## Site U1333<sup>1</sup>

Expedition 320/321 Scientists<sup>2</sup>

#### **Chapter contents**

| Background and objectives1              |
|-----------------------------------------|
| Science summary2                        |
| Operations5                             |
| Lithostratigraphy6                      |
| Biostratigraphy9                        |
| Paleomagnetism14                        |
| Geochemistry 16                         |
| Physical properties                     |
| Stratigraphic correlation and composite |
| section                                 |
| Downhole measurements                   |
| References                              |
| Figures                                 |
| Tables                                  |
|                                         |

<sup>2</sup>Expedition 320/321 Scientists' addresses.

## **Background and objectives**

Integrated Ocean Drilling Program (IODP) Site U1333 (10°30.996'N, 138°25.159'W, 4853 meters below sea level [mbsl]) (Fig. F1; Table T1) is located about halfway between IODP Site U1332 to the northwest and the previously cored Ocean Drilling Program (ODP) Site 1218 to the southeast, both ~350 km away. This site is situated ~440 km north of the Clipperton Fracture Zone and 570 km south of the Clarion Fracture Zone (Fig. F1). Site U1333 is over seafloor basement with a estimated age of 46 Ma.

The primary coring objective at Site U1333 was to recover a complete sequence of carbonate sediments spanning the middle Eocene to Oligocene so we can evaluate changes in the temperature and structure of the near-surface ocean, bottom water temperatures, and the evolution of the calcium carbonate compensation depth (CCD).

One of the additional objectives of the Pacific Equatorial Age Transect (PEAT) program is to provide a depth transect for several Cenozoic key horizons, such as the Eocene–Oligocene transition (Coxall et al., 2005), which is being targeted at IODP Sites U1331–U1334. Site U1333 forms the third deepest paleodepth constraint, with an estimated crustal paleodepth of <4 km and a paleolatitude ~3° north of the paleoequator during the Eocene–Oligocene transition.

Good paleomagnetic stratigraphy at ODP Leg 199 sites allowed a significantly improved calibration of nannofossil and radiolarian biostratigraphic datums (Moore et al., 2004; Raffi et al., 2005; Pälike et al., 2005, 2006; Nigrini et al., 2006). From the combined information, a more detailed picture emerged of temporal variations in sediment accumulation through the middle and upper Eocene of the tropical Pacific. These data showed an increase of up to 2–3 times in accumulation rates of siliceous ooze during the middle Eocene (41–45 Ma).

There are also several notable periods of highly fluctuating CCD associated with intervals in which carbonate is preserved as deep as 4000 mbsl, or ~700 m deeper than the average Eocene CCD (Lyle, Wilson, Janecek, et al., 2002; Lyle et al., 2005; Rea and Lyle, 2005; Bohaty et al., 2009). These fluctuations occur immediately prior to the Middle Eocene Climatic Optimum (MECO), which is associated with CCD shoaling (Bohaty and Zachos, 2003; Bohaty et al., 2009). Such fluctuations in the CCD are similar in magnitude to those at the Eocene/Oligocene boundary (Coxall et al.,



<sup>&</sup>lt;sup>1</sup>Expedition 320/321 Scientists, 2010. Site U1333. *In* Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, *Proc. IODP*, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.320321.105.2010

2005). High siliceous sedimentation rates occur near an apparent short reversal in the middle Eocene cooling interval. It is difficult to interpret the cause of such a substantial change in silica flux during a very warm climatic regime.

Site U1333 is located in abyssal hill topography north of the Clipperton Fracture Zone (Fig. **F1B**), with a general deepening of the seafloor toward the north. Bathymetric relief across the abyssal hills is ~75–150 m, and sediment thickness is ~200 ms twoway traveltime (TWT), which coring determined to correspond to ~180 m of sediment.

The 48-channel stacked and migrated seismic reflection data (e.g., seismic Line PEAT-3C-sl-3 in Pälike et al., 2008) (Lyle et al., 2006) reveal a region where the sediment column that had been deposited is eroding away. Outcropping older horizons are common along seismic Line 1 and at the northern ends of the cross-lines. Site survey piston Core RR0603-09JC suggested that the surface sediments are composed of ~4 m of zeolitic clay and then 2 m of radiolarian clay overlying early Miocene carbonates. The carbonate section of the piston core consists of nannofossil ooze and radiolarian nannofossil ooze in meter-scale cycles. The base of the core is ~21 Ma based upon the combined radiolarian and nannofossil stratigraphy, with an average sedimentation rate of 7 m/m.y. for the cored section. We drilled Site U1333 slightly west of the intersection between seismic Lines 3 and 8 to maximize the thickness of the deeper section. The crossing point of the seismic lines was just south of a minor basement hill, and the drill site is a relatively small target, ~720 m across. The low amplitudes of the seismic reflections suggest that the sediment is not lithified, fitting in with the shallow depth to basement. An interpretation of the site survey seismic data (Fig. F2) indicated that Site U1333 might penetrate seismic reflectors P2 and P3 of Lyle et al. (2002), with P4 near the sediment surface.

We positioned Site U1333 and the other PEAT sites to the south of the estimated paleoequatorial position at a target age that would maximize the time that drill sites remain within the equatorial zone (i.e.,  $\pm 2^{\circ}$  of the equator). This allows for some southward bias of the equatorial sediment mound relative to the hotspot frame of reference (Knappenberger, 2000) and places the sediment interval of maximum interest above the basal hydrothermally altered sediments. To determine the site location, we used the digital age grid of seafloor ages from Müller et al. (1997), heavily modified and improved with additional magnetic anomaly picks from Petronotis (1991) and Petronotis et al. (1994), as well as Deep Sea Drilling Project (DSDP)/ODP basement ages. For this grid, each point is then backrotated in time to zero age, using the fixed-hotspot stage-poles from Koppers et al. (2001) and Engebretson et al. (1985) and the paleopole data from Sager and Pringle (1988). From the backtracked latitudes for each grid point we then obtained the paleoequator at the crustal age by contouring all backrotated latitudinal positions.

### Science summary

Three holes were cored at Site U1333 (10°30.996'N, 138°25.159'W; 4853 mbsl) (Fig. F1; Table T1). At Site U1333, seafloor basalt is overlain by ~183 m of pelagic sediment, dominated by nannofossil and radiolarian ooze with varying amounts of clay (Fig. F3). The oldest sediment is of early middle Eocene age.

In Hole U1333A, advanced piston corer (APC)-cored sediments were recovered from ~3 m below the mudline (~4850 mbsl) to 95 m core depth below seafloor (CSF) (Core 320-U1333A-10H). Extended core barrel (XCB) coring advanced to 184.1 m drilling depth below seafloor (DSF) through an ~60 m thick sequence of lowermost Oligocene carbonate oozes and nannofossil-bearing Eocene sediments. Near the basal section, we recovered a 30 cm long interval of lithified carbonate in Core 320-U1333A-20X. The following Core 21X contained a limestone basalt breccia. A 6 cm piece of basalt was recovered in Core 320-U1333A-22X.

Coring in Hole U1333B started 5 m shallower than in Hole U1333A to recover the mudline and to span the core gaps from the first hole. A total of 7.73 m of carbonate-bearing ooze overlain by a few meters of clay were recovered in Core 320-U1333B-1H. Although the cores recovered from Hole U1333A showed significant porcellanite layers, we used the APC drillover strategy in Hole U1333B to obtain APC cores across and below the Eocene–Oligocene transition to 162.7 m CSF. We then XCB cored to basement and a total depth of 180.3 m CSF.

Hole U1333C was designed to provide stratigraphic overlap and confirm stratigraphic correlations made between Holes U1333A and U1333B. APC coring in Hole U1333C started 2.75 m shallower than in Hole U1333B and reached 163.2 m CSF before we had to switch to XCB coring. No downhole logging was conducted at Site U1333.

The sediment column at Site U1333 has a strong resemblance to that of Site 1218 (Lyle, Wilson, Janecek, et al., 2002) but with notably more carbonatebearing sediments in the Eocene portion. The ~183 m of pelagic sediments has been divided into four major lithologic units (Fig. F4; Table T2). Unit I is ~7 m thick and contains an alternating sequence of clay,



clayey radiolarian ooze, radiolarian clay, clayey nannofossil ooze, and nannofossil ooze of early Miocene age. Unit II is ~112 m thick and composed of alternating very pale brown nannofossil ooze and yellowish brown nannofossil ooze with radiolarians of early Miocene to latest Eocene age. Unit III is ~60 m thick and composed of Eocene biogenic sediments comprising clayey nannofossil ooze, nannofossil radiolarian ooze, nannofossil ooze, radiolarian nannofossil ooze, and porcellanite of latest Eocene to middle Eocene age (Unit III). Unit III is divided into two subunits, based on the absence (Subunit IIIa) or presence (Subunit IIIb) of porcellanite, which occurs between ~168 and 174 m CSF. Unit IV is a thin unit (~3.3 m) of lithified carbonate (partly limestone) and nannofossil ooze, overlying basalt (Unit V).

All major microfossil groups were found in sediments from Site U1333 and provide a consistent, coherent, and high-resolution biostratigraphic succession from basement to the top of lithologic Unit II. Shipboard biostratigraphy indicates that sediments recovered at Site U1333 span a near-continuous succession from around the lower Miocene boundary to the middle Eocene. Radiolarians are common and well preserved in the Eocene succession but less well preserved in the Oligocene sediments. A complete sequence of radiolarian zones from RN2 to RP14 (middle Eocene) was described. Initial assessment of the radiolarian assemblages across the Eocene/Oligocene boundary interval indicates a significant loss of diversity through this apparently complete succession. Although a few species from the Eocene carry through to the Oligocene, only one stratigraphic marker species (Lithocyclia angusta) first appears near the Eocene/Oligocene boundary. Calcareous nannofossils are present and moderately to well preserved through most of the succession, although there are some short barren intervals in the middle to upper Eocene. The succession spans a complete sequence of nannofossil zones from lower Miocene Zone NN1 to middle Eocene Zone NP15. The Oligocene/Miocene boundary is bracketed by the base of Sphenolithus disbelemnos in Sample 320-U1333A-2H-5, 70 cm (16.20 m CSF), and the presence of rare *Sphenolithus delphix* in Sample 320-U1332A-2H-CC (9.57 m CSF). Discoasters are very rare in basal assemblages, indicative of a eutrophic environment and consistent with the paleolatitude of this site in the early middle Eocene within the equatorial upwelling zone. Planktonic foraminifers are relatively abundant and well preserved from the lowest part of the Miocene to the lower Oligocene. Oligocene fauna is characterized by the common presence of Catapsydrax spp., Dentoglobigerina spp., and Paragloborotalia spp. In contrast, upper Eocene sediments contain poorly preserved

specimens or are barren of planktonic foraminifers. Preservation and abundance slightly increased in some intervals of the middle Eocene, which is recognized by the presence of acarininids and clavigerinellids. The absence of the genera Globigerinatheka and Moro*zovella* makes precise age determination of individual samples problematic. High abundances of Claviger*inella* spp. have been linked to high-productivity environments, consistent with the paleogeographic location of this site (Coxall et al., 2007). Benthic foraminifers were almost continuously present and indicate lower bathyal to abyssal depths. Oligocene fauna is characterized by calcareous hyaline forms, such as Nuttallides umbonifer, Oridorsalis umbonatus, and Cibicidoides mundulus. Nuttallides truempyi and O. umbonatus often dominate the Eocene fauna. Benthic foraminifers are present through most of the section apart from an interval in the middle Eocene equivalent to radiolarian Zone RP16. They indicate lower bathyal to abyssal paleodepths.

Sedimentation rates at Site U1333 are ~5 m/m.y. in the middle Eocene section (~39–45 Ma), and ~4 m/m.y. between the early late Eocene and the early Oligocene (~31 Ma). In the early Oligocene, sedimentation rates increase to ~12 m/m.y. and then reach ~6 m/m.y. from the late Oligocene to the early Miocene in the upper sediment column.

Paleomagnetic results from measurements made along split-core sections and on discrete samples from Site U1333 provide a well-resolved magnetostratigraphy. Shipboard analyses suggest that a useful magnetic signal is preserved in most APC-cored intervals after removal of the drilling-induced overprint by partial alternating-field (AF) demagnetization at 20 mT. The overprint was nearly absent in those cores collected in nonmagnetic core barrels at Site U1333, whereas it was guite prominent for cores recovered in standard steel core barrels. Paleomagnetic directions from discrete samples agree well with those from split cores, confirming that AF demagnetization at 20 mT is generally sufficient to resolve the primary paleomagnetic direction regardless of which type of core barrel was used. Cleaned paleomagnetic data provide a series of distinct ~180° alternations in declination and subtle changes in inclination, which, when combined with biostratigraphic age constraints, allow a continuous magnetostratigraphy to be constructed that correlates well with the geomagnetic polarity timescale. The magnetostratigraphic record extends from the base of Chron C6n (19.722 Ma) at 1.7 m CSF in Hole U1333C to the top of Chron C20r (43.789 Ma) at 161.6 m CSF in Hole U1333C. Highlights include very high quality paleomagnetic data across Chrons C13r and C13n, which span the latest Eocene and earliest



Oligocene, and a newly recognized cryptochron within Chron 18n.1n.

Geochemistry results indicate that samples from the upper part of Site U1333 have modest CaCO<sub>3</sub> contents of 26-69 wt% between 0 and 4 m and have frequent variations between 58 wt% and up to 93 wt% in the interval between 4 and 35 m CSF. Calcium carbonate contents are consistently high (75.5–96 wt%) from 35 to 111 m CSF, whereas in the Eocene (between 111 and 171 m CSF) CaCO<sub>3</sub> contents vary abruptly between <1 and 74 wt%. The lowermost lithified carbonate rocks between 173 and 180 m CSF have high CaCO<sub>3</sub> contents between 76 and 90 wt%. TOC content, as determined by the acidification method, is generally very low. Pore water alkalinity values are never elevated, but alkalinity and dissolved strontium values are somewhat higher near the Eocene-Oligocene transition; these are generally consistent with carbonate dissolution or recrystallization processes. Dissolved silica increases with depth, with values always  $<1000 \mu$ M.

A full physical property program was run on cores from Holes U1333A–U1333C comprising Whole-Round Multisensor Logger (WRMSL) measurements of magnetic susceptibility, bulk density, and *P*-wave velocity; natural gamma radiation (NGR); and measurements of color reflectance, followed by discrete measurements of moisture and density properties, sound velocities, and thermal conductivity on Hole U1333A cores only. All track data show variability throughout the section, allowing a detailed correlation among holes primarily using magnetic susceptibility and density (magnetic susceptibility varies around  $24 \times 10^{-5}$  SI in radiolarian ooze-dominated sections and  $\sim 3 \times 10^{-5}$  SI in more carbonate rich intervals). Magnetic susceptibility values gradually increase uphole. NGR measurements are elevated by an order of magnitude in the uppermost clays and increase near the lower Oligocene at ~115 m CSF (from 5 to 8 counts per second [cps]). P-wave velocity gradually increases downhole as we move from carbonate- to radiolarian-dominated successions. Pwave velocity generally varies between 1490 and 1560 m/s depending on lithology, with lower velocities corresponding more to carbonate-rich sections. Bulk density and grain density show a marked decrease at ~112 m CSF (~1.70 to 1.31 g/cm<sup>3</sup> in bulk density), where carbonate content decreases rapidly. Porosity values are generally high in the radiolarian-rich sediments (80%) and decrease in the carbonate-rich section (~60%). Thermal conductivity measurements are increased in carbonate-rich intervals and range from  $\sim 0.8 \text{ W/(m \cdot K)}$  in lithologic Unit I to  $1.2-1.3 \text{ W}/(\text{m}\cdot\text{K})$  in lithologic Unit II.

Stratigraphic correlation indicated that a complete section was recovered to ~130 m CSF in the upper Eocene, equivalent to a composite depth of ~150 m CCSF-A (see "Core composite depth scale" in the "Methods" chapter). For Site U1333, a growth factor of 15% is estimated from the ratio between the CCSF-A and CSF (formerly meters composite depth [mcd] and meters below seafloor [mbsf]) depth scales. Stratigraphic correlation with Site 1218 suggests a complete stratigraphic section in the Oligocene to uppermost Eocene interval.

Five formation temperature measurements were conducted in Hole U1333B with the advanced piston corer temperature tool (APCT-3). These temperature measurements, when combined with thermal conductivity values obtained from the cores, indicate that Site U1333 has a heat flow of 42.3 mW/m<sup>2</sup> and a thermal gradient of 37.9°C/km.

#### Highlights

## High carbonate fluctuations in middle Eocene sediments

Coring at Site U1333 was designed to capture a time interval when the CCD was slightly deeper within the middle Eocene interval that showed prominent fluctuations of carbonate content (Lyle et al., 2005). This interval occurs during the cooling that took place after the Early Eocene Climatic Optimum (EECO) (Zachos et al., 2001) and before the Eocene– Oligocene transition (e.g., Coxall et al., 2005). Unlike Site 1218, Site U1333 sediments show carbonate contents >75 wt% in this interval at a deeper water depth and apparently coeval with the CCD cycles described by Lyle et al. (2005). Basal lithologic Unit IV recovered partially lithified carbonates.

#### MECO, Eocene–Oligocene and Oligocene– Miocene transitions, and depth transects

Site U1333 forms the third oldest and deepest component of the PEAT depth transect component and can be directly compared with Site 1218, which will allow the study of critical intervals (such as the Eocene–Oligocene transition; see Coxall et al., 2005) and variations of the equatorial CCD. Site U1333 is estimated to have been ~3.8 km deep during the Eocene–Oligocene transition, ~1 km shallower than today and 200 m shallower at that time than Site U1332. Carbonate content in these sediments does not change as rapidly as at the deeper and older Sites U1332 and U1333. Some of these sediments appear to be Eocene-Oligocene transition sediments that are suitable for paleoceanographic studies using carbonate-based geochemical proxies and thus are an improvement over Site 1218. Of note, Site U1333



also contains high carbonate content-bearing sediments around the MECO event (Bohaty and Zachos, 2003; Bohaty et al., 2009), allowing a detailed study of the sequence of events linking carbonate preservation cycles (Lyle et al., 2005) with climatic oscillations.

Carbonate-bearing sediments across the Oligocene– Miocene transition were also recovered at Site U1333, adding important data to the study of this time interval in the context of the PEAT Oligocene/ Miocene depth transect.

#### Age transect of seafloor basalt

At Site U1333 we recovered what appear to be fresh fragments of seafloor basalt overlain by sediments aged 45 to 46 Ma as estimated from biostratigraphic results. This material will, when combined with other PEAT basalt samples, provide important sample material for the study of seawater alteration of basalt.

## **Operations**

Unless otherwise noted, times are local ship time, which was Hawaii Standard Time (UTC – 10 h) for Site U1333.

#### Transit to Site U1333

The 176 nmi voyage to Site U1333 took 18.3 h and was accomplished at an average speed of 9.6 kt. The journey required a little more than the allotted time because the speed was adversely affected by having to sail into a 22–26 kt wind and a strong current.

#### Site U1333

#### Hole U1333A

At 1400 h on 30 March 2009, the vessel began positioning over the site in dynamic positioning (DP) mode. Once the drilling assembly was deployed, the driller carefully lowered the bit and tagged the seafloor at ~4875 m drilling depth below rig floor (DRF). The bit was raised 10 m, and Hole U1333A was spudded at 1225 h on 31 March. The seafloor depth calculated from the recovery of the first core was 4865.0 m DRF (4853.7 mbsl) (Table T1); however, this depth measurement is questionable because the recovery was a full core (10.05 m).

APC Cores 320-U1333C-1H through 10H were taken from 0 to 95.0 m DSF, and we recovered 104 m (109%) (Table T1). We switched to XCB coring after the core barrel for Core 10H had to be drilled over to free the fully stroked core barrel from the sediment. All APC cores were obtained with nonmagnetic core barrels; the FlexIt orientation tool was not deployed since there were questions about its data reliability.

XCB Cores 11X through 22X penetrated from 95.0 to 184.1 m DSF, and we recovered 77.0 m (87%). Coring ended when we recovered basalt in Core 22X. The drill string was pulled out of the hole and cleared the seafloor at 1155 h on 1 April.

#### Hole U1333B

The vessel was offset 25 m east of Hole U1333A, and APC coring in Hole U1333B started at 1305 h on 1 April with the bit 5 m shallower than the first hole. We recovered 7.7 m in Core 1H, so the seafloor was established at 4861.8 DRF (4850.5 mbsl).

Based on drilling and coring data from the first hole, the drillers were confident that by drilling over stuck core barrels, the APC could safely be pushed deeper than the 95.0 m penetration that was realized in the first hole. This confidence was justified when APC Cores 1H through 18H were advanced to 162.7 m DSF and we recovered 166.4 m (102%). Nonmagnetic core barrels were used on Cores 1H through 9H, and standard steel core barrels were deployed on all subsequent piston cores. Formation temperature measurements were made with the APCT-3 tool at 26.7, 45.7, 64.7, and 83.7 m DSF (Cores 3H, 5H, 7H, and 9H, respectively). The FlexIt orientation tool was not used. Three stuck core barrels (Cores 13H, 16H, and 17H) required drilling over when they could not be released from the sediment despite 70,000 lb of overpull. Core 18H failed to achieve a full stroke of the core barrel, and no further APC coring was conducted.

Two XCB cores advanced the hole from 162.7 to the final depth of 180.3 m DSF, and we recovered 13.44 m (76%). Coring ended when we recovered basalt in Core 20X. The drill string was pulled out of the hole and cleared the seafloor at 1845 h on 2 April.

#### Hole U1333C

Hole U1333C was started 25 m east of and 2.75 m shallower than Hole U1333B. Core 320-U1333C-1H was shot at 2000 h on 2 April and we recovered 1.65 m, so the water depth for this hole is 4865.1 m DRF (4853.8 mbsl).

Cores 1H through 21H penetrated from 0 to 163.2 m DSF, and we recovered 176.1 m (108%). Seven core barrels (Cores 13H through 19H) required drilling over to release the barrels from the sediment when the application of 70,000 lb of overpull was not successful. Nonmagnetic core barrels were used on Cores 1H through 13H. Standard steel core barrels were used on all subsequent APC cores. The advancement of four cores was adjusted to maintain the



overlap with previous holes: Cores 11H (6.0 m advance), 12H (5.0 m advance), 16H (4.5 m advance), and 19H (4.0 m advance). All other cores advanced the full 9.5 m except for Core 21H, which did not penetrate into the formation at all. We subsequently switched to XCB coring.

XCB Cores 22X through 24X penetrated from 163.0 to 177.0 m DSF, and we recovered 0.87 m (6%). Coring in this hole ended when we recovered basaltic basement in the last core.

Once the seafloor beacon was recovered on board, the drill string recovered on the rig floor, the thrusters raised, and the drilling equipment secured, the vessel departed for the Site U1334 at 1815 h on 4 April.

## Lithostratigraphy

At Site U1333, Eocene seafloor basalt is overlain by ~183 m of pelagic sediments that are divided into four major lithologic units (Fig. F4). Lithostratigraphic Unit I is ~7 m thick and contains an alternating sequence of clay, clayey radiolarian ooze, radiolarian clay, clayey nannofossil ooze, and nannofossil ooze of early Miocene age (see "Biostratigraphy" and "Paleomagnetism"). These sediments overlie ~112 m of alternating very pale brown nannofossil ooze and vellowish brown nannofossil ooze with radiolarians of early Miocene to latest Eocene age (Unit II). Unit III consists of ~60 m of clayey radiolarian ooze and clayey nannofossil ooze, nannofossil radiolarian ooze, nannofossil ooze, radiolarian nannofossil ooze, and porcellanite of latest Eocene to middle Eocene age. Unit III is divided into two subunits (IIIa and IIIb) based on the occurrence of porcellanite (Subunit IIIb only). At the base of Hole U1333A a thin (~3.3 m thick) unit of nannofossil ooze and foraminifer-bearing limestone (Unit IV) overlies basalt of middle Eocene age (Unit V). Lithologic unit and subunit boundaries are also defined by differences in physical property data series. Lithologic differences, based on visual core descriptions and smear slide and thin section analysis (Table T2; Fig. F4; see "Site U1333 smear slides" in "Core descriptions"), are primarily attributable to varying distributions of biogenic components (e.g., nannofossils and radiolarians) and clay-sized lithogenic material. Lithologic descriptions are largely based on sediments recovered in Hole U1333A, supplemented with observations from Holes U1333B and U1333C.

#### Unit I

Intervals: 320-U1333A-1H-1, 0 cm, through 1H-3, 135 cm; 320-U1333B-1H-1, 0 cm, through at

least 1H-CC, 18 cm (base not recovered); 320-U1333C-1H-1, 0 cm, through 2H-3, 40 cm

Depths: Hole U1333A = 0.0–4.35 m CSF; Hole U1333B = 0.0–7.66 m CSF; Hole U1333C = 0.0– 5.00 m CSF

Age: early Miocene

Lithology: clay, clayey radiolarian ooze, radiolarian clay, clayey nannofossil ooze, and nannofossil ooze

The major lithologies in Unit I are dark brown (10YR 3/3) clay, dark brown (10YR 3/3) clayey radiolarian ooze, dark yellowish brown (10YR 4/4) radiolarian clay, dark brown (10YR 3/3) clayey nannofossil ooze, and very pale brown (10YR 7/3) to light yellowish brown (10YR 6/4) nannofossil ooze. Sometimes clay occurs with nannofossils and radiolarians, whereas both clayey radiolarian ooze and radiolarian clay occur with nannofossils. Both clayey nannofossil ooze and nannofossil ooze occur with radiolarians and clay. Unit I is characterized by a downhole alternation of dark brown clayey radiolarian ooze with nannofossils and very pale brown nannofossil ooze. Bioturbation intensity is minor in these sediments. Typically, Unit I is marked by higher magnetic susceptibility values, lower gamma ray attenuation (GRA) bulk densities, lower L\* reflectance (lightness), and lower CaCO<sub>3</sub> content than Unit II (Fig. F4; see "Physical properties" and "Geochemistry"). The boundary between Unit I and underlying Unit II is defined by a downhole transition in lithology to an absence of clay as a major component.

#### Unit II

- Intervals: 320-U1333A-1H-3, 135 cm, through 13X-4, 150 cm; 320-U1333B-3H-CC, 18 cm, through 13H-6, 55 cm; 320-U1333C-2H-3, 40 cm, through at least 14H-CC, 22 cm (base not recovered)
- Depths: Hole U1333A = 4.35–116.30 m CSF; Hole U1333B = 7.66–120.25 m CSF; Hole U1333C = 5.00–117.57 m CSF

Age: early Miocene to late Eocene Lithology: nannofossil ooze

Unit II is dominated by white (10YR 8/1) to very pale brown (10YR 7/3 and 10YR 8/2) to light yellowish brown (10YR 6/4) and yellowish brown (10YR 5/4) nannofossil ooze. Within the major lithology, alternations of predominantly very pale brown (10YR 8/2 to 10YR 7/4) nannofossil ooze and yellowish brown (10YR 5/4) nannofossil ooze with radiolarians occur in the uppermost part of the sequence (Cores 320-U1333A-2H through 4H). These sediments are deposited immediately above an alternating sequence of white (10YR 8/1), light gray (10YR 7/2), and very pale brown (10YR 7/3) nannofossil ooze (Cores 320-



U1333A-4H through 13H). At the base of Unit II, white nannofossil ooze shows increasing alternation with very pale brown (10YR 8/2) nannofossil ooze with diatoms and with very pale brown (10YR 7/4) nannofossil ooze with diatoms and radiolarians. Bioturbation intensity is typically minor to nonvisible within Unit II. Baseline magnetic susceptibility values are generally low in Unit II with greatest amplitude of variability in the uppermost part (Cores 320-U1333A-2H through 4H). GRA bulk density, L\*, and CaCO<sub>3</sub> values are all high in Unit II relative to Unit I with significant variations in the uppermost part (Fig. F4; see "Physical properties"). The pronounced variability of physical property data in these sediments occurs in association with alternations of very pale brown (10YR 7/4) nannofossil ooze and yellowish brown (10YR 5/4) nannofossil ooze with radiolarians. Pumice clasts (0.5-2 cm) are occasionally found in Unit II. Thin section analysis indicates fine volcanic glass (shards typically 10-500 µm in diameter) with vesicules and plagioclase as a minor component (crystal size =  $50-100 \mu m$  in diameter; Sample 320-U1333A-3H-6, 148–149 cm) (Fig. F5; see "Site U1333 smear slides" in "Core descriptions"). Pumice clast margins and some vesicules and pores are filled with nannofossil ooze. The boundary between Unit II and underlying Unit III is defined by the occurrence of clay as major component in the lithology in Unit III.

#### Unit III

- Intervals: 320-U1333A-13X-4, 150 cm, through 20X-2, 82 cm; 320-U1333B-13H-6, 55 cm, through at least 20X-CC, 0 cm (boundary not recovered); 320-U1333C-14H-CC, 22 cm, through at least 23X-CC, 7 cm (boundary not recovered)
- Depths: Hole U1333A = 116.30–179.92 m CSF; Hole U1333B = 120.25–178.17 m CSF; Hole U1333C = 117.57–172.87 m CSF

Age: late Eocene to middle Eocene

Lithology: clayey radiolarian ooze, clayey nannofossil ooze, nannofossil radiolarian ooze, nannofossil ooze, radiolarian nannofossil ooze, radiolarian ooze, nannofossil ooze, and porcellanite

The major lithologies in Unit III are dark yellowish brown (10YR 4/4) to very dark grayish brown (10YR 3/2) clayey radiolarian ooze, dark brown (10YR 3/3) clayey nannofossil ooze, very pale brown (10YR 7/3) to brown (10YR 5/3) nannofossil ooze, dark brown (10YR 3/3) nannofossil radiolarian ooze, grayish brown (10YR 5/2) to light yellowish brown (10YR 6/4) nannofossil ooze, pale brown (10YR 6/3) to brown (10YR 4/3 and 10YR 5/3) to yellowish brown (10YR 5/4) radiolarian nannofossil ooze, and brown (10YR 4/3) to dark brown (10YR 3/3) radiolarian ooze and porcellanite. In general, downhole changes in physical properties (magnetic susceptibility, GRA bulk density, and L\*) correspond to changes in  $CaCO_3$  content within Unit III (see Fig. F4). The Subunit IIIa/IIIb boundary is defined by the uppermost occurrence of porcellanite. The Unit III/IV boundary is defined by the uppermost occurrence of nannofossil ooze and limestone.

#### Subunit IIIa

- Intervals: 320-U1333A-13X-4, 150 cm, through 19X-1, 10 cm; 320-U1333B-13H-6, 55 cm, through at least 18H-CC, 22 cm (boundary not recovered); 320-U1333C-14H-CC, 22 cm, through at least 22X-CC, 9 cm (boundary not recovered)
- Depths: Hole U1333A = 116.30–168.10 m CSF; Hole U1333B = 120.25–162.94 m CSF; Hole U1333C = 117.57–163.29 m CSF

Age: late Eocene to middle Eocene

Lithology: clayey radiolarian ooze, nannofossil radiolarian ooze, radiolarian nannofossil ooze, radiolarian ooze, and nannofossil ooze

Subunit IIIa is distinguished from Subunit IIIb by the absence of porcellanite in Subunit IIIa. The major lithologies in Subunit IIIa are dark yellowish brown (10YR 4/4) to very dark gravish brown (10YR 3/2)clayey radiolarian ooze, very pale brown (10YR 7/3) to light yellowish brown (10YR 6/4) and brown (10YR 5/3) to gravish brown (10YR 5/2) nannofossil ooze, dark brown (10YR 3/3) nannofossil radiolarian ooze, pale brown (10YR 6/3) to brown (10YR 4/3 and 10YR 5/3) to yellowish brown (10YR 5/4) radiolarian nannofossil ooze, and brown (10YR 4/3) to dark brown (10YR 3/3) radiolarian ooze. Sometimes clayey radiolarian ooze occurs with nannofossils, nannofossil radiolarian ooze and radiolarian nannofossil ooze occur with clay, radiolarian ooze occurs with clay and nannofossils, and nannofossil ooze occurs with diatoms and radiolarians. On a decimeter to meter scale, three types of alternations are common:

- 1. Brown to pale brown radiolarian nannofossil ooze and brown to dark brown nannofossil radiolarian ooze,
- 2. Very dark grayish brown clayey radiolarian ooze and yellowish brown nannofossil radiolarian ooze, and
- 3. Very dark grayish brown clayey radiolarian ooze and brown clayey radiolarian ooze.

Bioturbation is moderate to intense in these sediments. GRA bulk density, L\*, and CaCO<sub>3</sub> content show high-amplitude variations, with lowest values in Sections 320-U1333A-15X-4 through 16X-5 (Fig. F4; see "Physical properties"). Generally, magnetic



susceptibility values in Subunit IIIa are  $\sim 30 \times 10^{-5}$  SI higher than in Unit II (Fig. F4; see "Physical properties"). Microfaults occur in intervals 320-U1333A-18X-4, 80–87 cm, and 320-U1333B-18H-3, 26–28 cm, within stiff light yellowish brown (10YR 6/4) nannofossil ooze with radiolarians and dark yellowish brown (10YR 4/4) clayey radiolarian ooze. The boundary to underlying Subunit IIIb is defined by the uppermost occurrence of porcellanite.

#### Subunit IIIb

- Intervals: 320-U1333A-19X-1, 10 cm, through 20X-2, 82 cm; 320-U1333B-19X-1, 0 cm, through at least 20X-CC, 0 cm (boundary not recovered); 320-U1333C-22X-CC, 9 cm, through at least 23X-CC, 7 cm (boundary not recovered)
- Depths: Hole U1333A = 168.10–179.92 m CSF; Hole U1333B = 162.7–178.17 m CSF; Hole U1333C = 163.29–172.87 m CSF

Age: middle Eocene

Lithology: nannofossil ooze, radiolarian ooze, clayey nannofossil ooze, clayey radiolarian ooze, and porcellanite

Subunit IIIb is distinguished from Subunit IIa by the presence of porcellanite. The dominant lithologies in Subunit IIIb are yellowish brown (10YR 5/4) to brown (10YR 4/3) nannofossil ooze, dark brown (10YR 3/3) clayey nannofossil ooze, brown (10YR 3/3) radiolarian ooze, and brown porcellanite. Sometimes nannofossil ooze occurs with clay and radiolarians, radiolarian ooze occurs with clay, and clayey radiolarian ooze occurs with nannofossils. Bioturbation intensity in these sediments is minor. GRA bulk density, L\*, CaCO<sub>3</sub> content, and magnetic susceptibility all increase downhole across the Subunit IIIb/Unit IV boundary. The boundary between Unit III and underlying Unit IV is defined by the uppermost occurrence of nannofossil ooze and limestone.

#### Unit IV

Intervals: 320-U1333A-20X-2, 82 cm, through at least 21X-CC, 0 cm (boundary not recovered); 320-U1333B-20X-CC, 0 cm, through at least 20X-CC, 17 cm (boundary not recovered); 320-U1333C-23X-CC, 7 cm, through at least 24X-CC, 16 cm (boundary not recovered)

Depths: Hole U1333A = 179.92–181.60 CSF; Hole U1333B = 178.17–178.34 CSF; Hole U1333C = 172.87–176.16 m CSF

Age: middle Eocene

Lithology: nannofossil ooze, limestone

The dominant lithology in Unit IV is white (10YR 8/1) to light gray (10YR 7/2) limestone with green flecks and very pale brown (10YR 7/4 and 10YR 8/2)

nannofossil ooze. A small basalt fragment in Sample 320-U1333A-21X-CC, 2–5 cm, is found above an 11 cm thick white limestone with green flecks. GRA bulk density, L\*, and  $CaCO_3$  content are marked by lower values compared to Subunit IIIb (Fig. F4; see "Physical properties").

#### Unit V

- Intervals: 320-U1333A-21X-CC, 0 cm, through at least 22X-CC, 5 cm (boundary not recovered); 320-U1333B-20X-CC, 17 cm, through at least 20X-CC, 40 cm (boundary not recovered); 320-U1333C-24X-CC, 16 cm, through at least 24X-CC, 38 cm (boundary not recovered)
- Depths: Hole U1333A = 181.60–182.65 CSF; Hole U1333B = 178.34–178.57 m CSF; Hole U1333C = 176.16–176.38 m CSF

Age: middle Eocene

Lithology: basalt and breccia of limestone and basalt

Fine-grained fresh basalt fragments were recovered at the base of each hole drilled at Site U1333. A breccia of limestone and basalt was recovered in Section 320-U1333A-21X-CC.

# Sediments across the Oligocene–Miocene transition

A complete record of the Oligocene-Miocene transition was recovered at Site U1333 (Fig. F6). In Hole U1333B the Oligocene-Miocene transition is captured in a single core (Core 320-U1333B-3H). The Oligocene/Miocene boundary is defined by the first occurrence of planktonic foraminifer Paragloborotalia kugleri (see "Biostratigraphy"). Both this datum and the last occurrence of the nannofossil datum S. delphix are observed in Core 320-U1333A-2H (see "Biostratigraphy"). The sediments across the Oligocene-Miocene transition at Site U1333 are marked by an alternating sequence of very pale brown (10YR 8/3 to 10YR 7/3) nannofossil ooze and yellowish brown (10YR 5/4) nannofossil ooze with radiolarians to brown (10YR 4/3) radiolarian nannofossil ooze with clay (Figs. F4, F6; see "Site U1333 smear slides" in "Core descriptions"). Holes U1333B and U1333C are marked by correlative variations of magnetic susceptibility (see "Physical properties;" Figs. F4, F6). An excellent magnetostratigraphy is available for Site U1333 (Fig. F6; see "Magnetostratigraphy"). In Hole U1333B the Oligocene-Miocene transition corresponds to magnetic Subchrons C6Cn.2n to C6Cn.3n. Section 320-U1333A-2H-5 is characterized by an interval of drilling disturbance (flow-in), obscuring the magnetic susceptibility signal.



# Sediments across the Eocene–Oligocene transition

An Eocene–Oligocene transition was recovered in all three holes drilled at Site U1333 (Figs. F4, F7). The absence of the planktonic foraminifer biostratigraphic marker (*Hantkenina*) means that the Eocene/ Oligocene boundary cannot be formally identified at Site U1333 (see "Biostratigraphy"). Radiolarian and nannofossil bio- and magnetostratigraphy provide excellent age control, however, indicating that the Eocene/Oligocene boundary falls between the base of Chron 13n and the Biozone RP20/RP19 boundary (within Cores 320-U1333C-14H and 320-U1333B-13H and between Cores 320-U1333A-12X and 13X) (Fig. F7).

The lithostratigraphy of the Eocene-Oligocene transition is well captured in all three holes at Site U1333, and in Holes U1333B and U1333C it falls within a single APC core. In Core 320-U1333B-13H a downhole transition takes place from white (10YR 8/1) to very pale brown (10YR 7/3) nannofossil ooze to alternations of very pale brown (10YR 7/4) nannofossil ooze with radiolarians (and between 5% and 10% diatoms) and yellowish brown (10YR 5/4) radiolarian ooze and finally to alternations of brown (10YR 5/3) radiolarian nannofossil ooze with clay and (10YR 4/2) dark gravish brown clayey radiolarian ooze (Figs. F5, F7). Thus, the Eocene–Oligocene transition is marked by a distinct stepwise color change from very pale brown nannofossil ooze to alternations of darker radiolarian nannofossil ooze and clayey radiolarian ooze. Associated pronounced downhole stepwise increases occur in magnetic susceptibility, a\*, and b\*, together with pronounced downhole decreases in GRA bulk density, L\*, and CaCO<sub>3</sub> content (see "Physical properties;" Figs. F4, F7). These lithostratigraphic results for the Eocene– Oligocene transition at Site U1333 are broadly consistent with those obtained from Sites U1331 and U1332 and multiple sites drilled during ODP Leg 199, in particular with those of Site 1218 (Shipboard Scientific Party, 2002a, 2002b).

#### **Porcellanite layers**

Multiple distinct dark brown (10YR 3/3) to dark yellowish brown (10YR 4/4) porcellanite intervals occur in Subunit IIIb in all holes at Site U1333 interbedded with nannofossil ooze of Eocene age (calcareous nannofossil Zone NP15) (Figs. F4, F8; see "Site U1333 smear slides" in "Core descriptions"). Five porcellanite layers occur in Sections 320-U1333A-19X-4 (173.60–173.91 m CSF) and 320-U1333B-19X-1 (162.70–163.73 m CSF) with a typical thickness of 3 to 8 cm. Porcellanite fragments recovered in Sections 320-U1333C-19X-CC (169.45–169.84 m CSF) and 22X-CC (163.50–163.59 m CSF) are interpreted as drilling disturbance associated with penetration of similar layers (see "Site U1333 smear slides" in "Core descriptions").

#### Summary

At Site U1333, Eocene seafloor basalt (Unit V) is overlain by 183 m of pelagic sediments that are divided into four major lithologic units (I-IV), and Unit III is divided into two subunits. Site U1333 sediments are dominated by nannofossil and radiolarian ooze with varying amounts of clay and can be correlated with Site 1218 using biostratigraphic, magnetostratigraphic, and cyclostratigraphic (magnetic susceptibility and GRA density) results (see "Stratigraphic correlation and composite section"). Basal limestone and nannofossil ooze (Unit IV) of middle Eocene age is overlain by a clayey radiolarian ooze, clayey nannofossil ooze, and porcellanite, also of middle Eocene age. The immediately overlying sediments are dominated by alternations of clayey radiolarian ooze, nannofossil radiolarian ooze, radiolarian nannofossil ooze, radiolarian ooze, and nannofossil ooze of middle to late Eocene age. In turn, these sediments are overlain by alternating sequences of predominantly white and very pale brown nannofossil ooze, as well as yellowish brown nannofossil ooze with radiolarians of early Oligocene through early Miocene age. The uppermost sediments at Site U1333 comprise an alternating sequence of clay, clayey radiolarian ooze, radiolarian clay, clayey nannofossil ooze, and nannofossil ooze of early Miocene age.

Multiple distinct porcellanite layers were found at Site U1333 interbedded with nannofossil ooze of Eocene age. The Oligocene-Miocene transition at Site U1333 is marked by an alternating sequence of very pale brown nannofossil ooze and yellowish brown nannofossil ooze with radiolarians through brown radiolarian nannofossil ooze with clay. The Eocene-Oligocene transition at Site U1333 is marked by a distinct downhole color change from pale nannofossil ooze with radiolarians to alternations of brown radiolarian nannofossil ooze with clay and dark gravish brown clayey radiolarian ooze. A transition from Eocene siliceous sedimentation to Oligocene carbonate deposition is also observed in sediments from several other sites in the equatorial Pacific Ocean (e.g., ODP Sites 1218 and 1219 and DSDP Sites 161 and 162).

## **Biostratigraphy**

At Site U1333, we recovered a 183 m thick sequence of lower Miocene to middle Eocene nannofossil



ooze, radiolarian ooze, and radiolarian clays. The uppermost 2 m of clay is barren of calcareous microfossils but contains radiolarians of early Miocene age. Nannofossil ooze is dominant in the thick Oligocene section, and radiolarian clays and nannofossil ooze are dominant in the Eocene. Radiolarians are present through most of the section and are well preserved in the Eocene. They provide a coherent, high-resolution biochronology, and there appears to be a complete sequence of radiolarian zones from Zones RN1 (lower Miocene) to RP13 (middle Eocene). Calcareous nannofossils are present and moderately to well preserved through most of the succession, although there are some short barren intervals around the middle to upper Eocene boundary. The succession comprises an apparently complete sequence of nannofossil zones from the lower Miocene Zone NN1 to the middle Eocene Zone NP15. Nannofossil datum and zonal determinations agree well with radiolarian biostratigraphy. An integrated calcareous and siliceous microfossil biozonation is shown in Figure F9. A detailed age-depth plot including biostratigraphic and paleomagnetic datums is shown in Figure F10. Planktonic foraminifers are relatively abundant and well preserved from the lowest part of the Miocene to the lower Oligocene and less abundant but moderately preserved in the middle Eocene. They are poorly preserved or absent in the upper Eocene. Benthic foraminifers are present through most of the section and indicate lower bathyal to abyssal paleodepths.

#### Calcareous nannofossils

Calcareous nannofossil biostratigraphy is based on analysis of core catcher samples from all three holes and from samples from each core section, predominantly from Hole U1333A. Depth positions and age estimates of biostratigraphic marker events are shown in Table **T3**. Nannofossils are abundant in the nannofossil ooze of the Oligocene and are present, and often abundant, through the Eocene and Miocene. Barren intervals occur in the uppermost 2 m (Core 320-U1333B-1H) and the upper middle Eocene (Core 320-U1333A-16X). In nannofossil ooze lithologies, nannofossil preservation is moderate to good. Increased etching is observed in darker cycles that are dominated by radiolarians.

The interval from Samples 320-U1333A-1H-2, 110 cm, to 4H-CC (1.10–38.60 m CSF) consists of brown radiolarian nannofossil clay that contains low diversity but abundant and moderately preserved nannofossil assemblages dominated by *Discoaster deflandrei*, *Cyclicargolithus floridanus*, and *Tri-quetrorhabdulus carinatus*. Age-diagnostic taxa are rare, but the assemblages are typical of Zone NN1

(lower Miocene–upper Oligocene). The base of *S. disbelemnos* in Sample 320-U1333A-2H-5, 70 cm (16.20 m CSF), and the occurrence of rare *S. delphix* in Sample 320-U1333A-2H-CC (19.57 m CSF) bracket the Oligocene/Miocene boundary.

