47	341.125	341.875	340.298	340.976
T Cestodiscus peplum	U1338C-38H-2, 122	U1338C-38H-3, 47	338.125	338.875	337.588	338.266
B Actinocyclus ellipticus var. spiralis	U1338C-38H-3, 47	U1338C-38H-4, 47	338.875	340.375	338.266	339.621
B Thalassiosira tappanae	U1338C-39H-1, 122	U1338C-39H-2, 45	346.125	346.875	341.897	346.361
T Coscinodiscus blysmos	U1338C-38H-5, 122	U1338C-39H-1, 122	342.625	346.125	341.897	346.361
B Actinocyclus ingens	U1338C-40H-7, 47	U1338C-42H-4, 120	368.475	369.605	360.298	361.292
B Crucidenticula kanayae	U1338C-44H-1, 45	U1338C-44H-2, 120	387.855	390.115	371.057	388.907
T Cestodiscus peplum	U1338C-44H-5, 120	U1338C-45H-1, 120	394.675	398.105	393.026	395.894

T = top, B = bottom.

Table T4. Taxonomic list for Sites U1134 and U1338. (Continued on next page.)

Taxonomic I	ist
Taxonomic I	ısι

Actinocyclus divisus (Grunow) Hustedt
Actinocyclus ellipticus Grunow in van Heurck
Actinocyclus ellipticus var. javanica Reinhold
Actinocyclus ellipticus f. lanceolata Kolbe
Actinocyclus ellipticus var. spiralis Barron
Actinocyclus ingens Rattray
Actinocyclus moronensis Deby
Actinocyclus octonarius Ehrenberg
Actinoptychus senarius (Ehrenberg) Ehrenberg
Actinoptychus vulgaris Schumann
Alveus marinus (Grunow) Kaczmarska and Fryxell
Annellus californicus Tèmpere
Araniscus lewisianus (Greville) Komura
Asterolampra auctiloba Forti
Asterolambra marylandica (Ehrenberg) Leuduger-Fortmorel
Asterolampra vulgaris Greville
Asteromphalus arachne (Brébisson) Ralfs
Asteromphalus elegans Greville
Azpeitia africana (Janisch ex Schmidt) Fryxell and Watkins
Azpeitia bukrvi (Barron) Barron
Azpeitia neocrenulata (VanLandingham) Fryxell and Watkins
Azpeitia nodulifera (Schmidt) Fryxell and Sims
Azpeitia nodulifera f. cyclopa (Jousé) Sims
Azpeitia oligocenica (Jousé) Sims
Azpeitia praenodulifera (Barron) Sims and Fryxell
Azpeitia salisburyana (Lohman) Sims
Azpeitia tabularis (Grunow) Fryxell and Sims
Azpeitia tuberculata (Greville) Sims
Azpeitia vetustissima (Pantocsek) Sims
Bogorovia veniamini Jousé ex Yanagisawa
<i>Cavitatus jouseanus</i> (Sheshukova-Poretzkava) Williams
<i>Cavitatus miocenicus</i> (Schrader) Akiba and Yanagisawa
Cestodiscus convexus Castracane
Cestodiscus demergitus (Fenner) Fenner and Mikkelsen
Cestodiscus kulgeri Lohman
Cestodiscus peplum Brun
Cestodiscus pulchellus Greville
Cestodiscus pulchellus var maculata Kolhe
Cestodiscus robustus Iousé
Cestodiscus reticulatus Fenner
Cestodiscus trachus Castracane
Coscinadiscus hlysmos Barron
Coscinodiscus evcavatus Greville ex Balfs in Pritchard
Coscinodiscus excuvitus Orevine ex Rans in Finenard
Coscinodiscus lewisianus var robustus Barron
Coscinodiscus lewisianus var. similis Pattrav
Coscinodiscus loghlichii Barron
Coscinodiscus marginatus Ehrenherg
Coscinodiscus aculus iridus Ehrenberg
Coscinodiscus adiatus Ebrenberg
Cosinodiscus temperi var delicata Barron
Craspedodiscus harronii Bukry
Craspedodiscus coscinodiscus (Ehrenberg) Ehrenberg
Crucidenticula kanavae Akiba and Vanagisawa
Crucidenticula nicoharica (Grunow) Akiha and Vanagisawa
Crucidenticula nunctata (Schrader) Akiba and Vanagisawa
Denticulopsis simonsenii (Simonsen & Kanava) Simonsen
Denteratopsis sunonsenti (simonsent & Kanaya) simonsent

Table T4 (continued).

Taxonomic list Distephanosira architecturalis (Brun) Gleser Fragilariopsis cylindrica (Burckle) Censarek and Gersonde Fragilariopsis doliolus (Wallich) Medlin and Sims Fragilariopsis fossilis (Frengeulli) Medlin et Sims Fragilariopsis maleinterpretaria (Schrader) Censarek & Gersonde Fragilariopsis miocenica (Burckle) Censarek and Gersonde Fragilariopsis reinholdii (Kanaya ex Barron and Baldauf) Zielinski and Gersonde Hemiaulus polycystinorum (Ehrenberg) Grunow Hemidiscus cuneiformis Wallich Hyalopoda spiralis (Hajós) Kozyrenko et Jackovschikova Medaria splendida Sheshukova-Poretzkaya Nitzschia jouseae Burckle Nitzschia miocenica var. elongata Burckle Nitzschia porteri Frenguelli Nitzschia praereinholdii Schrader Paralia sulcata (Ehrenberg) Cleve Proboscia barboi (Brun) Jordan and Priddle Pseudorocella barbadensis Deflandre Pyxidicula grunowii Grove and Sturt Pyxidicula turris (Greville et Arnott) Strelnikova and Nikolajev Raphidodiscus marylandicus Christian Rhizosolenia matuyamai Burckle, Hammond and Seyb Rhizosolenia praebergonii var. robusta Burckle and Trainer Rhizosolenia styliformis Brightwell Rossiella paleacea (Grunow) Desikachary and Maheshwari *Rossiella paleacea* var. *elongata* (Barron) Desikachary Rossiella praepaleacea (Schrader) Gersonde et Schrader Skeletonemopsis barbadensis (Greville) Sims Shionodiscus oestrupii (Ostenfeld) Alverson, Kang and Theriot Thalassionema nitzschioides (Grunow) Mereschkowsky Thalassionema nitzschioides var. parva Heiden and Kolbe Thalassiosira burckliana Schrader Thalassiosira convexa var. aspinosa Schrader Thalassiosira convexa var. convexa Mukhina Thalassiosira eccentrica (Ehrenberg) Cleve emended Fryxell and Hasle Thalassiosira elliptica (Barron) Tanimura Thalassiosira fraga Schrader Thalassiosira leptopus (Grunow) Hasle and Fryxell Thalassiosira miocenica Schrader Thalassiosira nativa Sheshukova-Poretzkava Thalassiosira praeconvexa Burckle Thalassiosira praeyabei (Schrader) Akiba and Yanagisawa Thalassiosira symbolophora Schrader Thalassiosira tappanae Barron Thalassiosira temperi var. delicata Barron Thalassiosira yabei (Kanaya) Akiba and Yanagisawa Thalassiothrix longissima Cleve and Grunow Thalassiothrix robusta (Schrader) Akiba Triceratium barbadense Greville Triceratium cinnamomeum Greville Triceratium condecorum Ehrenberg