The Oligocene interval, Cores 320-U1333A-5H through 13H, is composed of white nannofossil ooze, which contains abundant nannofossil assemblages that are moderately to well preserved. Nannofossil Zones NP25 through NP22 are recognized using the top and base of Sphenolithus ciperoensis in Samples 320-U1333A-4H-6, 70 cm (36.70 m CSF), and 5H-4, 70 cm (43.20 m CSF), respectively; the top of Reticulofenestra umbilicus in Sample 320-U1333A-11X-CC (101.17 m CSF); and the top of *Coccolithus* formosus in Sample 320-U1333A-12X-4, 70 cm (105.90 m CSF). The crossover from Triquetrorhabdulus longus to T. carinatus is an intra-Zone NP25 event (24.7 Ma) and occurs between Samples 320-U1333A-3H-CC (28.87 m CSF) and 4H-1, 70 cm (29.20 m CSF). The top of Sphenolithus predistentus occurs in Sample 320-U1333A-5H-4, 70 cm (67.4 m CSF), and confirms the Zone NP24 designation. The base of Sphenolithus distentus is an intra-Zone NP23 datum and occurs in Sample 320-U1333A-9H-3, 50 cm (79.50 m CSF).

The Eocene/Oligocene boundary interval lies between the top of *C. formosus* (Sample 320-U1333A-12X-4, 70 cm; 105.90 m CSF) and the top of *Discoaster saipanensis* (Sample 320-U1333A-13X-3, 140 cm; 114.70 m CSF). The boundary interval yields nannofossils throughout and is apparently complete at the resolution provided by nannofossil biostratigraphy. This interval is associated with a lithologic change from white nannofossil ooze to a darker colored brown radiolarian clay.

Eocene nannofossil Zones NP18-20 through NP15 are recognized using the top of Chiasmolithus grandis in Sample 320-U1333A-14X-CC (129.80 m CSF); the top of Chiasmolithus solitus in Sample 320-U1333A-16X-5, 40 cm (145.60 m CSF); and the total range of Nannotetrina fulgens from Samples 320-U1333A-18X-CC (163.86 m CSF) to 20X-1, 73 cm (178.33 m CSF). The following datums were also useful in supporting these zonal determinations: base of *Dictyococcites* bisectus, total range of Discoaster bifax (Samples 320-U1333A-16X-6, 40 cm, to 18X-3, 88 cm; 147.10-161.62 m CSF), top and base of Nannotetrina, and top and base of Sphenolithus furcatolithoides. Middle Eocene assemblages are also characterized by the presence of common *Blackites* spines (including *Pseudotriquetrorhabdulus inversus* of many authors).

Basal sediments are composed of dolostone with green flecks in Holes U1333A and U1333C and dolomite nannofossil ooze in Hole U1333B. Nannofossil



assemblages from these sediments are poor to moderately well preserved. The presence of *S. furcatolithoides* in Sample 320-U1333A-20X-2, 50 cm, suggests an age of Zone NP15 (45.8 Ma or younger), even though *N. fulgens* is absent from this sample to the base of the hole. The absence of *Nannotetrina* in this oldest time interval may be due to ecological exclusion; discoasters are very rare in these basal assemblages, indicative of a eutrophic environment, which is consistent with the site's paleolatitude at this time within the equatorial upwelling zone. It is therefore likely that the base of *N. fulgens* and *Nannotetrina* are both too high in the core, and the basal sediments have been tentatively assigned to Zone NP15.

#### Radiolarians

Radiolarian stratigraphy at Site U1333 (Table T4) spans the interval between Zone RN2 (near the base of the lower Miocene) and the upper part of Zone RP13 (middle Eocene) (Tables T5, T6, T7). The first core (Sample 320-U1333A-1-2H, 104-106 cm) recovered lower Miocene radiolarians in a moderately preserved assemblage with no detectable reworked older microfossils. This is very different from Sites U1331 and U1332, at which the uppermost cores were dominated by a highly mixed assemblage of Oligocene through Eocene radiolarians. Preservation in the upper part of Zone RP22 (Core 320-U1333A-3H; upper Oligocene) is generally poor to moderate but improves through the middle part of Zone RP20 (Cores 320-U1333A-4H through 8H), becomes poor again briefly in Core 320-U1333A-9H (Zone RP20), and then remains moderate to good through the remaining Oligocene and Eocene section.

Magnetic susceptibility records from Core 320-U1333A-13X show a "two-step" transition from Eocene to Oligocene sediments, with the base of Chron 13n occurring a few centimeters above the younger of these two steps. This pattern is indicative of an apparently complete Eocene/Oligocene boundary section, similar to that recovered at Site 1218. Initial assessment of radiolarian assemblages across the Eocene/Oligocene boundary interval indicates a significant loss of diversity through this transition. Although a few species from the Eocene carry through to the Oligocene, only one stratigraphic marker species (L. angusta) first appears near the Eocene/Oligocene boundary (Sample 320-U1333A-13X-3, 0-8 cm). Most of the lower Oligocene marker species make their first appearance in the middle part of Core 320-U1333A-12X, a few meters above the younger step in magnetic susceptibility. Between these first occurrences and the last occurrence of the Eocene marker species, there is a zone of relativity low radiolarian

diversity, which commonly contains abundant diatoms in the >63  $\mu m$  fraction.

There is a slight amount of reworked older Eocene species in the lower part of the Oligocene section. With the detailed sample coverage in this interval, the reworked forms clearly show a discontinuous appearance in the samples.

All the radiolarian zones down to Zone RP13 are present with moderate to good preservation of assemblages. Sample 320-U1333A-19X-CC and all of Core 320-U1333A-20X were barren of radiolarians.

#### Diatoms

Diatoms were examined in core catcher samples from Holes U1333A–U1333C and selected intermediate samples. The examined interval represents the *Rocella gelida* through *Coscinodiscus excavatus* Zones of Barron (1985, 2006) and Barron et al. (2004). Diatoms range in abundance from rare to abundant depending on the specific sample. Diatom preservation is variable but generally is poor to moderate.

Samples examined from Cores 320-U1333A-1H, 320-U1333B-1H, and 320-U1333C-1H and Sample 320-U1333C-2H-CC contain rare or no diatoms. No zonal assignment was made. The interval from Samples 320-U1333B-2H-CC through 320-U1333A-3H-2, 100–101 cm, is assigned to the *R. gelida* Zone based on the occurrence of *R. gelida*. Specimens of *Bogorovia veniamini, Rocella vigilans,* and *Cavitatus miocenica* also occur in Sample 320-U1333B-2H-CC.

The interval from Samples 320-U1333A-3H-4, 100– 101 cm, through 5H-CC is assigned to the *B. veniamini* Zone based on the occurrence of *B. veniamini* in most samples examined from this interval. Supporting this zonal assignment is the occurrences of *Cestodiscus kugleri* in Samples 320-U1333A-4H-3, 100–101 cm, and 4H-5, 100–101 cm, and *Rossiella symmetrica* in Sample 4H-5, 100–101 cm. Other species typical of this interval, but not necessarily present in each sample are *R. vigilans, Azpeitia oligocenica, Cestodiscus pulchellus, Coscinodiscus rhombicus,* and *C. miocenica*.

The interval from Samples 320-U1333A-6H-2, 110– 111 cm, through 8H-4, 115–116 cm, is assigned to the *R. vigilans* Zone based on the occurrence of *R. vigilans* without *B. veniamini*. Sample 320-U1333A-6H-5, 110–111 cm, is placed in Subzone A of this zone based on the occurrence of *Cavitatus jouseanus*. Sample 320-U1333A-7H-2, 100–101 cm, is placed into Subzone B based on the occurrence of *R. symmetrica* without *C. jouseanus*. The occurrence of *Cestodiscus trochus* without *R. symmetricus* in Sample 320-U1333A-7H-CC suggests placement of this sample into Subzone A; however, diatom preservation through this interval is poor to moderate.



Samples 320-U1333A-8H-CC and 9H-CC are assigned to the *C. trochus* Zone based on the occurrences of *C. miocenica* in Sample 8H-CC and *C. trochus* and *Cestodiscus robustus* in Sample 9H-CC without *C. excavatus*.

The *C. excavatus* Zone is represented by the occurrence of *C. excavatus* in the interval from Samples 320-U1333A-10H-2, 100–101 cm, through 13H-2, 100–101 cm. Typical of this interval is the occurrence of *C. trochus, C. excavatus, A. oligocenica,* and *C. robustus*.

Sample 320-U1333A-13H-4, 100–101 cm, and below typically contain rare diatoms or are barren of diatoms. The exceptions are Samples 320-U1333A-16X-CC and 320-U1333B-16X-CC, both of which contain fragments typified by *Hemiaulus*.

#### **Planktonic foraminifers**

Core catchers were sampled from all three holes at Site U1333, and additional samples were taken in Hole U1333A (two per core) to develop a highresolution biostratigraphy. The early Miocene and much of the Oligocene is characterized by abundant and relatively well to moderately preserved planktonic foraminifers that delineate a sequence of lower Miocene (Zone M1) through Oligocene (Zone O2) zones. The record of planktonic foraminifers at this site indicate a relatively continuous succession of zones that agree well with calcareous nannofossil and radiolarian zonal determinations (Fig. F9). Preservation and abundance of planktonic foraminifers is poor in the earliest Oligocene and latest Eocene with many samples either barren or containing a few poorly preserved specimens. Preservation briefly improves in the late middle Eocene. Depth positions and age estimates of biostratigraphic marker events identified are shown in Table T8. Taxon preservation and occurrences are shown in Table T9.

Cores 320-U1333A-1H and 320-U1331C-2H were assigned to Zone M1a based on the co-occurrence of P. kugleri and Paragloborotalia pseudokugleri and the absence of Globoquadrina dehiscens. Early Miocene assemblages are characterized by the presence of Dentoglobigerina spp. and representatives of the Paragloborotalia semivera-siakensis-mayeri group. The Oligocene/Miocene boundary approximated by the first occurrence of P. kugleri is well constrained at this site and falls between Sample 320-U1333A-2H-2, 38-40 cm (11.38 m CSF), and Sample 2H-CC (19.57 m CSF), in excellent agreement with the estimate from calcareous nannofossils. A poorly preserved and scarce fauna in Sample 320-U1333A-2H-4, 38–40 cm, prevented closer constraints on the boundary. In Holes U1333B and U1333C, P. kugleri was rare or absent, as was *Globigerina ciperoensis*, the last occurrence of which falls directly above the Oligocene/ Miocene boundary, hindering precise determination of the boundary in these holes. Samples 320-U1333A-2H-CC through 6H-CC (18.11–56.20 m CSF) are assigned to Zone O6 based on the last occurrence of *Paragloborotalia opima*, the sporadic presence of *G. ciperoensis* and *P. pseudokugleri*, and the absence of *P. kugleri*. The assemblage is dominated by paragloborotaliids, including the *P. opima–mayeri* group, *Paragloborotalia semivera*, and *Paragloborotalia pseudocontinousa*.

The presence of Zones O2–O5 is recognized by the top and base of P. opima between Samples 320-U1333A-6H-3, 38-40 cm (50.88 m CSF), and 10H-2, 38-40 cm (87.38 m CSF), respectively (see Table T8 for further details). Differentiation between *P. opima* and *P. nana* is based on the size criterion proposed by Bolli and Saunders (1985). In addition, Spezzaferri (1994) noted that P. opima exhibits a more lobulate profile, larger final chamber, and higher arched aperture than observed in *P. nana;* these criteria were also used as a guide our identifications. Zones O4 and O5 were determined based on the overlapping ranges of P. opima and Globigerina angulisuturalis. Chiloguembelina cubensis was also identified in a single sample (320-U1333A-7H-5, 38-40 cm; 63.38 m CSF) but was not employed as a datum to distinguish Zones O4 and O5 because of its very low abundance and absence from the rest of the samples investigated. The presence of Zone O3 was identified between the base of G. angulisuturalis and the topmost occurrences of Turborotalia ampliapertura in Sample 320-U1333A-8H-CC (76.14 m CSF). However, the last occurrence of *T. ampliapertura* occurs somewhat shallower in the sedimentary record than expected (Fig. F10) and was too rare in Hole U1333B and U1333C core catchers to define. Furthermore, the topmost occurrence of Subbotina angiporoides in Sample 320-U1333A-9H-2, 52–53 cm (78.02 m CSF), should fall in Zone O3 but here occurs deeper than expected and falls in Zone O2; thus, caution is warranted.

As at the two previous drill sites, samples in the earliest Oligocene–latest Eocene (Cores 320-U1333A-13X through 16X, 320-U1333B-14H through 17H, and 320-U1333C-15H through 17H) are barren of planktonic foraminifers, preventing detection of the Eocene/Oligocene boundary. This barren interval directly coincides with a shift in sediment lithology from carbonate nannofossil ooze to radiolarian ooze. However, the FO of *Globoquadrina venezuelana* (~108 m CSF) can be used to roughly approximate the Eocene/Oligocene boundary (Wade and Pearson, 2008). The first consistent presence of *Catapsydrax unicarus* also occurs in Zone 01 following the Eocene/Oligocene



boundary in Wade and Pearson (2008) and provides a good approximation of the boundary at ~108 m CSF but occurs much deeper in Hole U1333C (Sample 320-U1333B-13H-CC; ~122.14 m CSF).

Cores 320-U1333A-17X through 20X, 320-U1333B-18X through 20X, and 320-U1333C-18H through 20H are either barren or yield assemblages containing moderately to poorly preserved, dissolution-resistant planktonic foraminifers. The variable planktonic foraminifer abundance and preservation in the middle and late Eocene reflects shifts in the dominant sediment lithology between carbonate nannofossil and radiolarian oozes. The Eocene assemblage comprises parasubbotinids, paragloborotaliids, subbotinids, and broken but distinctive elongate chambers from Clavigerinella eocaenica. Species identified include C. unicavus, Paragloborotalia griffinoides, Parasubbotina griffinae, Parasubbotina varianta, Subbotina corpulenta, Subbotina eocaena, Subbotina hagni, Subbotina linaperta, and Subbotina senni. In samples where preservation is better (e.g., Sample 320-U1333A-20X-2, 42-44; 179.52 m CSF), Acarinina praetopilensis, Acarinina bullbrooki, and other small unidentified acarininids can also be found. The dominance of stratigraphically long-ranging Eocene taxa coupled with the absence of the genera Globigerinatheka and Morozovella makes precise age determination of individual samples problematic. However, the presence of A. bullbrooki in Sample 320-U1333A-20X-2, 42-44 cm (179.52 m CSF), indicates a basement age older than 40.8 Ma (below Zone E12), but better precision was given by the nannofossil biostratigraphic estimates (Zone NP15) (Fig. F9).

On an additional note, high abundances of *Claviger-inella* spp. are often linked to high-productivity environments (e.g., Coxall et al., 2003), which is consistent with the paleogeographic situation of this site within the high-productivity equatorial belt during the middle–late Eocene. Further evidence for this (although also a by-product of dissolution) is the dominance of globigerinid forms—parasubbotinids, subbotinids, paragloborotaliids—also associated with nutrient-rich surface waters.

#### **Benthic foraminifers**

Benthic foraminifers were examined semiquantitatively in all three holes of Site U1333. Benthic foraminifers occurred almost continuously in calcareous nannofossil ooze of the Oligocene and in radiolarian ooze of the Eocene. The occurrence of benthic foraminifers at this site is shown in Table **T10.** 

In Samples 320-U1333A-1H-CC through 12X-CC (9.95–107.99 m CSF), *N. umbonifer, O. umbonatus, C.* 

mundulus, Globocassidulina subglobosa, Gyroidinoides spp., and Pullenia spp. were common and Astrononion echolsi, Nonion havanensis, Siphonodosaria antillea, and Cibicidoides grimsdalei were subordinate. C. mundulus and G. subglobosa were generally common in the lower part of the interval (maximum = 28% and 15%, respectively), whereas N. umbonifer was abundant in the upper part of the interval (maximum = 23%). A similar faunal transition was recognized in Holes U1333B (Samples 320-U1333B-1H-CC through 12H-CC; 7.69-112.32 m CSF) and U1333C (Samples 320-U1333C-2H-CC through 13H-CC; 36.54-75.94 m CSF). In addition, the abundance of N. umbonifer in Hole U1333C also varied continuously in the late Oligocene. Preservation of benthic foraminifer tests is good. These faunal compositions indicate lower bathyal and abyssal paleodepths during the Oligocene and the early Miocene, based on van Morkhoven et al. (1986). The Oligocene and early Miocene fauna at this site are basically similar to those observed at Site U1332 and in previous studies in the eastern equatorial Pacific (DSDP Site 573, Thomas, 1985; Sites 1218 and 1219, Takata and Nomura, 2005). N. umbonifer is a tolerant species to carbonate undersaturation and/ or low food supply (e.g., Mackensen et al., 1990; Schmiedl et al., 1997). O. umbonatus, Cibicidoides spp., and G. subglobosa are common oligotrophic taxa in deep water (e.g., Nomura, 1995). This suggests that changes in carbonate undersaturation and/or food supply from the surface ocean may have occured in the late Oligocene.

Samples 320-U1333A-13X-CC through 19X-CC (119.96–174.73 m CSF) contained benthic foraminifers, except for Sample 320-U1333A-15X-CC (139.17 m CSF). O. umbonatus, N. truempyi, Cibicidoides eocanus, C. grimsdalei, G. subglobosa, and S. antillea were common in this interval. In addition, various taxa, such as Abyssamina quadrata, Abyssamina poagi, and Alabamina dissonata, were subordinate in Sample 320-U1333A-19X-CC (174.73 m CSF). Similar occurrences were also recognized in Samples 320-U1333B-13H-CC through 19X-CC (122.15-169.85 m CSF) and 320-U1333C-14H-CC through 20X-CC (117.59-155.10 m CSF). Test preservation of these calcareous foraminifers was generally poor, but well-preserved specimens were sometimes found in the lowermost part of the interval. These fauna suggest lower bathyal to abyssal paleodepth in the middle to late Eocene. Faunal associations of these calcareous taxa in the middle to late Eocene are similar to those recorded at Sites U1331 and U1332 and previous preliminary studies in the eastern equatorial Pacific (Site 1218; Shipboard Scientific Party, 2002b). Calcareous foraminifers at this site were more consistently



present compared to those of Sites U1331 and U1332 (Fig. F11) and may be attributed to a shallower water depth at this site than at Sites U1331 and U1332. Common occurrences of *N. truempyi* and *O. umbonatus* were recognized in nannofossil Zone NP16 (e.g., Samples 320-U1331B-8H-CC, 320-U1332A-13H-CC, and 16X-CC), roughly coincide with the high-carbonate interval observed (see "Lithostratigraphy" and "Geochemistry") at all three sites, and may correlate to deepening of the calcium carbonate compensation depth in the middle Eocene (Lyle et al., 2005).

## Paleomagnetism

We conducted a paleomagnetic study of archive-half sections of 48 APC and 12 XCB cores from Holes U1333A–U1333C, with the primary objective of determining the magnetostratigraphy of the site and providing chronostratigraphic age constraints. To accomplish this we measured the natural remanent magnetization (NRM) of each section at 5 cm intervals before and after AF demagnetization of 20 mT. When time permitted, an additional 10 mT demagnetization step was measured. We processed the extracted data from the Laboratory Information Management System (LIMS) database by removing measurements made within 5 cm of section ends and data from disturbed intervals (Table T11). Cleaned data are presented in Tables T12, T13, T14, T15, T16, T17, T18, and T19.

Core orientation was estimated from paleomagnetic declination data as described in "Paleomagnetism" in the "Site U1331" chapter. The azimuthal core orientation was determined by correlating distinct reversal patterns as recorded by the paleomagnetic declination in each hole with the geomagnetic polarity timescale (GPTS). When distinct correlatable patterns are not easily recognized, this method could lead to a magnetic polarity ambiguity in which one might be unable to differentiate between magnetic north and magnetic south. Such ambiguities can be resolved in most cases by using biostratigraphic age estimates to guide the mapping of identifiable reversals in each hole. Once we had confidently identified a unique, unambiguous reversals pattern, the mean paleomagnetic directions for each hole were calculated using Fisher statistics (Table T20). Subsequently data were reoriented so that normal and reversed polarity magnetozones had declinations of ~0° and ~180°, respectively.

Magnetic susceptibilities were measured for 106 discrete samples. The data were mass and volume corrected using sediment moisture and density data (MAD) (see "Physical properties") and are presented

in Table **T21**. Of these samples, 72 were stepwise AF demagnetized and measured at 5 mT steps to a peak field of 40 mT and 10 mT steps to 60 mT. The remanence measurements and the characteristic remanent magnetization (ChRM) directions computed using principal component analysis (PCA) are given in Tables **T22** and **T23**.

#### Results

Downhole paleomagnetic data for Holes U1333A-U1333C are presented in Figures F12, F13, and F14, respectively. NRM measurements indicate that the viscous isothermal remanent magnetization (IRM) drilling overprint (see "Paleomagnetism" in the "Site U1331" chapter) was weak for Hole U1333A; weak above 83 m CSF in Hole U1333B; and weak above ~107 m CSF in Hole U1333C. The increased strength of the drilling overprint in Hole U1333B below 83 m CSF and in Hole U1333C below ~107 m CSF coincides with the switch from nonmagnetic to standard steel core barrel. Figure F15 illustrates the effect of the steel core barrel and confirms the value of using nonmagnetic coring equipment. NRM inclinations before demagnetization reflected the patchy overprint with values of anywhere between -10° and 90°. The small and sometimes negative overprint may have been caused by the bottom-hole assembly (BHA) and drill string becoming magnetized by the local geomagnetic field, which is more or less horizontal. Declinations were typically less severely affected, and it was often possible to identify reversals before demagnetization. The patchy and sometimes shallow overprints also indicate that the BHA and drill string are probably contributing little to the drilling overprint at this site.

Demagnetization data from discrete samples (Fig. **F16**) indicate that the ChRM of the sediments is carried above 10–20 mT demagnetization steps and that in most cases 20 mT demagnetization effectively removed the drilling induced IRM. PCA directions of the ChRM component agree with measurements of coeval intervals from the archive halves (see Fig. **F12**), indicating that the magnetic directions after 20 mT demagnetization provide a reliable indicator of the ChRM of the sediments.

In a few isolated intervals, the inclinations remain steep after 20 mT demagnetization, indicating that the drilling overprint was not demagnetized fully. Between ~80 and ~105 m CSF in Hole U1333B is a noisy interval where declination and inclination vary considerably (Fig. F13). We remeasured the sections from this interval but found that the results were repeatable; therefore, the source of the noise is within the cores. Steel core barrels were used in Hole U1333B below ~83 m CSF. It is possible that the mag-



netization of the steel core barrels was passed onto the cored sediments or that the sediments were contaminated with rust or iron particles during coring.

#### Magnetostratigraphy

The relatively clear polarity reversal pattern and detailed biostratigraphic framework of key nannofossil, radiolarian, and foraminifer datums from core catcher and additional samples (see "Biostratigraphy") allowed a relatively uncomplicated correlation of the magnetostratigraphy with the GPTS. The reversal depths for each core are provided in Table T24. The polarity interpretations for the three holes are provided in Figures F12, F13, and F14, and the summary of the magnetostratigraphy for this site is given in Figure F17.

At the top of Hole U1333A, our polarity assignments are constrained by clear declination and inclination records and by biostratigraphic data that indicate an age of ~21.5 Ma at the base of Core 320-U1333A-1H. Chron C6Ar was recovered twice (in Cores 320-U1333A-1H and 2H), which initially complicated our correlation. Most of Chron C7An is lost at a core break between Cores 320-U1333A-3H and 4H, Chron C8n.1r is absent, and the top of Chron C8r is lost in a break between Cores 320-U1333A-3H and 4H. Correlation of magnetozones with the GPTS is unambiguous for the remainder of the APC-cored portion of Hole U1333A to the base of Core 320-U1333A-10H, which records the upper part of Chron C12r. Extensive deformation and biscuiting of sediments associated with XCB coring below ~95 m CSF prohibits further identification of magnetozones.

The upper portion of Magnetozone N1 in Holes U1333B and U1333C is correlated with Chron C1n; however, biostratigraphic ages indicate ~21–22 Ma at ~10 m CSF. Therefore we correlate the lower portion of Magnetozone N1 with Chron C6n. Below this interval our interpretation is straightforward with one to one correlations with the GPTS to Chron C13r with a few exceptions where reversals were lost in core breaks.

In Hole U1333B, correlation of the magnetostratigraphy with the GPTS is relatively simple above Magnetozone N21. Chron C6Bn.2n is absent, and Chrons C11n.1r, C16n.2n, and C17n.2n are lost in core gaps between Cores 320-U1333B-8H and 9H, 13H and 14H, and 14H and 15H, respectively. Between ~80 and ~104 m CSF is an interval with unstable magnetic directions probably affected by a drillinginduced magnetic overprint. The reversal between Magnetozones R22 and N23 occurs within Section 320-U1333B-12H-6 and is correlated with the reversal between Chrons C12r and C13n. The Chron C13n/C13r boundary occurs in a break between Cores 320-U1333B-12H and 13H, so the true thickness of Chron C13n can not be determined in Hole U1333B.

At the base of Hole U1333B, correlation with the GPTS is more difficult because of coring gaps and infrequent reversals. Thick normal polarity Magnetozones N28 and N29 are correlated with Chron C18n.1n. The thin (~25 cm) reversed polarity interval R28 represents what is probably a newly recognized cryptochron within Chron C18n.1n. Our correlation to the bottom of Hole U1333B is aided by the lowest occurrence of *R. umbilicus*, which has an age of 42.5 Ma (see "Biostratigraphy") and occurs between 158.3 and 162.94 m CSF. Consequently it is our preference to correlate Magnetozone N32 with Chron C20n, as this agrees most closely with the biostratigraphy and the polarity boundaries that are more completely recovered in Hole U1333C. XCB coring below ~162 m CSF prevents further interpretation of the magnetostratigraphy.

In Hole U1333C, Chron C7An is lost in a 3 m core break between Cores 320-U1333C-4H and 5H; therefore, the upper portion of Magnetozone R13 is correlated with Chron C7r and the lower portion with Chron C7Ar. The Magnetozone R20/N21 boundary is in a gap between Cores 320-U1333C-13H and 14H and is correlated with Chron C12r/C13n boundary. The Chron C13n/C13r boundary is, however, intact and occurs within Section 320-U1333C-14H-4. As is the case in Hole U1333B, Chron C13n is incompletely recovered, although the combined data from Holes U1333B and U1333C provide a complete record. Chron C15r is lost in a gap between Cores 320-U1333C-14H and 15H; therefore, the upper portion of Magnetozone N22 is correlated with Chron C15n and the lower portion with Chron C16n.1n. The cryptochron recognized within Chron C18n.1n in Hole U1333B is also recognized in Hole U1333C, where it spans ~30 cm. At the base of Hole U1333C, correlation with the GPTS is more difficult because of coring gaps and infrequent reversals. The Chron C18r/C19n boundary and the upper portion of Chron C19n fall within a break between Cores 320-U1333C-18H and 19H. The lowest reversal in Hole U1333C and for Site U1333 is the Chron C20n/C20r boundary, which occurs at 161.5 m CSF. Three XCB cores were collected below the last APC core (320-U1333C-21H), but these recovered only a small amount of material within core catchers and so were not measured.



## Geochemistry

#### Sediment gases sampling and analysis

Headspace gas samples were taken at a frequency of one sample per core in Hole U1333A as part of the routine environmental protection and safety monitoring program. All headspace sample analyses resulted in nondetectable levels of methane ( $C_1$ ; <1 ppmv), with no higher hydrocarbons, consistent with the low organic carbon content of these sediments.

#### Interstitial water sampling and chemistry

Twenty-five interstitial water samples were collected using the whole-round squeezing approach (Table T25). Chemical constituents were determined according to the procedures outlined in "Geochemistry" in the "Methods" chapter. Chlorinity shows relatively little variability with depth, with values ranging from 557 to 566 mM (Figs. F18). Chlorinity values slightly increase in the upper 50 m CSF and stay relatively constant below. Alkalinity ranges from 1.7 to 4.5 mM. Alkalinities increase in the uppermost 10 m CSF from ~2.1 to 2.8 mM and are relatively uniform to 50 m CSF downcore. Between 55 and 90 m CSF, alkalinity shows first a large increase to 4.5 mM followed by a local minimum of 1.6 mM. Between 130 and 140 m CSF, alkalinities are also reduced. Sulfate concentrations are relatively constant and near seawater values, ranging from 25 to 28 mM. Low alkalinities and high sulfate concentrations indicate that organic matter supply is not sufficient to drive redox conditions to sulfate reduction. The relatively low regeneration of organic carbon is also indicated by low dissolved phosphate concentrations, typically <1 µM. Because of the high sulfate concentrations, dissolved Ba concentrations are low and relatively homogeneous, with values between 1.0 and 1.6 µM. Concentrations of dissolved silicate increase with depth from ~400 to a maximum of ~800 µM at 135 m CSF, with a subsequent decrease to 730 µM.

Calcium concentrations increase slightly with depth, with values from 10 to 12 mM (Fig. F18). Magnesium concentrations are relatively constant, ranging from 50 to 53 mM, with minima around 20 and 120–140 m CSF.

Lithium concentrations decrease from ~28 to 22  $\mu$ M in the upper 80 m CSF. Below 130 m CSF, Li concentrations increase again toward basement, except for the deepest sample. Strontium concentrations vary between 83 and 105  $\mu$ M, showing an overall increase with depth and distinctly reduced concentrations between 130 and 140 m CSF. Boron concentrations range between 422 and 485  $\mu$ M, showing reduced values between 130 and 140 m CSF.

# Bulk sediment geochemistry: major and minor elements

At Site U1333, bulk sediment samples for minor and major element analyses were distributed over the core depth to characterize the major lithologic units (0–180 m CSF; Hole U1333A). We analyzed concentrations of silicon, aluminum, iron, manganese, magnesium, calcium, sodium, potassium, titanium, phosphorus, barium, copper, chromium, scandium, strontium, vanadium, yttrium, and zirconium (Table **T26**) in the sediment by inductively coupled plasma–atomic emission spectroscopy (ICP-AES).

SiO<sub>2</sub> ranges between 6 and 75 wt%, with values around 45 wt% in the top few meters and lower values (5–20 wt%) between 5 and 105 m CSF. Below 105 m CSF, SiO<sub>2</sub> concentrations vary mainly between 20 and 75 wt%, with concentrations <10 wt% near the basement. Concentrations of Al<sub>2</sub>O<sub>3</sub> range from 0.2 to 6 wt%, with values decreasing in the upper few meters from 6 to <1 wt%. Below 5 m CSF, Al<sub>2</sub>O<sub>3</sub> concentrations vary between 0.2 and 3 wt%. A distribution with depth similar to that of Al is shown by TiO<sub>2</sub> (0.01–0.3 wt%), K<sub>2</sub>O (0.1–1.2 wt%), Zr (16– 126 ppm), and Sc (up to 19 ppm).

Concentrations of  $Fe_2O_3$  vary between 0.3 and 5 wt%, following the general pattern of SiO<sub>2</sub>. Similar trends are also shown by MnO (0.04 to >0.2 wt%), MgO (0.3–2 wt%), copper (44 to >140 ppm), and vanadium (130 to >330 ppm). Peak concentrations of Mn, Cu, and V could not be quantified because they exceeded the calibrated range (Table T26).

Calcium (CaO) ranges from 0.5 to 40 wt%, with high values corresponding to the minimum in  $SiO_2$  and  $Al_2O_3$ . Strontium concentrations range from 130 to >700 ppm, showing a similar pattern to CaO.

# Bulk sediment geochemistry: sedimentary inorganic and organic carbon

CaCO<sub>3</sub>, inorganic carbon (IC), and total carbon (TC) concentrations were determined on sediment samples from Hole U1333A (Table **T27**; Fig. F19). CaCO<sub>3</sub> concentrations ranged between <1 to 96 wt%. In the uppermost ~4 m CSF, CaCO<sub>3</sub> concentrations are relatively low (26–69 wt%) and then, from 4 to 35 m CSF, vary between 58 wt% and 93 wt%. CaCO<sub>3</sub> concentrations are consistently high (76–96 wt%) from 35 to 111 m CSF. From 111 to 171 m CSF, CaCO<sub>3</sub> concentrations exhibit large fluctuations ranging from <1 to 74 wt%. In the basal section (173–180 m CSF), CaCO<sub>3</sub> concentrations in CaCO<sub>3</sub> concentrations correspond to lithostratigraphic changes (see "Lithostratigraphy").



Total organic carbon (TOC) concentrations were determined by acidification (see "Geochemistry" in the "Methods" chapter) (Table T27; Fig. F19). TOC concentrations determined using the acidification method are very low throughout the sediment column, with a range from below the detection limit to 0.05 wt% (Fig. F19).

## **Physical properties**

Physical properties at Site U1333 were measured on whole cores, split cores, and discrete samples. WRMSL (GRA bulk density, magnetic susceptibility, and *P*-wave velocity), thermal conductivity, and NGR measurements comprised the whole-core measurements. Compressional wave velocity measurements on split cores and MAD analyses on discrete core samples were made at a frequency of one per undisturbed section in Cores 320-U1333A-1H through 20X. Compressional wave velocities were measured toward the bottom of sections. MAD analyses were located 10 cm downsection from carbonate analyses (see "Geochemistry"). Lastly, the Section Half Multisensor Logger (SHMSL) was used to measure spectral reflectance on archive-half sections.

#### Density and porosity

Two methods were used to evaluate wet bulk density at Site U1333. GRA provided an estimate from whole cores (Fig. F20), and MAD samples gave a second, independent measure of wet bulk density, along with providing dry bulk density, grain density, water content, and porosity from discrete samples (Table T28). MAD and GRA bulk density measurements display the same trends and are also similar in absolute values through the entire section (Fig. F21B). Crossplots of wet and dry bulk density versus interpolated GRA density (Fig. F22) show excellent correlation between MAD and GRA data.

Generally, wet bulk density corresponds with changes in lithology. Density is highest in Unit II, which also has high CaCO<sub>3</sub> content (see "Lithostratigraphy"). Wet bulk density is ~1.3 g/cm<sup>3</sup> at the seafloor and increases sharply at the top of Unit II (~1.6 g/cm<sup>3</sup>). In the upper part of Unit II, wet bulk density varies between 1.6 g/cm<sup>3</sup> and 1.2–1.3 g/cm<sup>3</sup>, which is consistent with the occurrence of radiolarian-rich intervals within the nannofossil ooze in the upper part of Unit II (see "Lithostratigraphy"). From 40 to 100 m CSF, wet bulk density values are less variable. At the top of Subunit IIIa, density decreases to values of 1.2 g/cm<sup>3</sup>, which coincide with the sudden drop in CaCO<sub>3</sub> (wt%) at the Eocene/

Oligocene boundary (~116 m CSF). The transition from high to low density values at the Eocene/Oligocene boundary reveals a two-step transition that most likely covaries with CaCO<sub>3</sub> (wt%) (see "**Stratigraphic correlation and composite section**"). In Subunit IIIa, density varies from 1.2 to 1.6 g/cm<sup>3</sup>. Limited data for Unit IV indicate higher density values of ~1.6 to 1.8 g/cm<sup>3</sup>.

Variation in grain density in Hole U1333A generally matches changes in lithology (Fig. **F21C**). Grain density averages 2.7 g/cm<sup>3</sup> in Units I and II in Hole U1331A, indicating the presence of carbonate-dominated lithologies (calcite = 2.7 g/cm<sup>3</sup>). Subunit IIIa shows increased variability and lower grain densities, consistent with a more radiolarian dominated lithology (see "Lithostratigraphy"). Subunit IIIb and Unit IV show a return to carbonate-dominated lithologies, with grain density averaging 2.7 g/cm<sup>3</sup>.

Porosity averages 65% in Unit II and varies around 75% in the other units. Porosity and water content vary inversely with wet bulk density (Fig. F21A).

#### Magnetic susceptibility

Whole-core magnetic susceptibility measurements correlate well with the major differences in lithology and changes in bulk physical properties (Fig. F20). Magnetic susceptibility values in Unit I are  $25 \times 10^{-5}$ to  $30 \times 10^{-5}$  SI. As with wet bulk density, magnetic susceptibility values show a variable pattern in the upper part of Unit II, which reflects intervals of nannofossil ooze with radiolarians. Magnetic susceptibility values become more uniform in the lower part of Unit II (below 40 m CSF). Magnetic susceptibility values increase abruptly at the top of Subunit IIIa, reflecting a greater concentration of ferromagnetic minerals. As with wet bulk density measurements, the transition from low magnetic susceptibility values to high values at the Eocene/Oligocene boundary reveals a two-step transition that most likely covaries with CaCO<sub>3</sub> content (see "Stratigraphic correlation and composite section"). Magnetic susceptibility is higher and more variable in Subunits IIIa and IIIb and Unit IV compared to Unit II.

#### **Compressional wave velocity**

#### Shipboard results

Whole-core *P*-wave logger (PWL) and discrete velocity measurements made on split cores follow similar trends, with key transitions occurring at lithologic boundaries (Fig. **F23**). Discrete velocity measurements along the *y*- and *z*-axes are in excellent agreement with PWL measurements, although *x*-axis velocities are ~100 m/s faster than PWL velocities



(Table T29). Possibilities for this mismatch in absolute values are compression of the sediment during analysis with the *P*-wave *x*-axis caliper or an improper correction for the thickness of the core liner.

Slight downhole trends in velocity generally follow changes in lithology or bulk properties (Fig. F23). PWL velocity increases through Units I and II. In Subunit IIIa, the downhole increase in velocity becomes greater. Velocity measurements reach 1575 m/s in the lower part of Subunit IIIa.

#### Postcruise correction

During the initial sampling of Hole U1337A, it was observed that x-direction velocities are consistently higher than other velocities and that PWL velocities are consistently low for Hole U1337A and all holes drilled at Sites U1331–U1336. It was determined that the high x-directed velocities are the result of using an incorrect value for the system delay associated with the contact probe (see "Physical properties" in the "Site U1337" chapter). Critical parameters used in this correction are system delay =  $19.811 \mu s$ , liner thickness = 2.7 mm, and liner delay =  $1.26 \mu s$ . PWL velocities were corrected for Hole U1337A by adding a constant value that would produce a reasonable velocity of water (~1495 m/s) for the quality assurance/ quality control (QA/QC) liner (see "Physical properties" in the "Site U1337" chapter). These corrections have not been applied to the velocity data presented in this chapter.

#### Natural gamma radiation

NGR was measured on all whole cores at Site U1333 (Fig. F20). The highest NGR values are present at the seafloor (~45 cps). NGR values decrease to the base of Unit I. NGR is uniform throughout Unit II and shows a slight increase across the lithologic transition into Subunit IIIa. NGR is slightly higher in Subunit IIIa.

#### Thermal conductivity

Thermal conductivity was measured on the third section of each core from Hole U1333A (Table **T30**). Thermal conductivity shows a strong dependence on porosity downhole through the succession (Figs. **F24**, **F25**). Decreased conductivity occurs with increasing porosity as increased interstitial spacing attenuates the applied current from the probe. Thermal conductivity is 0.8 W/(m·K) in Unit I and increases to a maximum value of 1.2–1.3 W/(m·K) in the middle of Unit II.

#### **Reflectance spectroscopy**

Spectral reflectance was measured on split archivehalf sections from all three holes using the SHMSL (Fig. F26). The parameters L\* (black-white), a\* (green-red), and b\* (blue-yellow) follow changes in lithology, with variations in L\*, a\*, and b\* correlating very well to carbonate content, density, and magnetic susceptibility measurements (see Fig. F4). Carbonate-dominated sections, such as the interval of Unit II from 38 to 110 m CSF, are clearly recognized by an increase in L\* values and a decrease in both a\* and b\* values, related to the paler color of these sediments. The boundary between Unit II and Subunit IIIa, marking the change from carbonate-dominated Unit II to radiolarian-dominated Unit III, is clearly marked by a sharp decrease in L\* (from ~80 to 50). This boundary is also recognized in the a\* and b\* data as a peak, followed by a slight decrease in b\* (from ~10 to ~6), whereas a\* values remain fairly constant directly above and below this boundary peak (~4).

# Stratigraphic correlation and composite section

Special Task Multisensor Logger (STMSL) data were collected at 5 cm intervals from Holes U1333B and U1333C and compared to the WRMSL data obtained at 2.5 cm intervals from Hole U1333A to monitor coring in Holes U1333B and U1333C in real time. Cores for the final composite section were depthshifted on the basis of the magnetic susceptibility data at 2.5 cm resolution from the WRMSL track. Magnetic susceptibility and GRA density data were used for correlating among holes at Site U1333. The magnetic susceptibility data proved to be the most useful correlation parameter because of the higher signal-to-noise ratio compared to the GRA data. The high amplitude variations in magnetic susceptibility in the three holes drilled at Site U1333 permitted construction of a complete composite section to Core 320-U1333B-14H-7, 50 cm (131.20 m CSF), at a composite depth of ~150 m CCSF-A (Fig. F27). Offsets and composite depths are listed in Table T31, and the sections of core used for the splice are identified in Table T32. We avoided using intervals with significant disturbance or distortion for the composite record (see "Paleomagnetism;" Table T11). Very low magnetic susceptibility amplitudes made the splicing process challenging at ~115 m CCSF-A (at 220 revised meters composite depth [rmcd] in Fig. F28). However, preliminary correlation to the Site 1218 magnetic susceptibility record (Shipboard Scientific Party, 2002b) suggests a complete stratigraphic section and demonstrates that little, if any, material is missing (Fig. F28).

The Site U1333 splice can be used as a sampling guide to recover a single sedimentary sequence be-



tween 0 and 150 m CCSF-A, although it is advisable to overlap a few decimeters from different holes when sampling to accommodate anticipated ongoing development of the depth scale. Stretching and compression of sedimentary features in aligned cores indicates distortion of the cored sequence. Because much of the distortion occurs within individual cores on depth scales of <9 m, it was not possible to align every single feature in the magnetic susceptibility, GRA, NGR, and color reflectance records. However, at crossover points along the splice (Table T32) care was taken to align highly identifiable features from cores in each hole.

A growth factor of 1.15 was derived by linear regression for all holes at Site U1333, indicating a 15% increase in CCSF-A relative to CSF depth (Fig. F29). We used this value to calculate the CCSF-B (see "Corrected core composite depth scale" in the "Methods" chapter) depth presented in Table T31 to aid in the calculation of mass accumulation rates.

We calculated sedimentation rates using paleomagnetic and biostratigraphic datums (Table T33; Fig. F10; see "Biostratigraphy" and "Paleomagnetism") on the CCSF-B depth scale to obtain values compatible with the actual recovered length. Paleomagnetic reversals are used to calculate the average linear sedimentation rates (LSRs) for Site U1333 through most of the section. Calcareous nannofossils, foraminifers, and radiolarians are present throughout the entire section and were used in addition to the magnetostratigraphy in establishing age control (Fig. F10).

The LSR at Site U1333 in the radiolarian and nannofossil oozes of lithologic Units II and III vary between ~4 and 6 m/m.y. in the middle and upper Eocene, increase to ~13 m/m.y. in the lower Oligocene, and remain at ~6.6 m/m.y. in the upper Oligocene and lower Miocene part of the section.

# Downhole measurements

#### Heat flow

Four APCT-3 temperature measurements in Hole U1333B ranged from 2.52°C at 26.7 m to 4.55°C at 83.7 m (Table T34), giving a geothermal gradient of 37.9°C/km (Fig. F30). The bottom water temperature was 1.44°C, based on the average of the minimum temperature in the four APCT-3 temperature profiles. Thermal conductivity under in situ conditions was estimated from laboratory-determined thermal conductivity using the method of Hyndman et al. (1974) (see "Physical properties" in the "Methods" chapter). The calculated in situ values are up to 2.2% below the measured laboratory values. Thermal resistance was then calculated by cumulatively adding

the inverse of the in situ thermal conductivity values over depth intervals downhole (Fig. F30). A heat flow of 42.3 mW/m<sup>2</sup> was obtained from the linear fit between temperature and thermal resistance (Fig. F30) (Pribnow et al., 2000), which is similar to Site 1220 to the west but roughly 20 mW/m<sup>2</sup> less than nearby Sites 1218, 1219, and U1332.

## References

- Amante, C., and Eakins, B.W., 2008. *ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis:* Washington, DC (DOC/NOAA/NESDIS/NGDC).
- Barron, J.A., 1985. Late Eocene to Holocene diatom biostratigraphy of the equatorial Pacific Ocean, Deep Sea Drilling Project Leg 85. *In* Mayer, L., Theyer, F., Thomas, E., et al., *Init. Repts. DSDP*, 85: Washington, DC (U.S. Govt. Printing Office), 413–456. doi:10.2973/ dsdp.proc.85.108.1985
- Barron, J.A. 2006. Diatom biochronology for the early Miocene of the equatorial Pacific. *Stratigraphy*, 2(4):281–309.
- Barron, J.A., Fourtanier, E., and Bohaty, S.M., 2004. Oligocene and earliest Miocene diatom biostratigraphy of ODP Leg 199 Site 1220, equatorial Pacific. *In* Wilson, P.A., Lyle, M., Janecek, T.R., and Firth, J.V. (Eds.), *Proc. ODP, Sci. Results*, 199: College Station (Ocean Drilling Program), 1–25. doi:10.2973/odp.proc.sr.199.204.2004
- Barron, J.A. 2006. Diatom biochronology for the early Miocene of the equatorial Pacific. *Stratigraphy*, 2(4):281–309.
- Bohaty, S.M., and Zachos, J.C., 2003. Significant Southern Ocean warming event in the late middle Eocene. *Geology*, 31(11):1017–1020. doi:10.1130/G19800.1
- Bohaty, S.M., Zachos, J.C., Florindo, F., and Delaney, M.L., 2009. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. *Paleoceanography*, 24(2):PA2207. doi:10.1029/2008PA001676
- Bolli, H.M., and Saunders, J.B., 1985. Oligocene to Holocene low latitude planktic foraminifera. *In* Bolli, H.M., Saunders, J.B., and Perch-Nielsen, K. (Eds.), *Plankton Stratigraphy:* Cambridge (Cambridge Univ. Press), 155– 262.
- Busch, W.H., Vanden Berg, M.D., and Masau, P.E., 2006.
  Velocity and density of Paleogene equatorial sediments: variation with sediment composition. *In* Wilson, P.A., Lyle, M., and Firth, J.V. (Eds.), *Proc. ODP, Sci. Results*, 199: College Station, TX (Ocean Drilling Program), 1–31. doi:10.2973/odp.proc.sr.199.226.2006
- Coxall, H.K., Wilson, P.A., Pearson, P.N., and Sexton, P.F., 2007. Iterative evolution of digital planktonic foraminafera. *Paleobiology*, 33(4):495–516. doi:10.1666/06034.1
- Coxall, H.K., Huber, B.T., and Pearson, P.N., 2003. Origin and morphology of the Eocene planktonic foraminifer *Hantkenina. J. Foraminiferal Res.*, 33(3):237–261. doi:10.2113/33.3.237
- Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H., and Backman, J., 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific



Ocean. *Nature (London, U. K.),* 433(7021):53–57. doi:10.1038/nature03135

- Engebretson, D.C., Cox, A., and Gordon, R.G., 1985. *Relative Motions between Oceanic and Continental Plates in the Pacific Basin.* Spec. Pap.—Geol. Soc. Am., 206.
- Hyndman, R.D., Erickson, A.J., and Von Herzen, R.P., 1974. Geothermal measurements on DSDP Leg 26. *In* Davies, T.A., Luyendyk, B.P., et al., *Init. Repts. DSDP*, 26: Washington, DC (U.S. Govt. Printing Office), 451–463. doi:10.2973/dsdp.proc.26.113.1974
- Knappenberger, M., 2000. Sedimentation rates and Pacific plate motion calculated using seismic cross sections of the Neogene equatorial sediment bulge [M.Sc. thesis]. Boise State Univ., Idaho.
- Koppers, A.A.P., Phipps Morgan, J., Morgan, J.W., and Staudigel, H., 2001. Testing the fixed hotspot hypothesis using <sup>40</sup>Ar/<sup>39</sup>Ar age progressions along seamount trails. *Earth Planet. Sci. Lett.*, 185(3–4):237–252. doi:10.1016/ S0012-821X(00)00387-3
- Lyle, M., Wilson, P.A., Janecek, T.R., et al., 2002. Proc. ODP, Init. Repts., 199: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.199.2002
- Lyle, M., Liberty, L., Moore, T.C., Jr., and Rea, D.K., 2002. Development of a seismic stratigraphy for the Paleogene sedimentary section, central tropical Pacific Ocean. *In* Lyle, M., Wilson, P.A., Janecek, T.R., et al., *Proc. ODP, Init. Repts.*, 199: College Station, TX (Ocean Drilling Program), 1–21. doi:10.2973/ odp.proc.ir.199.104.2002
- Lyle, M., Olivarez Lyle, A., Backman, J., and Tripati, A., 2005. Biogenic sedimentation in the Eocene equatorial Pacific—the stuttering greenhouse and Eocene carbonate compensation depth. *In* Lyle, M., Wilson, P.A., Janecek, T.R., et al., *Proc. ODP, Init. Repts.*, 199: College Station, TX (Ocean Drilling Program), 1–35. doi:10.2973/odp.proc.sr.199.219.2005
- Lyle, M.W., Pälike, H., Moore, T.C., Mitchell, N., and Backman, J., 2006. *Summary Report of R/V Roger Revelle Site Survey AMAT03 to the IODP Environmental Protection and Safety Panel (EPSP) in Support for Proposal IODP626:* Southampton, U.K. (Univ. Southampton). http:// eprints.soton.ac.uk/45921/
- Mackensen, A., Grobe, H., Kuhn, G., and Fütterer, D.K., 1990. Benthic foraminiferal assemblages from the eastern Weddell Sea between 68° and 73°S: distribution, ecology and fossilization potential. *Mar. Micropaleontol.*, 16(3–4):241–283. doi:10.1016/0377-8398(90)90006-8
- Moore, T.C., Jr., Backman, J., Raffi, I., Nigrini, C., Sanfilippo, A., Pälike, H., and Lyle, M., 2004. Paleogene tropical Pacific: clues to circulation, productivity, and plate motion. *Paleoceanography*, 19(3):PA3013. doi:10.1029/ 2003PA000998
- Müller, R.D., Roest, W.R., Royer, J.-Y., Gahagan, L.M., and Sclater, J.G., 1997. Digital isochrons of the world's ocean floor. *J. Geophys. Res.*, 102(B2):3211–3214. doi:10.1029/96JB01781
- Nigrini, C., Sanfilippo, A., and Moore, T.C., Jr., 2006. Cenozoic radiolarian biostratigraphy: a magnetobiostratigraphic chronology of Cenozoic sequences from ODP Sites 1218, 1219, and 1220, equatorial Pacific. *In* Wil-

son, P.A., Lyle, M., and Firth, J.V. (Eds.), *Proc. ODP, Sci. Results*, 199: College Station, TX (Ocean Drilling Program), 1–76. doi:10.2973/odp.proc.sr.199.225.2006

- Nomura, R., 1995. Paleogene to Neogene deep-sea paleoceanography in the eastern Indian Ocean: benthic foraminifera from ODP Sites 747, 757, and 758. *Micropaleontology*, 41(3):251–290. doi:10.2307/1485862
- Pälike, H., Lyle, M.W., Ahagon, N., Raffi, I., Gamage, K., and Zarikian, C.A., 2008. Pacific equatorial age transect. *IODP Sci. Prosp.*, 320/321. doi:10.2204/ iodp.sp.320321.2008
- Pälike, H., Moore, T., Backman, J., Raffi, I., Lanci, L., Parés, J.M., and Janecek, T., 2005. Integrated stratigraphic correlation and improved composite depth scales for ODP Sites 1218 and 1219. *In* Wilson, P.A., Lyle, M., and Firth, J.V. (Eds.), *Proc. ODP, Sci. Results*, 199: College Station, TX (Ocean Drilling Program), 1–41. doi:10.2973/ odp.proc.sr.199.213.2005
- Pälike, H., Norris, R.D., Herrle, J.O., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackleton, N.J., Tripati, A.K., and Wade, B.S., 2006. The heartbeat of the Oligocene climate system. *Science*, 314(5807):1894–1898. doi:10.1126/science.1133822
- Petronotis, K.E., 1991. Paleomagnetic studies of the skewness of Pacific plate marine magnetic anomalies 25– 32R: implications for anomalous skewness and the motion of the Pacific plate and hotspots [Ph.D. thesis]. Northwestern Univ., Evanston, IL.
- Petronotis, K.E., Gordon, R.G., and Acton, G.D., 1994. A 57 Ma Pacific plate paleomagnetic pole determined from a skewness analysis of crossings of marine magnetic anomaly 25r. *Geophys. J. Int.*, 118(3):529–554. doi:10.1111/j.1365-246X.1994.tb03983.x
- Pribnow, D.F.C., Kinoshita, M., and Stein, C.A., 2000. *Thermal Data Collection and Heat Flow Recalculations for ODP Legs 101–180:* Hanover, Germany (Inst. Joint Geosci. Res., Inst. Geowiss. Gemeinschaftsauf. [GGA]). http:// www-odp.tamu.edu/publications/heatflow/ ODPReprt.pdf
- Rea, D.K., and Lyle, M.W., 2005. Paleogene calcite compensation depth in the eastern subtropical Pacific: answers and questions. *Paleoceanography*, 20(1):PA1012. doi:10.1029/2004PA001064
- Raffi, I., Backman, J., and Pälike, H., 2005. Changes in calcareous nannofossil assemblages across the Paleocene/ Eocene transition from the paleo-equatorial Pacific Ocean. *Palaeogeogr., Palaecoclimatol., Palaeoecol.,* 226(1– 2):93–126. doi:10.1016/j.palaeo.2005.05.006
- Sager, W.W., and Pringle, M.S., 1988. Mid-Cretaceous to early Tertiary apparent polar wander path of the Pacific plate. *J. Geophys. Res., [Solid Earth]*, 93(B10):11753– 11771. doi:10.1029/JB093iB10p11753
- Schmiedl, G., Mackensen, A., and Müller, P.J., 1997. Recent benthic foraminifera from the eastern South Atlantic Ocean: dependence on food supply and water masses. *Mar. Micropaleontol.*, 32(3–4):249–287. doi:10.1016/ S0377-8398(97)00023-6
- Shipboard Scientific Party, 2002a. Leg 199 summary. *In* Lyle, M., Wilson, P.A., Janecek, T.R., et al., *Proc. ODP*,



*Init. Repts.*, 199: College Station, TX (Ocean Drilling Program), 1–87. doi:10.2973/odp.proc.ir.199.101.2002

- Shipboard Scientific Party, 2002b. Site 1218. In Lyle, M., Wilson, P.A., Janecek, T.R., et al., Proc. ODP, Init. Repts., 199: College Station, TX (Ocean Drilling Program), 1– 125. doi:10.2973/odp.proc.ir.199.111.2002
- Spezzaferri, S., 1994. Planktonic foraminiferal biostratigraphy and taxonomy of the Oligocene and lower Miocene in the oceanic record: an overview. *Palaeontographica Ital.*, 81:1–187.
- Takata, H., and Nomura, R., 2005. Data report: Oligocene benthic foraminifers from the eastern equatorial Pacific, Sites 1218 and 1219, ODP Leg 199. *In* Wilson, P.A., Lyle, M., and Firth, J.V. (Eds.), *Proc. ODP, Sci. Results*, 199: College Station, TX (Ocean Drilling Program), 1–26. doi:10.2973/odp.proc.sr.199.224.2005
- Thomas, E., 1985. Late Eocene to Recent deep-sea benthic foraminifers from the central equatorial Pacific Ocean. *In* Mayer, L., Theyer, F., Thomas, E., et al., *Init. Repts. DSDP*, 85: Washington, DC (U.S. Govt. Printing Office), 655–694. doi:10.2973/dsdp.proc.85.117.1985
- Wade, B.S., and Pearson, P.N., 2008. Planktonic foraminiferal turnover, diversity fluctuations and geochemical signals across the Eocene/Oligocene boundary in Tanzania. *Mar. Micropaleontol.*, 68(3–4):244–255. doi:10.1016/ j.marmicro.2008.04.002
- van Morkhoven, F.P.C.M., Berggren, W.A., and Edwards, A.S., 1986. *Cenozoic Cosmopolitan Deep-Water Benthic Foraminifera*. Bull. Cent. Rech. Explor.—Prod. Elf-Aquitaine, Mem. 11.

Publication: 30 October 2010 MS 320321-105



**Figure F1. A.** ETOPO1 (Amante and Eakins, 2008) bathymetric overview map of Site U1333 and PEAT drilling locations, with previous ODP and DSDP sites. **B.** Swath map bathymetry for Site U1333 region from the AMAT-03 site survey. Black labels = seismic shotpoints, white labels = bathymetric contours. White line = part of the seismic reflection profile across Site U1333 (Fig. F2). F.Z. = fracture zone.





Figure F2. Seismic reflection profile PEAT-3C (Site U1333) Line 3 from the 48-channel seismic reflection survey, annotated in shotpoints (Lyle et al., 2006). Data are filtered, stacked, and migrated. Site was located where basal reflections appeared less strong to minimize possible cherts. Tentative conversion from two-way traveltime to depth uses velocity model of Busch et al. (2006). P2, P3 = seismic reflectors of Lyle et al., (2002). All times are Universal Time Coordinated (UTC). TD = total depth.





Site U1333

Figure F3. Site U1333 summary. At Site U1333, planktonic foraminifer Zones O3 and O6 are informally divided into an upper and lower part using the top of *Subbotina angiporoides* and base of *Paragloborotalia pseudokugleri*, respectively.



Figure F4. Lithologic summary, Site U1333. L\* = reflectance value of sediment as defined in the LAB color model.





#### Expedition 320/321 Scientists

**Figure F5.** Photomicrographs of smear slides taken across the Eocene–Oligocene transition, Site U1333. Panels are arranged in stratigraphic order (increasing age top to bottom). See **"Site U1333 smear slides**" in "Core descriptions". A. Nannofossil ooze with radiolarians (and between 5% and 10% diatoms) (Sample 320-U1333B-13H-4, 114 cm). Left image = plane-polarized light, right image = cross-polarized light. **B.** Radiolarian ooze with clay (Sample 320-U1333C-14H-5, 85 cm). Left image = plane-polarized light, right image = cross-polarized light. **C**, **D.** Radiolarian nannofossil ooze (Sample 320-U1333B-13H-5, 2 cm) (plane-polarized light). Two fields of view. Note volcanic glass. **E.** Clayey radiolarian ooze with nannofossils (Sample 320-U1333C-16H-4, 23 cm). Left image = plane-polarized light.





**Figure F6.** Line scan images of Oligocene–Miocene transition, Site U1333. First occurrence of *Paragloborotalia kugleri* indicated in Hole U1333A is the midpoint depth between samples (see "**Biostratigraphy**"). FO = first occurrence, LO = last occurrence. **A.** Hole U1333A. **B.** Hole U1333B. **C.** Hole U1333C.





Expedition 320/321 Scientists

**Figure F7.** Line scan images of Eocene–Oligocene transition. **A.** Hole U1333A. **B.** Hole U1333B. **C.** Hole U1333C. L\* = reflectance value of sediment as defined in the LAB color model.





**Figure F8**. Line scan images of porcellanite layers. GRA = gamma ray attenuation. **A.** Hole U1333A. **B.** Hole U1333B.





**Figure F9.** Integrated calcareous and siliceous microfossil biozonation, Site U1333. Calcareous microfossil zonation was limited by the presence of extensive barren intervals; dashed zonal boundaries indicate stratigraphic extent of calcareous microfossil assemblages consistent with a particular zonal assignment.







Figure F10. Linear sedimentation rates and chronostratigraphic markers, Site U1333. See Table T33 for data used.



**Figure F11.** Stratigraphic distribution and abundance of *Nuttallides truempyi* and other benthic foraminifers (calcareous and agglutinated). High carbonate intervals (approximately >40%) in three holes of Sites (A) U1333, (B) U1332, and (C) U1331. Presence of other foraminifers indicates presence of calcareous hyaline foraminifers, except for *N. truempyi*.









**Figure F12.** Summary of magnetic susceptibility and paleomagnetic results, Hole U1333A. NRM = natural remanent magnetization.

**Figure F13.** Summary of magnetic susceptibility and paleomagnetic results, Hole U1333B. \* = position of the newly recognized cryptochron within Chron C18n.1n. NRM = natural remanent magnetization.



**Figure F14.** Summary of susceptibility and paleomagnetic results, Hole U1333C. \* = position of the newly recognized cryptochron within Chron C18n.1n. NRM = natural remanent magnetization.



**Figure F15.** Natural remanent magnetization intensity from Holes U1333B and U1333C before demagnetization. Lithology from Hole U1333A (see "Lithostratigraphy"). Black arrows show increased magnetic overprinting and noise of sediments recovered using steel core barrel. E/O = Eocene/Oligocene.




### Expedition 320/321 Scientists

Site U1333

**Figure F16.** Alternating-field demagnetization (demag) results for two discrete samples. Left plot shows vector endpoints of paleomagnetic directions on vector demagnetization diagrams or modified Zijderveld plots (squares = inclinations, circles = declinations), right plot shows intensity variation with progressive demagnetization. Data illustrate removal of drilling overprint, which is small in these samples. Above the 10 mT demagnetization step, a stable component is observed, which we interpret as the ChRM. Vectors do not terminate at the origin of plots, which might indicate instrument noise. A. Sample 320-U1333A-1H-2, 85 cm (2.35 m CSF). B. Sample 320-U1333A-10H-6, 85 cm (93.85 CSF). NRM = natural remanent magnetization.





### В

Sample 320-U1333A-10H-6, 85 cm Depth: 93.85 m CSF Maximum intensity =  $1.747 \times 10^{-3}$  A/m





Expedition 320/321 Scientists

Site U1333

**Figure F17.** Latitude of the virtual geomagnetic pole (VGP), as determined from paleomagnetic directions. North latitudes = normal polarity, south latitudes = reversed polarity. Gray lines = core gaps.



38

**Figure F18.** Interstitial water geochemical data, Hole U1333A. Values below the detection limit (see Table T25) are plotted as zero. (See "Lithostratigraphy" for information on unit boundaries.)









Site U1333

**Figure F20.** Whole-Round Multisensor Logger (WRMSL) and natural gamma radiation (NGR) data, Holes U1333A–U1333C. Hole U1333B and U1333C data are plotted using offsets (0.5 and 1.0 g/cm<sup>3</sup> for gamma ray attenuation [GRA] bulk density; 10 and  $20 \times 10^{-5}$  SI for magnetic susceptibility; 100 and 200 m/s for *P*-wave velocity; 10 and 20 cps for NGR).





**Figure F21.** Moisture and density measurements, Hole U1333A. GRA = gamma ray attenuation. **A.** Porosity and water content. **B.** Bulk density, MAD, and GRA. **C.** Grain density.



Water content (%)



**Figure F22.** Moisture and density (MAD) analysis of discrete samples, Hole U1333A. Gamma ray attenuation (GRA) density interpolated with a 20 cm wide Gaussian window.





**Figure F23.** Compressional wave velocity from the *P*-wave logger (PWL) and discrete velocity measurements on split core from Hole U1333A, using the contact probe for *x*-axis measurements and insertion probes for *y*- and *z*-axis measurements. (see "Compressional wave velocity" for note on postcruise velocity correction.)







Figure F24. Porosity and thermal conductivity measurements, Hole U1333A.





Figure F25. Thermal conductivity vs. porosity, from moisture and density analysis of discrete samples.



**Figure F26.** Reflectance spectrophotometer (RSC) data, Holes U1333A–U1333C. RSC for Holes U1333B and U1333C have been offset (20 and 40 for L\*; 4 and 8 for a\*; 8 and 16 for b\*) for core to core comparison. L\*, a\*, b\* = reflectance value of sediment as defined in the LAB color model.





**Figure F27.** Magnetic susceptibility data, Site U1333. Top panel = spliced section with core breaks (triangles) and hole designations, bottom panel = Holes U1333A (red), U1333B (blue), and U1333C (green), offset from each other by a constant ( $300 \times 10^{-6}$  SI). A. 0–50 CCSF-A. (Continued on next three pages.)





Figure F27 (continued). B. 50–100 CCSF-A. (Continued on next page.)





Figure F27 (continued). C. 100–150 CCSF-A. (Continued on next page.)





# Figure F27 (continued). D. 150–200 CCSF-A.





**Figure F28.** Comparison between magnetic susceptibility records, Sites 1218 and U1333. Site U1333 record is offset by 10 susceptibility units. Excellent correlation between the two records confirms Site U1333 splice at ~115 m CCSF-A is equivalent to ~220 rmcd on the common depth scale depicted.







**Figure F29.** CSF depth vs. CCSF-A depth for tops of cores, Site U1333. Growth factor = slope of the regression line. On average, CCSF-A depth of spliced section is 15% greater than CSF depth.



**Figure F30.** Heat flow calculation, Site U1333. **A.** Sediment temperatures, Hole U1333B. **B.** Thermal resistance based on laboratory thermal conductivity data, Hole U1333A. **C.** Bullard plot where heat flow is calculated from a linear fit of the temperature data. APCT-3 = advanced piston corer temperature tool.





# Table T1. Coring summary, Site U1333. (See table notes.) (Continued on next page.)

| 5 <b>ite U1333</b><br>Time on site (h): 124.3 (1400 h, 30 March–1845 h, 4 April 2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Hole U1333A<br>Latitude: 10°30.995'N<br>Longitude: 138°25.173'W<br>Time on hole (h): 45.9 (1400 h, 30 March–1155 h, 1 April 2009)<br>Seafloor (drill pipe measurement below rig floor, m DRF): 4865.0<br>Distance between rig floor and sea level (m): 11.3<br>Water depth (drill pipe measurement from sea level, mbsl): 4853.7<br>Total depth (drill pipe measurement from sea level, m DRF): 5049.1<br>Total penetration (drilling depth below seafloor, m DSF): 184.1<br>Total length of cored section (m): 184.1<br>Total number of cores: 22                                                             |  |
| Hole U1333B<br>Latitude: 10°30.996'N<br>Longitude: 138°25.160'W<br>Time on hole (h): 30.8 (1155 h, 1 April–1845 h, 2 April 2009)<br>Seafloor (drill pipe measurement below rig floor, m DRF): 4861.8<br>Distance between rig floor and sea level (m): 11.3<br>Water depth (drill pipe measurement from sea level, mbsl): 4850.5<br>Total depth (drill pipe measurement from rig floor, m DRF): 5042.1<br>Total penetration (drilling depth below seafloor, m DSF): 180.3<br>Total length of cored section (m): 180.3<br>Total core recovered (m): 179.9<br>Core recovery (%): 100<br>Total number of cores: 20 |  |
| Hole U1333C<br>Latitude: 10°30.996'N<br>Longitude: 138°25.146'W<br>Time on hole (h): 47.5 (1845 h, 2 April–1815 h, 4 March 2009)<br>Seafloor (drill pipe measurement below rig floor, m DRF): 4865.1<br>Distance between rig floor and sea level (m): 11.3<br>Water depth (drill pipe measurement from sea level, mbsl): 4853.8<br>Total depth (drill pipe measurement from rig floor, m DRF): 5042.1<br>Total penetration (drilling depth below seafloor, m DSF): 177.0<br>Total length of cored section (m): 177.0<br>Total core recovered (m): 177.0<br>Total number of cores: 24                           |  |

|         |                |                   | Depth                       | DSF (m)                        |                             | Depth                       | CSF (m)                        |                                    |                 |
|---------|----------------|-------------------|-----------------------------|--------------------------------|-----------------------------|-----------------------------|--------------------------------|------------------------------------|-----------------|
| Core    | Date<br>(2009) | Local time<br>(h) | Top of<br>cored<br>interval | Bottom of<br>cored<br>interval | Interval<br>advanced<br>(m) | Top of<br>cored<br>interval | Bottom of<br>cored<br>interval | Length of core<br>recovered<br>(m) | Recovery<br>(%) |
| 320-U13 | 33A-           |                   |                             |                                |                             |                             |                                |                                    |                 |
| 1H      | 31 Mar         | 0250              | 0.0                         | 9.5                            | 9.5                         | 0.00                        | 10.05                          | 10.05                              | 106             |
| 2H      | 31 Mar         | 0405              | 9.5                         | 19.0                           | 9.5                         | 9.50                        | 19.62                          | 10.12                              | 107             |
| 3H      | 31 Mar         | 0525              | 19.0                        | 28.5                           | 9.5                         | 19.00                       | 28.92                          | 9.92                               | 104             |
| 4H      | 31 Mar         | 0630              | 28.5                        | 38.0                           | 9.5                         | 28.50                       | 38.65                          | 10.15                              | 107             |
| 5H      | 31 Mar         | 0740              | 38.0                        | 47.5                           | 9.5                         | 38.00                       | 47.70                          | 9.70                               | 102             |
| 6H      | 31 Mar         | 0845              | 47.5                        | 57.0                           | 9.5                         | 47.50                       | 57.32                          | 9.82                               | 103             |
| 7H      | 31 Mar         | 1035              | 57.0                        | 66.5                           | 9.5                         | 57.00                       | 66.60                          | 9.60                               | 101             |
| 8H      | 31 Mar         | 1150              | 66.5                        | 76.0                           | 9.5                         | 66.50                       | 76.19                          | 9.69                               | 102             |
| 9H      | 31 Mar         | 1300              | 76.0                        | 85.5                           | 9.5                         | 76.00                       | 85.92                          | 9.92                               | 104             |
| 10H     | 31 Mar         | 1440              | 85.5                        | 95.0                           | 9.5                         | 85.50                       | 95.38                          | 9.88                               | 104             |
| 11X     | 31 Mar         | 1615              | 95.0                        | 100.7                          | 5.7                         | 95.00                       | 101.22                         | 6.22                               | 109             |
| 12X     | 31 Mar         | 1730              | 100.7                       | 110.3                          | 9.6                         | 100.70                      | 107.99                         | 7.29                               | 76              |
| 13X     | 31 Mar         | 1845              | 110.3                       | 120.0                          | 9.7                         | 110.30                      | 119.98                         | 9.68                               | 100             |
| 14X     | 31 Mar         | 1955              | 120.0                       | 129.6                          | 9.6                         | 120.00                      | 129.85                         | 9.85                               | 103             |
| 15X     | 31 Mar         | 2105              | 129.6                       | 139.2                          | 9.6                         | 129.60                      | 139.19                         | 9.59                               | 100             |
| 16X     | 31 Mar         | 2220              | 139.2                       | 148.8                          | 9.6                         | 139.20                      | 149.14                         | 9.94                               | 104             |
| 17X     | 31 Mar         | 2330              | 148.8                       | 158.4                          | 9.6                         | 148.80                      | 158.72                         | 9.92                               | 103             |
| 18X     | 1 Apr          | 0115              | 158.4                       | 168.0                          | 9.6                         | 158.40                      | 163.91                         | 5.51                               | 57              |
| 19X     | 1 Apr          | 0300              | 168.0                       | 177.6                          | 9.6                         | 168.00                      | 174.75                         | 6.75                               | 70              |
| 20X     | 1 Apr          | 0530              | 177.6                       | 181.6                          | 4.0                         | 177.60                      | 180.13                         | 2.53                               | 63              |



# Table T1 (continued).

|             |                |            | Depth        | DSF (m)              |          | Depth          | CSF (m)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |  |
|-------------|----------------|------------|--------------|----------------------|----------|----------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
|             |                | -          | Top of       | Bottom of            | Interval | Top of         | Bottom of                                            | Length of core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |  |  |
| ~           | Date           | Local time | cored        | cored                | advanced | cored          | cored                                                | recovered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Recovery |  |  |
| Core        | (2009)         | (h)        | interval     | interval             | (m)      | interval       | interval                                             | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (%)      |  |  |
| 21X         | 1 Apr          | 0800       | 181.6        | 182.6                | 1.0      | 181.60         | 181.66                                               | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6        |  |  |
| 22X         | 1 Apr          | 1005       | 182.6        | 184.1                | 1.5      | 182.60         | 182.66                                               | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4        |  |  |
|             |                |            | Adv          | anced total:         | 184.1    |                |                                                      | 176.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96       |  |  |
|             |                |            | Total in     | terval cored:        | 184.1    |                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |  |
| 320-U13     | 33B-           |            |              |                      |          |                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |  |
| 1H          | 1 Apr          | 1330       | 0.0          | 7.7                  | 7.7      | 0.00           | 7.73                                                 | $\begin{array}{c c c c c c c } \hline m \\ \hline m $ |          |  |  |
| 2H          | 1 Apr          | 1440       | 7.7          | 17.2                 | 9.5      | 7.70           | 17.65                                                | of         Length of core         Rec           recovered         Rec           (m)         (c)           6         0.06           0         0.06           176.25         1           3         7.73         1           5         9.95         1           3         7.73         1           5         9.95         1           3         10.03         1           6         9.96         1           5         9.85         1           6         9.76         1           1         10.11         1           4         9.64         1           7         9.97         1           6         9.76         1           1         10.11         1           4         8.64         1           5         9.76         1           7         6.27         1           7         6.27         1           7         6.27         1           7         9.79         1           4         10.10         1           2         9.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |  |  |
| 3H          | 1 Apr          | 1600       | 17.2         | 26.7                 | 9.5      | 17.20          | 27.23                                                | 10.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 106      |  |  |
| 4H          | 1 Apr          | 1700       | 26.7         | 36.2                 | 9.5      | 26.70          | 36.66                                                | 9.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105      |  |  |
| 5H          | 1 Apr          | 1830       | 36.2         | 45.7                 | 9.5      | 36.20          | 45.90                                                | 9.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102      |  |  |
| 6H<br>7U    | 1 Apr          | 1950       | 45.7         | 55.Z                 | 9.5      | 45.70          | 55.60                                                | 9.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104      |  |  |
| 7 T<br>9 LI | 1 Apr          | 2125       | 55.Z         | 04./<br>74.2         | 9.5      | 55.20<br>64.70 | 03.10                                                | 9.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105      |  |  |
| വ           | 2 Apr          | 2240       | 74.7         | 74.Z<br>83.7         | 9.3      | 74.20          | 74.33<br>82.16                                       | 9.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04       |  |  |
| 10H         | 2 Apr<br>2 Apr | 0125       | 83.7         | 93.2                 | 9.5      | 83 70          | 93.46                                                | 9.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103      |  |  |
| 11H         | 2 Apr          | 0230       | 93.2         | 102.7                | 9.5      | 93.20          | 103 31                                               | 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 105      |  |  |
| 12H         | 2 Apr          | 0340       | 102.7        | 112.2                | 9.5      | 102.70         | 112.34                                               | 9.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100      |  |  |
| 13H         | 2 Apr          | 0525       | 112.2        | 121.7                | 9.5      | 112.20         | 122.17                                               | 9.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105      |  |  |
| 14H         | 2 Apr          | 0635       | 121.7        | 131.2                | 9.5      | 121.70         | 131.46                                               | 9.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103      |  |  |
| 15H         | 2 Apr          | 0745       | 131.2        | 140.7                | 9.5      | 131.20         | 141.34                                               | 8.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107      |  |  |
| 16H         | 2 Apr          | 0920       | 140.7        | 150.2                | 9.5      | 140.70         | 150.05                                               | 9.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 98       |  |  |
| 17H         | 2 Apr          | 1100       | 150.2        | 159.7                | 9.5      | 150.20         | 158.56                                               | 8.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88       |  |  |
| 18H         | 2 Apr          | 1220       | 159.7        | 162.7                | 3.0      | 159.70         | 162.99                                               | 3.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110      |  |  |
| 19X         | 2 Apr          | 1445       | 162.7        | 172.3                | 9.6      | 162.70         | 169.87                                               | 7.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75       |  |  |
| 20X         | 2 Apr          | 1740       | 172.3        | 180.3                | 8.0      | 172.30         | 178.57                                               | 6.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78       |  |  |
|             |                |            | Adv          | vanced total:        | 180.3    |                |                                                      | 178.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99       |  |  |
|             |                |            | lotal in     | terval cored:        | 180.3    |                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |  |
| 320-U13     | 33C-           |            |              |                      |          |                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |  |
| 1H          | 2 Apr          | 2030       | 0.0          | 1.6                  | 1.6      | 0.00           | 1.65                                                 | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103      |  |  |
| 2H          | 2 Apr          | 2155       | 1.6          | 11.1                 | 9.5      | 1.60           | 11.63                                                | 10.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 106      |  |  |
| 3H          | 2 Apr          | 2310       | 11.1         | 20.6                 | 9.5      | 11.10          | 21.10                                                | n of<br>d         Length of core<br>recovered         Recc<br>(%           66         0.06         (%           66         0.06         (%           73         7.73         10           65         9.95         10           23         10.03         10           66         9.96         10           67         9.95         10           66         9.96         10           66         9.96         10           66         9.96         10           66         9.96         10           66         9.970         10           66         9.96         10           70         9.976         10           71         9.97         10           64         9.76         10           74         9.97         10           74         9.976         10           75         6.65         10           77         7.17         57           6.27         10         10           74         10.12         10           75         6.65         17           76         10.10         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |  |  |
| 4H          | 3 Apr          | 0030       | 20.6         | 30.1                 | 9.5      | 20.60          | 30.72                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |  |  |
| 211         | 3 Apr          | 0130       | 30.1         | 39.6                 | 9.5      | 30.10          | 39.89                                                | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |  |  |
| 0H<br>7U    | 3 Apr          | 0413       | 39.0<br>10.1 | 49.1                 | 9.3      | 39.00<br>40.10 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |  |
| 211<br>8H   | 3 Apr          | 0530       | 58.6         | 58.0<br>68.1         | 9.5      | 58.60          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |  |
| 9H          | 3 Apr          | 0750       | 68.1         | 77.6                 | 9.5      | 68 10          | 77.82                                                | 9 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100      |  |  |
| 10H         | 3 Apr          | 0855       | 77.6         | 87.1                 | 9.5      | 77.60          | 87.70                                                | 10.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102      |  |  |
| 11H         | 3 Apr          | 1000       | 87.1         | 93.1                 | 6.0      | 87.10          | 96.25                                                | 9.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 153      |  |  |
| 12H         | 3 Apr          | 1115       | 93.1         | 98.1                 | 5.0      | 93.10          | 99.75                                                | 6.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 133      |  |  |
| 13H         | 3 Apr          | 1250       | 98.1         | 107.6                | 9.5      | 98.10          | 108.06                                               | 9.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105      |  |  |
| 14H         | 3 Apr          | 1445       | 107.6        | 117.1                | 9.5      | 107.60         | 117.63                                               | 10.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 106      |  |  |
| 15H         | 3 Apr          | 1605       | 117.1        | 126.6                | 9.5      | 117.10         | 127.16                                               | 10.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 106      |  |  |
| 16H         | 3 Apr          | 1710       | 126.6        | 131.1                | 4.5      | 126.60         | 132.13                                               | 5.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 123      |  |  |
| 17H         | 3 Apr          | 1900       | 131.1        | 140.6                | 9.5      | 131.10         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |  |  |
| 18H         | 3 Apr          | 2055       | 140.6        | 150.1                | 9.5      | 140.60         | 150.74                                               | 1.66       0.06         2.66       0.06         176.25         7.73       7.73         7.65       9.95         7.23       10.03         6.66       9.96         5.90       9.70         5.60       9.990         5.16       9.96         3.16       8.96         3.46       9.76         3.11       10.11         2.34       9.64         2.17       9.97         1.46       9.76         3.31       10.11         2.34       9.64         2.17       9.97         1.46       9.76         3.31       10.11         2.34       9.64         2.17       9.97         1.46       9.76         1.34       8.64         0.05       9.35         8.56       8.36         2.99       3.29         9.87       7.17         8.57       6.27         178.36       1         1.00       1         0.72       10.12         9.89       9.79         9.79       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |  |  |
| 19H         | 3 Apr          | 2215       | 150.1        | 154.1                | 4.0      | 150.10         | 155.14                                               | 5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 126      |  |  |
| 20H         | 3 Apr          | 2350       | 154.1        | 163.2                | 9.1      | 154.10         | 163.22                                               | 9.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100      |  |  |
| 21H         | 4 Apr          | 0110       | 163.2        | 163.2                | 0.0      | 163.20         | 163.74                                               | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0        |  |  |
| 22X         | 4 Apr          | 0315       | 163.2        | 172.8                | 9.6      | 163.20         | 163.59                                               | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4        |  |  |
| 23X<br>24V  | 4 Apr          | 0530       | 176.0        | 177.0                | 3.Z      | 176.00         | 176.01                                               | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /        |  |  |
| 248         | 4 Арг          | 0745       | 0.0 I        | I//.U<br>anced total | 351.5    | 170.00         | 1/0.2/                                               | 177.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50       |  |  |
|             |                |            | Total in     | terval cored:        | 351.5    |                |                                                      | 177.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50       |  |  |

Notes: DRF = drilling depth below rig floor, DSF = drilling depth below seafloor, CSF = core depth below seafloor. H = APC core, X = XCB core. Local time = UTC - 10 h.

## Table T2. Lithologic unit boundaries, Site U1333. (See table notes.)

| Unit | Core, section,<br>interval (cm) | Depth<br>CSF (m) | Core, section,<br>interval (cm) | Depth<br>CSF (m) | Core, section,<br>interval (cm) | Depth<br>CSF (m) |
|------|---------------------------------|------------------|---------------------------------|------------------|---------------------------------|------------------|
|      | 320-U1331A-                     |                  | 320-U1331B-                     |                  | 320-U1331C-                     |                  |
| 1    | 1H-3,135                        | 4.35             | 1H-CC, 18*                      | 7.66             | 2H-3, 40                        | 5.0              |
| Ш    | 13H-4, 150                      | 116.3            | 13H-6, 55                       | 120.25           | 14H-CC, 22*                     | 117.57           |
| Illa | 19X-1, 10                       | 168.1            | 18X-CC, 22*                     | 162.7            | 22X-CC, 9*                      | 163.29           |
| IIIb | 20X-2, 82                       | 179.92           | 20X-CC, 0*                      | 178.17           | 23H-CC, 7*                      | 172.87           |
| IV   | 21X-CC, 0*                      | 181.6            | 20X-CC, 17*                     | 178.34           | 24X-CC, 16*                     | 176.16           |
| V    | 22X-CC, 5*                      | 182.65           | 20X-CC, 40*                     | 178.57           | 24X-CC, 38*                     | 176.38           |

Notes: Interval/depth are given for basal boundary of each unit. \* = unit extends through at least given interval and depth, but boundary was not cored.

Table T3. Calcareous nannofossil datums, Site U1333. (See table note.)

| Core, section | n, interval (cm) |                                     | Age  |        | Depth C | SF (m)   |      |
|---------------|------------------|-------------------------------------|------|--------|---------|----------|------|
| Тор           | Bottom           | Marker species                      | (Ma) | Тор    | Bottom  | Midpoint | ±    |
| 320-U1333A-   | 320-U1333A-      |                                     |      |        |         |          |      |
| 2H-5, 70      | 2H-6, 70         | B Sphenolithus disbelemnos          | 22.8 | 16.20  | 17.70   | 16.95    | 0.75 |
| 2H-7, 70      | 2H-CC            | T Sphenolithus delphix              | 23.1 | 19.20  | 19.57   | 19.39    | 0.19 |
| 2H-CC         | 3H-1, 70         | B Sphenolithus delphix              | 23.2 | 19.57  | 19.70   | 19.64    | 0.06 |
| 4H-5, 70      | 4H-6, 70         | T Sphenolithus ciperoensis          | 24.4 | 35.20  | 36.70   | 35.95    | 0.75 |
| 3H-CC         | 4H-1, 70         | X T. longus/T. carinatus            | 24.7 | 28.87  | 29.20   | 29.04    | 0.16 |
| 3H-5, 70      | 3H-6, 70         | Tc Cyclicargolithus abisectus       | 24.7 | 25.70  | 27.20   | 26.45    | 0.75 |
| 5H-2, 70      | 5H-3, 70         | T Sphenolithus distentus            | 26.8 | 40.20  | 41.70   | 40.95    | 0.75 |
| 5H-3, 70      | 5H-4, 70         | T Sphenolithus predistentus         | 26.9 | 41.70  | 43.20   | 42.45    | 0.75 |
| 5H-4, 70      | 5H-6, 70         | B Sphenolithus ciperoensis          | 27.1 | 43.20  | 46.20   | 44.70    | 1.50 |
| 6H-4, 70      | 6H-6, 70         | T Sphenolithus pseudoradians        | 28.8 | 52.70  | 55.70   | 54.20    | 1.50 |
| 9H-3, 50      | 9H-4, 50         | B Sphenolithus distentus            | 30.0 | 79.50  | 81.00   | 80.25    | 0.75 |
| 11X-4, 70     | 11X-CC           | T Reticulofenestra umbilicus        | 32.0 | 100.20 | 101.17  | 100.69   | 0.48 |
| 12X-3, 70     | 12X-4, 70        | T Coccolithus formosus              | 32.9 | 104.40 | 105.90  | 105.15   | 0.75 |
| 13X-3, 70     | 13X-3, 140       | T Discoaster saipanensis            | 34.4 | 114.00 | 114.70  | 114.35   | 0.35 |
| 14X-6, 70     | 14X-CC           | T Chiasmolithus grandis             | 37.1 | 128.20 | 129.80  | 129.00   | 0.80 |
| 15X-5, 70     | 15X-6, 70        | B Dictyococcites bisectus           | 38.0 | 136.30 | 137.80  | 137.05   | 0.75 |
| 16X-4, 40     | 16X-5, 40        | T Chiasmolithus solitus             | 40.4 | 144.10 | 145.60  | 144.85   | 0.75 |
| 17X-6,110     | 17X-CC           | T Nannotetrina                      | 42.3 | 157.40 | 158.46  | 157.93   | 0.53 |
| 18X-1, 60     | 18X-2, 34        | B Reticulofenestra umbilicus >14 µm | 42.5 | 159.00 | 160.24  | 159.62   | 0.62 |
| 18X-4, 88     | 18X-CC           | T Nannotetrina fulgens              | 43.4 | 163.12 | 163.86  | 163.49   | 0.37 |
| 20X-1, 73     | 20X-2, 50        | B Nannotetrina fulgens              | 46.8 | 178.33 | 179.60  | 178.97   | 0.63 |
| 20X-2, 50     | 20X-CC           | B Sphenolithus furcatolithoides     | 45.8 | 179.60 | 180.12  | 179.86   | 0.26 |
| 20X-2, 50     | 20X-CC           | B Nannotetrina                      | 48.0 | 179.60 | 180.12  | 179.86   | 0.26 |
| 320-U1332B-   | 320-U1332B-      |                                     |      |        |         |          |      |
| 20X-1, 46     | 20X-2, 86        | B Sphenolithus furcatolithoides     | 45.8 | 172.76 | 174.66  | 173.71   | 0.95 |
| 20X-3, 102    | 20X-4, 37        | B Nannotetrina                      | 48.0 | 176.32 | 177.17  | 176.75   | 0.42 |

Note: B = bottom, T = top, X = abundance crossover, Tc = top common.



# Table T4. Radiolarian datums, Site U1333. (See table notes.) (Continued on next page.)

|                 |      |                                            | Ago            | Core, section                   | n interval (cm)           |                | Depth C | SF (m)   |      |
|-----------------|------|--------------------------------------------|----------------|---------------------------------|---------------------------|----------------|---------|----------|------|
| Geologic age    | Zone | Marker species                             | (Ma)           | Тор                             | Bottom                    | Тор            | Bottom  | Midpoint | ±    |
|                 |      |                                            |                | 320-U1333A-                     | 320-U1333A-               |                |         |          |      |
|                 | RN2  | B S. delmontensis                          | 20.68          | 1H-2, 104–106                   | 1H-4, 104–106             | 2.55           | 5.55    | 4.05     | 1.50 |
|                 |      | T L. pegetrum                              | 20.89          | 1H-4, 104–106                   | 1H-CC                     | 5.55           | 9.92    | 7.74     | 2.19 |
|                 |      | T T. annosa                                | 21.38          | 1H-4, 104–106                   | 1H-CC                     | 5.55           | 9.92    | 7.74     | 2.19 |
| lower Miocene   |      | B C. virginis                              | 21.39          | 1H-4, 104–106                   | 1H-CC                     | 5.55           | 9.92    | /./4     | 2.19 |
|                 | PNI1 | T E mitodas                                | 21.42          | 2H-4, 104-106<br>2H-2, 104, 106 | 2H-CC<br>2H-4 104 106     | 12.05          | 19.57   | 17.51    | 2.20 |
|                 | NINT | B C. serrata                               | 22.04          | 1H-4, 104–106                   | 1H-CC                     | 5.55           | 9.92    | 7.74     | 2.19 |
|                 |      | B C. cornuta                               | 22.26          | 2H-4, 104–106                   | 2H-CC                     | 15.05          | 19.57   | 17.31    | 2.26 |
|                 |      | B C. tetrapera                             | 22.35          | 2H-4, 104–106                   | 2H-CC                     | 15.05          | 19.57   | 17.31    | 2.26 |
|                 |      | T A. gracilis                              | 22.62          | 2H-4, 104–106                   | 2H-CC                     | 15.05          | 19.57   | 17.31    | 2.26 |
|                 |      | B D. bassanii                              | 22.93          | 2H-4, 104–106                   | 2H-CC                     | 15.05          | 19.57   | 17.31    | 2.26 |
|                 |      | B E. diaphanes                             | 22.95          | 3H-2, 105–107                   | 3H-4, 105–107             | 21.56          | 24.56   | 23.06    | 1.50 |
|                 |      | T D. cyclacantha                           | 22.98          | 2H-CC                           | 3H-2, 105–107             | 19.57          | 21.56   | 20.57    | 0.99 |
|                 | RP22 | B D cyclacantha                            | 23.01          | 3H-2 105-107                    | 4H-CC<br>3H-4 105_107     | 21.56          | 24 56   | 23.09    | 1.52 |
|                 |      | T D. papilio                               | 23.31          | 3H-2, 105–107                   | 3H-4, 105–107             | 21.56          | 24.56   | 23.06    | 1.50 |
|                 |      | T L. longicornuta                          | 24.12          | 3H-2, 105–107                   | 3H-4, 105–107             | 21.56          | 24.56   | 23.06    | 1.50 |
|                 |      | T A. octopylus                             | 24.38          | 3H-4, 105–107                   | 3H-CC                     | 24.56          | 28.87   | 26.72    | 2.16 |
|                 |      | T L. apodora                               | 24.5           | 3H-4, 105–107                   | 3H-CC                     | 24.56          | 28.87   | 26.72    | 2.16 |
|                 |      | B L. elongata                              | 25.05          | 4H-3, 106–108                   | 4H-5, 106–108             | 32.57          | 35.57   | 34.07    | 1.50 |
| upper Oligocene |      | B A. octopylus                             | 25.09          | 4H-5, 106–108                   | 4H-CC                     | 35.57          | 38.60   | 37.09    | 1.52 |
|                 |      | B D. praeforcipata                         | 25.27          | 5H-4, 105–107                   | 5H-CC                     | 43.55          | 47.65   | 45.60    | 2.05 |
|                 |      | B C. robusta<br>B D. tubaria               | 25.27          | 4H-5, 106-108                   | 4H-CC                     | 35.57          | 38.60   | 37.09    | 1.52 |
|                 |      | B L longicornuta                           | 25.27          | 4H-3 106–108                    | 4H-5 106-108              | 32.57          | 35.00   | 34.07    | 1.52 |
|                 |      | B D. scambos                               | 25.33          | 4H-3, 106–108                   | 4H-5, 106–108             | 32.57          | 35.57   | 34.07    | 1.50 |
|                 | 5521 | B L. apodora                               | 25.55          | 4H-5, 106–108                   | 4H-CC                     | 35.57          | 38.60   | 37.09    | 1.52 |
|                 | RP21 | T D. circulus                              | 26.17          | 4H-5, 106–108                   | 4H-CC                     | 35.57          | 38.60   | 37.09    | 1.52 |
|                 |      | B D. riedeli                               | 26.2           | 5H-4, 105–107                   | 5H-CC                     | 43.56          | 47.65   | 45.61    | 2.04 |
|                 |      | T E. plesiodiaphanes                       | 26.4           | 5H-4, 105–107                   | 5H-CC                     | 43.56          | 47.65   | 45.61    | 2.04 |
|                 |      | T L. angusta                               | 27.68          | 6H-3, 95–97                     | 6H-5, 95–97               | 51.46          | 54.46   | 52.96    | 1.50 |
|                 |      | T T. setanios                              | 28.21          | 6H-5, 95–97                     | 6H-CC                     | 54.46          | 57.27   | 55.87    | 1.41 |
|                 |      | B I. annosa<br>B D. atauchus               | 28.33          | 7H-4,95-97                      | 7H-CC                     | 62.40<br>62.46 | 66.55   | 64.51    | 2.04 |
|                 |      | D D. aleachus<br>T triceros $> D$ ateuchus | 28.60          | 7H-4, 95-97<br>7H-4 95-97       | 7H-CC<br>7H-CC            | 62.40          | 66 55   | 64.51    | 2.04 |
|                 |      | B E. mitodes                               | 29.41          | 8H-2, 108–110                   | 8H-4, 108–110             | 68.89          | 71.89   | 70.39    | 1.50 |
|                 |      | B T. setanios                              | 29.51          | 9H-2, 105–107                   | 9H-4, 105–107             | 78.55          | 81.56   | 80.06    | 1.51 |
|                 |      | B D. circulus                              | 29.96          | 9H-2, 105–107                   | 9H-4, 105–107             | 78.56          | 81.56   | 80.06    | 1.50 |
|                 |      | T T. tuberosa                              | 30.13          | 9H-CC                           | 10H-2, 105–107            | 85.87          | 88.06   | 86.97    | 1.10 |
|                 |      | T L. crux                                  | 30.13          | 9H-CC                           | 10H-2, 105–107            | 85.87          | 88.06   | 86.97    | 1.10 |
|                 |      | B E. plesiodiaphanes                       | 30.37          | 9H-CC                           | 10H-2, 105–107            | 85.87          | 88.06   | 86.97    | 1.10 |
|                 |      | I L. oberhaensliae                         | 30.74          | 9H-CC                           | 10H-2, 105–107            | 85.87          | 88.06   | 86.97    | 1.10 |
|                 |      | в D. spiriosa<br>T.D. pseudopaplilio       | 30.84          | 118-2, 95-97                    | 11X-4, 95-97              | 97.40<br>97.46 | 100.46  | 98.90    | 1.50 |
|                 |      | T C aravida                                | 30.89          | 11X-2, 95-97                    | 11X-4, 93-97              | 100 46         | 100.40  | 100.82   | 0.36 |
| lower Oligocene |      | B L. cf. L. elonaata                       | 50.07          | 11X-CC                          | 12X-2, 105–107            | 101.17         | 103.26  | 102.22   | 1.05 |
|                 | RP20 | B L. crux                                  | 31.00          | 12X-2, 105–107                  | 12X-4, 105–107            | 103.26         | 106.26  | 104.76   | 1.50 |
|                 |      | B T. tuberosa                              | 31.00          | 12X-4, 105–107                  | 12X-CC                    | 106.26         | 107.99  | 107.13   | 0.86 |
|                 |      | B D. pseudopaplilio                        | 31.00          | 12X-2, 105–107                  | 12X-4, 105–107            | 103.26         | 106.26  | 104.76   | 1.50 |
|                 |      | B C. gravida                               | 31.01          | 12X-2, 105–107                  | 12X-4, 105–107            | 103.26         | 106.26  | 104.76   | 1.50 |
|                 |      | T T. triacantha                            | 33.34          | 13X-5, 8–16                     | 13X-5, 96–104             | 116.42         | 117.30  | 116.86   | 0.44 |
|                 |      | T L. aristotelis gr.                       | 33.51          | 13X-2, 37-44                    | 13X-2,88-95               | 112.21         | 112.72  | 112.47   | 0.26 |
|                 |      | T C. nispidu                               | 33.62          | 13X-2, 37-44                    | 13X-2, 00-93              | 112.21         | 112.72  | 112.47   | 0.20 |
|                 |      | T L hadra                                  | 33.75          | 13X-2, 105–107                  | 13X-3, 0-8                | 112.86         | 113.20  | 113.03   | 0.17 |
|                 |      | T L. amphitrite                            | 33.75          | 13X-2, 37–44                    | 13X-2, 88–95              | 112.21         | 112.72  | 112.47   | 0.26 |
|                 |      | T L. babylonis                             | 33.75          | 13X-2, 105–107                  | 13X-3, 0–8                | 112.86         | 113.34  | 113.10   | 0.24 |
|                 |      | L. aristotelis > L. angusta                | 33.82          | 13X-2, 88–95                    | 13X-2, 105–107            | 112.72         | 112.86  | 112.79   | 0.07 |
|                 |      | T D. copetata                              | 33.84          | 12X-CC                          | 13X-1, 127–134            | 107.99         | 111.57  | 109.78   | 1.79 |
|                 |      | B L. angusta                               | 34.13          | 13X-3, 0–8                      | 13X-3, 122–129            | 113.34         | 114.07  | 113.71   | 0.36 |
|                 |      | I C. bandyca                               | 34.62          | 13X-4, 105–107                  | 13X-4, 120–128            | 115.86         | 116.04  | 115.95   | 0.09 |
| upper Focono    | RP19 | T E fistuliaerum                           | 24.83<br>24.02 | 13X-2, 105-107                  | 137-3, U-8<br>148-3 05 07 | 112.80         | 113.20  | 121 20   | 0.17 |
| upper Locerie   |      | T T hromia                                 | 33 94          | 13X-4 120-128                   | 13X-5, 8-16               | 116.04         | 116 47  | 116.23   | 0.19 |
|                 |      | T T. lochites                              | 34.13          | 13X-4, 120–128                  | 13X-5, 8–16               | 116.04         | 116.42  | 116.23   |      |
|                 |      | T C. azyx                                  | 35.07          | 13X-4, 105–107                  | 13X-4, 120–128            | 114.07         | 116.04  | 115.06   | 0.99 |
|                 |      | T T. tetracantha                           | 35.30          | 13X-4, 120–128                  | 13X-5, 8–16               | 116.04         | 116.42  | 116.23   | 0.19 |



# Table T4 (continued).

|               |      |                       | Age   | Core, section  | interval (cm)  |        | Depth C | CSF (m)  |      |
|---------------|------|-----------------------|-------|----------------|----------------|--------|---------|----------|------|
| Geologic age  | Zone | Marker species        | (Ma)  | Тор            | Bottom         | Тор    | Bottom  | Midpoint | ±    |
| upper Eocene  | RP18 | B L. hadra            | 35.34 | 13X-4, 72–80   | 13X-4, 96–104  | 115.52 | 115.76  | 115.64   | 0.12 |
|               |      | B C. bandyca          | 36.74 | 13X-CC         | 14X-2, 95–97   | 122.45 | 125.45  | 123.95   | 1.50 |
|               | RP17 | B L. jacchia          | 37.06 | 14X-2, 95–97   | 14X-4, 95–97   | 122.46 | 125.46  | 123.96   | 1.50 |
|               |      | B C. azyx             | 37.52 | 14X-4, 95–97   | 14X-CC         | 125.46 | 129.80  | 127.63   | 2.17 |
|               |      | T Anthocyrtoma spp.   | 37.92 | 14X-CC         | 15X-2, 96–98   | 129.80 | 132.07  | 130.94   | 1.13 |
|               |      | B T. bromia           | 38.07 | 14X-CC         | 15X-2, 96–98   | 129.80 | 132.07  | 130.94   | 1.13 |
|               |      | B T. tetracantha      | 38.12 | 14X-CC         | 15X-2, 96–98   | 129.80 | 132.07  | 130.94   | 1.13 |
|               | DD14 | T D. anastasis        | 38.45 | 14X-CC         | 15X-2, 96–98   | 129.80 | 132.07  | 130.94   | 1.13 |
|               | KPTO | B C. turris           | 38.67 | 14X-CC         | 15X-2, 96–98   | 129.80 | 132.07  | 130.94   | 1.13 |
|               |      | B L. aristotelis gr.  | 39.73 | 15X-4, 96–98   | 15X-CC         | 135.07 | 139.14  | 137.11   | 2.03 |
|               |      | T P. mitra            | 39.85 | 15X-CC         | 16X-2, 104–106 | 139.14 | 141.75  | 140.45   | 1.31 |
|               |      | B D. anastasis        | 39.98 | 15X-CC         | 16X-2, 104–106 | 139.14 | 141.75  | 140.45   | 1.31 |
|               |      | B P. goetheana        | 40.16 | 16X-2, 104–106 | 16X-4, 104–106 | 141.75 | 144.75  | 143.25   | 1.50 |
|               | RP15 | T L. biaurita         | 40.36 | 16X-CC         | 17X-2, 105–107 | 149.09 | 151.36  | 150.23   | 1.14 |
| middle Eocene |      | P. mitra > P. chalara | 40.70 | 17X-2, 105–107 | 17X-4, 105–107 | 151.36 | 154.36  | 152.86   | 1.50 |
|               |      | T P. trachodes        | 41.23 | 17X-2, 105–107 | 17X-4, 105–107 | 151.36 | 154.35  | 152.86   | 1.49 |
|               |      | B P. chalara          | 41.54 | 17X-4, 105–107 | 17X-CC         | 154.36 | 158.46  | 156.41   | 2.05 |
|               |      | B C. ornatum          | 42.10 | 17X-4, 105–107 | 17X-CC         | 154.36 | 158.46  | 156.41   | 2.05 |
|               | DD14 | B S. triconiscus      | 42.40 | 17X-CC         | 18X-1, 95–97   | 158.46 | 159.36  | 158.91   | 0.45 |
|               | KP14 | T E. lagena           | 42.69 | 18X-1, 95–97   | 18X-4, 95–97   | 159.36 | 163.20  | 161.28   | 1.92 |
|               |      | B T. perpumila        | 42.97 | 18X-1, 95–97   | 18X-4, 95–97   | 159.36 | 163.20  | 161.28   | 1.92 |
|               |      | B P. trachodes        | 43.22 | 18X-1, 95–97   | 18X-4, 95–97   | 159.36 | 163.20  | 161.28   | 1.92 |
|               |      | B Z. cimelium         | 43.35 | 18X-1, 95–97   | 18X-4, 95–97   | 159.36 | 163.20  | 161.28   | 1.92 |
|               |      | P. sinuosa > P. mitra | 43.84 | 18X-CC         | 19X-1, 104–106 | 163.86 | 169.05  | 166.46   | 2.59 |
|               |      | T P. phyxis           | 44.44 | 19X-1, 104–106 | 19X-3, 104–106 | 169.05 | 172.30  | 170.68   | 1.63 |
|               | RP13 | B P. ampla            | 44.77 | 19X-1, 104–106 | 19X-3, 104–106 | 169.05 | 172.30  | 170.68   | 1.63 |
|               |      | P. phyxis > P. ampla  | 44.77 | 19X-1, 104–106 | 19X-3, 104–106 | 169.05 | 172.30  | 170.68   | 1.63 |
|               | 1    |                       |       |                |                |        |         |          |      |

Notes: B = bottom, T = top.

**Table T5.** Preservation and relative abundance of radiolarians, Hole U1333A. This table is available in an **over-sized format.** 



| Core, section,<br>interval (cm) | Radiolarian zone | Abundance   | Preservation | Mixing | Anthocyrtoma spp. | Artophormis gracilis | Calocyclas hispida | Calocyclas turris | Calocycloma ampulla | Calocycloma castum | Carpocanopsis cingulata | Cryptocarpium azyx | Cryptocarpium ornatum | Cyrtocapsella cornuta | Cyrtocapsella tetrapera | Dictyopnimus craticula<br>Dictyoprica armadillo | Dictvoprora monaolfieri | Didvmorvrtis prismatica | Dorradosnuris anastasis | Dorcadospyris ateuchus | Dorcadospyris circulus | Dorcadospyris copelata | Dorcadospyris ombros (upper) | Dorcadospyris papilio | Dorcadospyris praeforcipata | Dorcadospyris quadripes | Dorcadospyris scambos | Dorcadospyris spinosa | Eucyrtidium diaphanes | Eucyrtidium mitodes | Eucyrtidium plesiodiaphanes | Eusyringium fistuligerum | Lithocyclia anausta | Lithocyclia aristotelis ar. | Lithocyclia crux | Lithocyclia ocellus gr. | Lophocyrtis jacchia | Lophocyrtis oberhaensliae | Lophocyrtis pegetrum | Lychnocanoma amphitrite | Lychnocanoma babylonis | Lychnocanoma elongata | Lychnocanoma turgidum | Podocyrtis apeza | Podocyrtis chalara | Podocyrtis goetheana | Podocyrtis mitra |
|---------------------------------|------------------|-------------|--------------|--------|-------------------|----------------------|--------------------|-------------------|---------------------|--------------------|-------------------------|--------------------|-----------------------|-----------------------|-------------------------|-------------------------------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------------|-----------------------|-----------------------------|-------------------------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------------|--------------------------|---------------------|-----------------------------|------------------|-------------------------|---------------------|---------------------------|----------------------|-------------------------|------------------------|-----------------------|-----------------------|------------------|--------------------|----------------------|------------------|
| 320-U1333B-<br>1H-CC<br>2H-CC   | B<br>PNI1        | В           | м            |        |                   |                      | E                  |                   |                     |                    | D                       |                    |                       | C                     | D                       |                                                 |                         |                         | ,                       | D                      |                        |                        |                              |                       | D                           |                         | D                     |                       | D                     |                     |                             |                          |                     |                             |                  |                         |                     |                           |                      |                         |                        | D                     |                       |                  |                    |                      |                  |
| 3H-CC<br>4H-CC                  | RP22             | C<br>C      | M            |        |                   | R<br>R               | F<br>R             |                   |                     |                    | N                       |                    |                       | C                     | ĸ                       |                                                 |                         | F                       | λ<br>λ                  | R                      | !<br>!                 |                        |                              | R<br>R                | R<br>R                      |                         | ĸ                     |                       | <u>к</u>              | R<br>R              |                             |                          | ۲                   |                             |                  |                         |                     |                           | R<br>R               |                         |                        | R<br>R                |                       |                  |                    |                      |                  |
| 5H-CC<br>6H-CC<br>7H-CC         | RP21             | C<br>A<br>A | M<br>M<br>M  |        |                   | R<br>R<br>R          |                    |                   |                     |                    |                         |                    |                       |                       |                         |                                                 |                         | F                       | 2<br>2<br>2             | R<br>R<br>R            | R                      | !<br>!<br>!            |                              | _                     | R                           |                         |                       |                       |                       | R<br>R<br>R         | R<br>R<br>R                 |                          |                     |                             |                  |                         |                     |                           | R<br>R<br>R          |                         |                        | R<br>R                |                       |                  |                    |                      |                  |
| 8H-CC<br>9H-CC                  |                  | A<br>C      | M<br>M       |        |                   | R                    |                    |                   |                     |                    |                         |                    |                       |                       |                         |                                                 |                         | F                       | R                       | _                      | - R<br>R               | 1<br>1                 |                              |                       |                             |                         |                       |                       |                       | _                   | R<br>R                      |                          |                     |                             | _                |                         |                     |                           |                      |                         |                        |                       |                       |                  |                    |                      |                  |
| 10H-CC<br>11H-CC<br>12H-CC      | RP20             | C<br>C<br>C | M<br>M<br>M  |        |                   | R<br>R<br>R          |                    |                   |                     |                    |                         |                    |                       |                       |                         |                                                 |                         |                         |                         |                        |                        |                        |                              |                       |                             | R<br>R<br>R             |                       | R<br>R<br>R           |                       |                     | _                           |                          | R                   |                             | R<br>R<br>R      |                         |                     | VR                        |                      |                         |                        |                       |                       |                  |                    |                      |                  |
| 13H-CC<br>14H-CC                | RP18<br>RP17     | C<br>A      | M<br>M       |        |                   | —                    | R<br>R             | R                 |                     |                    |                         | R                  | R<br>R                |                       |                         | I                                               | R<br>R<br>R             | 2                       |                         |                        |                        | R                      | R                            |                       |                             |                         |                       |                       |                       |                     |                             | R                        |                     | R                           | 1                | R<br>R                  | R                   |                           |                      |                         | R                      |                       | R                     |                  |                    |                      |                  |
| 16X-CC<br>17X-CC                | RP16<br>RP15     | C<br>C<br>C | M<br>M       |        | VR                |                      |                    |                   | R                   | R                  |                         |                    | R                     |                       |                         | RI                                              | к н<br>8 F              |                         |                         | ۲                      |                        |                        | R                            |                       |                             |                         |                       |                       |                       |                     |                             | R<br>R                   |                     |                             |                  |                         |                     |                           |                      |                         |                        |                       | R                     | R                | R                  | к                    | R                |
| 17X-CC<br>18X-CC                | крі4<br>—        | C<br>B      | М            |        |                   |                      |                    |                   |                     |                    |                         |                    |                       |                       |                         |                                                 |                         |                         |                         |                        |                        |                        |                              |                       |                             |                         |                       |                       |                       |                     |                             |                          |                     |                             |                  |                         |                     |                           |                      |                         |                        |                       |                       |                  |                    |                      |                  |
| 19X-CC<br>19X-CC<br>20X-CC      | В                | B           |              |        |                   |                      |                    |                   |                     |                    |                         |                    |                       |                       |                         |                                                 |                         |                         |                         |                        |                        |                        |                              |                       |                             |                         |                       |                       |                       |                     |                             |                          |                     |                             |                  |                         |                     |                           |                      |                         |                        |                       |                       |                  |                    |                      |                  |
| 20X-CC                          | В                | В           |              |        |                   |                      |                    |                   |                     |                    |                         |                    |                       |                       |                         |                                                 |                         |                         |                         |                        |                        |                        |                              |                       |                             |                         |                       |                       |                       |                     |                             |                          |                     |                             |                  |                         |                     |                           |                      |                         |                        |                       |                       |                  |                    |                      |                  |

Notes: Abundance: A = abundant, C = common, F = frequent, R = rare, VR = very rare, B = barren, — = undetermined. Preservation: M = moderate. Mixing: blank = no mixing of older speci-

Proc. IODP | Volume 320/321

mens detected.

# Site U1333

| Table T6 ( | (continued). |
|------------|--------------|
|------------|--------------|

| Core, section,<br>interval (cm)                                                                | Radiolarian zone                             | Abundance                  | Preservation                          | Mixing | Podocyrtis papalis | Podocyrtis trachodes | Rhopalocanium ornatum | Sethochytris triconiscus | Spongatractus pachystylus | Theocorys anaclasta | Theocyrtis annosa     | Theocyrtis careotuberosa | Theocyrtis perpumila | Theocyrtis perysinos | Theocyrtis setanios | Theocyrtis tuberosa | Thyrsocyrtis bromia | Thyrsocyrtis krooni | Thyrsocyrtis lochites | Thyrsocyrtis orthotenes | Thyrsocyrtis triacantha | Tristylospyris triceros | Zygocircus cimelium |
|------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------|---------------------------------------|--------|--------------------|----------------------|-----------------------|--------------------------|---------------------------|---------------------|-----------------------|--------------------------|----------------------|----------------------|---------------------|---------------------|---------------------|---------------------|-----------------------|-------------------------|-------------------------|-------------------------|---------------------|
| 320-U1 333B-<br>1H-CC<br>2H-CC<br>3H-CC<br>4H-CC<br>5H-CC<br>6H-CC<br>7H-CC                    | B<br>RN1<br>RP22<br>RP21                     | B<br>C<br>C<br>C<br>A<br>A | M<br>M<br>M<br>M<br>M<br>M            |        |                    |                      |                       |                          |                           |                     | R<br>R<br>R<br>R<br>R |                          |                      |                      | R                   |                     |                     |                     |                       |                         |                         |                         |                     |
| 8H-CC<br>9H-CC<br>10H-CC<br>12H-CC<br>13H-CC<br>14H-CC<br>15H-CC<br>16X-CC<br>17X-CC<br>17X-CC | RP20<br>RP18<br>RP17<br>RP16<br>RP15<br>RP14 | A C C C C C C C C C C C    | M M M M M M M M M M M M M M M M M M M |        | R<br>R             | R                    | R<br>R                | R                        | R                         | R                   |                       | R<br>R<br>R              | F<br>R<br>R          | R                    | R                   | C<br>C<br>C         | R<br>R              | R                   | R<br>R                | R                       | R<br>F<br>F             | R<br>R<br>R             | R<br>R              |
| 18X-CC<br>19X-CC<br>19X-CC<br>20X-CC<br>20X-CC                                                 | <br>В<br>В                                   | B<br>B<br>B<br>B           |                                       |        |                    |                      |                       |                          |                           |                     |                       |                          |                      |                      |                     |                     |                     |                     |                       |                         |                         |                         |                     |

Proc. IODP | Volume 320/321



|                                                                                                                                                                                        |                            |                                         |                                                                                                     |                            |                   |                                                               |                    |                   |                                           |                      |                       |                     |                      |                              |                    |                                                          |                       |                         |                                                                         |                                                                                                  |                       |                            |                      |                         |                        |                        |                                                                                                                                                                                                                                                   |                       |                             |                             |                         |                       |                       |                       |                       |                     |                             |                          |                    |                                                               |                                                                  |                                 |                      |                       |                                                |                                   | _                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------|-------------------|---------------------------------------------------------------|--------------------|-------------------|-------------------------------------------|----------------------|-----------------------|---------------------|----------------------|------------------------------|--------------------|----------------------------------------------------------|-----------------------|-------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------|----------------------------|----------------------|-------------------------|------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|-----------------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------------|--------------------------|--------------------|---------------------------------------------------------------|------------------------------------------------------------------|---------------------------------|----------------------|-----------------------|------------------------------------------------|-----------------------------------|---------------------------|
| Core, section,<br>interval (cm)                                                                                                                                                        | Radiolarian zone           | Abundance                               | Preservation                                                                                        | Mixing                     | Anthocyrtoma spp. | Artophormis gracilis                                          | Calocyclas bandyca | Calocyclas turris | Calocycletta anekathen                    | Calocycletta robusta | Calocycletta virainia | Caracteria virginis | Centrobotrys gravida | Centrobotrys petrushevskayae | Cryptocarpium azyx | Cryptocarpium ornatum                                    | Cyrtocapsella cornuta | Cyrtocapsella tetrapera | Dictyoprora armadillo                                                   | Dictyoprora mongolfieri                                                                          | Didymocyrtis bassanii | Didymocyrtis prismatica    | Didymocyrtis tubaria | Dorcadospyris anastasis | Dorcadospyris ateuchus | Dorcadospyris circulus | Dorcadospyris copelata<br>Dorcadospyris ombros (upper)                                                                                                                                                                                            | Dorcadospyris papilio | Dorcadospyris praeforcipata | Dorcadospyris pseudopapilio | Dorcadospyris quadripes | Dorcadospyris riedeli | Dorcadospyris scambos | Dorcadospyris spinosa | Eucyrtiaium alaphanes | Eucyrtiaium mitodes | Eucyrtidium plesiodiaphanes | Eusyringium fistuligerum | Eusyringium lagena | Lithocyclia angusta                                           | Lithocyclia aristotelis gr.                                      | FILTIOCYCIIA CLUX               | Lophocyrtis exitelus | Lophocyrtis hadra     | Lophocyrtis jacchia                            | Lophocyrtis milowi                | Lophocyrtis obernaensiiae |
| 320-U1333C-<br>1H-CC<br>2H-CC<br>3H-CC<br>4H-CC<br>5H-CC<br>6H-CC<br>7H-CC                                                                                                             | RN2<br>RN1<br>RP22<br>RP21 |                                         | $\bowtie$ |                            |                   | R<br>R<br>R<br>R                                              |                    |                   |                                           | R<br>F<br>F          | RΝ                    | /R                  | R<br>R               | R                            |                    |                                                          | F<br>F<br>            | R<br>R<br>              |                                                                         |                                                                                                  | R<br>R                | R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R          |                         | R<br>R<br>R<br>R<br>R  | VR<br>R                |                                                                                                                                                                                                                                                   | R                     | R<br>R<br>R                 | -                           |                         | R                     | R<br>R<br>R<br>VR     | -                     | R<br>R                | R<br>R<br>R<br>R    | R<br>R                      |                          |                    | R                                                             |                                                                  |                                 |                      |                       |                                                | R<br>R<br>R<br>R<br>R             |                           |
| 8H-CC<br>9H-CC<br>10H-CC<br>11H-CC<br>12H-CC<br>13H-CC<br>14H-1, 50–58<br>14H-1, 70–78<br>14H-2, 0–8<br>14H-3, 100–108<br>14H-4, 70–78<br>14H-4, 140–148<br>14H-5, 40–48               | RP20                       | C C C A A A A A C F F C C               | M                                                                                                   | 1 1                        |                   | R<br>R<br>R<br>F<br>R<br>F<br>F<br>F<br>F<br>R<br>R<br>R      |                    | ,<br>VR           | √R<br>F                                   |                      |                       |                     | R                    | R<br>R<br>R                  |                    | F                                                        |                       |                         | R                                                                       | F                                                                                                |                       | R<br>R<br>                 |                      |                         |                        | R<br>R<br>             | R<br>R<br>R<br>R<br>R                                                                                                                                                                                                                             |                       |                             | R<br>R                      | R<br>R<br>R             |                       |                       | R<br>R                |                       | R                   | R<br>R<br>R                 |                          |                    | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | P                                                                | R<br>R<br>R<br>R<br>R<br>R<br>R |                      |                       | , , ,                                          | R<br>R<br>R<br>R<br>R<br>VR<br>VR | /R                        |
| 14H-5, 50-58<br>14H-5, 110-118<br>14H-5, 130-138<br>14H-6, 20-24<br>14H-6, 50-58<br>14H-6, 80-88<br>14H-6, 120-128<br>14H-7, 30-38<br>14H-7, 60-68<br>14H-7, 67-75<br>14H-CC<br>15H-CC | RP19<br>RP18               | F C A A A A A A A A A A A A A A A A A A | E Z Z Z Z Z Z Z Z Z U U                                                                             | 1<br>1<br>1<br>1<br>1<br>1 |                   | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | VR<br>VR           | R                 | F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F |                      |                       |                     |                      |                              | VR<br>F            | -<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>R<br>R |                       |                         | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | -<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R |                       |                            |                      |                         |                        |                        | R<br>R<br>R<br>F<br>R<br>F<br>R<br>F<br>R<br>F<br>R<br>F<br>R<br>F<br>R<br>F<br>R<br>F<br>F<br>R<br>F<br>F<br>R<br>F<br>F<br>R<br>F<br>F<br>R<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F |                       |                             |                             |                         |                       |                       |                       |                       |                     |                             | VR<br>VR                 |                    | ĸ                                                             | R<br>R R<br>R R<br>R R<br>R R<br>R<br>R<br>R<br>R<br>R<br>R<br>R |                                 | R                    | R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R |                                   |                           |
| 16H-CC<br>17H-CC<br>18H-CC<br>19H-CC<br>20H-CC                                                                                                                                         | RP16<br>RP15<br>RP14       | A<br>A<br>A<br>A                        | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,         |                            | VR                |                                                               |                    |                   |                                           |                      |                       |                     |                      |                              |                    | R<br>R<br>R<br>R                                         |                       |                         | R                                                                       | F<br>F<br>R<br>R<br>R                                                                            |                       |                            |                      | R                       |                        |                        |                                                                                                                                                                                                                                                   | -                     |                             |                             |                         |                       |                       |                       |                       |                     |                             | R<br>R<br>R<br>R         | <br>R              |                                                               |                                                                  |                                 |                      |                       |                                                |                                   |                           |

Expedition 320/321 Scientists

Notes: Abundance: A = abundant, C = common, F = frequent, R = rare, VR = very rare, — = undetermined. Preservation: G = good, M = moderate, P = poor. Mixing: blank = no mixing of older specimens detected, 1 = 1-3 reworked specimens detected.

\_



62

| Core, section,<br>interval (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Radiolarian zone                                                                                                                          | Abundance                                       | Preservation       | Mixing              | Lophocyrtis leptetrum | Lophocyrtis pegetrum                  | Lychnocanoma amphitrite                                        | Lychnocanoma babylonis          | Lychnocanoma turgidum | Lychnodictyum audax | Podocyrtis apeza | Podocyrtis chalara | Podocyrtis mitra | Podocyrtis papalis | Podocyrtis trachodes | Rhopalocanium ornatum | Sethochytris triconiscus | Spongatractus balbis | Spongatractus pachystylus | Theocyrtis annosa | Theocyrtis careotuberosa | Theocyrtis perpumila                  | Theocyrtis perysinos | Theocyrtis setanios | Theocyrtis tuberosa  | Thyrsocyrtis bromia     | Thyrsocyrtis lochites | Thyrsocyrtis orthotenes          | Thyrsocyrtis tetracantha | Thyrsocyrtis triacantha                 | Tristylospyris triceros               | Zealithapium mitra | Zygocircus cimelium |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------|---------------------|-----------------------|---------------------------------------|----------------------------------------------------------------|---------------------------------|-----------------------|---------------------|------------------|--------------------|------------------|--------------------|----------------------|-----------------------|--------------------------|----------------------|---------------------------|-------------------|--------------------------|---------------------------------------|----------------------|---------------------|----------------------|-------------------------|-----------------------|----------------------------------|--------------------------|-----------------------------------------|---------------------------------------|--------------------|---------------------|
| 320-U1333C-<br>1H-CC<br>2H-CC<br>3H-CC<br>5H-CC<br>6H-CC<br>7H-CC<br>8H-CC<br>10H-CC<br>10H-CC<br>11H-CC<br>12H-CC<br>13H-CC<br>14H-1, 50–58<br>14H-2, 0–8<br>14H-3, 100–108<br>14H-4, 70–78<br>14H-4, 70–78<br>14H-4, 70–78<br>14H-4, 140–148<br>14H-5, 40–48<br>14H-5, 40–48<br>14H-5, 50–58<br>14H-6, 20–24<br>14H-6, 50–58<br>14H-6, 20–24<br>14H-6, 50–58<br>14H-6, 20–24<br>14H-6, 50–58<br>14H-6, 80–88<br>14H-6, 20–24<br>14H-6, 50–58<br>14H-7, 60–68<br>14H-7, 60–68<br>14H-7, 67–75<br>14H-CC<br>15H-CC<br>16H-CC<br>17H-CC<br>20H-CC<br>20H-CC | RN2           RN1           RP22           RP21           RP21           RP20           RP19           RP18           RP16           RP14 | C C C C C C C C C A A A A C F F C C F C A A A A | <b>ΥΥΥΥΥΥΥΥΥΥΥ</b> | 1 1 1 1 1 1 1 1 1 1 | R                     | R R R R R R R R R R R R R R R R R R R | VR<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R<br>R<br>R | R<br>F<br>R<br>R<br>R | R<br>R<br>R         | R                | R<br>R<br>VR       | RR               | VR<br>VR           | R                    | R<br>R<br>R           | R<br>R                   | R R R R R            | R R<br>R<br>R             | R                 | RRRRR FFFFFFFFRRRRRRRFF  | VR<br>R<br>R<br>R<br>R<br>R<br>R<br>R | R<br>R               | VR<br>R<br>R        | VR<br>C C F R R<br>R | R<br>VR<br>VR<br>R<br>R | VR<br>VR<br>R         | VR<br>R<br>R<br>R<br>R<br>R<br>R | R                        | VR<br>VR<br>VR<br>F<br>F<br>F<br>F<br>R | R R R R R R R R R R R R R R R R R R R |                    | R<br>R<br>R         |

### Table T8. Planktonic foraminifer datums, Site U1333. (See table note.)

| Core, sectior | n, interval (cm) |                                  | Age  | Depth CSF (m) |        |          |      |  |
|---------------|------------------|----------------------------------|------|---------------|--------|----------|------|--|
| Тор           | Bottom           | Marker species                   | (Ma) | Тор           | Bottom | Midpoint | ±    |  |
| 320-U1333A-   | 320-U1333A-      |                                  |      |               |        |          |      |  |
| 2H-2, 38–40   | 2H-CC            | B Paragloborotalia kugleri       | 23.0 | 11.38         | 19.57  | 15.48    | 4.10 |  |
| 2H-CC         | 3H-2, 38–40      | B Paragloborotalia pseudokugleri | 25.2 | 19.57         | 20.88  | 20.23    | 0.66 |  |
| 5H-CC         | 6H-3, 38–40      | T Paragloborotalia opima         | 26.9 | 47.65         | 50.88  | 49.27    | 1.62 |  |
| 8H-2, 38–40   | 8H-4, 38–40      | B Globigerina angulisuturalis    | 29.2 | 60.38         | 71.18  | 65.78    | 5.40 |  |
| 8H-CC         | 9H-2, 52–53      | T Subbotina angiporoides         | 29.8 | 76.14         | 78.02  | 77.08    | 0.94 |  |
| 7H-5, 38–40   | 8H-CC            | T Turborotalia ampliapertura     | 30.3 | 63.39         | 76.14  | 69.76    | 6.38 |  |
| 10H-2, 38–40  | 10H-4, 38–40     | B Paragloborotalia opima         | 30.8 | 87.38         | 90.38  | 88.88    | 1.50 |  |
| 320-U1333B-   | 320-U1333B-      |                                  |      |               |        |          |      |  |
| 5H-CC         | 6H-CC            | T Paragloborotalia opima         | 26.9 | 45.85         | 55.55  | 50.70    | 4.85 |  |
| 9H-CC         | 10H-CC           | B Paragloborotalia opima         | 30.8 | 83.21         | 93.43  | 88.32    | 5.11 |  |
| 320-U1333C-   | 320-U1333C-      |                                  |      |               |        |          |      |  |
| 3H-CC         | 4H-CC            | B Paragloborotalia pseudokugleri | 25.2 | 21.15         | 30.59  | 25.87    | 4.72 |  |
| 5H-CC         | 6H-CC            | T Paragloborotalia opima         | 26.9 | 39.86         | 49.63  | 44.75    | 4.89 |  |
| 8H-CC         | 9H-CC            | T Subbotina angiporoides         | 29.8 | 65.58         | 77.78  | 71.68    | 6.10 |  |
| 9H-CC         | 10H-CC           | B Paragloborotalia opima         | 30.8 | 77.78         | 87.67  | 82.73    | 4.94 |  |

Note: B = bottom, T = top.

 Table T9. Distribution of planktonic foraminifers, Site U1333. This table is available in an oversized format.

 Table T10. Distribution of benthic foraminifers, Site U1333. This table is available in an oversized format.



### Table T11. Coring-disturbed intervals and gaps, Site U1333. (See table notes.)

| Core, section,<br>interval (cm) | Type of disturbance | Core, section,<br>interval (cm) | Type of disturbance        |
|---------------------------------|---------------------|---------------------------------|----------------------------|
| 320-U1333A-                     |                     | 19X-2, 140–150                  | Interstitial water         |
| 1H-2, 145–150                   | Interstitial water  | 320-111333B-                    |                            |
| 1H-5, 145–150                   | Interstitial water  | 1H-1 0-10                       | Slightly disturbed mudline |
| 2H-2, 145–150                   | Interstitial water  | 2H-1 0-130                      | Top of core                |
| 2H-5, 93–127                    | Flow-in             | 3H-1, 0-20                      | Flow-in                    |
| 2H-5, 145–150                   | Interstitial water  | 5H-1, 0-40                      | Top of core                |
| 3H-1, 0–24                      | Top of core         | 7H-2 140-150                    | Whole-round sample         |
| 3H-2, 145–150                   | Interstitial water  | 8H-1 0 46                       | Top of core                |
| 3H-5, 145–150                   | Interstitial water  | 0H-1 0 132                      | Top of core                |
| 4H-1, 0–150                     | Flow-in(?)          | 104 1 0 54                      | Top of core                |
| 4H-2, 0–122                     | Flow-in             | 1111 1 0 67                     | Top of core                |
| 4H-2, 145–150                   | Interstitial water  | 111-1, 0-07                     | Top of core                |
| 4H-5, 145–150                   | Interstitial water  | 1211-1, 0-13                    |                            |
| 5H-1, 0-100                     | Top of core         | 138-1, 0-10                     |                            |
| 5H-2, 145-150                   | Interstitial water  | 148-1, 0-37                     |                            |
| 5H-5, 145–150                   | Interstitial water  | 15H-1, 0=39                     | Top of core                |
| 6H-1, 0–150                     | Top of core         | 16H-1, U=31                     | Top of core                |
| 6H-2, 0-90                      | Top of core         | 16H-1, 31–43                    | Disturbed                  |
| 6H-2, 145–150                   | Interstitial water  | 1/H-1, 0–30                     | Disturbed                  |
| 6H-5 145-150                    | Interstitial water  | 320-U1333C-                     |                            |
| 7H_1 0_94                       | Top of core         | 1H-1, 0–10                      | Slightly disturbed mudline |
| 7H-3 140_150                    | Interstitial water  | 3H-1, 0–34                      | Flow-in                    |
| 8H-1 0_76                       | Top of core         | 4H-1, 0–150                     | Top of core                |
| 8H_3 140 150                    | Interstitial water  | 6H-1, 0–57                      | Top of core                |
| 0H-1 0 22                       | Minor disturbance   | 7H-1, 0–112                     | Top of core                |
| 9H-3 140 150                    | Interstitial water  | 8H-1, 0–77                      | Top of core                |
| 10H-1 0 44                      | Top of core         | 9H-1, 0–29                      | Top of core                |
|                                 | Interstitial water  | 9H-1, 29–60                     | Fragmented                 |
| 1111 1 0 80                     | Disturbod           | 10H-1, 0–57                     | Top of core                |
| 11X-1, 0-00                     | Interstitial water  | 10H-1, 57–80                    | Fragmented                 |
| 117-2, 140-130                  | Slightly disturbed  | 11H-1, 0–150                    | Top of core                |
| 127 2 140 150                   | Interstitial water  | 11H-2, 0-80                     | Top of core                |
| 128-3, 140-130                  |                     | 12H-1 0-100                     | Top of core                |
| 137-3, 140-130                  | Interstitial water  | 13H-1 0-117                     | Top of core                |
| 147-2, 140-120                  | Interstitial water  | 14H-1 0-50                      | Top of core                |
| 157-3, 140-150                  | Interstitial water  | 15H-1 0-42                      | Top of core                |
| 177 2 140-150                   | Interstitial water  | 16H_1 0 66                      | Top of core                |
| 17X-3, 140-150                  | Interstitial water  | 17H_4 140 150                   | Whole-round sample         |
| 1/X-4, 140-150                  | Interstitial water  | 10H 1 0 97                      | Top of core                |
| 18X-1, 140–150                  | Interstitial water  | 1711-1, U=07<br>20H 1 0 40      | Top of core                |
| 18X-4, 28–72                    | Disturbed           | ∠u⊓-1, 0–40                     | Top of core                |

Notes: When interval listed is 0–150 cm, entire section is included even if true section length is <150 cm. Top of core = myriad forms of voids, disturbance, and debris from uphole that affect top portion of most cores. For that reason, probably the top 20 cm or so of all cores should be avoided.



**Table T12.** Paleomagnetic data from archive-half sections, Hole U1333A, at 0 mT AF demagnetization. (See table notes.)

|              |        |           | · ·          |              |                   |                                      |
|--------------|--------|-----------|--------------|--------------|-------------------|--------------------------------------|
| Core,        | Offset | Depth     | Declination  | Inclination  | Intensity<br>(Am) | Time                                 |
| section      | (11)   | C3F (III) | ()           | ()           | (AIII)            | (5)                                  |
| 320-U133     | 3A-    |           |              |              |                   |                                      |
| 1H-1         | 0.10   | 0.10      | 331.0        | 71.4         | 1.401E-02         | 3321383392.88037                     |
| 1H-1         | 0.15   | 0.15      | 339.0        | 44.9         | 6.138E-03         | 3321383398.19287                     |
| 1H-1         | 0.20   | 0.20      | 325.1        | 41.7         | 4.816E-03         | 3321383403.52100                     |
| 1H-1         | 0.25   | 0.25      | 21.4         | 23.4         | 1.360E-02         | 3321383408.84912                     |
| 1H-1         | 0.30   | 0.30      | 51.8         | 17.1         | 1.899E-02         | 3321383414.17725                     |
| 1H-1         | 0.35   | 0.35      | 15.1         | 22.8         | 5.429E-03         | 3321383419.48975                     |
| 1H-1         | 0.40   | 0.40      | 355.1        | 19.2         | 5.510E-03         | 3321383424.81787                     |
| 10-1<br>10 1 | 0.43   | 0.43      | 340 4        | 19.5<br>21.9 | 3.327E-03         | 2221282425 47412                     |
| 1H_1         | 0.50   | 0.50      | 7 1          | 21.0<br>4.9  | 4.270L-03         | 3321383440 78662                     |
| 1H-1         | 0.60   | 0.60      | 6.5          | 7.7          | 1.540F-02         | 3321383446 11475                     |
| 1H-1         | 0.65   | 0.65      | 1.3          | 10.0         | 1.716E-02         | 3321383451.44287                     |
| 1H-1         | 0.70   | 0.70      | 358.6        | 8.6          | 1.883E-02         | 3321383456.77100                     |
| 1H-1         | 0.75   | 0.75      | 359.8        | 8.3          | 1.868E-02         | 3321383462.08350                     |
| 1H-1         | 0.80   | 0.80      | 1.4          | 8.9          | 1.541E-02         | 3321383467.41162                     |
| 1H-1         | 0.85   | 0.85      | 0.3          | 9.1          | 1.441E-02         | 3321383472.73975                     |
| 1H-1         | 0.90   | 0.90      | 4.5          | 8.5          | 1.605E-02         | 3321383478.08350                     |
| 1H-1         | 0.95   | 0.95      | 1.6          | 6.7          | 1.581E-02         | 3321383483.41162                     |
| 1H-1         | 1.00   | 1.00      | 355.4        | 9.7          | 1.365E-02         | 3321383488.73975                     |
| 1H-1         | 1.05   | 1.05      | 1.2          | 10.7         | 1.277E-02         | 3321383494.06787                     |
| 1H-1         | 1.10   | 1.10      | 0.9          | 10.5         | 1.193E-02         | 3321383499.39600                     |
| 1H-1         | 1.15   | 1.15      | 357.4        | 15.4         | 8.490E-03         | 3321383504.73975                     |
| 1H-1         | 1.20   | 1.20      | 1.4          | 13.4         | 6./06E-03         | 3321383510.06/8/                     |
| 1H-1<br>1L1  | 1.25   | 1.25      | 353.8        | 6.5<br>1.2   | 6.300E-03         | 3321383313.39600                     |
| 1H-1         | 1.30   | 1.30      | 554.9<br>1 7 | -1.2         | J.720E-03         | 3321383526.03662                     |
| 1H-1         | 1.35   | 1.35      | 1.7          | -3.2         | 4.938L-03         | 3321383531 36475                     |
| 1H-2         | 0.10   | 1.40      | 356.2        | -4.0         | 7 368F_03         | 3321385687 95850                     |
| 1H-2         | 0.15   | 1.65      | 356.9        | -0.2         | 7.475E-03         | 3321385693.28662                     |
| 1H-2         | 0.20   | 1.70      | 355.5        | -1.2         | 7.072E-03         | 3321385698.59912                     |
| 1H-2         | 0.25   | 1.75      | 358.8        | -4.2         | 5.624E-03         | 3321385703.92725                     |
| 1H-2         | 0.30   | 1.80      | 0.5          | -10.3        | 3.975E-03         | 3321385709.25537                     |
| 1H-2         | 0.35   | 1.85      | 3.5          | -10.9        | 4.272E-03         | 3321385714.58350                     |
| 1H-2         | 0.40   | 1.90      | 1.6          | 0.8          | 9.983E-03         | 3321385719.91162                     |
| 1H-2         | 0.45   | 1.95      | 359.3        | 8.9          | 1.178E-02         | 3321385725.23975                     |
| 1H-2         | 0.50   | 2.00      | 0.6          | 6.7          | 9.347E-03         | 3321385730.55225                     |
| 1H-2         | 0.55   | 2.05      | 353.7        | 5.3          | 1.087E-02         | 3321385735.88037                     |
| 1H-2         | 0.60   | 2.10      | 351.0        | 7.5          | 1.368E-02         | 3321385741.20850                     |
| 1H-2         | 0.65   | 2.15      | 348.7        | 7.1          | 1.493E-02         | 3321385746.53662                     |
| 1H-2         | 0.70   | 2.20      | 348.7        | 7.5          | 1.51/E-02         | 3321385751.84912                     |
| 1H-Z         | 0.75   | 2.25      | 349.9        | 6.Z          | 1.480E-02         | 3321385757.17725                     |
| 1 III-Z      | 0.80   | 2.30      | 352.0        | 5.9          | 1.445E-02         | 3321385767 83350<br>3321385767 83350 |
| 111-2        | 0.85   | 2.35      | 351.0        | 7.0          | 1.305L-02         | 3321385773 16162                     |
| 1H-2         | 0.95   | 2.40      | 348.2        | 8.7          | 1.307E=02         | 3321385778 48975                     |
| 1H-2         | 1.00   | 2.50      | 347.9        | 9.4          | 1.306F-02         | 3321385783.80225                     |
| 1H-2         | 1.05   | 2.55      | 347.4        | 11.0         | 1.139E-02         | 3321385789.13037                     |
| 1H-2         | 1.10   | 2.60      | 11.5         | 18.1         | 1.113E-02         | 3321385794.45850                     |
| 1H-2         | 1.15   | 2.65      | 336.3        | 25.1         | 1.272E-02         | 3321385799.78662                     |
| 1H-2         | 1.20   | 2.70      | 336.4        | 14.1         | 6.389E-03         | 3321385805.09912                     |
| 1H-2         | 1.25   | 2.75      | 355.3        | 8.5          | 4.884E-03         | 3321385810.42725                     |
| 1H-2         | 1.30   | 2.80      | 354.9        | 10.0         | 5.345E-03         | 3321385815.75537                     |
| 1H-2         | 1.35   | 2.85      | 349.4        | 7.9          | 5.645E-03         | 3321385821.08350                     |
| 1H-2         | 1.40   | 2.90      | 353.2        | 5.8          | 6.653E-03         | 3321385826.41162                     |
| 1H-3         | 0.10   | 3.10      | 1.2          | -1.2         | 4.961E-03         | 3321387082.66162                     |
| 1H-3         | 0.15   | 3.15      | 358.0        | 1.5          | 3.765E-03         | 3321387087.98975                     |
| 1H-3         | 0.20   | 3.20      | 21.0         | 2.3          | 3.512E-03         | 3321387093.31787                     |
| 1H-3         | 0.25   | 3.25      | 13.8         | 2.9          | 3.496E-03         | 332138/098.64600                     |
| 1H-3         | 0.30   | 3.30      | 354.2        | 3.5          | 3.561E-03         | 332138/103.9/412                     |
| 1日-3<br>1口 つ | 0.35   | 2 10      | 14.U<br>20.1 | 14.ð<br>วา   | 3.733E-U3         | 222120/109.20002                     |
| 1H-3         | 0.40   | 3.40      | 57.1<br>11 5 | 2.Z<br>_0.6  | 4.2/2E-U3         | 332130/114.014/3                     |
| 1H-3         | 0.50   | 3.50      | 24.7         | -15.5        | 2.591F_03         | 3321387125 27100                     |
|              | 0.00   | 2.20      |              |              |                   |                                      |

Notes: Time = since 1 January 1904. Only a portion of this table appears here. The complete table is available in ASCII.





Table T13. Paleomagnetic data from archive-half sections, Hole U1333A, at 20 mT AF demagnetization. (See table notes.)

Notes: Time = since 1 January 1904. VGP = virtual geomagnetic pole. Only a portion of this table appears here. The complete table is available in ASCII.

**Table T14.** Paleomagnetic data from archive-half sections, Hole U1333B, at 0 mT AF demagnetization. (See table notes.)

| Core,         | Offset | Depth   | Declination | Inclination | Intensity     | Time             |
|---------------|--------|---------|-------------|-------------|---------------|------------------|
| section       | (m)    | CSF (m) | (°)         | (°)         | (A/m)         | (s)              |
|               | . ,    | . ,     |             | .,          | . ,           | .,               |
| 320-U133      | 3B-    |         |             |             |               |                  |
| 1H-1          | 0.15   | 0.15    | 343.9       | -6.5        | 4.736E-03     | 3321589173.98437 |
| 1H-1          | 0.20   | 0.20    | 281.0       | -11.7       | 1.907E-03     | 3321589179.31250 |
| 1H-1          | 0.25   | 0.25    | 231.4       | 3.1         | 4.907E-03     | 3321589184.64062 |
| 1H-1          | 0.30   | 0.30    | 219.9       | 8.5         | 5.495F-03     | 3321589189.95312 |
| 1H-1          | 0.35   | 0.35    | 206.3       | 11 3        | 8 530E_03     | 3321589195 28125 |
| 111-1         | 0.35   | 0.35    | 200.5       | 11.5        | 1 0085 02     | 3321580200 60037 |
| 111-1         | 0.40   | 0.40    | 202.7       | 11.2        | 0.043E.03     | 2221580205 02750 |
| 1111          | 0.43   | 0.43    | 202.4       | 11.1        | 9.943E-03     | 3321309203.93730 |
| 1H-1          | 0.50   | 0.50    | 202.7       | 10.4        | 9.227E-03     | 3321389211.26362 |
| 1H-1          | 0.55   | 0.55    | 206.2       | 10.8        | 8.59/E-03     | 3321589216.57812 |
| 1H-1          | 0.60   | 0.60    | 204.6       | 11.8        | 8.097E-03     | 3321589221.90625 |
| 1H-1          | 0.65   | 0.65    | 203.3       | 14.2        | 7.674E-03     | 3321589227.23437 |
| 1H-1          | 0.70   | 0.70    | 197.8       | 14.3        | 9.019E-03     | 3321589232.56250 |
| 1H-1          | 0.75   | 0.75    | 196.0       | 12.8        | 9.989E-03     | 3321589237.89062 |
| 1H-1          | 0.80   | 0.80    | 196.1       | 14.5        | 9.842E-03     | 3321589243.21875 |
| 1H-1          | 0.85   | 0.85    | 190.8       | 12.8        | 1.042E-02     | 3321589248.53125 |
| 1H-1          | 0.90   | 0.90    | 184.9       | 11.4        | 1.110E-02     | 3321589253.85937 |
| 1H-1          | 0.95   | 0.95    | 186.1       | 11.8        | 1.209E-02     | 3321589259.18750 |
| 1H-1          | 1.00   | 1.00    | 181.4       | 12.2        | 1.280E-02     | 3321589264.51562 |
| 1H-1          | 1.05   | 1.05    | 183.2       | 13.0        | 1 121F-02     | 3321589269.82812 |
| 1H-1          | 1 10   | 1 10    | 181.8       | 12.0        | 1 032F_02     | 3321589275 15625 |
| 1H-1          | 1.10   | 1.10    | 177.1       | 12.0        | 9.453E 03     | 3321589280 48437 |
| 111-1         | 1.15   | 1.15    | 177.1       | 13.5        | 0.757E 03     | 2221580285 81250 |
| 111-1         | 1.20   | 1.20    | 177.0       | 13.0        | 9.734L-03     | 3321509203.01230 |
| 1 []-1        | 1.20   | 1.20    | 170.1       | 11.2        | 6.333E-03     | 3321369291.14062 |
| 1H-1          | 1.30   | 1.30    | 177.9       | 13.4        | 6.886E-03     | 3321389296.45312 |
| 1H-1          | 1.35   | 1.35    | 1/4.9       | 14.3        | 6.019E-03     | 3321589301./8125 |
| 1H-1          | 1.40   | 1.40    | 171.7       | 14.8        | 5.235E-03     | 3321589307.10937 |
| 1H-2          | 0.10   | 1.60    | 182.2       | 13.4        | 5.783E-03     | 3321590405.34375 |
| 1H-2          | 0.15   | 1.65    | 180.9       | 7.8         | 6.469E-03     | 3321590410.67187 |
| 1H-2          | 0.20   | 1.70    | 176.4       | 5.4         | 8.249E-03     | 3321590416.00000 |
| 1H-2          | 0.25   | 1.75    | 170.5       | 6.1         | 8.526E-03     | 3321590421.31250 |
| 1H-2          | 0.30   | 1.80    | 170.2       | 8.9         | 8.621E-03     | 3321590426.64062 |
| 1H-2          | 0.35   | 1.85    | 168.1       | 15.6        | 6.093E-03     | 3321590431.96875 |
| 1H-2          | 0.40   | 1.90    | 167.7       | 20.6        | 4.391E-03     | 3321590437.29687 |
| 1H-2          | 0.45   | 1.95    | 169.4       | 20.4        | 3.951E-03     | 3321590442.62500 |
| 1H-2          | 0.50   | 2.00    | 168.8       | 18.9        | 4.288E-03     | 3321590447.95312 |
| 1H-2          | 0.55   | 2.05    | 168.9       | 17.2        | 4.855E-03     | 3321590453 28125 |
| 1H-2          | 0.55   | 2.05    | 169.7       | 18.4        | 6 994F_03     | 3321590458 59375 |
| 1H-2          | 0.65   | 2.10    | 163.2       | 16.1        | 8 103E 03     | 3321590/63 92187 |
| 111-2         | 0.05   | 2.15    | 164.7       | 15.6        | 8 247E 03     | 2221500460.22107 |
| 111-2         | 0.70   | 2.20    | 104.7       | 13.0        | 7 1 5 0 5 0 2 | 3321390409.23000 |
| 111-2         | 0.75   | 2.23    | 102.7       | 13.7        | 7.130E-03     | 3321390474.37612 |
| 10-2          | 0.80   | 2.50    | 101./       | 17.5        | 5.390E-03     | 3321390479.89062 |
| TH-2          | 0.85   | 2.35    | 159.8       | 17.8        | 4.4/0E-03     | 3321590485.218/5 |
| TH-2          | 0.90   | 2.40    | 157.9       | 18.5        | 3.581E-03     | 3321590490.5468/ |
| 1H-2          | 0.95   | 2.45    | 160.4       | 12.4        | 3.878E-03     | 3321590495.85937 |
| 1H-2          | 1.00   | 2.50    | 157.8       | 13.0        | 3.861E-03     | 3321590501.18750 |
| 1H-2          | 1.05   | 2.55    | 157.3       | 14.3        | 3.986E-03     | 3321590506.51562 |
| 1H-2          | 1.10   | 2.60    | 155.5       | 13.9        | 4.658E-03     | 3321590511.84375 |
| 1H-2          | 1.15   | 2.65    | 152.8       | 13.3        | 5.740E-03     | 3321590517.17187 |
| 1H-2          | 1.20   | 2.70    | 147.6       | 12.7        | 5.868E-03     | 3321590522.50000 |
| 1H-2          | 1.25   | 2.75    | 144.2       | 13.0        | 5.363E-03     | 3321590527.81250 |
| 1H-2          | 1.30   | 2.80    | 146.5       | 9.3         | 5.289E-03     | 3321590533.14062 |
| 1H-2          | 1 35   | 2.85    | 152.2       | 8.5         | 5.584F-03     | 3321590538 46875 |
| 1H-2          | 1 40   | 2 90    | 155.3       | 7.2         | 6 211F-03     | 3321590543 79687 |
| 1H-3          | 0.10   | 3 10    | 166.0       | 123         | 3 423F_03     | 3321591601 81250 |
| 111-2         | 0.10   | 2 1 5   | 165.9       | 12.5        | 3 4425 02     | 3321501607.01250 |
| 111-5<br>1山 つ | 0.13   | 2.12    | 162.0       | 12./        | J.442E-UJ     | 222127100/.14002 |
| 111-5         | 0.20   | 3.20    | 102.8       | 9.8<br>7.0  | 4.09/E-03     | 3321391012.43312 |
| 1H-3          | 0.25   | 3.25    | 163.1       | 7.8         | 3.815E-03     | 5521591617.78125 |
| TH-3          | 0.30   | 3.30    | 166.1       | 9.6         | 4.014E-03     | 3321591623.10937 |
| 1H-3          | 0.35   | 3.35    | 164.9       | 17.9        | 6.286E-03     | 3321591628.43750 |
| 1H-3          | 0.40   | 3.40    | 158.1       | 28.4        | 7.555E-03     | 3321591633.76562 |
| 1H-3          | 0.45   | 3.45    | 46.0        | 33.0        | 8.112E-03     | 3321591639.09375 |
| 1H-3          | 0.50   | 3.50    | 27.3        | 7.3         | 2.012E-02     | 3321591644.40625 |
| 1H-3          | 0.55   | 3.55    | 26.5        | -4.6        | 2.117E-02     | 3321591649.73437 |

Notes: Time = since 1 January 1904. Only a portion of this table appears here. The complete table is available in ASCII.



**Table T15.** Paleomagnetic data from archive-half sections, Hole U1333B, at 10 mT AF demagnetization. (See table notes.)

|                    | 011    | <b>D</b>  |             | 1 10 10     |            |                  |
|--------------------|--------|-----------|-------------|-------------|------------|------------------|
| Core,              | Offset | Depth     | Declination | Inclination | Intensity  | Time             |
| section            | (11)   | C3F (III) | ()          | C)          | (A/III)    | (5)              |
| 320-U133           | 3B-    |           |             |             |            |                  |
| 1H-1               | 0.15   | 0.15      | 18.8        | -10.1       | 5.133E-03  | 3321589595.28125 |
| 1H-1               | 0.20   | 0.20      | 29.2        | -18.0       | 2.597E-03  | 3321589600.60937 |
| 1H-1               | 0.25   | 0.25      | 191.7       | -27.6       | 6.166E-04  | 3321589605.93750 |
| 1H-1               | 0.30   | 0.30      | 204.0       | 5.7         | 2.662E-03  | 3321589611.26562 |
| 1H-1               | 0.35   | 0.35      | 194.0       | 11.0        | 4.156E-03  | 3321589616.59375 |
| 1H-1               | 0.40   | 0.40      | 191.3       | 9.2         | 6.973E-03  | 3321589621.90625 |
| 1H-1               | 0.45   | 0.45      | 192.5       | 9.5         | 6.737E-03  | 3321589627.23437 |
| 1H-1               | 0.50   | 0.50      | 192.5       | 8.8         | 6.158E-03  | 3321589632.56250 |
| 1H-1               | 0.55   | 0.55      | 194.9       | 8.4         | 5.185E-03  | 3321589637.89062 |
| 1H-1               | 0.60   | 0.60      | 194.5       | /./         | 5.1/1E-03  | 3321589643.20312 |
| 1 ET-1<br>1 LL 1   | 0.05   | 0.05      | 194.5       | 0.0         | 5.220E-03  | 2221207040.23123 |
| 1 III-1<br>1 III 1 | 0.70   | 0.70      | 191.4       | 10.0        | 3.040E-03  | 2221580650 18750 |
| 1H-1               | 0.75   | 0.75      | 190.2       | 12.6        | 7.07JL-03  | 3321589664 51562 |
| 1H_1               | 0.85   | 0.85      | 187.1       | 11.3        | 7.020L-03  | 3321589669 82812 |
| 1H_1               | 0.05   | 0.05      | 185.6       | 10.2        | 8 420F_03  | 3321589675 15625 |
| 1H-1               | 0.95   | 0.95      | 184.9       | 10.2        | 9 31 2F_03 | 3321589680 48437 |
| 1H-1               | 1.00   | 1.00      | 182.5       | 11.5        | 9.325E-03  | 3321589685 81250 |
| 1H-1               | 1.05   | 1.05      | 181.5       | 10.9        | 8.770E-03  | 3321589691.14062 |
| 1H-1               | 1.10   | 1.10      | 181.2       | 11.4        | 6.788E-03  | 3321589696.45312 |
| 1H-1               | 1.15   | 1.15      | 179.5       | 10.0        | 6.675E-03  | 3321589701.78125 |
| 1H-1               | 1.20   | 1.20      | 176.1       | 10.0        | 5.931E-03  | 3321589707.10937 |
| 1H-1               | 1.25   | 1.25      | 178.5       | 9.6         | 4.882E-03  | 3321589712.43750 |
| 1H-1               | 1.30   | 1.30      | 177.6       | 8.4         | 4.161E-03  | 3321589717.75000 |
| 1H-1               | 1.35   | 1.35      | 175.3       | 12.0        | 3.199E-03  | 3321589723.07812 |
| 1H-1               | 1.40   | 1.40      | 172.5       | 9.1         | 3.179E-03  | 3321589728.40625 |
| 1H-2               | 0.10   | 1.60      | 177.4       | 6.4         | 2.360E-03  | 3321590815.75000 |
| 1H-2               | 0.15   | 1.65      | 177.4       | -0.4        | 2.236E-03  | 3321590821.07812 |
| 1H-2               | 0.20   | 1.70      | 173.6       | -2.9        | 4.810E-03  | 3321590826.40625 |
| 1H-2               | 0.25   | 1.75      | 165.3       | -1.0        | 5.842E-03  | 3321590831.71875 |
| 1H-2               | 0.30   | 1.80      | 170.4       | 2.5         | 5.788E-03  | 3321590837.04687 |
| 1H-2               | 0.35   | 1.85      | 169.2       | 8.7         | 3.331E-03  | 3321590842.35937 |
| 1H-2               | 0.40   | 1.90      | 166.6       | 22.9        | 1.541E-03  | 3321590847.68750 |
| 1H-2               | 0.45   | 1.95      | 179.7       | 20.8        | 1.510E-03  | 3321590853.01562 |
| 1H-2               | 0.50   | 2.00      | 1/2.1       | 18.6        | 1.640E-03  | 3321590858.32812 |
| 1H-Z               | 0.55   | 2.05      | 169.9       | 14./        | 2.25/E-03  | 3321390863.63623 |
| 1 III-Z            | 0.60   | 2.10      | 1/3.0       | 14.0        | 4.100E-03  | 222150007421250  |
| 1 III-2<br>1 III 2 | 0.03   | 2.13      | 170.5       | 13.2        | 5.105E-03  | 2221590074.51250 |
| 111-2<br>1H_2      | 0.70   | 2.20      | 165.0       | 10.3        | J.470L-03  | 3321590879.04002 |
| 1H-2               | 0.75   | 2.25      | 164.6       | 13.2        | 2 483F_03  | 3321590890 28125 |
| 1H-2               | 0.85   | 2.30      | 165.3       | 20.4        | 1 680F-03  | 3321590895 60937 |
| 1H-2               | 0.90   | 2.35      | 164.6       | 16.2        | 1.679E-03  | 3321590900,93750 |
| 1H-2               | 0.95   | 2.45      | 165.1       | 9.9         | 2.101E-03  | 3321590906.26562 |
| 1H-2               | 1.00   | 2.50      | 163.2       | 9.8         | 2.223E-03  | 3321590911.59375 |
| 1H-2               | 1.05   | 2.55      | 161.9       | 11.3        | 2.240E-03  | 3321590916.90625 |
| 1H-2               | 1.10   | 2.60      | 166.8       | 7.7         | 3.453E-03  | 3321590922.23437 |
| 1H-2               | 1.15   | 2.65      | 162.5       | 8.6         | 3.376E-03  | 3321590927.56250 |
| 1H-2               | 1.20   | 2.70      | 161.1       | 8.6         | 3.366E-03  | 3321590932.89062 |
| 1H-2               | 1.25   | 2.75      | 160.0       | 9.9         | 2.639E-03  | 3321590938.21875 |
| 1H-2               | 1.30   | 2.80      | 161.4       | 9.0         | 2.710E-03  | 3321590943.53125 |
| 1H-2               | 1.35   | 2.85      | 163.8       | 6.8         | 3.145E-03  | 3321590948.85937 |
| 1H-2               | 1.40   | 2.90      | 163.0       | 5.3         | 3.522E-03  | 3321590954.18750 |
| 1H-2               | 0.10   | 3.10      | 165.8       | 8.9         | 1.923E-03  | 3321592030.54687 |
| 1H-2               | 0.15   | 3.15      | 167.9       | 8.5         | 1.790E-03  | 3321592035.87500 |
| 1H-2               | 0.20   | 3.20      | 163.8       | 5.6         | 2.040E-03  | 3321592041.20312 |
| 1H-2               | 0.25   | 3.25      | 162.2       | 1.6         | 2.165E-03  | 3321592046.53125 |
| 1H-2               | 0.30   | 3.30      | 164.7       | 1.4         | 1.973E-03  | 3321592051.85937 |
| 1H-2               | 0.35   | 3.35      | 151.0       | 4.4         | 3.514E-03  | 3321592057.18750 |
| 1H-2               | 0.40   | 3.40      | 164.5       | 5.1         | 6.034E-03  | 3321592062.50000 |
| 1H-2               | 0.45   | 3.45      | 161.8       | 5.4         | 4.2/0E-03  | 3321592067.82812 |
| 1H-2               | 0.50   | 3.50      | 188.0       | -27.6       | 6.0/1E-04  | 3321592073.15625 |

Notes: Time = since 1 January 1904. Only a portion of this table appears here. The complete table is available in ASCII.



|          |        |         |             |             |           |                  |           | Declination |           | Donth     |          |           |  |
|----------|--------|---------|-------------|-------------|-----------|------------------|-----------|-------------|-----------|-----------|----------|-----------|--|
| Core.    | Offset | Depth   | Declination | Inclination | Intensity | Time             | Core mean | Reor        | iented    | CCSF-A    | VG       | VGP (°)   |  |
| section  | (m)    | CSF (m) | (°)         | (°)         | (A/m)     | (s)              | (°)       | 0°-360°     | –90°–270° | (m)       | Latitude | Longitude |  |
| 320-U133 | 3B-    |         |             |             |           |                  |           |             |           |           |          |           |  |
| 1H-1     | 0.15   | 0.15    | 19.2        | -4.5        | 3.792E-03 | 3321590013.95312 | 171.00    | 208.2       | 208.2     | 0.1500    | -60.8    | 146.1     |  |
| 1H-1     | 0.20   | 0.20    | 20.9        | -4.7        | 2.275E-03 | 3321590019.28125 | 171.00    | 209.9       | 209.9     | 0.2000    | -59.2    | 144.9     |  |
| 1H-1     | 0.25   | 0.25    | 196.1       | 25.6        | 5.462E-04 | 3321590024.60937 | 171.00    | 25.1        | 25.1      | 0.2500    | 65.3     | 302.2     |  |
| 1H-1     | 0.30   | 0.30    | 198.8       | 21.5        | 1.403E-03 | 3321590029.92187 | 171.00    | 27.8        | 27.8      | 0.3000    | 62.7     | 307.6     |  |
| 1H-1     | 0.35   | 0.35    | 196.3       | 18.1        | 3.449E-03 | 3321590035.25000 | 171.00    | 25.3        | 25.3      | 0.3500    | 65.1     | 312.2     |  |
| 1H-1     | 0.40   | 0.40    | 194.4       | 15.9        | 4.316E-03 | 3321590040.57812 | 171.00    | 23.4        | 23.4      | 0.4000    | 66.8     | 315.5     |  |
| 1H-1     | 0.45   | 0.45    | 193.5       | 14.1        | 4.839E-03 | 3321590045.90625 | 171.00    | 22.5        | 22.5      | 0.4500    | 67.5     | 318.3     |  |
| 1H-1     | 0.50   | 0.50    | 194.6       | 14.3        | 4.215E-03 | 3321590051.23437 | 171.00    | 23.6        | 23.6      | 0.5000    | 66.5     | 317.6     |  |
| 1H-1     | 0.55   | 0.55    | 195.9       | 15.4        | 3.504E-03 | 3321590056.56250 | 171.00    | 24.9        | 24.9      | 0.5500    | 65.3     | 315.7     |  |
| 1H-1     | 0.60   | 0.60    | 196.0       | 14.2        | 3.552E-03 | 3321590061.87500 | 171.00    | 25.0        | 25.0      | 0.6000    | 65.1     | 317.1     |  |
| 1H-1     | 0.65   | 0.65    | 196.3       | 14.6        | 3.658E-03 | 3321590067.20312 | 171.00    | 25.3        | 25.3      | 0.6500    | 64.8     | 316.5     |  |
| 1H-1     | 0.70   | 0.70    | 193.2       | 15.1        | 4.115E-03 | 3321590072.53125 | 171.00    | 22.2        | 22.2      | 0.7000    | 67.9     | 317.1     |  |
| 1H-1     | 0.75   | 0.75    | 191.2       | 13.7        | 5.021E-03 | 3321590077.85937 | 171.00    | 20.2        | 20.2      | 0.7500    | 69.7     | 320.1     |  |
| 1H-1     | 0.80   | 0.80    | 189.6       | 14.7        | 5.284E-03 | 3321590083.17187 | 171.00    | 18.6        | 18.6      | 0.8000    | 71.4     | 319.4     |  |
| 1H-1     | 0.85   | 0.85    | 188.1       | 14.5        | 5.439E-03 | 3321590088.50000 | 171.00    | 17.1        | 17.1      | 0.8500    | 72.8     | 320.7     |  |
| 1H-1     | 0.90   | 0.90    | 186.3       | 13.8        | 5.834E-03 | 3321590093.82812 | 171.00    | 15.3        | 15.3      | 0.9000    | 74.5     | 323.4     |  |
| 1H-1     | 0.95   | 0.95    | 185.5       | 13.9        | 6.768E-03 | 3321590099.15625 | 171.00    | 14.5        | 14.5      | 0.9500    | 75.3     | 324.0     |  |
| 1H-1     | 1.00   | 1.00    | 183.1       | 14.6        | 6.640E-03 | 3321590104.48437 | 171.00    | 12.1        | 12.1      | 1.0000    | 77.7     | 325.1     |  |
| 1H-1     | 1.05   | 1.05    | 183.3       | 14.5        | 6.230E-03 | 3321590109.79687 | 171.00    | 12.3        | 12.3      | 1.0500    | 77.5     | 325.1     |  |
| 1H-1     | 1.10   | 1.10    | 182.4       | 15.3        | 5.108E-03 | 3321590115.12500 | 171.00    | 11.4        | 11.4      | 1.1000    | 78.4     | 324.2     |  |
| 1H-1     | 1.15   | 1.15    | 180.4       | 14.2        | 4.782E-03 | 3321590120.45312 | 171.00    | 9.4         | 9.4       | 1.1500    | 80.1     | 330.4     |  |
| 1H-1     | 1.20   | 1.20    | 178.9       | 14.7        | 4.295E-03 | 3321590125.78125 | 171.00    | 7.9         | 7.9       | 1.2000    | 81.6     | 332.2     |  |
| 1H-1     | 1.25   | 1.25    | 179.2       | 12.3        | 3.986E-03 | 3321590131.10937 | 171.00    | 8.2         | 8.2       | 1.2500    | 80.8     | 338.8     |  |
| 1H-1     | 1.30   | 1.30    | 179.2       | 15.1        | 3.081E-03 | 3321590136.43750 | 171.00    | 8.2         | 8.2       | 1.3000    | 81.4     | 330.2     |  |
| 1H-1     | 1.35   | 1.35    | 176.3       | 18.7        | 2.528E-03 | 3321590141.75000 | 171.00    | 5.3         | 5.3       | 1.3500    | 84.7     | 321.0     |  |
| 1H-1     | 1.40   | 1.40    | 172.2       | 15.5        | 2.217E-03 | 3321590147.07812 | 171.00    | 1.2         | 1.2       | 1.4000    | 87.1     | 17.2      |  |
| 1H-2     | 0.10   | 1.60    | 180.4       | 20.9        | 1.460F-03 | 3321591242 93750 | 171.00    | 9.4         | 9.4       | 1,6000    | 80.8     | 308.9     |  |
| 1H-2     | 0.15   | 1.65    | 180.9       | 13.7        | 1.521E-03 | 3321591248.26562 | 171.00    | 9.9         | 9.9       | 1.6500    | 79.6     | 330.8     |  |
| 1H-2     | 0.20   | 1.70    | 173.2       | 3.8         | 3.054F-03 | 3321591253,57812 | 171.00    | 2.2         | 2.2       | 1,7000    | 81.1     | 27.2      |  |
| 1H-2     | 0.25   | 1.75    | 171.1       | 3.6         | 4.145E-03 | 3321591258.90625 | 171.00    | 0.1         | 0.1       | 1.7500    | 81.3     | 40.9      |  |
| 1H-2     | 0.30   | 1.80    | 171.1       | 5.5         | 4.268E-03 | 3321591264.23437 | 171.00    | 0.1         | 0.1       | 1.8000    | 82.2     | 40.8      |  |
| 1H-2     | 0.35   | 1.85    | 170.3       | 17.8        | 2.538F-03 | 3321591269.56250 | 171.00    | 359.3       | -0.7      | 1.8500    | 88.4     | 67.9      |  |
| 1H-2     | 0.40   | 1.90    | 173.0       | 31.5        | 1.489F-03 | 3321591274 89062 | 171.00    | 2.0         | 2.0       | 1,9000    | 83.2     | 237.9     |  |
| 1H-2     | 0.45   | 1.95    | 180.1       | 48.0        | 9.430F-04 | 3321591280,20312 | 171.00    | 9.1         | 9.1       | 1.9500    | 69.6     | 245.0     |  |
| 1H-2     | 0.50   | 2.00    | 176.2       | 34.2        | 1.209F-03 | 3321591285 53125 | 171.00    | 5.2         | 5.2       | 2,0000    | 80.3     | 252.3     |  |
| 1H-2     | 0.55   | 2.05    | 172.8       | 25.9        | 1.597E-03 | 3321591290.85937 | 171.00    | 1.8         | 1.8       | 2.0500    | 86.4     | 250.7     |  |
| 1H-2     | 0.60   | 2 10    | 174 1       | 23.7        | 2 616E-03 | 3321591296 18750 | 171.00    | 3.1         | 3.1       | 2 1000    | 86.4     | 279.8     |  |
| 1H-2     | 0.65   | 2.10    | 172.4       | 18 3        | 4 443F_03 | 3321591301 51562 | 171.00    | 14          | 14        | 2 1 5 0 0 | 88.2     | 350.7     |  |
| 1H-2     | 0.70   | 2.20    | 167.1       | 17.9        | 3.944F_03 | 3321591306.82812 | 171.00    | 356.1       | -3.9      | 2,2000    | 85.9     | 112.7     |  |
| 1H-2     | 0.75   | 2.25    | 166.5       | 13.4        | 3.344F_03 | 3321591312,15625 | 171.00    | 355.5       | -4.5      | 2.2500    | 84.2     | 92.0      |  |
| 1H-2     | 0.80   | 2.30    | 163.8       | 29.0        | 1.665E-03 | 3321591317 48437 | 171.00    | 352.8       | -7.2      | 2.3000    | 81.4     | 167.7     |  |
| 1H-2     | 0.85   | 2.35    | 170.5       | 28.0        | 1.316E-03 | 3321591322.81250 | 171.00    | 359.5       | -0.5      | 2.3500    | 85.6     | 215.3     |  |
| 1H-2     | 0.90   | 2.33    | 168.8       | 28.5        | 1.205E-03 | 3321591328,14062 | 171.00    | 357.8       | -2.2      | 2,4000    | 84.9     | 197.2     |  |
| 1H-2     | 0.95   | 2.10    | 166.4       | 11.1        | 1.481F-03 | 3321591333 45312 | 171.00    | 355.4       | -4.6      | 2,4500    | 83.3     | 84.8      |  |
|          | 1.00   | 20      | 1(2.0       | 15.0        | 1 5775 02 | 2221501220 70125 | 171.00    | 2520        | 7 1       | 2 5000    | 02.0     | 112.2     |  |

Table T16. Paleomagnetic data from archive-half sections, Hole U1333B, at 20 mT AF demagnetization. (See table notes.)

Notes: Time = since 1 January 1904. VGP = virtual geomagnetic pole. Only a portion of this table appears here. The complete table is available in ASCII.

**Table T17.** Paleomagnetic data from archive-half sections, Hole U1333C, at 0 mT AF demagnetization. (See table notes.)

| Core,    | Offset | Depth   | Declination | Inclination | Intensity | Time             |
|----------|--------|---------|-------------|-------------|-----------|------------------|
| section  | (m)    | CSF (m) | (°)         | (°)         | (A/m)     | (s)              |
|          |        |         |             |             |           |                  |
| 320-U133 | 3C-    |         |             |             |           |                  |
| 1H-1     | 0.15   | 0.15    | 59.1        | 35.7        | 7.712E–03 | 3321763840.82812 |
| 1H-1     | 0.20   | 0.20    | 55.5        | 28.2        | 9.651E-03 | 3321763846.15625 |
| 1H-1     | 0.25   | 0.25    | 53.6        | 26.9        | 9.910E-03 | 3321763851.48437 |
| 1H-1     | 0.30   | 0.30    | 52.7        | 28.1        | 9.371E-03 | 3321763856.81250 |
| 1H-1     | 0.35   | 0.35    | 52.9        | 21.7        | 1.054E-02 | 3321763862.12500 |
| 1H-1     | 0.40   | 0.40    | 46.7        | 20.0        | 1.196E-02 | 3321763867.45312 |
| 1H-1     | 0.45   | 0.45    | 48.6        | 22.0        | 1.261E-02 | 3321763872.78125 |
| 1H-1     | 0.50   | 0.50    | 48.9        | 21.5        | 1.218E-02 | 3321763878.10937 |
| 1H-1     | 0.55   | 0.55    | 43.5        | 17.4        | 1.335E-02 | 3321763883.43750 |
| 1H-1     | 0.60   | 0.60    | 40.8        | 20.6        | 1.411E-02 | 3321763888.75000 |
| 1H-1     | 0.65   | 0.65    | 40.9        | 22.5        | 1.327E-02 | 3321763894.07812 |
| 1H-1     | 0.70   | 0.70    | 40.5        | 24.6        | 1.218E-02 | 3321763899.40625 |
| 1H-1     | 0.75   | 0.75    | 43.5        | 23.3        | 1.124E-02 | 3321763904.71875 |
| 1H-1     | 0.80   | 0.80    | 42.8        | 23.0        | 9.887E-03 | 3321763910.04687 |
| 1H-1     | 0.85   | 0.85    | 40.1        | 35.7        | 5.248E-03 | 3321763915.37500 |
| 1H-1     | 0.90   | 0.90    | 37.4        | 28.3        | 6.710E-03 | 3321763920.68750 |
| 1H-1     | 0.95   | 0.95    | 42.2        | 24.9        | 8.647E-03 | 3321763926.01562 |
| 1H-1     | 1.00   | 1.00    | 41.7        | 26.4        | 8.081E-03 | 3321763931.34375 |
| 1H-1     | 1.05   | 1.05    | 43.7        | 27.6        | 7.324E-03 | 3321763936.67187 |
| 1H-1     | 1.10   | 1.10    | 40.7        | 33.3        | 5.099E-03 | 3321763942.00000 |
| 1H-1     | 1.15   | 1.15    | 347.5       | 24.8        | 2.658E-03 | 3321763947.32812 |
| 1H-1     | 1.20   | 1.20    | 34.1        | 14.1        | 4.949E-03 | 3321763952.65625 |
| 1H-1     | 1.25   | 1.25    | 47.3        | 23.1        | 7.711E-03 | 3321763957.98437 |
| 1H-1     | 1.30   | 1.30    | 34.0        | 27.1        | 7.774E-03 | 3321763963.31250 |
| 1H-1     | 1.35   | 1.35    | 45.4        | 24.6        | 8.051E-03 | 3321763968.62500 |
| 1H-1     | 1.40   | 1.40    | 55.5        | 29.8        | 6.708E-03 | 3321763973.95312 |
| 2H-1     | 0.10   | 1.70    | 299.9       | 24.4        | 1.076E-02 | 3321770259.48437 |
| 2H-1     | 0.15   | 1.75    | 295.7       | 16.3        | 1.085E-02 | 3321770264.81250 |
| 2H-1     | 0.20   | 1.80    | 279.9       | 9.4         | 8.314E-03 | 3321770270.14062 |
| 2H-1     | 0.25   | 1.85    | 266.5       | 4.2         | 7.233E-03 | 3321770275.45312 |
| 2H-1     | 0.30   | 1.90    | 270.9       | 4.5         | 7.232E-03 | 3321770280.78125 |
| 2H-1     | 0.35   | 1.95    | 268.3       | 5.4         | 7.368E-03 | 3321770286.10937 |
| 2H-1     | 0.40   | 2.00    | 267.7       | 5.6         | 7.791E-03 | 3321770291.43750 |
| 2H-1     | 0.45   | 2.05    | 266.5       | 1.9         | 8.597E-03 | 3321770296.76562 |
| 2H-1     | 0.50   | 2.10    | 256.2       | -4.0        | 8.692E-03 | 3321770302.09375 |
| 2H-1     | 0.55   | 2.15    | 249.5       | -6.0        | 8.309E-03 | 3321770307.40625 |
| 2H-1     | 0.60   | 2.20    | 242.0       | -6.5        | 8.094E-03 | 3321770312.73437 |
| 2H-1     | 0.65   | 2.25    | 243.6       | -7.9        | 7.739E-03 | 3321770318.06250 |
| 2H-1     | 0.70   | 2.30    | 254.0       | -5.0        | 7.000E-03 | 3321770323.39062 |
| 2H-1     | 0.75   | 2.35    | 258.9       | -4.9        | 7.203E-03 | 3321770328.70312 |
| 2H-1     | 0.80   | 2.40    | 259.3       | -4.5        | 7.321E-03 | 3321770334.03125 |
| 2H-1     | 0.85   | 2.45    | 261.7       | -4.1        | 7.434E-03 | 3321770339.35937 |
| 2H-1     | 0.90   | 2.50    | 256.8       | -4.2        | 7.558E-03 | 3321770344.68750 |
| 2H-1     | 0.95   | 2.55    | 237.7       | -6.6        | 6.994E-03 | 3321770350.01562 |
| 2H-1     | 1.00   | 2.60    | 240.3       | -7.0        | 7.265E-03 | 3321770355.34375 |
| 2H-1     | 1.05   | 2.65    | 261.0       | -2.7        | 7.844E-03 | 3321770360.65625 |
| 2H-1     | 1.10   | 2.70    | 266.8       | -0.6        | 8.660E-03 | 3321770365.98437 |
| 2H-1     | 1.15   | 2.75    | 254.5       | -4.3        | 7.569E–03 | 3321770371.31250 |
| 2H-1     | 1.20   | 2.80    | 247.4       | -6.8        | 8.111E-03 | 3321770376.64062 |
| 2H-1     | 1.25   | 2.85    | 248.8       | -6.1        | 8.998E-03 | 3321770381.96875 |
| 2H-1     | 1.30   | 2.90    | 247.6       | -6.6        | 9.895E-03 | 3321770387.28125 |
| 2H-1     | 1.35   | 2.95    | 238.9       | -7.5        | 1.075E-02 | 3321770392.60937 |
| 2H-1     | 1.40   | 3.00    | 231.3       | -8.1        | 1.169E-02 | 3321770397.93750 |
| 2H-2     | 0.10   | 3.20    | 302.8       | 8.5         | 9.032E-03 | 3321771594.33187 |
| 2H-2     | 0.15   | 3.25    | 309.8       | 10.8        | 1.332E-02 | 3321771599.65999 |
| 2H-2     | 0.20   | 3.30    | 316.5       | 11.0        | 1.435E-02 | 3321771604.98812 |
| 2H-2     | 0.25   | 3.35    | 320.9       | 11.3        | 1.330E-02 | 3321771610.31624 |
| 2H-2     | 0.30   | 3.40    | 314.0       | 12.8        | 1.234E-02 | 3321771615.64437 |
| 2H-2     | 0.35   | 3.45    | 315.6       | 14.3        | 1.243E-02 | 3321771620.95687 |
| 2H-2     | 0.40   | 3.50    | 319.5       | 13.0        | 1.339E-02 | 3321771626.28499 |
| 2H-2     | 0.45   | 3.55    | 318.9       | 14.2        | 1.037E-02 | 3321771631.59749 |
| 2H-2     | 0.50   | 3.60    | 318.3       | 16.0        | 7.920E-03 | 3321771636.92562 |

Notes: Time = since 1 January 1904. Only a portion of this table appears here. The complete table is available in ASCII.



**Table T18.** Paleomagnetic data from archive-half sections, Hole U1333C, at 10 mT AF demagnetization. (See**table notes.**) (Continued on next two pages.)

| Core,              | Offset | Depth          | Declination    | Inclination | Intensity              | Time             |
|--------------------|--------|----------------|----------------|-------------|------------------------|------------------|
| section            | (m)    | CSF (m)        | (°)            | (°)         | (A/m)                  | (s)              |
| 220 111 22         | 30     |                |                |             |                        |                  |
| 1H-1               | 0.15   | 0.15           | 50.7           | 2.5         | 4.633E-03              | 3321764261.35937 |
| 1H-1               | 0.20   | 0.20           | 50.9           | 3.3         | 4.635E-03              | 3321764266.68750 |
| 1H-1               | 0.25   | 0.25           | 46.3           | 4.1         | 4.941E-03              | 3321764272.00000 |
| 1H-1               | 0.30   | 0.30           | 46.5           | 6.0         | 4.656E-03              | 3321764277.32812 |
| 1H-1               | 0.35   | 0.35           | 44.9           | 8.7         | 5.696E-03              | 3321764282.65625 |
| 1H-1               | 0.40   | 0.40           | 46.9           | 8.2         | 7.350E–03              | 3321764287.98437 |
| 1H-1               | 0.45   | 0.45           | 43.1           | 7.5         | 7.785E-03              | 3321764293.29687 |
| 1H-1               | 0.50   | 0.50           | 45.4           | 7.0         | 7.704E-03              | 3321/64298.62500 |
| 1 III-1<br>1 III-1 | 0.55   | 0.55           | 39.4<br>37.2   | 5.1<br>5.8  | 8.490E-03              | 3321764303.93312 |
| 1H-1               | 0.65   | 0.65           | 37.3           | 7.0         | 8.324F-03              | 3321764314.60937 |
| 1H-1               | 0.70   | 0.70           | 37.0           | 7.9         | 7.454E-03              | 3321764319.93750 |
| 1H-1               | 0.75   | 0.75           | 37.6           | 8.4         | 6.365E-03              | 3321764325.25000 |
| 1H-1               | 0.80   | 0.80           | 42.4           | 7.8         | 5.357E-03              | 3321764330.57812 |
| 1H-1               | 0.85   | 0.85           | 28.2           | 13.3        | 2.543E-03              | 3321764335.90625 |
| 1H-1               | 0.90   | 0.90           | 28.7           | 8.1         | 3.347E-03              | 3321764341.23437 |
| 1H-1               | 0.95   | 0.95           | 35.1           | 6.5         | 4.724E-03              | 3321764346.54687 |
| 1H-1<br>1⊔ 1       | 1.00   | 1.00           | 33.6           | 7.2         | 4.219E-03              | 3321/64351.8/500 |
| 1H-1               | 1.05   | 1.03           | 30.2           | 9.0         | 2 232E 03              | 3321764367 53125 |
| 1H-1               | 1.15   | 1.15           | 333.8          | -32.1       | 1.635E-03              | 3321764367.85937 |
| 1H-1               | 1.20   | 1.20           | 359.0          | -36.1       | 1.859E-03              | 3321764373.18750 |
| 1H-1               | 1.25   | 1.25           | 31.7           | -5.7        | 3.567E-03              | 3321764378.50000 |
| 1H-1               | 1.30   | 1.30           | 27.6           | 3.2         | 4.807E-03              | 3321764383.82812 |
| 1H-1               | 1.35   | 1.35           | 33.7           | 3.1         | 4.215E-03              | 3321764389.15625 |
| 1H-1               | 1.40   | 1.40           | 45.6           | -4.4        | 3.420E-03              | 3321764394.48437 |
| 9H-1               | 0.65   | 68.75          | 234.9          | 8.5         | 3.285E-04              | 3321838295.25000 |
| 9H-1<br>0L 1       | 0.70   | 68.80          | 230.8          | -0.4        | 3.941E-04              | 3321838300.37812 |
| 9H-1<br>9H-1       | 0.73   | 68.90          | 230.4          | 2.2         | 3.733E-04<br>8 506E-04 | 3321838311 21875 |
| 9H-1               | 0.85   | 68.95          | 234.9          | 3.4         | 1.088E-03              | 3321838316.54687 |
| 9H-1               | 0.90   | 69.00          | 238.6          | 0.4         | 1.064E-03              | 3321838321.87500 |
| 9H-1               | 0.95   | 69.05          | 239.1          | -4.6        | 9.486E-04              | 3321838327.20312 |
| 9H-1               | 1.00   | 69.10          | 217.6          | -1.1        | 1.478E-03              | 3321838332.51562 |
| 9H-1               | 1.05   | 69.15          | 231.5          | 0.8         | 1.506E-03              | 3321838337.84375 |
| 9H-1               | 1.10   | 69.20          | 229.7          | 2.4         | 1.153E-03              | 3321838343.17187 |
| 9H-1               | 1.15   | 69.25          | 232.4          | 1.1         | 7.849E-04              | 3321838348.50000 |
| 9H-1<br>9H-1       | 1.20   | 69.30          | 220.0          | 0.8         | 7.963E-04<br>9.278F_04 | 3321838359 14062 |
| 9H-1               | 1.30   | 69.40          | 233.2          | 2.3         | 8.754E-04              | 3321838364.46875 |
| 9H-1               | 1.35   | 69.45          | 234.3          | 6.8         | 7.085E-04              | 3321838369.79687 |
| 9H-1               | 1.40   | 69.50          | 234.2          | 11.6        | 7.590E-04              | 3321838375.12500 |
| 9H-2               | 0.10   | 69.70          | 243.6          | 4.4         | 7.939E-04              | 3321839498.07812 |
| 9H-2               | 0.15   | 69.75          | 243.2          | 15.2        | 1.007E-03              | 3321839503.40625 |
| 9H-2               | 0.20   | 69.80          | 245.4          | 16.1        | 1.503E-03              | 3321839508.73437 |
| 9H-2               | 0.25   | 69.85          | 242.3          | 14.5        | 1.241E-03              | 3321839514.04687 |
| 9H-2<br>9H-2       | 0.30   | 69.90          | 244.2          | 17.0        | 8.049E-04              | 3321839519.37300 |
| 9H-2               | 0.33   | 70.00          | 245.7          | 12.5        | 9.881F-04              | 3321839530.01562 |
| 9H-2               | 0.45   | 70.05          | 245.4          | 10.3        | 1.232E-03              | 3321839535.34375 |
| 9H-2               | 0.50   | 70.10          | 242.1          | 10.2        | 1.346E-03              | 3321839540.67187 |
| 9H-2               | 0.55   | 70.15          | 240.9          | 9.2         | 1.340E-03              | 3321839546.00000 |
| 9H-2               | 0.60   | 70.20          | 240.7          | 7.8         | 1.095E-03              | 3321839551.32812 |
| 9H-2               | 0.65   | 70.25          | 240.3          | 7.3         | 8.621E-04              | 3321839556.65625 |
| 9H-2               | 0.70   | 70.30          | 238.3          | 9.6         | 8.425E-04              | 3321839561.96875 |
| 9H-2               | 0.75   | 70.35          | 234.4          | 15.2        | 1.12/E-03              | 3321839567.29687 |
| 9⊓-2<br>9H_2       | 0.80   | 70.40<br>70.45 | ∠37.7<br>240 0 | 19.5        | 1.329E-03              | 3321039372.02300 |
| 9H-2               | 0.90   | 70.50          | 234.8          | 12.2        | 1.866F-03              | 3321839583 28125 |
| 9H-2               | 0.95   | 70.55          | 240.0          | 10.9        | 1.846E-03              | 3321839588.59375 |
| 9H-2               | 1.00   | 70.60          | 240.8          | 0.2         | 1.781E-03              | 3321839593.92187 |
| 9H-2               | 1.05   | 70.65          | 240.6          | 2.8         | 1.612E-03              | 3321839599.25000 |
| 9H-2               | 1.10   | 70.70          | 244.4          | 6.3         | 1.407E-03              | 3321839604.57812 |
| 9H-2               | 1.15   | 70.75          | 244.3          | 7.1         | 1.280E-03              | 3321839609.89062 |
| 9H-2               | 1.20   | 70.80          | 243.7          | 6.3         | 8.909E-04              | 3321839615.21875 |
| 9H-2               | 1.25   | /0.85          | 101.0          | -28.9       | 1./46E-04              | 33Z1839620.54687 |


# Table T18 (continued). (Continued on next page.)

| Core,<br>section | Offset<br>(m) | Depth<br>CSF (m) | Declination<br>(°) | Inclination<br>(°) | Intensity<br>(A/m) | Time<br>(s)                          |
|------------------|---------------|------------------|--------------------|--------------------|--------------------|--------------------------------------|
| 9H-2             | 1.30          | 70.90            | 42.2               | -24.3              | 5.124E-04          | 3321839625.87500                     |
| 9H-2             | 1.35          | 70.95            | 46.2               | -26.8              | 6.280E-04          | 3321839631.20312                     |
| 9H-2             | 1.40          | 71.00            | 61.7               | -16.5              | 1.243E-03          | 3321839636.53125                     |
| 9H-3             | 0.10          | 71.20            | 68.0               | -10.8              | 1.265E-03          | 3321840757.25000                     |
| 9H-3             | 0.15          | 71.25            | 67.8               | -11.7              | 1.407E-03          | 3321840762.57812                     |
| 9H-3             | 0.20          | 71.30            | 65.8               | -19.2              | 1.222E-03          | 3321840767.90625                     |
| 9H-3             | 0.25          | 71.35            | 63.7               | -21.3              | 1.269E-03          | 3321840773.23437                     |
| 9H-3             | 0.30          | 71.40            | 66.0               | -22.6              | 1.313E-03          | 3321840778.56250                     |
| 9H-3             | 0.35          | 71.45            | 71.4               | -15.9              | 2.043E-03          | 3321840783.89062                     |
| 9H-3             | 0.40          | 71.50            | 70.5               | -14.4              | 1.854E-03          | 3321840789.20312                     |
| 9H-3             | 0.45          | 71.55            | 56.1               | -14.2              | 3.451E-04          | 3321840794.53125                     |
| 9H-3             | 0.50          | 71.60            | 252.5              | -0.2               | 5.484E-04          | 3321840799.85937                     |
| 9H-3             | 0.55          | /1.65            | 248.6              | 20.4               | 7.678E-04          | 3321840805.18/50                     |
| 9H-3             | 0.60          | /1./0            | 257.7              | 4.9                | 1.58/E-03          | 3321840810.50000                     |
| 9H-3<br>0L 2     | 0.65          | 71.75            | 252.2              | 9.1                | 1.435E-03          | 3321840815.82812                     |
| 90-3<br>01 3     | 0.70          | 71.60            | 233.9              | 7.1                | 2.033E-03          | 3321040021.13023<br>2321840826 48427 |
| 9H-3<br>0H 2     | 0.75          | 71.03            | 243.5              | 10.0               | 2.277E-03          | 2221840821 81250                     |
| 9H-3             | 0.80          | 71.90            | 247.0              | 2.4                | 1.805L-03          | 3321840837 14062                     |
| 9H-3             | 0.05          | 72.00            | 242.5              | 6.5                | 1.200L=03          | 3321840842 45312                     |
| 9H-3             | 0.95          | 72.00            | 248.3              | 7.6                | 1.372E=03          | 3321840847 78125                     |
| 9H-3             | 1.00          | 72.10            | 248.5              | 8.7                | 1.432E-03          | 3321840853.10937                     |
| 9H-3             | 1.05          | 72.15            | 241.8              | 15.6               | 9.771E-04          | 3321840858.43750                     |
| 9H-3             | 1.10          | 72.20            | 245.4              | 13.6               | 1.399E-03          | 3321840863.76562                     |
| 9H-3             | 1.15          | 72.25            | 243.7              | 12.7               | 1.603E-03          | 3321840869.07812                     |
| 9H-3             | 1.20          | 72.30            | 245.0              | 14.8               | 1.361E-03          | 3321840874.40625                     |
| 9H-3             | 1.25          | 72.35            | 248.7              | 17.3               | 1.077E-03          | 3321840879.73437                     |
| 9H-3             | 1.30          | 72.40            | 247.8              | 15.5               | 1.314E-03          | 3321840885.04687                     |
| 9H-3             | 1.35          | 72.45            | 249.8              | 11.3               | 1.794E-03          | 3321840890.37500                     |
| 9H-3             | 1.40          | 72.50            | 251.0              | 11.1               | 1.691E-03          | 3321840895.70312                     |
| 9H-4             | 0.10          | 72.70            | 255.5              | 7.9                | 1.805E-03          | 3321841990.17187                     |
| 9H-4             | 0.15          | 72.75            | 249.7              | 5.4                | 1.607E-03          | 3321841995.50000                     |
| 9H-4             | 0.20          | 72.80            | 252.2              | 3.5                | 1.854E-03          | 3321842000.82812                     |
| 9H-4             | 0.25          | 72.85            | 255.0              | 6.1                | 1.965E-03          | 3321842006.15625                     |
| 9H-4             | 0.30          | 72.90            | 257.3              | 8.3                | 1.649E-03          | 3321842011.46875                     |
| 9H-4             | 0.35          | 72.95            | 253.4              | 10.2               | 1.202E-03          | 3321842016.79687                     |
| 90-4<br>01 4     | 0.40          | 73.00            | 237.2              | 8.S                | 1.363E-03          | 2221842022.12300                     |
| 911-4<br>01 /    | 0.43          | 73.03            | 260.0              | 9.0                | 1.232E-03          | 2221842027.43730                     |
| 911-4<br>0H_/    | 0.50          | 73.10            | 202.3              | 6.7                | 1.140L-03          | 3321842032.70302                     |
| 9H_4             | 0.55          | 73.20            | 260.3              | 8.2                | 1.217L-03          | 3321842038.07373                     |
| 9H-4             | 0.65          | 73.25            | 259.6              | 8.2                | 1.882F_03          | 3321842048 75000                     |
| 9H-4             | 0.70          | 73.30            | 262.0              | 7.2                | 1.549E-03          | 3321842054.07812                     |
| 9H-4             | 0.75          | 73.35            | 262.9              | 7.7                | 1.296E-03          | 3321842059.40625                     |
| 9H-4             | 0.80          | 73.40            | 258.5              | 8.6                | 1.772E-03          | 3321842064.71875                     |
| 9H-4             | 0.85          | 73.45            | 254.7              | 8.1                | 2.116E-03          | 3321842070.04687                     |
| 9H-4             | 0.90          | 73.50            | 253.0              | 7.8                | 1.753E-03          | 3321842075.37500                     |
| 9H-4             | 0.95          | 73.55            | 257.2              | 6.2                | 1.296E-03          | 3321842080.70312                     |
| 9H-4             | 1.00          | 73.60            | 261.1              | 4.7                | 9.945E-04          | 3321842086.01562                     |
| 9H-4             | 1.05          | 73.65            | 260.5              | 5.4                | 1.054E-03          | 3321842091.34375                     |
| 9H-4             | 1.10          | 73.70            | 258.4              | 7.4                | 1.339E-03          | 3321842096.67187                     |
| 9H-4             | 1.15          | 73.75            | 260.2              | 7.5                | 1.561E-03          | 3321842102.00000                     |
| 9H-4             | 1.20          | 73.80            | 259.4              | 6.1                | 1.709E-03          | 3321842107.32812                     |
| 9H-4             | 1.25          | 73.85            | 259.9              | 5.6                | 1.849E-03          | 3321842112.65625                     |
| 9H-4             | 1.30          | 73.90            | 259.3              | 6.3                | 1.759E-03          | 3321842117.98437                     |
| 9H-4             | 1.35          | 73.95            | 258.9              | 7.9                | 1.401E-03          | 3321842123.29687                     |
| 9H-4             | 1.40          | /4.00            | 255.5              | 13.4               | 3.506E-04          | 3321842128.62500                     |
| 9H-5             | 0.10          | 74.20            | 201.4              | 6.2                | 9.493E-04          | 2221042270.25000                     |
| 9H-5             | 0.15          | 74.25            | 257.9              | 9.3                | δ.08UE-04          | 33218432/5.5/812                     |
| 9H-5<br>0L 7     | 0.20          | 74.30            | 239.5              | 9.0<br>7 0         | 1.11/E-U3          | 2221043200.90625                     |
| оп с<br>оп с     | 0.25          | 74.33            | ∠0U.Z<br>261 0     | /.Z<br>Q 1         | 1.34/E-U3          | JJZ104JZ00.210/J                     |
| 0H_5             | 0.50          | 74.40            | 201.9<br>266 7     | 0.1<br>Q Q         | 1.001E-03          | 3321043271.3400/<br>33218/3306 97500 |
| 911-3<br>0H_5    | 0.33          | 74.45            | 200.7              | 0.0<br>1 2         | 2 840F 04          | 3321843307 20212                     |
| 0H_5             | 0.40          | 74 55            | 2/4.5              | 1.∠<br>_3.7        | 2.077L-04          | 3321843307 51562                     |
| 9H-5             | 0.50          | 74 60            | 200.4              | _1.0               | 2.228F_04          | 3321843312 84375                     |
| 9H-5             | 0.55          | 74.65            | 266.5              | 0.4                | 2.743F-04          | 3321843318 17187                     |
| 9H-5             | 0.60          | 74 70            | 268.5              | 1.0                | 3 402F_04          | 3321843323 50000                     |



# Table T18 (continued).

| Core,<br>section | Offset<br>(m) | Depth<br>CSF (m) | Declination<br>(°) | Inclination<br>(°) | Intensity<br>(A/m)     | Time<br>(s)      |
|------------------|---------------|------------------|--------------------|--------------------|------------------------|------------------|
| 9H-5             | 0.65          | 74.75            | 267.3              | 4.2                | 4.429E-04              | 3321843328.82812 |
| 9H-5             | 0.70          | 74.80            | 265.6              | 1.4                | 6.503E-04              | 3321843334.15625 |
| 9H-5             | 0.75          | 74.85            | 267.5              | -7.3               | 7.203E-04              | 3321843339.46875 |
| 9H-5             | 0.80          | 74.90            | 271.4              | -8.6               | 5.926E-04              | 3321843344.79687 |
| 9H-5             | 0.85          | 74.95            | 267.6              | -0.3               | 5.955E-04              | 3321843350.12500 |
| 9H-5             | 0.90          | 75.00            | 265.1              | 5.0                | 5.555E-04              | 3321843355.45312 |
| 9H-5             | 0.95          | 75.05            | 268.4              | 8.2                | 7.564E-04              | 3321843360.76562 |
| 9H-5             | 1.00          | 75.10            | 269.5              | 10.5               | 1.099E-03              | 3321843366.09375 |
| 9H-5             | 1.05          | 75.15            | 264.7              | 11.9               | 1.242E-03              | 3321843371.42187 |
| 9H-5             | 1.10          | 75.20            | 264.2              | 10.9               | 1.045E-03              | 3321843376.75000 |
| 9H-5             | 1.15          | 75.20            | 260.0              | 13.1               | 9.387E-04              | 3321843382.07812 |
| 9H-3<br>0H 5     | 1.20          | 75.30            | 255.2              | 19.5               | 9.947E-04              | 2221042202 71075 |
| 9H-5             | 1.25          | 75.35            | 258.6              | 20.8               | 2.404L-04<br>8 805F_04 | 3321843398 04687 |
| 9H-5             | 1.35          | 75.45            | 257.0              | 15.6               | 9.268F-04              | 3321843403.37500 |
| 9H-5             | 1.40          | 75.50            | 259.3              | 8.9                | 9.897E-04              | 3321843408.70312 |
| 9H-6             | 0.10          | 75.70            | 266.3              | 5.3                | 9.732E-04              | 3321844510.79687 |
| 9H-6             | 0.15          | 75.75            | 271.7              | 8.9                | 1.134E-03              | 3321844516.12500 |
| 9H-6             | 0.20          | 75.80            | 271.8              | 2.8                | 1.368E-03              | 3321844521.45312 |
| 9H-6             | 0.25          | 75.85            | 268.7              | 2.4                | 1.099E-03              | 3321844526.76562 |
| 9H-6             | 0.30          | 75.90            | 269.4              | 5.6                | 1.033E-03              | 3321844532.09375 |
| 9H-6             | 0.35          | 75.95            | 269.7              | 8.4                | 8.713E-04              | 3321844537.42187 |
| 9H-6             | 0.40          | 76.00            | 268.9              | 6.3                | 8.131E-04              | 3321844542.75000 |
| 9H-6             | 0.45          | 76.05            | 270.1              | 5.1                | 7.806E-04              | 3321844548.07812 |
| 9H-6             | 0.50          | 76.10            | 269.2              | 6.5                | 5.529E-04              | 3321844553.39062 |
| 9H-6             | 0.55          | 76.15            | 2/1.1              | 7.4                | 3.223E-04              | 3321844558./18/5 |
| 9H-6             | 0.60          | 76.20            | 2/3.3              | 2.6                | 3.549E-04              | 3321844564.04687 |
| 9H-6<br>0H 6     | 0.65          | 76.25            | 2/3.0              | 1.0                | 2.669E-04              | 3321844369.37300 |
| 9H-6             | 0.70          | 76.30            | 233.7              | 76.3<br>17.5       | 2.360E-03              | 3321844574.70512 |
| 9H-6             | 0.75          | 76.35            | 252.2              | 62                 | 1.240L-04<br>1.967F_04 | 3321844585 34375 |
| 9H-6             | 0.85          | 76.45            | 271.2              | 10.7               | 1.660F-04              | 3321844590.67187 |
| 9H-6             | 0.90          | 76.50            | 152.7              | 29.1               | 4.077E-05              | 3321844596.00000 |
| 9H-6             | 0.95          | 76.55            | 94.3               | -8.0               | 4.005E-04              | 3321844601.32812 |
| 9H-6             | 1.00          | 76.60            | 93.0               | -11.2              | 5.664E-04              | 3321844606.64062 |
| 9H-6             | 1.05          | 76.65            | 93.8               | -21.2              | 3.135E-04              | 3321844611.96875 |
| 9H-6             | 1.10          | 76.70            | 135.3              | -49.1              | 9.872E-05              | 3321844617.29687 |
| 9H-6             | 1.15          | 76.75            | 231.7              | -40.2              | 8.153E-05              | 3321844622.62500 |
| 9H-6             | 1.20          | 76.80            | 100.5              | -16.8              | 1.105E-04              | 3321844627.95312 |
| 9H-6             | 1.25          | 76.85            | 93.1               | 2.3                | 3.310E-04              | 3321844633.26562 |
| 9H-6             | 1.30          | 76.90            | 92.9               | 7.8                | 3.780E-04              | 3321844638.59375 |
| 9H-6             | 1.35          | /6.95            | 93.1               | 6.8                | 3.4/8E-04              | 3321844643.9218/ |
| 9H-6             | 1.40          | 77.00            | 91.4               | 0.1                | 4.288E-04              | 3321844649.25000 |
| 911-7<br>011 7   | 0.10          | 77.20            | 90.2<br>101.2      | -10.9              | 4.233E-04              | 2221845701 82812 |
| 9H-7             | 0.15          | 77.30            | 90.2               | -25.7              | 1 330F-04              | 3321845707 14062 |
| 9H-7             | 0.25          | 77.35            | 88.7               | -14.1              | 2.697E-04              | 3321845712 46875 |
| 9H-7             | 0.30          | 77.40            | 92.8               | -6.6               | 4.901E-04              | 3321845717.79687 |
| 9H-7             | 0.35          | 77.45            | 94.9               | -4.0               | 5.009E-04              | 3321845723.12500 |
| 9H-7             | 0.40          | 77.50            | 95.1               | -6.4               | 5.485E-04              | 3321845728.45312 |
| 9H-7             | 0.45          | 77.55            | 100.7              | -9.2               | 6.743E-04              | 3321845733.76562 |
| 9H-7             | 0.50          | 77.60            | 96.6               | -6.5               | 7.753E-04              | 3321845739.09375 |
| 10H-1            | 0.85          | 78.45            | 116.4              | -3.8               | 5.677E-04              | 3321846826.68750 |
| 10H-1            | 0.90          | 78.50            | 117.7              | 4.5                | 4.953E-04              | 3321846832.01562 |
| 10H-1            | 0.95          | 78.55            | 117.5              | 8.8                | 2.968E-04              | 3321846837.32812 |
| 10H-1            | 1.00          | 78.60            | 97.5               | -0.2               | 1.407E-03              | 3321846842.65625 |
| 10H-1            | 1.05          | 78.65            | 108.2              | -6.0               | 7.983E-04              | 3321846847.98437 |
| 10H-1            | 1.10          | 78.70            | 109.5              | -5.3               | 7.223E-04              | 3321846853.31250 |
| 10H-1            | 1.15          | /8.75            | 110.3              | -3.7               | 5.198E-04              | 3321846858.62500 |
| 10H-1            | 1.20          | /8.80            | 109.0              | -3.5               | 3.640E-04              | 3321846863.95312 |
| 10H-1            | 1.25          | / 0.00<br>78 00  | 111.1              | -2.ð               | 2./IOE-04              | 2221846874 20027 |
| 10H-1            | 1.30          | 78.90            | 120.9              | _0.5<br>_1/ 3      | 1.237E-04              | 33210400/4.0093/ |
| 10H-1            | 1.40          | 79.00            | 122.5              | -6.2               | 2.147E-04              | 3321846885.25000 |

Notes: Time = since 1 January 1904. This table is also available in ASCII.





Table T19. Paleomagnetic data from archive-half sections, Hole U1333C, at 20 mT AF demagnetization. (See table notes.)

Notes: Time = since 1 January 1904. VGP = virtual geomagnetic pole. Only a portion of this table appears here. The complete table is available in ASCII.



#### Table T20. Mean paleomagnetic direction for each core, Site U1333. (See table notes.)

| Core         | Inclination<br>(°) | Declination<br>(°) | N   | R       | k            | α95  |
|--------------|--------------------|--------------------|-----|---------|--------------|------|
| 20-U1        | 333A-              |                    |     |         |              |      |
| 1H           | 8.6                | 353.5              | 166 | 156.123 | 16.7         | 2.8  |
| 2H           | -1.3               | 29.5               | 133 | 119.490 | 9.8          | 4.1  |
| 3H           | -2.2               | 48.3               | 165 | 154.998 | 16.4         | 2.8  |
| 4H           | -7.8               | 11.6               | 121 | 117.828 | 37.8         | 2.1  |
| 5H           | -16.2              | 12.6               | 143 | 141.621 | 102.9        | 1.2  |
| 6H           | 1.5                | 61.6               | 119 | 116.740 | 52.2         | 1.8  |
| 7H           | 6.2                | 162.4              | 133 | 130.846 | 61.3         | 1.6  |
| 8H           | -12.8              | 57.2               | 153 | 150.418 | 58.9         | 1.5  |
| 9H           | 11.5               | 141.6              | 165 | 159.973 | 32.6         | 2.0  |
| 10H          | 8.5                | 161.2              | 162 | 158.836 | 50.9         | 1.6  |
| 11X          | 2.5                | 40.2               | 45  | 40.345  | 9.5          | 7.3  |
| 12X          | 1.4                | 72.1               | 58  | 51.411  | 8.7          | 6.7  |
| 13X          | 0.1                | 142.8              | 77  | 68.826  | 9.3          | 5.6  |
| 14X          | -1.6               | 69.5               | 71  | 61.815  | 7.6          | 6.5  |
| 15X          | 4.0                | 41.7               | 75  | 67.043  | 9.3          | 5.7  |
| 16X          | -3.3               | 165.8              | 84  | 75.307  | 9.5          | 5.3  |
| 17X          | 1.9                | 86.6               | 76  | 67.685  | 9.0          | 5.7  |
| 18X          | -5.3               | 147.8              | 55  | 47.806  | 7.5          | 7.5  |
| 19X          | -16.1              | 163.3              | 44  | 38.602  | 8.0          | 8.1  |
| 20X          | 4.7                | 24.8               | 20  | 17.721  | 8.3          | 12.0 |
| 2011         | 2220               |                    |     |         |              |      |
| 320-01<br>1⊔ | 10.6               | 171.0              | 122 | 128 205 | 28.1         | 22   |
| 1 T<br>2 L   | 10.8               | 96.2               | 133 | 120.303 | 20.1         | 2.5  |
| 211<br>211   | -4.7               | 90.Z               | 140 | 155.457 | 20.0         | 2.2  |
| 2<br>1<br>1  | 5.9                | 31.9               | 160 | 155.055 | 22.0         | 2.4  |
| 4H           | -4.7               | 42.3               | 160 | 131.902 | 19.6         | 2.6  |
| SH           | -6.2               | 104.3              | 138 | 133.601 | 31.1<br>15.6 | 2.2  |
| 6H           | 2.4                | 129.3              | 169 | 158.240 | 15.0         | 2.8  |
| /H           | -5.5               | 29.1               | 163 | 159.252 | 43.2         | 1./  |
| ŏН           | 0.3                | 109.2              | 163 | 158.055 | 32.8         | 2.0  |
| 9H           | -11.2              | 4/.4               | 132 | 127.956 | 32.4         | 2.2  |
| 10H          | -4.1               | 11.4               | 115 | 106.312 | 13.1         | 3.8  |

Notes: Mean paleomagnetic directions and statistics were calculated using Fisher statistics for each core, using data from stable polarity intervals. Reversed polarity intervals were inverted prior to computing the mean directions and statistics. Inclination = mean paleomagnetic inclination from stable polarity intervals in a core. Declination = mean paleomagnetic declination from stable polarity intervals in a core. By subtracting this value from the observed paleomagnetic declinations measured along the core, the core can be approximately reoriented back into geographic coordinates. After this reorientation, the normal polarity intervals will have ~0° declination and the reversed polarity intervals will have ~180° declination. N = number of paleomagnetic observations used in calculating the mean, R = resultant vector length from summing the Nvectors (directions or poles), k = precision parameter from Fisher statistical calculations,  $\alpha 95$  = 95% confidence angle for the mean direction.



|                  |         |             |                |       |         |        | Suscep     | tibility   |
|------------------|---------|-------------|----------------|-------|---------|--------|------------|------------|
|                  |         |             |                | Total | Bulk    |        | Volume     | Mass       |
| Core,            | Depth   |             | Susceptibility | mass  | density | Volume | normalized | normalized |
| section          | CSF (m) | LIMS ID     | (SI)           | (g)   | (g/cm³) | (cm³)  | (SI)       | (m³/kg)    |
|                  |         |             |                |       |         |        |            |            |
| 320-013          | 33A-    | CUDE (12201 | 1 7075 04      | 11.50 | 1 252   |        | 2 2405 04  | 1 0005 07  |
| 1H-1             | 0.84    | CUBE613391  | 1./8/E-04      | 11.56 | 1.252   | 5.57   | 2.248E-04  | 1.082E-07  |
| 1H-2             | 2.34    | CUBE613401  | 1.518E-04      | 12.05 | 1.263   | 5.90   | 1.800E-04  | 8.818E-08  |
| 1H-3             | 5.84    | CUBE613411  | 1.11/E-04      | 10.97 | 1.319   | 4.84   | 1.61/E-04  | 7.128E-08  |
| 1H-4             | 5.54    | CUBE613451  | 2.39/E-05      | 15.09 | 1.692   | 6.20   | 2.930E-05  | 1.205E-08  |
| 1H-5             | 0.84    | CUBE613421  | 3./25E-05      | 13.78 | 1.610   | 5./1   | 4.569E-05  | 1.892E-08  |
| 111-0            | 8.34    | CUBE613431  | 2.04/E-05      | 13.93 | 1.68/   | 5.54   | 2.589E-05  | 1.029E-08  |
| 1H-/             | 9.64    | CUBE613441  | 3.825E-05      | 13.33 | 1.003   | 5.37   | 4.982E-05  | 1.979E-08  |
| 2H-1             | 10.34   | CUBE6152/1  | 1./16E-05      | 14.88 | 1./1/   | 5.99   | 2.005E-05  | 8.073E-09  |
| 2H-2             | 11.84   | CUBEG15311  | 1.524E-05      | 13.02 | 1.709   | 4.93   | 2.163E-05  | 8.194E-09  |
| 20-3             | 13.34   |             | 0.013E-03      | 14.10 | 1.33/   | 0.15   | 7.333E-03  | 3.209E-08  |
| 20-4             | 14.04   |             | 3.120E-05      | 13.70 | 1.001   | 5.09   | 3.849E-03  | 1.596E-06  |
| 211-3<br>211-2   | 10.14   | CUBE615201  | 5.520E-05      | 14.04 | 1,010   | 6.24   | 5.755E-05  | 1.391E-00  |
| 211-0<br>211 - 7 | 17.94   | CUBE615291  | 3.400E-03      | 14.00 | 1.010   | 6.27   | 0.033E-03  | 2.373E-00  |
| 201-7<br>201-1   | 10.09   |             | 5.224E-05      | 14.70 | 1.073   | 5.05   | 5.740E-05  | 1.333E-00  |
| ו-⊓כ<br>2⊔ 2     | 19.04   | CUBE615921  | 4.317E-03      | 13.12 | 1.002   | 2.5Z   | 3.940E-03  | 2.410E-00  |
| 211-2            | 21.34   | CUBE615051  | 0.0391-03      | 12 20 | 1.544   | 5.01   | 1 0825 04  | 1 800E 08  |
| 211-2            | 24.24   | CURE615061  | 7 100E 05      | 14 44 | 1.475   | 6.26   | 7.0220-04  | 4.009L-00  |
| 211 5            | 24.34   | CUBE615071  | 7.199L-05      | 14.44 | 1.549   | 5 01   | 7.920L-03  | 3.490L-08  |
| 3H-6             | 27.04   | CUBE615981  | 1 310F 04      | 14.30 | 1.042   | 634    | 9.243L-03  | 5.822L-08  |
| 31-0             | 27.34   | CUBE615931  | 5.049E.05      | 14.19 | 1.513   | 5 97   | 5 917E 05  | 2 485E 08  |
| JH-3             | 20.37   | CUBE616971  | 1 /18E 05      | 13.16 | 1.650   | 5 10   | 1 912E 05  | 7 543E 00  |
| ΛΗ_Λ             | 32.54   | CUBE616981  | 7 152E 05      | 13.10 | 1.050   | 6.13   | 8 161E 05  | 3 670F 08  |
| 4H-5             | 25.24   | CUBE616991  | 1 093E 04      | 1/ 37 | 1.51/   | 6.46   | 1 185E 04  | 5.324E 08  |
| 4H-6             | 36.84   | CUBE617001  | 1.023L=04      | 14.37 | 1.514   | 6 50   | 1.109E_04  | 5 384F_08  |
| 4H-7             | 37.89   | CUBE617001  | 4 902E_05      | 15 47 | 1.520   | 6 79   | 5.057E_05  | 2 218F_08  |
| 5H-1             | 39.04   | CUBE618131  | 4.043E_05      | 14 78 | 1.630   | 6.25   | 4 528E_05  | 1 915E_08  |
| 5H-2             | 40.34   | CUBE618141  | 2 550E-05      | 14.70 | 1.659   | 6.12   | 2 918F_05  | 1.211E_08  |
| 5H-3             | 41.84   | CUBE618151  | 1.641E-05      | 15.09 | 1.782   | 5.89   | 1.950F-05  | 7.612F-09  |
| 5H-4             | 43.34   | CUBE618161  | 1.491F-05      | 15.41 | 1.735   | 6.24   | 1.674F-05  | 6.773E-09  |
| 5H-5             | 44.84   | CUBE618171  | 3.742F-05      | 14.81 | 1.660   | 6.16   | 4.255E-05  | 1.769E-08  |
| 5H-6             | 46.34   | CUBE618181  | 2.700E-05      | 14.78 | 1.699   | 6.00   | 3.152E-05  | 1.279E-08  |
| 5H-7             | 47.41   | CUBE618191  | 1.446E-05      | 15.40 | 1.776   | 6.09   | 1.633E-05  | 6.573E-09  |
| 6H-2             | 50.09   | CUBE619531  | 1.590E-05      | 15.30 | 1.731   | 6.19   | 1.799E-05  | 7.275E-09  |
| 6H-3             | 51.34   | CUBE619541  | 2.275E-05      | 15.09 | 1.717   | 6.11   | 2.605E-05  | 1.055E-08  |
| 6H-4             | 52.74   | CUBE619551  | 4.360E-05      | 14.90 | 1.664   | 6.19   | 4.927E-05  | 2.048E-08  |
| 6H-5             | 54.14   | CUBE619561  | 1.041E-05      | 15.12 | 1.758   | 5.99   | 1.217E-05  | 4.819E-09  |
| 6H-6             | 55.84   | CUBE619571  | 4.060E-05      | 15.20 | 1.685   | 6.30   | 4.514E-05  | 1.870E-08  |
| 6H-7             | 56.89   | CUBE619581  | 1.914E-05      | 15.56 | 1.729   | 6.34   | 2.112E-05  | 8.611E-09  |
| 7H-2             | 59.34   | CUBE620161  | 2.194E-05      | 13.56 | 1.665   | 5.39   | 2.851E-05  | 1.133E-08  |
| 7H-3             | 60.84   | CUBE620171  | 1.748E-05      | 15.16 | 1.699   | 6.22   | 1.967E-05  | 8.071E-09  |
| 7H-4             | 62.34   | CUBE620181  | 2.700E-05      | 15.08 | 1.682   | 6.24   | 3.031E-05  | 1.253E-08  |
| 7H-5             | 63.84   | CUBE620191  | 2.826E-05      | 13.98 | 1.664   | 5.64   | 3.506E-05  | 1.415E-08  |
| 7H-6             | 65.34   | CUBE620201  | 5.559E06       | 14.64 | 1.768   | 5.68   | 6.847E-06  | 2.658E-09  |
| 8H-2             | 68.64   | CUBE621401  | 1.552E-05      | 15.23 | 1.665   | 6.39   | 1.700E-05  | 7.133E-09  |
| 8H-3             | 70.14   | CUBE621411  | 3.122E-06      | 11.05 | 1.715   | 3.77   | 5.804E-06  | 1.978E-09  |
| 8H-4             | 71.64   | CUBE621421  | 3.383E-05      | 13.35 | 1.664   | 5.26   | 4.499E-05  | 1.774E-08  |
| 8H-5             | 73.14   | CUBE621431  | 2.486E-05      | 15.38 | 1.715   | 6.29   | 2.766E-05  | 1.131E-08  |
| 8H-6             | 74.64   | CUBE621441  | 8.027E–06      | 15.82 | 1.747   | 6.43   | 8.743E-06  | 3.552E-09  |
| 8H-7             | 75.84   | CUBE621451  | 6.958E-06      | 14.24 | 1.713   | 5.63   | 8.648E-06  | 3.420E-09  |
| 9H-1             | 76.84   | CUBE622071  | 9.847E-06      | 15.41 | 1.751   | 6.18   | 1.116E-05  | 4.473E-09  |
| 9H-2             | 78.34   | CUBE622091  | 1.474E-05      | 15.94 | 1.754   | 6.47   | 1.595E-05  | 6.473E-09  |
| 9H-3             | 79.84   | CUBE622111  | 1.528E-05      | 16.14 | 1.809   | 6.38   | 1.676E05   | 6.627E-09  |
| 9H-4             | 81.34   | CUBE622121  | 7.903E-06      | 12.80 | 1.749   | 4.69   | 1.179E-05  | 4.322E-09  |
| 9H-5             | 82.84   | CUBE622131  | 5.965E-06      | 15.29 | 1.761   | 6.07   | 6.873E-06  | 2.731E-09  |
| 9H-6             | 84.34   | CUBE622141  | 7.390E-06      | 15.38 | 1.797   | 6.00   | 8.617E-06  | 3.363E-09  |
| 9H-7             | 85.64   | CUBE622151  | 9.891E-05      | 14.38 | 1.658   | 5.90   | 1.173E-04  | 4.815E-08  |
| 10H-1            | 86.34   | CUBE622491  | 6.397E-05      | 14.68 | 1.608   | 6.27   | 7.138E-05  | 3.050E-08  |
| 10H-2            | 87.84   | CUBE622501  | 1.386E-05      | 13.23 | 1.708   | 5.06   | 1.918E-05  | 7.333E-09  |
| 10H-3            | 89.34   | CUBE622511  | 1.661E-05      | 14.30 | 1.693   | 5.73   | 2.028E-05  | 8.131E-09  |
| 10H-4            | 90.84   | CUBE622521  | 1.6/6E-05      | 14.87 | 1.710   | 6.01   | 1.952E-05  | 7.890E-09  |
| 10H-5            | 92.34   | CUBE622531  | 1./4/E-US      | 15.15 | 1.704   | 6.20   | 1.9/4E-05  | 0.U/2E-09  |
| 10H-6            | 93.84   | CUBE622541  | 2.289E-05      | 13.27 | 1.680   | 0.36   | 2.321E-05  | 1.049E-08  |
| 10H-/            | 94.99   | CUBE022331  | 1.471E-US      | 14.97 | 1./03   | 5.89   | 1./49E-03  | 0.0/0E-09  |



Site U1333

### Table T21 (continued).

|         |         |            |                |       |         |        | Suscep     | tibility   |
|---------|---------|------------|----------------|-------|---------|--------|------------|------------|
|         |         |            |                | Total | Bulk    |        | Volume     | Mass       |
| Core,   | Depth   |            | Susceptibility | mass  | density | Volume | normalized | normalized |
| section | CSF (m) | LIMS ID    | (SI)           | (g)   | (g/cm³) | (cm³)  | (SI)       | (m³/kg)    |
| 11X-1   | 95.84   | CUBE623001 | 1.238E-05      | 14.12 | 1.742   | 5.47   | 1.584E-05  | 6.137E-09  |
| 11X-2   | 97.34   | CUBE623011 | 2.223E-05      | 14.00 | 1.670   | 5.63   | 2.762E-05  | 1.112E-08  |
| 11X-3   | 98.84   | CUBE623021 | 2.303E-05      | 14.33 | 1.552   | 6.27   | 2.569E-05  | 1.125E-08  |
| 11X-4   | 100.34  | CUBE623031 | 3.526E-05      | 14.81 | 1.610   | 6.35   | 3.889E-05  | 1.667E-08  |
| 12X-2   | 103.04  | CUBE623421 | 2.178E-05      | 14.02 | 1.641   | 5.75   | 2.654E-05  | 1.087E-08  |
| 12X-3   | 104.19  | CUBE623451 | 1.869E-05      | 12.93 | 1.570   | 5.31   | 2.463E-05  | 1.012E-08  |
| 12X-4   | 106.04  | CUBE623461 | 4.887E-05      | 14.82 | 1.570   | 6.51   | 5.251E-05  | 2.308E-08  |
| 12X-5   | 107.54  | CUBE623471 | 3.276E-05      | 13.65 | 1.616   | 5.61   | 4.091E-05  | 1.680E-08  |
| 13X-1   | 110.89  | CUBE624511 | 2.095E-05      | 14.49 | 1.501   | 6.59   | 2.224E-05  | 1.012E-08  |
| 13X-2   | 112.54  | CUBE624521 | 1.278E-04      | 14.34 | 1.570   | 6.21   | 1.441E-04  | 6.238E-08  |
| 13X-3   | 114.24  | CUBE624531 | 1.195E-04      | 13.19 | 1.320   | 6.51   | 1.284E-04  | 6.342E-08  |
| 13X-4   | 115.44  | CUBE624541 | 2.048E-04      | 11.97 | 1.306   | 5.65   | 2.538E-04  | 1.198E-07  |
| 13X-5   | 117.14  | CUBE624551 | 1.707E-04      | 12.72 | 1.273   | 6.38   | 1.871E-04  | 9.394E-08  |
| 13X-6   | 118.64  | CUBE624561 | 1.115E-04      | 12.36 | 1.381   | 5.62   | 1.388E-04  | 6.315E-08  |
| 13X-7   | 119.49  | CUBE624571 | 1.170E-04      | 12.56 | 1.444   | 5.52   | 1.484E-04  | 6.521E-08  |
| 14X-1   | 120.84  | CUBE627551 | 1.239E-04      | 13.01 | 1.404   | 6.00   | 1.447E-04  | 6.666E-08  |
| 14X-2   | 122.34  | CUBE627561 | 1.023E-04      | 12.68 | 1.570   | 5.15   | 1.390E-04  | 5.647E-08  |
| 14X-3   | 123.84  | CUBE627571 | 1.227E-04      | 12.02 | 1.317   | 5.64   | 1.523E-04  | 7.146E-08  |
| 14X-4   | 125.34  | CUBE627581 | 1.611E-04      | 11.92 | 1.303   | 5.62   | 2.005E-04  | 9.461E-08  |
| 14X-5   | 126.84  | CUBE627591 | 1.254E-04      | 12.40 | 1.329   | 5.88   | 1.494E-04  | 7.079E-08  |
| 14X-6   | 128.34  | CUBE627601 | 1.469E-04      | 13.18 | 1.467   | 5.85   | 1.757E-04  | 7.802E-08  |
| 14X-7   | 129.39  | CUBE627611 | 2.391E-04      | 12.58 | 1.361   | 5.87   | 2.851E-04  | 1.330E-07  |
| 15X-1   | 130.44  | CUBE628741 | 1.654E-04      | 13.06 | 1.309   | 6.47   | 1.790E-04  | 8.865E-08  |
| 15X-2   | 131.94  | CUBE628751 | 8.848E-05      | 13.50 | 1.489   | 5.98   | 1.035E-04  | 4.588E-08  |
| 15X-3   | 133.44  | CUBE628761 | 6.286E-05      | 12.85 | 1.545   | 5.34   | 8.232E-05  | 3.424E08   |
| 15X-3   | 133.44  | CUBE628771 | 1.753E-04      | 12.30 | 1.570   | 4.91   | 2.499E-04  | 9.976E08   |
| 15X-5   | 136.44  | CUBE628781 | 1.346E-04      | 12.58 | 1.574   | 5.07   | 1.857E-04  | 7.490E-08  |
| 15X-6   | 137.94  | CUBE628791 | 1.536E-04      | 11.51 | 1.480   | 4.67   | 2.300E-04  | 9.341E-08  |
| 16X-1   | 140.04  | CUBE629731 | 1.379E-04      | 12.62 | 1.249   | 6.43   | 1.502E-04  | 7.649E–08  |
| 16X-2   | 141.54  | CUBE629741 | 8.084E-05      | 12.11 | 1.196   | 6.29   | 9.002E-05  | 4.673E-08  |
| 16X-3   | 143.14  | CUBE629751 | 8.761E-05      | 11.84 | 1.218   | 5.95   | 1.031E-04  | 5.180E-08  |
| 16X-4   | 144.54  | CUBE629761 | 1.430E-04      | 12.15 | 1.273   | 5.94   | 1.685E-04  | 8.236E-08  |
| 16X-5   | 146.24  | CUBE629771 | 1.460E-04      | 11.23 | 1.330   | 4.99   | 2.048E-04  | 9.101E-08  |
| 16X-6   | 147.67  | CUBE629781 | 9.451E-05      | 10.28 | 1.414   | 4.02   | 1.645E-04  | 6.436E-08  |
| 16X-7   | 148.62  | CUBE629791 | 9.332E-05      | 11.88 | 1.559   | 4.67   | 1.397E-04  | 5.499E-08  |
| 17X-1   | 149.65  | CUBE630761 | 4.435E-05      | 9.89  | 1.557   | 3.40   | 9.124E-05  | 3.139E-08  |
| 17X-2   | 151.15  | CUBE630771 | 1.171E-04      | 12.83 | 1.416   | 5.82   | 1.408E-04  | 6.386E-08  |
| 17X-3   | 152.65  | CUBE630781 | 7.026E-05      | 12.63 | 1.473   | 5.46   | 9.012E-05  | 3.894E-08  |
| 17X-4   | 154.16  | CUBE630791 | 1.437E-04      | 13.26 | 1.426   | 6.08   | 1.655E-04  | 7.586E–08  |
| 17X-5   | 155.66  | CUBE630801 | 8.859E-05      | 13.10 | 1.511   | 5.63   | 1.101E-04  | 4.734E-08  |

Notes: Depth = depth to middle of discrete sample measured in meters using the core depth below seafloor, method A (CSF), depth scale. LIMS ID = sample identification within the Laboratory Information Management System (LIMS) database. Susceptibility = volume magnetic susceptibility of discrete sample measured in KappaBridge with volume of cube assumed to be 7 cm<sup>3</sup>. Mass = mass of sample including mass of plastic cube, which has a mean of 4.5921 g. Bulk density = density from moisture and density (MAD) measurements. When these were not available or were obviously anomalous, we used a density of 1.2 m<sup>3</sup>/kg. Volume = volume of sediments, calculated by subtracting mass of plastic cube from total mass and then dividing by bulk density. Volume normalized susceptibility = susceptibility of discrete samples normalized by true sample volume. These are unitless in the SI unit system. Mass normalized susceptibility = susceptibility of discrete samples normalize by mass of sediment in each sample cube.



# Table T22. Paleomagnetic results for discrete samples, Hole U1333A. (See table notes.)

|                      |              |       |                | Declination    |                | _            |           |
|----------------------|--------------|-------|----------------|----------------|----------------|--------------|-----------|
| Core, section,       | Depth        | Demag | Azimuthally _  | Geographic     | al coordinates | Inclination  | Intensity |
| interval (cm)        | CSF (m)      | (mT)  | unoriented (°) | 0°-360°        | –90°–270°      | (°)          | (A/m)     |
| 320-U1333A-          |              |       |                |                |                |              |           |
| 1H-1, 85             | 0.85         | 0     | 3.7            | 10.2           | 10.2           | 7.6          | 3.840E-03 |
| 1H-1,85              | 0.85         | 5     | 0.7            | 7.2            | 7.2            | -0.3         | 3.637E-03 |
| 1H-1, 85             | 0.85         | 10    | 2.8            | 9.3            | 9.3            | -2.5         | 2.798E-03 |
| 1H-1, 85             | 0.85         | 15    | 0.5            | 7.0            | 7.0            | 0.9          | 2.490E-03 |
| 1H-1, 85             | 0.85         | 20    | 0.1            | 6.6            | 6.6            | 8.2          | 2.028E-03 |
| 1H-1, 85             | 0.85         | 25    | -0.5           | 6.0            | 6.0            | 12.2         | 1.741E-03 |
| 1H-1, 85             | 0.85         | 30    | -2.9           | 3.6            | 3.6            | 17.3         | 1.128E–03 |
| 1H-1, 85             | 0.85         | 35    | -2.0           | 4.5            | 4.5            | 25.4         | 1.113E-03 |
| 1H-1, 85             | 0.85         | 40    | -14.2          | -7.7           | -7.7           | 37.5         | 6.901E-04 |
| 1H-1, 85             | 0.85         | 50    | -11.9          | -5.4           | -5.4           | 45.6         | 7.752E-04 |
| 1H-1, 85             | 0.85         | 60    | -13.5          | -7.0           | -/.0           | 57.0         | 8.97TE-04 |
| 111-2,85             | 2.35         | 0     | -24.6          | -18.1          | -18.1          | 15.9         | 3.955E-03 |
| 111-2,03             | 2.55         | 10    | -20.3          | -19.0          | -19.0          | 9.1          | 3.712E-03 |
| 111-2, 85<br>1H_2 85 | 2.35         | 15    | -20.3          | -19.8          | -19.8          | 10.6         | 2.854L-03 |
| 111-2, 85<br>1H_2 85 | 2.35         | 20    | -27.5          | -21.0          | -21.0          | 16.0         | 2.337L-03 |
| 1H-2, 85             | 2.35         | 25    | -28.3          | -12.5          | -71.8          | 19.3         | 1 619E_03 |
| 1H-2, 85             | 2.35         | 30    | -25.0          | -18.5          | -18.5          | 27.0         | 1.325E-03 |
| 1H-2, 85             | 2.35         | 35    | -25.3          | -18.8          | -18.8          | 31.3         | 1.216E-03 |
| 1H-2, 85             | 2.35         | 40    | -40.9          | -34.4          | -34.4          | 33.3         | 1.097E-03 |
| 1H-2, 85             | 2.35         | 50    | -32.4          | -25.9          | -25.9          | 56.1         | 1.055E-03 |
| 1H-2, 85             | 2.35         | 60    | -24.9          | -18.4          | -18.4          | 64.2         | 6.954E-04 |
| 1H-4, 85             | 5.35         | 0     | -30.9          | -24.4          | -24.4          | 28.4         | 5.110E-04 |
| 1H-4, 85             | 5.35         | 5     | -27.9          | -21.4          | -21.4          | 18.5         | 3.940E-04 |
| 1H-4, 85             | 5.35         | 10    | 21.1           | 27.6           | 27.6           | 31.5         | 1.621E-04 |
| 1H-4, 85             | 5.35         | 15    | -1.7           | 4.8            | 4.8            | 24.7         | 3.121E-04 |
| 1H-4, 85             | 5.35         | 20    | 1.4            | 7.9            | 7.9            | 42.4         | 2.629E-04 |
| 1H-4, 85             | 5.35         | 25    | -1.3           | 5.2            | 5.2            | 39.3         | 3.123E-04 |
| 1H-4, 85             | 5.35         | 30    | 16.8           | 23.3           | 23.3           | 64.1         | 2.320E-04 |
| 1H-4, 85             | 5.35         | 35    | -36.7          | -30.2          | -30.2          | 73.9         | 2.311E-04 |
| 1H-4, 85             | 5.35         | 40    | -124.6         | -118.1         | 241.9          | 62.7         | 1.980E-04 |
| 1H-4, 85             | 5.35         | 50    | -1.9           | 4.6            | 4.6            | 80.8         | 3.13/E-04 |
| 1115 05              | 2.33         | 00    | -19.1          | -12.0<br>172.9 | -12.0          | 01.4         | 1.936E-04 |
| 111-5,65             | 6.85         | 5     | 167.5          | 175.0          | 175.0          | -1.7         | 6.034E-04 |
| 1H-5,85              | 6.85         | 10    | 159.7          | 166.2          | 166.2          | _14 5        | 5 485E_04 |
| 1H-5,85              | 6.85         | 15    | 168.0          | 174.5          | 174 5          | _11.1        | 6 254F_04 |
| 1H-5, 85             | 6.85         | 20    | 160.9          | 167.4          | 167.4          | -5.0         | 5.594E-04 |
| 1H-5, 85             | 6.85         | 25    | 142.3          | 148.8          | 148.8          | 0.5          | 3.509E-04 |
| 1H-5, 85             | 6.85         | 30    | 150.8          | 157.3          | 157.3          | 6.5          | 2.907E-04 |
| 1H-5, 85             | 6.85         | 35    | 139.8          | 146.3          | 146.3          | 13.2         | 2.386E-04 |
| 1H-5, 85             | 6.85         | 40    | 174.2          | 180.7          | 180.7          | 18.0         | 1.501E-04 |
| 1H-5, 85             | 6.85         | 50    | 106.4          | 112.9          | 112.9          | 36.0         | 2.128E-04 |
| 1H-5, 85             | 6.85         | 60    | 88.6           | 95.1           | 95.1           | 31.0         | 1.627E-04 |
| 1H-6, 85             | 8.35         | 0     | 2.7            | 9.2            | 9.2            | 34.3         | 6.028E-04 |
| 1H-6, 85             | 8.35         | 5     | 0.7            | 7.2            | 7.2            | 30.5         | 4.395E-04 |
| 1H-6, 85             | 8.35         | 10    | 12.9           | 19.4           | 19.4           | 28.8         | 3.700E-04 |
| 1H-6, 85             | 8.35         | 15    | 12.9           | 19.4           | 19.4           | 37.4         | 3.034E-04 |
| 111-6, 85            | 8.35         | 20    | 60.1           | 66.6<br>57.1   | 66.6<br>57.1   | 48.5         | 3.322E-04 |
| 111 4 95             | 0.33         | 25    | 50.6           | 37.I<br>10.5   | 57.I<br>10.5   | 55./<br>82.6 | 3.204E-04 |
| 111-0, 03            | 0.33<br>8 35 | 25    | 4.0            | 10.5           | 10.5           | 02.0<br>76.2 | 2.203E-04 |
| 111-0, 85            | 8 3 5        | 40    | 20.0           | 27.1           | 27.1           | 70.2         | 2.127L-04 |
| 1H-6 85              | 8.35         | 50    | -0 6           | 5.9            | 5.9            | 64 3         | 2.007L-04 |
| 1H-6 85              | 8.35         | 60    | _0.9           | 5.6            | 5.6            | 65 3         | 2.123E-04 |
| 1H-7, 65             | 9.65         | 0     | -177.2         | -170.7         | 189.3          | 34.0         | 8.387F_04 |
| 1H-7, 65             | 9.65         | 5     | -175.1         | -168.6         | 191.4          | 18.4         | 8.586E-04 |
| 1H-7, 65             | 9.65         | 10    | -175.6         | -169.1         | 190.9          | 8.7          | 9.020E-04 |
| 1H-7, 65             | 9.65         | 15    | -172.5         | -166.0         | 194.0          | 6.8          | 8.419E-04 |
| 1H-7, 65             | 9.65         | 20    | -179.5         | -173.0         | 187.0          | 14.3         | 7.359E-04 |
| 1H-7, 65             | 9.65         | 25    | -175.7         | -169.2         | 190.8          | 19.7         | 6.492E-04 |
| 1H-7, 65             | 9.65         | 30    | -168.5         | -162.0         | 198.0          | 22.1         | 5.599E-04 |

Notes: Only a portion of this table appears here. The complete table is available in ASCII.



**Table T23.** Principal component analysis (PCA) results for paleomagnetic data, Holes U1333A and U1333B. (See table notes.) (Continued on next page.)

|                        |                |                |             | РСА            |            |               |                        |               |                |                        |
|------------------------|----------------|----------------|-------------|----------------|------------|---------------|------------------------|---------------|----------------|------------------------|
|                        |                | Declir         | nation      | -              |            |               | -                      | Archive h     | alf section at | 20 mT AF               |
| Core. section.         | Depth          | Azimuthally    | Coordinates | Inclination    | MAD        | Range         | NRM 20 mT              | Declination   | Inclination    | NRM                    |
| interval (cm)          | CSF (m)        | Unoriented (°) | (0°-360°)   | (°)            | (°)        | (mT)          | (A/m)                  | (°)           | (°)            | (A/m)                  |
| 320-U1333A-            |                |                |             |                |            |               |                        |               |                |                        |
| 1H-1, 85               | 0.85           | 4.8            | 11.3        | -7.1           | 6.0        | 20–50         | 2.028E-03              | 356.8         | 9.6            | 2.437E-03              |
| 1H-2, 85               | 2.35           | 332.8          | 339.3       | -6.8           | 3.6        | 10–35         | 2.012E-03              | 337.1         | 29.3           | 2.673E-03              |
| 1H-4, 85               | 5.35           | 2.0            | 8.5         | -17.7          | 16.7       | 15-35         | 2.629E-04              | 342.4         | 36.6           | 1.908E-04              |
| 1H-5, 85               | 6.85           | 171.1          | 177.6       | -21.8          | 18.0       | 10-40         | 5.594E-04              | 186.9         | -3.0           | 1.068E-03              |
| 1H-6, 85               | 8.35           | 61.2           | 67.7        | 14.8           | 14.8       | 20-40         | 3.322E-04              | 357.7         | 53.1           | 1.339E-04              |
| 1H-7,65                | 9.65           | 1/9./          | 186.2       | -13.5          | 10.8       | 10-35         | 7.359E-04              | 189.5         | 4.9            | 1.162E-03              |
| 2H-1, 63<br>2H-2, 85   | 10.55          | 100.9<br>NA    | 137.4<br>NA | -20.4<br>NA    | NA         | 10-55<br>NA   | 3 993E 04              | 1/4.0         | 78.8           | 7.320E-04<br>3.820E-04 |
| 2H-4, 85               | 14.85          | 36.5           | 7.0         | -1.6           | 19.1       | 5-30          | 8.218E-04              | 32.6          | 7.0            | 7.332E-04              |
| 2H-5, 65               | 16.15          | 227.4          | 197.9       | -31.2          | 16.5       | 5-25          | 4.494E-04              | 206.1         | 21.0           | 3.787E-04              |
| 2H-6, 95               | 17.95          | NA             | NA          | NA             | NA         | NA            | 1.040E-04              | 215.0         | 45.9           | 1.627E-04              |
| 2H-7, 40               | 18.90          | NA             | NA          | NA             | NA         | NA            | 7.740E-04              | 254.7         | 15.1           | 4.695E-04              |
| 3H-1, 85               | 19.85          | 221.0          | 172.7       | -3.1           | 11.9       | 5–25          | 1.140E-03              | 223.4         | 12.4           | 1.037E-03              |
| 3H-2, 85               | 21.35          | 217.8          | 169.5       | -0.3           | 10.7       | 10-30         | 9.560E-04              | 214.8         | 7.2            | 1.190E-03              |
| 3H-4, 85               | 24.35          | 214.3          | 166.0       | -22.2          | 13.5       | 5-25          | 5.500E-04              | 195.7         | 32.6           | 3.189E-04              |
| 3H-5, 85               | 25.85          | 50.1           | 1.8         | -2./<br>15.4   | 156        | 10-50         | 1.880E-03              | 63.1<br>226.5 | 14.3           | 1.203E-03              |
| 3H-0, 83<br>3H-7 40    | 27.55          | 230.0          | 190.5       | -13.4<br>_13.7 | 5.2        | 10-30         | 9.960E-04              | 230.3         | 20.0           | 9.179E-04<br>8.139E-04 |
| 4H-4, 85               | 33.85          | 174.2          | 342.6       | 1.7            | 5.8        | 5-25          | 1.320E-03              | 185.6         | 7.9            | 1.544F-03              |
| 4H-5, 85               | 35.35          | 193.1          | 1.5         | -14.0          | 2.3        | 5-25          | 1.520E-03              | 198.5         | 10.7           | 1.750E-03              |
| 4H-6, 85               | 36.85          | NA             | NA          | NA             | NA         | NA            | 2.338E-04              | 307.1         | 30.9           | 1.186E-04              |
| 4H-7, 40               | 37.90          | 9.5            | 177.9       | 5.9            | 10.8       | 5–25          | 1.714E-03              | 2.0           | -5.7           | 5.930E-04              |
| 5H-1, 105              | 39.05          | 200.8          | 8.2         | 5.4            | 10.7       | 5–25          | 1.415E-03              | 196.7         | 12.3           | 1.294E-03              |
| 5H-2, 85               | 40.35          | 182.9          | 350.3       | -6.5           | 11.8       | 5–40          | 5.871E-04              | 184.2         | 17.5           | 5.832E-04              |
| 5H-4, 85               | 43.35          | 182.6          | 350.0       | 0.4            | 11.0       | 5-30          | 4.455E-04              | 186.5         | 23.3           | 7.426E-04              |
| 5H-5, 85               | 44.85          | 197.5          | 4.9         | 7.8            | 3.3        | 5-25          | 1.608E-03              | 199.4         | 18.3           | 1.457E-03              |
| 5H-6,85                | 46.33          | 192.1          | 359.5       | -16.0          | 7.0        | 10-40<br>5 25 | 1.184E-03              | 198.1         | 13.4           | 9.367E-04              |
| 6H-2 110               | 50 10          | 334.4          | 272.8       | -23.2<br>-24.9 | 14.4       | 5-30          | 6 170F-04              | 73            | 4 2            | 4 656F-04              |
| 6H-4, 75               | 52.75          | 62.1           | 0.4         | -0.2           | 6.7        | 5-35          | 1.786E-03              | 58.5          | 0.1            | 1.567E-03              |
| 6H-5, 65               | 54.15          | 58.1           | 356.5       | 3.7            | 4.3        | 5-25          | 1.120E-03              | 55.2          | -3.5           | 7.770E-04              |
| 6H-6, 85               | 55.85          | 55.9           | 354.3       | -2.2           | 12.8       | 5–50          | 1.554E-03              | 61.8          | 4.4            | 1.146E-03              |
| 6H-7, 40               | 56.90          | 36.0           | 334.4       | -0.8           | 13.2       | 10–50         | 5.853E-04              | 77.0          | 11.1           | 3.474E-04              |
| 7H-2, 85               | 59.35          | 155.2          | 172.8       | -1.9           | 10.2       | 5–25          | 6.845E-04              | 159.9         | 13.4           | 7.664E-04              |
| 7H-4, 85               | 62.35          | 164.4          | 182.0       | -16.9          | 17.5       | 5-25          | 6.584E-04              | 162.0         | 5.4            | 6.517E-04              |
| /H-5, 85               | 63.85          | 151.6          | 169.2       | -8.3           | 11.1       | 10-40         | 1.123E-03              | 167.9         | 2./            | 9.50/E-04              |
| / 17-0, 83<br>811 2 85 | 03.33<br>68.65 | INA<br>NA      |             |                |            | INA<br>NA     | 4.165E-04<br>8.216E-04 | 107.0         | 2.1            | 7 151E 04              |
| 8H-4, 85               | 71.65          | NA             | NA          | NA             | NA         | NA            | 6.129F-04              | 244.8         | 5.7            | 6.180F-04              |
| 8H-5, 85               | 73.15          | NA             | NA          | NA             | NA         | NA            | 8.203E-04              | 239.1         | 15.6           | 8.021E-04              |
| 8H-6, 85               | 74.65          | 237.0          | 359.8       | -6.7           | 8.1        | 5-30          | 9.735E-04              | 240.1         | 7.8            | 8.695E-04              |
| 8H-7, 55               | 75.85          | 263.7          | 26.4        | 15.5           | 16.6       | 5–60          | 8.076E-04              | 248.9         | 11.2           | 1.217E-03              |
| 9H-1, 85               | 76.85          | 123.4          | 161.8       | 3.1            | 18.2       | 5–40          | 6.978E-04              | 139.4         | 12.3           | 4.312E-04              |
| 9H-2, 85               | 78.35          | 113.1          | 151.5       | -16.4          | 15.4       | 5–60          | 1.042E-03              | 124.9         | 8.4            | 6.609E-04              |
| 9H-4, 85               | 81.35          | 135.1          | 173.5       | -9.3           | 10.9       | 10-30         | 6.524E-04              | 131.9         | 20.9           | 4.959E-04              |
| 9H-5, 85               | 82.85          | NA<br>222.7    | NA<br>12.1  | NA<br>22.2     | NA<br>16-7 | NA<br>0.20    | 3.319E-04              | 330.2         | -/.4<br>12.5   | 4.15/E-04              |
| 9H-0, 65               | 04.55<br>85.65 | 333.7          | 12.1        | 23.Z<br>5.7    | 10.7       | 10 30         | 0.338E-04              | 550.5         | -15.5          | 3.030E-04              |
| 10H-1.85               | 86.35          | 333.17         | 172.0       | -8.0           | 8.7        | 5-50          | 1.739E-03              | 329.7         | 0.4            | 1.480F-03              |
| 10H-2, 85              | 87.85          | NA             | NA          | NA             | NA         | NA            | 6.318E-04              | 327.5         | -11.4          | 7.892E-04              |
| 10H-4, 85              | 90.85          | 352.6          | 191.4       | -1.9           | 11.4       | 5-50          | 9.124E-04              | 337.6         | -15.6          | 7.944E-04              |
| 10H-5, 85              | 92.35          | 343.7          | 182.5       | -16.4          | 6.4        | 15-40         | 1.226E-03              | 343.1         | -15.3          | 8.461E-04              |
| 10H-6, 85              | 93.85          | 353.88         | 192.7       | -10.0          | 7.9        | 5–40          | 1.406E-03              | 350.1         | -10.2          | 9.468E-04              |
| 10H-7, 50              | 95.00          | 359.64         | 198.4       | -0.1           | 6.1        | 10–30         | 1.657E-03              |               |                |                        |
| 11X-1, 85              | 95.85          | NA             |             | NA             | NA         | NA            | 6.360E-04              | 339.7         | 19.8           | 3.427E-04              |
| 11X-2, 85              | 97.35          | NA             |             | NA             | NA         | NA            | 6.688E-04              | 346.6         | 16.3           | 8.341E-04              |
| 12X-2, 85              | 103.05         | /2.8           |             | 28.6           | 11.4       | 10-60         | 1.123E-03              | 64.8          | 13.0           | 1.534E-03              |
| 12A-4, 03              | 100.05         | 100.3<br>57 A  |             | -9.0<br>_1 1   | 9.U<br>Q / | 2−23<br>5_25  | 2.233E-03              | 100.Z<br>21 / | -1.4<br>_0.8   | 2.130E-U3              |
| 13X-1 60               | 110.90         | 3023           |             | -1.4           | 13.2       | 5-25<br>5-40  | 1.566F_03              | 48 8          | -0.0<br>9.4    | 2.095F_03              |
| 13X-5, 85              | 117.15         | 46.9           |             | 2.7            | 11.6       | 5-25          | 2.727E-03              | 282.9         | 45.0           | 3.523E-04              |
| 14X-1, 85              | 120.85         | 244.96         |             | 9.4            | 5.7        | 5-25          | 1.546E-03              | 293.8         | 21.3           | 1.249E-03              |
| 14X-5, 85              | 126.85         | 125.2          |             | 0.3            | 14.9       | 5-40          | 1.875E-03              | 159.9         | 5.9            | 9.784E-04              |



## Table T23 (continued).

|                                 |                  |                               |                                          | РСА                |            |               | _                  |                    |                    |              |
|---------------------------------|------------------|-------------------------------|------------------------------------------|--------------------|------------|---------------|--------------------|--------------------|--------------------|--------------|
|                                 |                  | Declir                        | nation                                   | _                  |            |               |                    | Archive h          | alf section at     | 20 mT AF     |
| Core, section,<br>interval (cm) | Depth<br>CSF (m) | Azimuthally<br>Unoriented (°) | Geographical<br>Coordinates<br>(0°-360°) | Inclination<br>(°) | MAD<br>(°) | Range<br>(mT) | NRM 20 mT<br>(A/m) | Declination<br>(°) | Inclination<br>(°) | NRM<br>(A/m) |
| 15X-1, 85                       | 130.45           | NA                            |                                          | NA                 | NA         | NA            | 7.920E-04          | 69.9               | 18.3               | 1.264E-03    |
| 15X-5, 85                       | 136.45           | 313.9                         |                                          | -1.1               | 9.7        | 10-40         | 1.746E-03          | 317.4              | -5.6               | 1.806E-03    |
| 16X-1, 85                       | 140.05           | 0.2                           |                                          | -6.6               | 4.8        | 15-35         | 2.307E-03          | 22.5               | -2.4               | 1.621E-03    |
| 16X-4, 85                       | 144.55           | 289.2                         |                                          | -7.2               | 16.7       | 10–50         | 1.802E-03          | 311.3              | 6.8                | 1.475E-03    |
| 16X-5, 105                      | 146.25           | 119.9                         |                                          | 4.8                | 6.7        | 10–30         | 1.738E-03          | 86.0               | 9.5                | 2.183E-03    |
| 320-U1333B-                     |                  |                               |                                          |                    |            |               |                    |                    |                    |              |
| 1H-1, 85                        | 0.85             | 184.4                         | 13.4                                     | 10.7               | 3.9        | 5–50          | 6.372E-03          | 188.1              | 14.5               | 5.439E-03    |
| 17H-5, 85                       | 157.05           | NA                            |                                          | NA                 | NA         | NA            | 1.107E-03          | 90.4               | 4.4                | 1.378E-03    |

Notes: MAD = maximum angular deviation, NRM = natural remanent magnetization. NA = not applicable.



## Table T24. Magnetostratigraphy, Site U1333. (See table note.) (Continued on next two pages.)

|                                    |                  |                            |                          | Hole U1333A                                   |                     |
|------------------------------------|------------------|----------------------------|--------------------------|-----------------------------------------------|---------------------|
| Polarity chron                     | Age<br>(Ma)      | Range<br>CSF (m)           | Best estimate<br>CSF (m) | Best estimate core,<br>section, interval (cm) | Measurement<br>type |
| C6n–C6r                            | 19 722           |                            |                          |                                               |                     |
| C6r–C6An.1n                        | 20.040           | 0.55-0.65                  | 0.600                    | 1H-1, 60.0                                    | Split core          |
| C6An.1n-C6An.1r                    | 20.213           | 1.10-1.15                  | 1.125                    | 1H-1, 112.5                                   | Split core          |
| C6An.1r–C6An.2n                    | 20.439           | 2.00-2.10                  | 2.050                    | 1H-2, 55.0                                    | Split core          |
| C6An.2n–C6Ar                       | 20.709           | 3.20-3.30                  | 3.250                    | 1H-3, 25.0                                    | Split core          |
| C6Ar–C6AAn                         | 21.083           | 5.25-5.35                  | 5.300                    | 1H-4, 80.0                                    | Split core          |
| C6AAn-C6AAr.1r                     | 21.159           | 5.90-6.10                  | 6.000                    | Between Sections 1H-4 and 5                   | Split core          |
| C6AAr.1r-C6AAr.1n                  | 21.403           | 8.00-8.15                  | 8.075                    | 1H-6, 57.5                                    | Split core          |
| C6AAr.1n–C6AAr.2r                  | 21.483           | 8.90–9.10                  | 9.000                    | Between Sections 1H-6 and 7                   | Split core          |
| C6AAr.2r–C6AAr.2n                  | 21.659           | 9.65–9.70                  | 9.675                    | Between Cores 1H and 2H                       | Split core          |
| C6AAr.2n–C6AAr.3r                  | 21.688           | 12.05-12.25                | 12.150                   | 2H-2, 115.0                                   | Split core          |
| C6AAr.3r–C6Bn.1n                   | 21./6/           | 12.85-12.90                | 12.8/5                   | 2H-3, 37.5                                    | Split core          |
| Cobn. In-Cobn. Ir                  | 21.936           | 13.70-13.80                | 13./50                   | 2H-3, 125.0<br>Returns Sections 211.2 and 4   | Split core          |
| COBILIT-COBILZI                    | 21.992           | 15.90-14.15                | 14.025                   |                                               | Split core          |
| Cobil.211-Cobi                     | 22.200           | 13.73-10.20                | 13.973                   | 2H-3, 47.3<br>2H-6, 110.0                     | Split core          |
| C6Cn 1n - C6Cn 1r                  | 22.304           | 10.05-10.15                | 10.100                   | Not identified                                | Split core          |
| C6Cn 1r-C6Cn 2n                    | 22.7 54          |                            |                          | Not identified                                |                     |
| C6Cn 2n-C6Cn 2r                    | 23.030           |                            |                          | Not identified                                |                     |
| C6Cn.2r–C6Cn.3n                    | 23.278           |                            |                          | Not identified                                |                     |
| C6Cn.3n–C6Cr                       | 23.340           | 19.40–19.50                | 19.450                   | 3H-1, 45.0                                    | Split core          |
| C6Cr-C7n.1n                        | 24.022           | 23.40-23.60                | 23.500                   | Between Sections 3H-3 and 4                   | Split core          |
| C7n.1n-C7n.1r                      | 24.062           | 23.70-23.80                | 23.750                   | 3H-4, 25.0                                    | Split core          |
| C7n.1r-C7n.2n                      | 24.147           | 24.30-24.50                | 24.400                   | 3H-4, 90.0                                    | Split core          |
| C7n.2n–C7r                         | 24.459           | 26.40-26.60                | 26.500                   | Between Sections 3H-5 and 6                   | Split core          |
| C7r–C7An                           | 24.756           | 28.45-28.50                | 28.475                   | 3H-7, 47.5                                    | Split core          |
| C7An–C7Ar                          | 24.984           |                            |                          | Not identified                                |                     |
| C7Ar–C8n.1n                        | 25.110           | 31.30–31.60                | 31.450                   | 4H-2, 145.0                                   | Split core          |
| C8n.1n–C8n.1r                      | 25.248           |                            |                          | Not identified                                |                     |
| C8n.1r-C8n.2n                      | 25.306           | 26 70 27 00                | 26.050                   | Not identified                                | Culit and           |
| Con.2n-Cor                         | 26.032           | 36./0-37.00                | 36.830                   | 4H-6, 85.0<br>Returnen Cores 4H and 5H        | Split core          |
| C0 - C91                           | 20.300           | 36.30-39.03<br>46.00 50.20 | 30.073<br>18.550         | Between Cores 5H and 6H                       | Split core          |
| C9r_C10n 1n                        | 27.886           | 51 90-51 90                | 51 900                   | 6H-3 140 0                                    | Split core          |
| C10n 1n-C10n 1r                    | 28.126           | 54 60-54 90                | 54,750                   | 6H-5, 125 0                                   | Split core          |
| C10n.1r-C10n.2n                    | 28.164           | 55.50-55.60                | 55.550                   | 6H-6, 55.0                                    | Split core          |
| C10n.2n-C10r                       | 28.318           | 56.95-57.00                | 56.975                   | 6H-7, 50.0                                    | Split core          |
| C10r-C11n.1n                       | 29.166           | 66.35-67.30                | 66.825                   | Between Cores 7H and 8H                       | Split core          |
| C11n.1n-C11n.1r                    | 29.467           | 70.60–70.95                | 70.775                   | Between Sections 8H-3 and 4                   | Split core          |
| C11n.1r-C11n.2n                    | 29.536           | 71.50–71.60                | 71.550                   | 8H-4, 75.0                                    | Split core          |
| C11n.2n–C11r                       | 29.957           | 76.30–76.40                | 76.350                   | 9H-1, 35.0                                    | Split core          |
| C11r-C12n                          | 30.617           | 81.90-82.10                | 82.000                   | Between Sections 9H-4 and 5                   | Split core          |
| C12n–C12r                          | 31.021           | 85.60-85.95                | 85.775                   | Between Cores 9H and 10H                      | Split core          |
| Cl2r-Cl3n                          | 33.232           |                            |                          | Not identified, XCB coring disturbance        |                     |
| CI3n-CI3r                          | 35.705           |                            |                          | Not identified, XCB coring disturbance        |                     |
| C15n C15r                          | 35.720           |                            |                          | Not identified, XCB coring disturbance        |                     |
| C15r=C16n 1n                       | 35 328           |                            |                          | Not identified XCB coring disturbance         |                     |
| C16n.1n-C16n.1r                    | 35.554           |                            |                          | Not identified, XCB coring disturbance        |                     |
| C16n.1r-C16n.2n                    | 35.643           |                            |                          | Not identified, XCB coring disturbance        |                     |
| C16n.2n-C16r                       | 36.355           |                            |                          | Not identified, XCB coring disturbance        |                     |
| C16r-C17n.1n                       | 36.668           |                            |                          | Not identified, XCB coring disturbance        |                     |
| C17n.1n-C17n.1r                    | 37.520           |                            |                          | Not identified, XCB coring disturbance        |                     |
| C17n.1r-C17n.2n                    | 37.656           |                            |                          | Not identified, XCB coring disturbance        |                     |
| C17n.2n-C17n.2r                    | 37.907           |                            |                          | Not identified, XCB coring disturbance        |                     |
| C17n.2r–C17n.3n                    | 37.956           |                            |                          | Not identified, XCB coring disturbance        |                     |
| C17n.3n–C17r                       | 38.159           |                            |                          | Not identified, XCB coring disturbance        |                     |
| CI/r-CI8n.In                       | 38.449           |                            |                          | Not identified, XCB coring disturbance        |                     |
| CION.IN-CION.IF                    | 37.354<br>30 402 |                            |                          | Not identified, XCB coring disturbance        |                     |
| C1011.11-C1011.211<br>C18n 2n_C18r | 20.002<br>20.081 |                            |                          | Not identified XCB coring disturbance         |                     |
| C18r_C19n                          | 41.358           |                            |                          | Not identified, XCB coring disturbance        |                     |
| C19n-C19r                          | 41.510           |                            |                          | Not identified, XCB coring disturbance        |                     |
| C19r-C20n                          | 42.536           |                            |                          | Not identified, XCB coring disturbance        |                     |
| C20n-C20r                          | 43.789           |                            |                          | Not identified, XCB coring disturbance        |                     |

Note: When the location of a reversal is listed as between sections, it could occur anywhere within 10 cm of the juxtaposing ends of the two sections listed.



# Table T24 (continued). (Continued on next page.)

|                                       |             |                  |                          | Hole U1333B                                   |                     |
|---------------------------------------|-------------|------------------|--------------------------|-----------------------------------------------|---------------------|
| Polarity chron                        | Age<br>(Ma) | Range<br>CSF (m) | Best estimate<br>CSF (m) | Best estimate core,<br>section, interval (cm) | Measurement<br>type |
| C6n–C6r                               | 19.722      | 3.45-3.55        | 3.500                    | 1H-3, 50.0                                    | Split core          |
| C6r–C6An.1n                           | 20.040      | 5.10-5.20        | 5.150                    | 1H-4, 65.0                                    | Split core          |
| C6An.1n–C6An.1r                       | 20.213      | 5.70-5.80        | 5.750                    | 1H-4, 125.0                                   | Split core          |
| C6An.1r-C6An.2n                       | 20.439      | 6.60–6.85        | 6.725                    | 1H-4, 72.5                                    | Split core          |
| C6An.2n–C6Ar                          | 20.709      | 7.400-9.050      |                          | Between Sections 1H-5 and 2H-1                | Split core          |
| C6Ar–C6AAn                            | 21.083      | 9.90-10.00       | 9.950                    | 2H-2, 75.0                                    | Split core          |
| C6AAn-C6AAr.1r                        | 21.159      | 10.50-10.55      | 10.525                   | 2H-2, 132.5                                   | Split core          |
| C6AAr.1r - C6AAr.1n                   | 21.403      | 12.65-12.85      | 12.750                   | 2H-4, SS.U<br>Retween Sections 2H 4 and 5     | Split core          |
| CGAALTI-CGAALZI                       | 21.403      | 15.00-15.80      | 15.700                   |                                               | Split core          |
| C6AAr 2n–C6AAr 3r                     | 21.688      | 16.00-16.10      | 16.050                   | 2H-6, 85.0                                    | Split core          |
| C6AAr.3r–C6Bn.1n                      | 21.767      | 16.45–16.55      | 16.500                   | 2H-6, 130.0                                   | Split core          |
| C6Bn.1n-C6Bn.1r                       | 21.936      |                  |                          | Not identified                                |                     |
| C6Bn.1r-C6Bn.2n                       | 21.992      |                  |                          | Not identified                                |                     |
| C6Bn.2n–C6Br                          | 22.268      |                  |                          | Not identified                                |                     |
| C6Br–C6Cn.1n                          | 22.564      | 19.50–19.55      | 19.525                   | 3H-2, 82.5                                    | Split core          |
| C6Cn.1n-C6Cn.1r                       | 22.754      | 20.00-20.30      | 20.150                   | Between Sections 3H-2 and 3                   | Split core          |
| C6Cn.1r–C6Cn.2n                       | 22.902      | 21.15-21.20      | 21.175                   | 3H-3, 97.5                                    | Split core          |
| C6Cn.2n–C6Cn.2r                       | 23.030      | 21.60-21.90      | 21.750                   | Between Sections 3H-3 and 4                   | Split core          |
| C6Cn.2r-C6Cn.3n                       | 23.278      | 23.55-23.65      | 23.600                   | 3H-5, 40.0                                    | Split core          |
| C6Cr C7n 1n                           | 23.340      | 24.10-24.20      | 24.130                   | эп-э, ээ.0<br>лн_1 зб о                       | Split core          |
| C7n 1n_C7n 1r                         | 24.022      | 27 20-27 30      | 27.050                   | 4H-1 55 0                                     | Split core          |
| C7n.1r-C7n.2n                         | 24.147      | 27.75-27.85      | 27.800                   | 4H-1, 110.0                                   | Split core          |
| C7n.2n–C7r                            | 24.459      | 29.80-29.90      | 29.850                   | 4H-3, 15.0                                    | Split core          |
| C7r–C7An                              | 24.756      | 31.65-31.80      | 31.725                   | 4H-4, 52.5                                    | Split core          |
| C7An–C7Ar                             | 24.984      | 32.95-33.15      | 33.050                   | 4H-5, 35.0                                    | Split core          |
| C7Ar–C8n.1n                           | 25.110      | 33.85-33.95      | 33.900                   | 4H-5, 120.0                                   | Split core          |
| C8n.1n–C8n.1r                         | 25.248      | 35.40-35.45      | 35.425                   | 4H-6, 122.5                                   | Split core          |
| C8n.1r–C8n.2n                         | 25.306      | 35.60-35.80      | 35.700                   | Between Sections 4H-6 and 7                   | Split core          |
| C8n.2n–C8r                            | 26.032      | 39.10-39.45      | 39.275                   | Between Sections 5H-2 and 3                   | Split core          |
| Cor-Cor                               | 20.508      | 44.45-44.60      | 44.525                   | SH-6, 82.5<br>∠H 4, 20,0                      | Split core          |
| C91 = C91                             | 27.412      | 55 25 55 30      | 55 275                   | OT-4, 20.0<br>Between Sections 6H-7 and 7H-1  | Split core          |
| C10n 1n - C10n 1r                     | 27.000      | 56 55-56 80      | 56 675                   | Between Sections 7H-1 and 2                   | Split core          |
| C10n.1r-C10n.2n                       | 28.164      | 57.15-57.25      | 57.200                   | 7H-2, 50.0                                    | Split core          |
| C10n.2n-C10r                          | 28.318      | 58.50-58.65      | 58.575                   | 7H-3, 37.5                                    | Split core          |
| C10r-C11n.1n                          | 29.166      | 70.50-70.80      | 70.650                   | Between Sections 8H-4 and 5                   | Split core          |
| C11n.1n-C11n.1r                       | 29.467      |                  |                          | Not identified                                |                     |
| C11n.1r-C11n.2n                       | 29.536      |                  |                          | Not identified                                |                     |
| C11n.2n–C11r                          | 29.957      | 80.30-80.40      | 80.350                   | 9H-5, 15.0                                    | Split core          |
| C11r-C12n                             | 30.617      | 84.90-87.65      | 86.275                   | Between Sections 10H-1 and 3                  | Split core          |
| C12n-C12r                             | 31.021      | 89.25-89.40      | 89.325                   | 10H-4, 112.5                                  | Split core          |
| CI2r-CI3n                             | 33.232      | 111.35-111.40    | 111.3/5                  | 12H-6, 117.5<br>Returnen Sections 12H 2 and 2 | Split core          |
| C13r C15n                             | 35.703      | 110.05 110.15    | 119.200                  |                                               | Split core          |
| C15n-C15r                             | 35.254      | 119.50-119.60    | 119,550                  | 13H-5, 135.0                                  | Split core          |
| C15r-C16n.1n                          | 35.328      | 120.60-120.70    | 120.650                  | 13H-6, 95.0                                   | Split core          |
| C16n.1n-C16n.1r                       | 35.554      | 121.45-121.50    | 121.475                  | 13H-7, 27.5                                   | Split core          |
| C16n.1r-C16n.2n                       | 35.643      | 121.85-122.30    | 122.075                  | Between Cores 13H-7 and 14H-1                 | Split core          |
| C16n.2n-C16r                          | 36.355      | 124.10-124.15    | 124.125                  | 14H-2, 92.5                                   | Split core          |
| C16r-C17n.1n                          | 36.668      | 125.70–125.85    | 125.775                  | 14H-3, 107.5                                  | Split core          |
| C17n.1n-C17n.1r                       | 37.520      | 130.20–130.25    | 130.225                  | 14H-6, 102.5                                  | Split core          |
| C17n.1r-C17n.2n                       | 37.656      |                  |                          | Not identified                                |                     |
| C17n.2n–C17n.2r                       | 37.907      |                  |                          | Not identified                                |                     |
| C1/n.2r - C1/n.3n                     | 37.956      |                  |                          | Not identified                                |                     |
| C17r C18p 1p                          | 38 110      | 131 00 133 00    | 131 050                  |                                               | Split core          |
| C171 - C1011.111<br>C18n 1n - C18n 1r | 39 551      | 138 60-138 80    | 138 700                  | Retween Sections 15H-5 and 6                  | Split core          |
| C18n.1r-C18n.2n                       | 39,602      | 139.30-139.40    | 139.350                  | 15H-6. 65.0                                   | Split core          |
| C18n.2n–C18r                          | 40.084      | 142.55–142.75    | 142.650                  | 16H-2, 45.0                                   | Split core          |
| C18r-C19n                             | 41.358      | 152.55–152.65    | 152.600                  | 17H-2, 90.0                                   | Split core          |
| C19n-C19r                             | 41.510      | 154.30-154.35    | 154.325                  | 17H-3, 112.5                                  | Split core          |
| C19r-C20n                             | 42.536      | 158.25–159.80    | 159.025                  | Between Cores 17H-6 and 18H-1                 | Split core          |
| C20n-C20r                             | 43.789      |                  |                          | Not identified                                |                     |



# Table T24 (continued).

|                                                         |             |                  |                          | Hole U1333C                                |                     |
|---------------------------------------------------------|-------------|------------------|--------------------------|--------------------------------------------|---------------------|
| Polarity chron                                          | Age<br>(Ma) | Range<br>CSF (m) | Best estimate<br>CSF (m) | Best estimate core, section, interval (cm) | Measurement<br>type |
| C6n–C6r                                                 | 19.722      | 1.70-1.75        | 1.725                    | 2H-1, 12.5                                 | Split core          |
| C6r–C6An.1n                                             | 20.040      | 3.00-3.25        | 3.125                    | Between Sections 2H-1 and 2                | Split core          |
| C6An.1n–C6An.1r                                         | 20.213      | 3.70-3.75        | 3.725                    | 2H-2, 62.5                                 | Split core          |
| C6An.1r-C6An.2n                                         | 20.439      | 4.40-4.50        | 4.450                    | 2H-2, 135.0                                | Split core          |
| C6An.2n–C6Ar                                            | 20.709      | 5.50-5.60        | 5.550                    | 2H-3, 95.0                                 | Split core          |
| C6Ar–C6AAn                                              | 21.083      | 7.45-7.70        | 7.575                    | Between Sections 2H-4 and 5                | Split core          |
| C6AAn–C6AAr.1r                                          | 21.159      | 8.00-8.40        | 8.200                    | 2H-5, 60.0                                 | Split core          |
| C6AAr.1r-C6AAr.1n                                       | 21.403      | 10.15-10.30      | 10.225                   | 2H-6, 112.5                                | Split core          |
| COAALTIN-COAALZI                                        | 21.403      | 11.05-11.15      | 11.100                   | 2H-7, 50.0                                 | spiit core          |
| $C6\Delta\Delta r 2n_C6\Delta\Delta r 3r$               | 21.039      |                  |                          | Not identified                             |                     |
| C6AAr 3r-C6Bn 1n                                        | 21.767      | 13.85-13.95      | 13,900                   | 3H-2, 130.0                                | Split core          |
| C6Bn.1n–C6Bn.1r                                         | 21.936      | 14.65–14.70      | 14.675                   | 3H-3, 57.5                                 | Split core          |
| C6Bn.1r-C6Bn.2n                                         | 21.992      | 14.90–14.95      | 14.925                   | 3H-3, 82.5                                 | Split core          |
| C6Bn.2n–C6Br                                            | 22.268      | 16.70–16.75      | 16.725                   | 3H-4, 112.5                                | Split core          |
| C6Br-C6Cn.1n                                            | 22.564      | 18.80–18.85      | 18.825                   | 3H-6, 22.5                                 | Split core          |
| C6Cn.1n-C6Cn.1r                                         | 22.754      | 19.45–19.45      | 19.450                   | 3H-6, 85.0                                 | Split core          |
| C6Cn.1r-C6Cn.2n                                         | 22.902      | 20.00-20.20      | 20.100                   | Between Sections 3H-6 and 7                | Split core          |
| C6Cn.2n–C6Cn.2r                                         | 23.030      |                  |                          | Not identified                             | Split core          |
| C6Cn.2r–C6Cn.3n                                         | 23.2/8      | 22.30-22.30      | 22.300                   | 4H-2, 20.0                                 | Split core          |
| $C_{6}C_{1}$                                            | 23.340      | 22.80-22.85      | 22.825                   | 4H-2, 72.5                                 | Split core          |
| $C_{0}C_{1} = C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}$ | 24.022      | 20.03-20.03      | 20.030                   | 4n-5, 23.0<br>AH-5, 47, 5                  | Split core          |
| C7n 1r=C7n 2n                                           | 24.002      | 27.60-27.65      | 27.675                   | 4H-5 102 5                                 | Split core          |
| C7n.2n-C7r                                              | 24.459      | 29.50-29.70      | 29.600                   | Between Sections 4H-6 and 7                | Split core          |
| C7r–C7An                                                | 24.756      |                  |                          | Not identified                             |                     |
| C7An–C7Ar                                               | 24.984      |                  |                          | Not identified                             |                     |
| C7Ar–C8n.1n                                             | 25.110      | 30.55-30.60      | 30.575                   | 5H-1, 47.5                                 | Split core          |
| C8n.1n-C8n.1r                                           | 25.248      | 31.90-32.00      | 31.950                   | 5H-2, 35.0                                 | Split core          |
| C8n.1r-C8n.2n                                           | 25.306      | 32.25-32.30      | 32.275                   | 5H-2, 67.5                                 | Split core          |
| C8n.2n–C8r                                              | 26.032      | 36.60-36.80      | 36.700                   | 5H-5, 60.0                                 | Split core          |
| C8r–C9n                                                 | 26.508      | 41.00-41.35      | 41.175                   | Between Sections 6H-1 and 2                | Split core          |
| C9n-C9r                                                 | 27.412      | 49.20-49.20      | 49.200                   | 6H-7, 60.0                                 | Split core          |
| C91-C101.111                                            | 27.000      | 52.30-32.33      | 52.525                   | 7                                          | Split core          |
| C10n 1r_C10n 2n                                         | 28.120      | 55 00-55 25      | 55 1 25                  | Between Sections 7H-4 and 5                | Split core          |
| C10n.2n-C10r                                            | 28.318      | 56.10-56.15      | 56.125                   | 7H-5, 102 5                                | Split core          |
| C10r-C11n.1n                                            | 29.166      | 68.40-68.75      | 68.575                   | Between Cores 8H and 9H                    | Split core          |
| C11n.1n-C11n.1r                                         | 29.467      | 70.80-70.85      | 70.825                   | 9H-2, 122.5                                | Split core          |
| C11n.1r-C11n.2n                                         | 29.536      | 71.55–71.60      | 71.575                   | 9H-3, 47.5                                 | Split core          |
| C11n.2n-C11r                                            | 29.957      | 76.45–76.50      | 76.475                   | 9H-6, 87.5                                 | Split core          |
| C11r-C12n                                               | 30.617      | 83.15-83.20      | 83.175                   | 10H-4, 107.5                               | Split core          |
| C12n-C12r                                               | 31.021      |                  |                          | Not identified                             |                     |
| C12r-C13n                                               | 33.232      | 107.75–108.15    | 107.950                  | Between Cores 13H and 14H                  | Split core          |
| C13n-C13r                                               | 33.705      | 112.92–112.98    | 112.950                  | 14H-4, 85.0                                | Split core          |
| CI3r-CI5n                                               | 35.126      | 116.98-116.99    | 116.985                  | 14H-7, 38.0<br>Not identified              | Split core          |
| C15r C16n 1n                                            | 35 3 28     |                  |                          | Not identified                             |                     |
| C16n 1n_C16n 1r                                         | 35 554      | 118 25-118 35    | 118 300                  | 15H-1 120 0                                | Split core          |
| C16n.1r-C16n.2n                                         | 35.643      | 118.50-118.80    | 118.650                  | Between Sections 15H-1 and 2               | Split core          |
| C16n.2n–C16r                                            | 36.355      | 123.25–123.40    | 123.325                  | 15H-5, 22.5                                | Split core          |
| C16r-C17n.1n                                            | 36.668      | 125.05-125.15    | 125.100                  | 15H-6, 50.0                                | Split core          |
| C17n.1n-C17n.1r                                         | 37.520      |                  |                          | Not identified                             |                     |
| C17n.1r-C17n.2n                                         | 37.656      | 128.00-128.20    | 128.100                  | Between Sections 16H-1 and 2               | Split core          |
| C17n.2n-C17n.2r                                         | 37.907      | 129.45–129.50    | 129.475                  | 16H-2, 137.5                               | Split core          |
| C17n.2r-C17n.3n                                         | 37.956      | 129.85–129.90    | 129.875                  | 16H-3, 27.5                                | Split core          |
| C17n.3n–C17r                                            | 38.159      | 130.95-131.00    | 130.975                  | 16H-3, 137.5                               | Split core          |
| CI/r-CI8n.1n                                            | 38.449      | 131.55-131.65    | 131.600                  | 1/H-1, 50.0                                | Split core          |
| CISN.IN-CISN.II                                         | 39.554      | 140.35-140.40    | 140.3/5                  | 1/17-7, 27.3<br>Rotwoon Cores 174 and 194  | Split core          |
| CI011.11-CI011.20<br>C18n 2n C18r                       | 37.0UZ      | 140.73-140.80    | 140.775                  |                                            | Split core          |
| $C18r_C19n$                                             | 41 358      | 143.12           | 13.070                   | Not identified                             | spiit core          |
| C19n-C19r                                               | 41.510      | 155.30-155.40    | 155.350                  | 20H-1, 125.0                               | Split core          |
| C19r–C20n                                               | 42.536      | 159.45–159.55    | 159.500                  | 20H-4, 90.0                                | Split core          |
| C20n-C20r                                               | 43.789      | 161.50–161.70    | 161.600                  | Between Sections 20H-5 and 6               | Split core          |



#### Table T25. Interstitial water data from squeezed whole-round samples, Hole U1333A. (See table notes.)

| Core, section,<br>interval (cm) | Depth<br>CSF (m) | рН   | Alkalinity<br>(mM) | Cl⁻<br>(mM) | Na+<br>(mM) | SO <sub>4</sub> <sup>2–</sup><br>(mM) | HPO4 <sup>2-</sup><br>(µM) | H <sub>4</sub> SiO <sub>4</sub><br>(µM) | Mn <sup>2+</sup><br>(μM) | Fe <sup>2+</sup><br>(µM) | Ca <sup>2+</sup><br>(mM) | Mg <sup>2+</sup><br>(mM) | Β<br>(μM) | Sr <sup>2+</sup><br>(µM) | Ba <sup>2+</sup><br>(μΜ) | Li+<br>(µM) | K+<br>(mM) |
|---------------------------------|------------------|------|--------------------|-------------|-------------|---------------------------------------|----------------------------|-----------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------|--------------------------|--------------------------|-------------|------------|
| 320-U1333A-                     |                  |      |                    |             |             |                                       |                            |                                         |                          |                          |                          |                          |           |                          |                          |             |            |
| 1H-2, 145–150                   | 2.95             | 7.54 | 2.09               | 559         | 481         | 27.4                                  | 1.11                       | 398                                     | 0.22                     | BDL                      | 10.0                     | 51.5                     | 442       | 83.0                     | 1.23                     | 27.5        | 11.0       |
| 1H-5, 145–150                   | 7.45             | 7.62 | 4.00               | 557         | ND          | 26.3                                  | 0.58                       | 398                                     | ND                       | ND                       | ND                       | ND                       | ND        | ND                       | ND                       | ND          | ND         |
| 2H-2, 145–150                   | 12.45            | 7.54 | 2.75               | 562         | 483         | 27.2                                  | 0.24                       | 504                                     | 0.35                     | 0.29                     | 10.5                     | 52.1                     | 446       | 84.1                     | 1.18                     | 25.6        | 11.0       |
| 2H-5, 145–150                   | 16.95            | 7.59 | 2.82               | 561         | 488         | 28.0                                  | 0.64                       | 551                                     | 0.31                     | BDL                      | 10.2                     | 50.2                     | 474       | 84.5                     | 1.09                     | 26.8        | 10.8       |
| 3H-2, 145–150                   | 21.95            | 7.60 | 2.79               | 563         | 489         | 27.8                                  | 0.56                       | 595                                     | 0.21                     | BDL                      | 10.3                     | 50.6                     | 485       | 86.6                     | 1.09                     | 26.8        | 11.3       |
| 3H-5, 145–150                   | 26.45            | 7.59 | 2.80               | 562         | 485         | 26.2                                  | 0.52                       | 561                                     | 0.44                     | BDL                      | 10.0                     | 50.2                     | 453       | 85.5                     | 1.25                     | 25.0        | 10.9       |
| 4H-2, 145–150                   | 31.45            | 7.60 | 2.83               | 562         | 485         | 27.3                                  | ND                         | 622                                     | 0.49                     | BDL                      | 10.4                     | 51.1                     | 464       | 85.2                     | 1.10                     | 24.7        | 11.2       |
| 4H-5, 145–150                   | 35.95            | 7.60 | 2.83               | 561         | 480         | 26.6                                  | 0.50                       | 622                                     | 0.42                     | BDL                      | 10.5                     | 52.2                     | 458       | 86.8                     | 1.19                     | 24.9        | 11.3       |
| 5H-2, 145–150                   | 40.95            | 7.60 | 2.85               | 565         | 487         | 26.3                                  | 1.23                       | 598                                     | 0.21                     | BDL                      | 10.2                     | 51.3                     | 448       | 85.9                     | 1.27                     | 23.5        | 11.1       |
| 5H-5, 145–150                   | 45.45            | 7.64 | 2.98               | 565         | 485         | 26.7                                  | 0.34                       | 621                                     | 0.20                     | BDL                      | 10.5                     | 52.2                     | 476       | 93.0                     | 1.31                     | 24.5        | 11.2       |
| 6H-2, 145–150                   | 50.45            | 7.81 | 2.87               | 563         | 481         | 25.1                                  | 0.35                       | 602                                     | 0.51                     | BDL                      | 10.4                     | 52.1                     | 435       | 86.3                     | 1.22                     | 22.0        | 11.1       |
| 6H-5, 145–150                   | 54.95            | 7.51 | 3.48               | 566         | 488         | 26.3                                  | 0.74                       | 639                                     | 0.62                     | BDL                      | 10.2                     | 51.6                     | 453       | 91.7                     | 1.32                     | 23.4        | 10.8       |
| 7H-3, 140–150                   | 61.40            | 7.48 | 4.50               | 565         | 489         | 26.3                                  | 0.29                       | 681                                     | 0.17                     | 1.27                     | 10.3                     | 51.0                     | 466       | 92.9                     | 1.17                     | 23.1        | 10.9       |
| 8H-3, 140–150                   | 70.70            | 7.51 | 3.02               | 563         | 481         | 26.9                                  | 0.54                       | 611                                     | 0.36                     | BDL                      | 10.8                     | 53.2                     | 454       | 93.4                     | 1.14                     | 22.5        | 11.2       |
| 9H-3, 140–150                   | 80.40            | 7.45 | 1.66               | 562         | 481         | 26.4                                  | 0.56                       | 639                                     | 0.84                     | BDL                      | 10.5                     | 52.0                     | 448       | 91.4                     | 1.08                     | 21.5        | 11.0       |
| 10H-3, 140–150                  | 89.90            | 7.46 | 2.37               | 562         | 481         | 26.2                                  | 0.57                       | 653                                     | 0.92                     | BDL                      | 10.7                     | 52.0                     | 450       | 96.8                     | 1.16                     | 21.9        | 10.8       |
| 11X-2, 140–150                  | 97.90            | 7.48 | 3.35               | 563         | 481         | 25.6                                  | 0.61                       | 676                                     | 1.24                     | BDL                      | 10.9                     | 52.0                     | 455       | 99.9                     | 1.20                     | 22.4        | 10.8       |
| 12X-3, 140–150                  | 105.10           | 7.46 | 3.21               | 562         | 479         | 26.1                                  | 0.63                       | 676                                     | 1.27                     | BDL                      | 11.2                     | 52.4                     | 448       | 103.4                    | 1.21                     | 22.2        | 11.0       |
| 13X-3, 140–150                  | 114.70           | 7.54 | 3.44               | 564         | 482         | 25.8                                  | 0.78                       | 714                                     | 2.18                     | BDL                      | 11.3                     | 51.8                     | 465       | 104.6                    | 1.35                     | 23.0        | 10.6       |
| 14X-3, 140–150                  | 124.40           | 7.47 | 3.22               | 558         | 480         | 26.9                                  | 0.65                       | 749                                     | 0.32                     | BDL                      | 11.2                     | 51.1                     | 465       | 103.5                    | 1.23                     | 22.2        | 10.6       |
| 15X-3, 140–150                  | 134.00           | 7.59 | 2.80               | 562         | 481         | 25.2                                  | 0.48                       | 852                                     | 0.34                     | BDL                      | 11.3                     | 50.7                     | 429       | 95.2                     | 1.16                     | 21.6        | 10.3       |
| 16X-3, 140–150                  | 143.60           | 7.60 | 2.79               | 563         | 482         | 26.1                                  | 0.77                       | 775                                     | 2.04                     | 0.73                     | 11.6                     | 51.2                     | 422       | 95.0                     | 1.28                     | 23.2        | 10.5       |
| 17X-3, 140–150                  | 153.20           | 7.51 | 3.34               | 564         | 483         | 25.7                                  | 0.80                       | 786                                     | 0.58                     | BDL                      | 11.4                     | 51.5                     | 457       | 105.3                    | 1.47                     | 25.6        | 10.2       |
| 18X-1, 140–150                  | 159.80           | 7.56 | 3.63               | 565         | 484         | 27.0                                  | 0.67                       | 807                                     | 3.12                     | 0.62                     | 11.9                     | 52.3                     | 454       | 104.0                    | 1.61                     | 26.4        | 10.6       |
| 19X-2, 140–150                  | 170.90           | 7.60 | 3.50               | 566         | 482         | 25.5                                  | 0.58                       | 737                                     | 1.25                     | 0.91                     | 11.7                     | 52.3                     | 460       | 104.5                    | 1.49                     | 24.1        | 10.5       |

Notes: ND = not determined. BDL = below detection limit (HPO<sub>4</sub><sup>2-</sup> = 0.6  $\mu$ M, Mn<sup>2+</sup> = 0.17  $\mu$ M, Fe<sup>2+</sup> = 0.24  $\mu$ M, B = 2  $\mu$ M, Sr<sup>2+</sup> = 0.1  $\mu$ M, Ba<sup>2+</sup> = 0.24  $\mu$ M, Li<sup>+</sup> = 0.1  $\mu$ M) calculated as three times the standard deviation of multiple measures of a blank. H<sub>4</sub>SiO<sub>4</sub> values measured by different techniques during Expeditions 320 and 321 disagree significantly, especially for low values. Therefore, caution should be used concerning the H<sub>4</sub>SiO<sub>4</sub> data and comparison between the different expeditions.



## Table T26. Inorganic geochemistry of solid samples, Hole U1333A. (See table notes.)

| Core, section. | Depth   |                  | Major element oxide (wt%) |            |      |      |       |                   |                  | Trace element (ppm) |          |      |      |     |      |       |      |       |       |
|----------------|---------|------------------|---------------------------|------------|------|------|-------|-------------------|------------------|---------------------|----------|------|------|-----|------|-------|------|-------|-------|
| interval (cm)  | CSF (m) | SiO <sub>2</sub> | $Al_2O_3$                 | $Fe_2O_3T$ | MnO  | MgO  | CaO   | Na <sub>2</sub> O | K <sub>2</sub> O | TiO <sub>2</sub>    | $P_2O_5$ | Ва   | Cr   | Cu  | Sc   | Sr    | V    | Y     | Zr    |
| 320-U1333A-    |         |                  |                           |            |      |      |       |                   |                  |                     |          |      |      |     |      |       |      |       |       |
| 1H-2, 65–66    | 2.15    | 44.49            | 6.05                      | 3.61       | 0.80 | 2.23 | 18.08 | 4.43              | 1.23             | 0.27                | 0.68     | 6848 | 25.6 | 599 | 18.8 | 991   | 34.7 | 139.7 | 126.3 |
| 1H-4, 65–66    | 5.15    | 6.45             | 0.22                      | 0.39       | 0.05 | 0.32 | 40.31 | 1.18              | 0.10             | 0.01                | BDL      | 696  | BDL  | 60  | 0.6  | 1981  | BDL  | 16.3  | 15.9  |
| 4H-5, 65–66    | 35.15   | 25.53            | 2.29                      | 1.51       | 0.30 | 0.98 | 36.47 | 2.30              | 0.62             | 0.11                | 0.32     | 2166 | 6.1  | 178 | 6.3  | 1779  | 11.3 | 58.1  | 51.8  |
| 8H-7, 35–36    | 75.65   | 7.08             | 0.17                      | 0.34       | 0.04 | 0.26 | 40.71 | 1.08              | 0.09             | 0.01                | 0.19     | 786  | BDL  | 59  | BDL  | 1773  | BDL  | 14.2  | 20.1  |
| 13X-2, 55–56   | 112.35  | 22.40            | 2.11                      | 1.60       | 0.11 | 0.88 | 34.24 | 2.09              | 0.55             | 0.09                | 0.32     | 2347 | BDL  | 177 | 6.1  | 1821  | 4.8  | 47.4  | 46.2  |
| 13X-4, 85–86   | 115.65  | 38.52            | 2.30                      | 2.49       | 0.26 | 1.20 | 25.61 | 2.38              | 0.59             | 0.11                | 0.46     | 3189 | 9.4  | 237 | 7.8  | 989   | 10.4 | 69.1  | 58.3  |
| 13X-5, 65–66   | 116.95  | 65.12            | 2.58                      | 3.33       | 0.47 | 1.51 | 9.92  | 2.98              | 0.70             | 0.11                | 0.45     | 4137 | 9.3  | 281 | 8.7  | 453.6 | 18.8 | 81.6  | 68.2  |
| 15X-3, 65–66   | 133.25  | 22.33            | 0.42                      | 1.86       | 0.38 | 0.79 | 33.48 | 1.45              | 0.25             | 0.02                | 0.25     | 1904 | 6.0  | 169 | 1.2  | 1214  | 11.8 | 25.6  | 26.7  |
| 16X-3, 64–65   | 142.84  | 73.68            | 0.87                      | 4.88       | 1.61 | 1.71 | 0.53  | 2.91              | 0.41             | 0.04                | 0.26     | 2373 | 5.8  | 357 | 4.2  | 129.5 | 52.8 | 39.2  | 34.4  |
| 19X-3, 36–37   | 171.36  | 74.94            | 0.83                      | 5.00       | 1.75 | 2.14 | 0.57  | 2.60              | 0.47             | 0.04                | 0.29     | 3042 | BDL  | 479 | 5.2  | 140.2 | 49.2 | 45.2  | 39.3  |
| 20X-CC         | 180.12  | 7.41             | 0.87                      | 0.55       | 0.08 | 1.10 | 40.69 | 0.35              | 0.30             | 0.03                | 0.43     | BDL  | BDL  | 44  | 1.0  | 392.6 | BDL  | 45.3  | 15.6  |

Notes: BDL = below detection limit (SiO<sub>2</sub> = 3.5 wt%, Al<sub>2</sub>O<sub>3</sub> = 0.04 wt%, Fe<sub>2</sub>O<sub>3</sub> T = 0.003 wt%, MnO = 0.0004 wt%, MgO = 0.007 wt%, CaO = 0.1 wt%, Na<sub>2</sub>O = 0.02 wt%, K<sub>2</sub>O = 0.004 wt%, TiO<sub>2</sub> = 0.001 wt%, P<sub>2</sub>O<sub>5</sub> = 0.1 wt%, Ba = 28 wt%, Cr = 5 wt%, Cu = 16 wt%, Sc = 0.4 wt%, Sr = 3 wt%, V = 4 wt%, Y = 1.7 wt%, Zr = 4 wt%). See Table T9 in the "Methods" chapter for maximum values of calibration.

TOC

ND

ND

ND

BDL

ND

ND

ND

ND

0.04

ND

0.04

ND

ND

0.04

ND

ND

ND

BDL

0.03

ND

ND

0.04

ND

ND

ND

0.03

ND

ND 0.03

ND

ND

0.04

ND

ND

0.04

ND

ND

0.04

ND

ND

0.05

ND

ND

ND

0.04

ND

ND

BDL

BDL

ND

ND

0.04

ND

ND

0.03

ND

ND

ND

ND

ND

ND

#### Table T27. Calcium carbonate and organic carbon data, Site U1333. (See table notes.)

| Coro costion               | Donth           |                   | Carbor | ו (wt%)    |            |   | Coro soction   | Donth   |                   | Carbon        | (wt%)      |
|----------------------------|-----------------|-------------------|--------|------------|------------|---|----------------|---------|-------------------|---------------|------------|
| interval (cm)              | CSF (m)         | CaCO <sub>3</sub> | IC     | TC         | TOC        | - | interval (cm)  | CSF (m) | CaCO <sub>3</sub> | IC            | тс         |
| 0-U1333A-                  |                 |                   |        |            |            |   | 10H-6, 65–66   | 93.65   | 81.36             | 9.77          | ND         |
| IH-1, 65–66                | 0.65            | 31.41             | 3.77   | 3.34       | 0.05       |   | 10H-7, 31–32   | 94.81   | 83.94             | 10.08         | ND         |
| 1H-2, 65–66                | 2.15            | 26.38             | 3.17   | ND         | ND         |   | 11H-1, 110–111 | 96.10   | 87.86             | 10.55         | ND         |
| 1H-3, 65–66                | 3.65            | 68.88             | 8.27   | ND         | ND         |   | 11H-2, 65–66   | 97.15   | 85.30             | 10.24         | 9.98       |
| 1H-4, 65–66                | 5.15            | 88.40             | 10.61  | ND         | ND         |   | 11H-3, 65–66   | 98.65   | 82.74             | 9.93          | ND         |
| H-5, 65–66                 | 6.65            | 81.70             | 9.81   | ND         | ND         |   | 11X-4, 65–66   | 100.15  | 80.62             | 9.68          | ND         |
| H-6, 65–66                 | 8.15            | 84.32             | 10.12  | ND         | ND         |   | 12X-1, 65–66   | 101.35  | 77.50             | 9.30          | ND         |
| H-7, 45–46                 | 9.45            | 87.56             | 10.51  | ND         | ND         |   | 12X-2, 65-66   | 102.85  | /6./8             | 9.22          | ND         |
| H-1, 65-66                 | 10.15           | 90.33             | 10.84  | ND         |            |   | 12X-3, 65-66   | 104.35  | /0.33             | 8.44          | 7.73       |
| П-2,03-00                  | 12.15           | 93.33<br>77 77    | 0 02   | 10.65      |            |   | 127-4, 03-00   | 103.63  | 03.33             | 0.21          |            |
| 2H-3, 03-00<br>2H-4 65 66  | 14.65           | / 3.//<br>82 37   | 0.00   |            |            |   | 127-3, 03-00   | 107.55  | 85.65             | 9.51          | 9.04<br>ND |
| 2H-4, 05-00<br>2H-5, 55-56 | 16.05           | 82.57             | 9.09   | ND         | ND         |   | 13X-1, 75-70   | 112 35  | 67.42             | 8.09          | ND         |
| 2H-6 65-66                 | 17.65           | 57.81             | 6 94   | ND         | ND         |   | 13X-2, 55-50   | 113.95  | 29 14             | 3 50          | 3 24       |
| H-7, 20–21                 | 18.70           | 88.27             | 10.60  | 10.08      | BDL        |   | 13X-4, 85–86   | 115.65  | 43.76             | 5.25          | ND         |
| H-1, 65–66                 | 19.65           | 83.75             | 10.05  | 9.86       | 0.04       |   | 13X-5, 65–66   | 116.95  | 12.84             | 1.54          | ND         |
| H-2, 65–66                 | 21.15           | 79.08             | 9.49   | ND         | ND         |   | 13X-6, 65–66   | 118.45  | 29.42             | 3.53          | ND         |
| H-3, 65–66                 | 22.65           | 63.72             | 7.65   | ND         | ND         |   | 13X-7, 25–26   | 119.55  | 59.63             | 7.16          | 6.40       |
| H-4, 65–66                 | 24.15           | 67.62             | 8.12   | ND         | ND         |   | 14X-1, 65–66   | 120.65  | 40.89             | 4.91          | 4.84       |
| 1-5, 65–66                 | 25.65           | 83.05             | 9.97   | ND         | ND         |   | 14X-2, 65–66   | 122.15  | 39.83             | 4.78          | ND         |
| H-6, 65–66                 | 27.15           | 64.95             | 7.80   | ND         | ND         |   | 14X-3, 65–66   | 123.65  | 27.97             | 3.36          | ND         |
| H-7, 20–21                 | 28.20           | 84.50             | 10.14  | ND         | ND         |   | 14X-4, 65–66   | 125.15  | 12.56             | 1.51          | 1.28       |
| H-3, 65–66                 | 32.15           | 87.93             | 10.56  | 10.21      | BDL        |   | 14X-5, 65–66   | 126.65  | 8.79              | 1.05          | ND         |
| H-4, 65–66                 | 33.65           | 71.15             | 8.54   | ND         | ND         |   | 14X-6, 65–66   | 128.15  | 55.52             | 6.67          | ND         |
| H-5, 65–66                 | 35.15           | 63.96             | 7.68   | ND         | ND         |   | 14X-7, 21–22   | 129.21  | 13.92             | 1.67          | ND         |
| 1-6, 65–66                 | 36.65           | 85.10             | 10.22  | ND         | ND         |   | 15X-1, 65–66   | 130.25  | 46.20             | 5.55          | 5.44       |
| H-7, 65–66                 | 38.15           | 89.03             | 10.69  | ND         | ND         |   | 15X-2, 65–66   | 131.75  | 74.42             | 8.93          | ND         |
| H-1, 99–100                | 38.99           | 88.20             | 10.59  | ND         | ND         |   | 15X-3, 65–66   | 133.25  | 68.98             | 8.28          | ND         |
| H-2, 99–100                | 40.49           | 81.83             | 9.82   | ND         | ND         |   | 15X-4, 65–66   | 134.75  | 35.87             | 4.31          | 4.14       |
| H-3, 99–100                | 41.99           | 92.19             | 11.07  | ND         | ND         |   | 15X-5, 65-66   | 136.25  | 66.00             | 7.92          | ND         |
| 1-4, 99–100                | 43.49           | 88.42             | 10.62  | ND         | ND         |   | 15X-6, 65-66   | 137.75  | 21.86             | 2.62          | ND         |
| H-5, 99-100                | 44.99           | 91.21             | 10.95  | ND         |            |   | 16X-1, 64-65   | 139.84  | 6.10<br>5.14      | 0.73          | 0.46       |
| $\Pi - 0, 99 - 100$        | 40.49           | 91.24<br>07.11    | 10.95  |            | 0.04       |   | 167-2, 04-03   | 141.34  | 5.14              | 0.62          |            |
| □-7,23-20<br>□ 2,65,66     | 47.23<br>51.15  | 07.11<br>85.74    | 10.40  | 0.07       | 0.04       |   | 167-5, 04-05   | 142.04  | 10.03             | 1.26          | 1 1 2      |
| H-4 65-66                  | 52.65           | 86 72             | 10.22  | ND         |            |   | 16X-5, 64-65   | 145.84  | 9.61              | 1.20          | ND         |
| H-5 85-86                  | 54 35           | 96.18             | 11 55  | ND         | ND         |   | 16X-6 64-65    | 147 34  | 47.84             | 5 74          | ND         |
| H-6, 65–66                 | 55.65           | 85.85             | 10.31  | ND         | ND         |   | 17X-1, 65-66   | 149.45  | 62.72             | 7.53          | 7.39       |
| H-7. 20–21                 | 56.70           | 88.12             | 10.58  | ND         | ND         |   | 17X-2, 65-66   | 150.95  | 62.84             | 7.54          | ND         |
| 'H-2, 65–66                | 59.15           | 87.61             | 10.52  | ND         | ND         |   | 17X-3, 65–66   | 152.45  | 61.15             | 7.34          | ND         |
| 'H-3, 65–66                | 60.65           | 88.41             | 10.61  | ND         | ND         |   | 17X-4, 65–66   | 153.95  | 57.16             | 6.86          | 6.75       |
| H-4, 65–66                 | 62.15           | 92.51             | 11.11  | 10.37      | 0.05       |   | 17X-5, 65–66   | 155.45  | 42.76             | 5.13          | ND         |
| H-5, 65–66                 | 63.65           | 89.02             | 10.69  | ND         | ND         |   | 17X-6, 65–66   | 156.95  | 44.08             | 5.29          | ND         |
| H-6, 65–66                 | 65.15           | 92.24             | 11.07  | ND         | ND         |   | 17X-7, 20–21   | 158.00  | 30.74             | 3.69          | ND         |
| H-7, 20–21                 | 66.20           | 90.30             | 10.84  | ND         | ND         |   | 18X-1, 66–67   | 159.06  | 39.41             | 4.73          | 4.67       |
| H-2, 65–66                 | 68.45           | 90.63             | 10.88  | ND         | ND         |   | 18X-2, 66–67   | 160.56  | 45.12             | 5.42          | ND         |
| 3H-3, 65–66                | 69.95           | 88.70             | 10.65  | ND         | ND         |   | 18X-3, 66–67   | 161.40  | 16.79             | 2.02          | ND         |
| 3H-4, 65–66                | 71.45           | 83.33             | 10.00  | ND         | ND         |   | 18X-4, 66–67   | 162.90  | 61.90             | 7.43          | 7.63       |
| 8H-5, 65–66                | 72.95           | 89.58             | 10.75  | 10.35      | BDL        |   | 19X-1, 65–66   | 168.65  | 42.66             | 5.12          | 5.20       |
| 3H-6, 65–66                | 74.45           | 92.56             | 11.11  | ND         | ND         |   | 19X-2, 65–66   | 170.15  | 22.95             | 2.75          | ND         |
| H-7, 35–36                 | 75.65           | 90.98             | 10.92  | ND         | ND         |   | 19X-3, 36–37   | 171.36  | 0.20              | 0.02          | ND         |
| PH-1, 65–66                | 76.65           | 92.59             | 11.12  | ND         | ND         |   | 19X-4, 58–59   | 173.08  | 75.91             | 9.11          | 9.12       |
| PH-2, 65–66                | /8.15           | 89.72             | 10.//  | ND         | ND         |   | 19X-5, 29-30   | 1/4.29  | /8.98             | 9.48          | ND         |
| יח-ג, 65–66                | /9.65           | 85.56             | 10.27  | ND         |            |   | 20X-1, 64-65   | 170.24  | /5.95             | 9.12          | ND         |
| 7⊓-4,03-00<br>0⊔ 5 65 66   | 01.13<br>87 4 F | 07.23<br>01.00    | 10./1  |            |            |   | 201-2, 04-03   | 1/9./4  | 77.89<br>00.19    | 7.33<br>10 92 | 9.45<br>ND |
| ип-Э, 0Э-00<br>ОН 6 65 66  | 02.00<br>04.15  | 91.90             | 10.00  |            |            |   | 200-00         | 100.12  | 90.18             | 10.83         | IND        |
| H_7 A5 A6                  | 04.13<br>85 15  | 91.3U<br>82.24    | 0 97   | 0 21       |            | 3 | 320-U1333B-    |         |                   |               |            |
| )H-1 65_66                 | 86 15           | 02.24<br>75 53    | 9.07   | 7.21<br>ND | 0.04<br>ND |   | 1H-1, 65–66    | 0.65    | 0.08              | 0.01          | ND         |
| )H-2, 65_66                | 87.65           | 77 95             | 9.07   |            | ND         |   | 1H-2, 65–66    | 2.15    | 0.12              | 0.01          | ND         |
| H-3, 65–66                 | 89.15           | 87 57             | 10 51  | ND         | ND         |   | 1H-3, 65–66    | 3.65    | 75.34             | 9.04          | ND         |
| 0H-4, 65–66                | 90.65           | 75.60             | 9.08   | 10.40      | BDI        |   | 20X-3, 92–93   | 176.22  | 73.41             | 8.81          | ND         |
| 0H-5, 65–66                | 92.15           | 82.66             | 9.92   | ND         | ND         |   | 20X-4, 88–89   | 177.68  | 86.96             | 10.44         | ND         |
|                            |                 | ~~.~~             | ~      |            |            |   |                |         |                   |               |            |

Notes: IC = inorganic carbon, TC = total carbon, TOC = total organic carbon determined by acidification method. BDL = below detection limit (CaCO<sub>3</sub> = <1 wt%, TOC by either method = <0.03 wt%) as determined by three times the standard deviation of replicate measures of a low concentration sample. ND = not determined.



# Table T28. Moisture and density measurements, Hole U1333A.

|                |         | Water Density (g/cm <sup>3</sup> ) |      | _     |       |          |           | Water | Density (g/cm <sup>3</sup> ) |         |      |       |       |          |
|----------------|---------|------------------------------------|------|-------|-------|----------|-----------|-------|------------------------------|---------|------|-------|-------|----------|
| Core, section, | Depth   | content                            | Wet  | Dry   |       | Porosity | Core, see | tion, | Depth                        | content | Wet  | Dry   |       | Porosity |
| interval (cm)  | CSF (m) | (%)                                | bulk | bulk  | Grain | (%)      | interval  | (cm)  | CSF (m)                      | (%)     | bulk | bulk  | Grain | (%)      |
| 320-U1333A-    |         |                                    |      |       |       |          | 9H-6, 75  | -76   | 84.25                        | 34.2    | 1.74 | 1.14  | 2.72  | 58.0     |
| 1H-1, 75–76    | 0.75    | 73.1                               | 1.24 | 0.33  | 2.82  | 88.2     | 9H-7, 55  | -56   | 85.55                        | 18.6    | 2.46 | 2.00  | 3.60  | 44.5     |
| 1H-2, 75–76    | 2.25    | 68.7                               | 1.26 | 0.40  | 2.62  | 84.9     | 10H-1, 7  | 5–76  | 86.25                        | 42.0    | 1.63 | 0.95  | 2.86  | 67.0     |
| 1H-3, 75–76    | 3.75    | 64.2                               | 1.34 | 0.48  | 3.01  | 84.0     | 10H-2, 7  | 5–76  | 87.75                        | 38.4    | 1.70 | 1.05  | 2.87  | 63.6     |
| 1H-4, 75–76    | 5.25    | 39.4                               | 1.65 | 1.00  | 2.73  | 63.3     | 10H-3, 7  | 5–76  | 89.25                        | 38.8    | 1.66 | 1.01  | 2.72  | 62.8     |
| 1H-5, 75–76    | 6.75    | 45.3                               | 1.56 | 0.86  | 2.77  | 69.1     | 10H-4, 7  | 5–76  | 90.75                        | 37.5    | 1.67 | 1.05  | 2.70  | 61.3     |
| 1H-6, 75–76    | 8.25    | 40.9                               | 1.64 | 0.97  | 2.79  | 65.3     | 10H-5, 7  | 5–76  | 92.25                        | 38.6    | 1.70 | 1.04  | 2.89  | 63.9     |
| 1H-7, 55–56    | 9.55    | 40.8                               | 1.66 | 0.99  | 2.93  | 66.3     | 10H-6, 7  | 5–76  | 93.75                        | 41.5    | 1.61 | 0.94  | 2.70  | 65.2     |
| 2H-1, 75–76    | 10.25   | 38.6                               | 1.61 | 0.99  | 2.53  | 60.8     | 10H-7, 4  | 0–41  | 94.90                        | 34.5    | 1.72 | 1.13  | 2.69  | 58.0     |
| 2H-2, 75–76    | 11.75   | 40.2                               | 1.64 | 0.98  | 2.76  | 64.4     | 12X-2, 7  | 5–76  | 102.95                       | 46.4    | 1.54 | 0.83  | 2.75  | 70.0     |
| 2H-3, 75–76    | 13.25   | 51.6                               | 1.46 | 0.71  | 2.66  | 73.4     | 12X-3, 7  | 5–76  | 104.45                       | 49.0    | 1.50 | 0.77  | 2.72  | 71.8     |
| 2H-4, 75–76    | 14.75   | 46.3                               | 1.56 | 0.84  | 2.84  | 70.5     | 12X-4, 7  | 5–76  | 105.95                       | 38.8    | 1.65 | 1.01  | 2.70  | 62.6     |
| 2H-5, 75–76    | 16.25   | 44.1                               | 1.55 | 0.86  | 2.58  | 66.6     | 12X-5, 7  | 5–76  | 107.45                       | 43.5    | 1.69 | 0.95  | 3.39  | 71.8     |
| 2H-7, 30-31    | 18.80   | 42.0                               | 1.60 | 0.93  | 2.69  | 65.5     | 13X-2, 6  | 0–61  | 112.40                       | 56.7    | 1.41 | 0.61  | 2.77  | 78.0     |
| 3H-1, 75–76    | 19.75   | 45.4                               | 1.58 | 0.86  | 2.88  | 70.0     | 13X-3, 7  | 5–76  | 114.05                       | 66.3    | 1.26 | 0.43  | 2.33  | 81.7     |
| 3H-2, 75–76    | 21.25   | 47.4                               | 1.52 | 0.80  | 2.70  | 70.3     | 13X-4, 7  | 5–76  | 115.55                       | 60.1    | 1.33 | 0.53  | 2.38  | 77.8     |
| 3H-3, 75–76    | 22.75   | 53.5                               | 1.44 | 0.67  | 2.72  | 75.4     | 13X-5, 7  | 5–76  | 117.05                       | 65.3    | 1.30 | 0.45  | 2.60  | 82.7     |
| 3H-4, 75–76    | 24.25   | 49.6                               | 1.52 | 0.77  | 2.91  | 73.6     | 14X-1, 7  | 5–76  | 120.75                       | 53.7    | 1.42 | 0.66  | 2.60  | 74.7     |
| 3H-5, 75–76    | 25.75   | 44.4                               | 1.57 | 0.87  | 2.72  | 67.9     | 14X-2, 7  | 5–76  | 122.25                       | 55.7    | 1.40 | 0.62  | 2.62  | 76.3     |
| 3H-6, 75–76    | 27.25   | 54.9                               | 1.38 | 0.62  | 2.43  | 74.3     | 14X-3, 7  | 5–76  | 123.75                       | 64.8    | 1.28 | 0.45  | 2.35  | 80.9     |
| 3H-7, 30–31    | 28.30   | 44.5                               | 1.57 | 0.87  | 2.72  | 68.1     | 14X-4, 7  | 5-76  | 125.25                       | 63.5    | 1.26 | 0.46  | 2.13  | 78.4     |
| 4H-7, 30–31    | 37.80   | 45.3                               | 1.55 | 0.85  | 2.68  | 68.5     | 14X-5. 7  | 5-76  | 126.75                       | 53.2    | 1.44 | 0.67  | 2.65  | 74.7     |
| 5H-1, 95–96    | 38.95   | 44.5                               | 1.60 | 0.89  | 2.89  | 69.3     | 14X-6. 7  | 5-76  | 128.25                       | 53.8    | 1.43 | 0.66  | 2.69  | 75.3     |
| 5H-2, 75-76    | 40.25   | 40.7                               | 1.61 | 0.95  | 2.63  | 63.8     | 14X-7. 3  | 0-31  | 129.30                       | 59.8    | 1.34 | 0.54  | 2.45  | 78.1     |
| 5H-3 75-76     | 41 75   | 54.6                               | 1 33 | 0.60  | 2.05  | 70.8     | 15X-1.7   | 5-76  | 130.35                       | 74.8    | 1.21 | 0.30  | 2.61  | 88.4     |
| 5H-4, 75–76    | 43.25   | 32.7                               | 1.79 | 1.20  | 2.80  | 57.1     | 15X-2. 7  | 5-76  | 131.85                       | 47.2    | 1.52 | 0.80  | 2.67  | 70.0     |
| 5H-5 75-76     | 44 75   | 40.1                               | 1.67 | 1.20  | 2.00  | 65.5     | 15X-3.7   | 5-76  | 133.35                       | 43.9    | 1.59 | 0.89  | 2.77  | 67.9     |
| 5H-6, 75–76    | 46.25   | 38.0                               | 1.66 | 1.03  | 2.69  | 61.8     | 15X-4. 7  | 5-76  | 134.85                       | 55.9    | 1.43 | 0.63  | 2.85  | 77.9     |
| 5H-7 30-31     | 47 30   | 35.7                               | 1.00 | 1 1 1 | 2.80  | 60.3     | 15X-5.7   | 5-76  | 134.85                       | 46.0    | 1.57 | 0.85  | 2.86  | 70.4     |
| 6H-1 55-56     | 48.05   | 30.6                               | 1.95 | 1 35  | 3 25  | 58.4     | 15X-6.7   | 5-76  | 136.35                       | 58.1    | 1.33 | 0.56  | 2.24  | 75.2     |
| 6H-2 104-105   | 50.04   | 38.8                               | 1.70 | 1.04  | 2.92  | 64.4     | 15X-7.7   | 5-76  | 137.85                       | 68.0    | 1.22 | 0.39  | 2.07  | 81.1     |
| 6H-3 75-76     | 51 25   | 40.8                               | 1.61 | 0.95  | 2.66  | 64.2     | 16X-1.7   | 5-76  | 139.95                       | 63.3    | 1.31 | 0.48  | 2.48  | 80.7     |
| 6H-4 85-86     | 52.85   | 32.1                               | 1.89 | 1 29  | 3 1 5 | 59.2     | 16X-2, 7  | 5-76  | 141.45                       | 71.9    | 1.19 | 0.33  | 2.00  | 83.3     |
| 6H-5 75-76     | 54 25   | 35.3                               | 1.02 | 1.12  | 2 78  | 59.7     | 16X-3.7   | 5-76  | 142.95                       | 59.4    | 1.31 | 0.53  | 2.20  | 75.8     |
| 6H-6 75-76     | 55 75   | 40.4                               | 1.68 | 1.00  | 2.70  | 66.3     | 16X-4.7   | 5-76  | 144.45                       | 59.7    | 1.35 | 0.54  | 2.51  | 78.4     |
| 6H-7 30-31     | 56.80   | 38.6                               | 1.65 | 1.00  | 2.20  | 62.1     | 16X-5.7   | 5-76  | 145.95                       | 64.1    | 1.31 | 0.47  | 2.58  | 81.8     |
| 7H-3 75-76     | 60.75   | 30.5                               | 1.86 | 1.01  | 2.89  | 55.4     | 16X-7.3   | )_31  | 148.50                       | 26.5    | 1.81 | 1.33  | 2.50  | 46.8     |
| 7H-4 75_76     | 62.25   | 38.7                               | 1.60 | 1.03  | 2.07  | 63.8     | 17X-1 7   | 5_76  | 149 55                       | 41.6    | 1.69 | 0.99  | 3 1 7 | 68.9     |
| 7H-5, 75-76    | 63 75   | 38.9                               | 1.63 | 1.05  | 2.00  | 61.9     | 17X-2 7   | 5-76  | 151.05                       | 55.4    | 1 41 | 0.63  | 2 64  | 76.2     |
| 7H-7 30-31     | 66 30   | 34.8                               | 1.00 | 1 1 3 | 2.02  | 58.7     | 17X-5 7   | 5-76  | 155 55                       | 60.4    | 1 26 | 0.50  | 1 97  | 74.6     |
| 8H-2 75-76     | 68 55   | 39.4                               | 1.67 | 1.13  | 2.7 5 | 64 1     | 17X-6.7   | 5-76  | 157.05                       | 57.9    | 1.36 | 0.57  | 2.47  | 76.8     |
| 8H-4 75_76     | 71 55   | 41.4                               | 1.63 | 0.95  | 2.02  | 65.7     | 17X-7 3   | )_31  | 158 10                       | 57.8    | 1 37 | 0.58  | 2.56  | 77.4     |
| 8H-5 75-76     | 73.05   | 38.2                               | 1.65 | 1 03  | 2.70  | 62.1     | 18X-2 7   | 5_76  | 160.65                       | 55.5    | 1 41 | 0.63  | 2.50  | 76.2     |
| 8H-6 75_76     | 74 55   | 44 3                               | 1.53 | 0.85  | 2.72  | 66 3     | 18X_3 7   | )_71  | 161 44                       | 59.6    | 1.37 | 0.55  | 2.72  | 79.7     |
| 8H-7 45_46     | 75 75   | 35.0                               | 1.55 | 1 08  | 2.55  | 59.5     | 18X-4 7   | 5-76  | 162 99                       | 42.9    | 1.57 | 0.89  | 2.61  | 65.7     |
| 9H-1 75_76     | 76 75   | 27.2                               | 2.00 | 1 4 5 | 3 10  | 53.0     | 19X-1 7   | 5-76  | 168 75                       | 47.5    | 1.48 | 0.78  | 2.47  | 68.6     |
| 9H-2 75_76     | 78.25   | 36.2                               | 1 70 | 1 09  | 2 73  | 60.3     | 19X-2 7   | 5-76  | 170 25                       | 46.3    | 1.56 | 0.84  | 2.81  | 70.3     |
| 9H-3 75_76     | 79.75   | 33.5                               | 1.70 | 1 20  | 2.75  | 59.5     | 198-3 7   | 5-76  | 171 75                       | 59.9    | 1 37 | 0.55  | 2.81  | 80.4     |
| 9H-4 75_76     | 81 25   | 35.5                               | 1 70 | 1 10  | 2.75  | 59.0     | 19X-4 7   | 5-76  | 173 25                       | 27.3    | 1.91 | 1.39  | 2.85  | 51 1     |
| 9H-5, 75-76    | 82 75   | 43.5                               | 1.52 | 0.86  | 2.00  | 64.8     | 20X-1 7   | 5-76  | 178 35                       | 30.7    | 1.79 | 1.24  | 2.69  | 53.8     |
|                | 52.75   | 13.5                               | 1.52 | 0.00  | 2.15  | 01.0     | 20/11/1   |       | ., 0.00                      |         |      | · · · |       | 00.0     |



# Table T29. Split-core P-wave velocity measurements, Hole U1333A.

|              |           | Vo             | locity (m  | (s)    |                |           | Ve             | locity (m | /s)             |         |           | Ve      | locity (m | n/s) |
|--------------|-----------|----------------|------------|--------|----------------|-----------|----------------|-----------|-----------------|---------|-----------|---------|-----------|------|
| Core,        | Depth     | ve<br>ve       | Nocity (II | 7 2416 | Core,          | Depth     | v avic         |           | 73)<br>7 2 X is | Core,   | Depth     | v avis  | v avic    | 7 /  |
| section      | C3F (III) | <i>x</i> -axis | y-axis     | 2-0315 | section        | C3F (III) | <i>x</i> -axis | y-axis    | 2-0213          | section | C3F (III) | x-axis  | y-axis    | 2-0  |
| 320-U133     | 33A-      |                |            |        | 5H-4           | 43.96     | 1585           |           |                 | 10H-4   | 91.36     |         | 1536      | 15   |
| 1H-1         | 1.45      | 1579           |            |        | 5H-5           | 45.33     |                | 1520      | 1514            | 10H-4   | 91.45     | 1591    |           |      |
| 1H-1         | 5.93      | 1552           |            |        | 5H-5           | 45.40     | 1584           |           |                 | 10H-5   | 92.88     |         | 1537      | 1    |
| 1H-5         | 7.30      |                |            | 1505   | 5H-6           | 46.88     |                | 1511      | 1509            | 10H-5   | 92.96     | 1604    |           |      |
| 1H-5         | 7.39      | 1569           |            |        | 5H-6           | 46.94     | 1577           |           |                 | 10H-6   | 94.36     |         | 1544      | 1.   |
| 1H-6         | 8.74      | 1570           |            |        | 6H-2           | 50.29     |                | 1523      | 1512            | 10H-6   | 94.44     | 1611    |           |      |
| 1H-6         | 8.83      |                |            | 1508   | 6H-2           | 50.40     | 1577           |           |                 | 11X-1   | 96.34     |         | 1519      | 1    |
| 1H-6         | 8.94      |                | 1513       | 1848   | 6H-3           | 51.95     | 1563           |           |                 | 11X-1   | 96.44     | 1578    |           |      |
| 2H-1         | 10.89     |                |            | 1509   | 6H-4           | 53.40     |                | 1526      | 1795            | 11X-2   | 97.76     |         | 1524      | 1    |
| 2H-1         | 10.97     | 1580           |            |        | 6H-4           | 53.47     | 1589           |           |                 | 11X-2   | 97.84     | 1581    |           |      |
| 2H-2         | 12.34     |                |            | 1505   | 6H-5           | 54.82     |                | 1518      | 1515            | 11X-3   | 99.38     |         |           | 1    |
| 2H-2         | 12.42     | 1567           |            |        | 6H-6           | 56.41     |                | 1517      | 1513            | 11X-3   | 99.46     | 1584    |           |      |
| 2H-3         | 13.88     |                | 1521       |        | 6H-6           | 56.47     | 1583           |           |                 | 11X-4   | 100.82    |         | 1538      | 1    |
| 2H-3         | 13.94     | 1579           |            |        | 7H-1           | 58.38     |                | 1531      |                 | 11X-4   | 100.90    | 1570    |           |      |
| 2H-4         | 15.36     |                | 1518       | 1512   | 7H-1           | 58.47     | 1590           |           |                 | 12X-1   | 102.08    |         | 1535      |      |
| 2H-4         | 15.45     | 1577           |            |        | 7H-2           | 59.85     |                | 1513      | 1509            | 12X-1   | 102.32    | 1602    |           |      |
| 2H-5         | 16.90     | 1568           |            |        | 7H-2           | 59.94     | 1572           |           |                 | 12X-2   | 103.56    |         | 1523      | 1    |
| 2H-6         | 18.36     |                | 1517       | 1504   | 7H-3           | 61.26     |                | 1513      | 1510            | 12X-2   | 103.65    | 1580    |           |      |
| 2H-6         | 18.46     | 1608           |            |        | 7H-3           | 61.35     | 1573           |           |                 | 12X-3   | 104.98    |         |           |      |
| 2H-7         | 19.25     |                | 1519       | 1512   | 7H-4           | 62.87     |                | 1519      | 1511            | 12X-3   | 105.04    | 1581    |           |      |
| 2H-7         | 19.32     | 1575           |            |        | 7H-4           | 62.95     | 1571           |           |                 | 12X-4   | 106.44    |         | 1419      | 1    |
| 3H-1         | 20.45     | 1564           |            |        | 7H-5           | 64 32     | 1371           | 1520      | 1518            | 12X-4   | 106.65    | 1591    | 1112      |      |
| 3H-2         | 21.10     | 1581           |            |        | 7H-5           | 64 43     | 1578           | 1520      | 1310            | 12X-5   | 107.76    | 1371    |           | 1    |
| 3H-3         | 23.34     | 1501           | 1514       | 1458   | 7H-6           | 65.86     | 1370           | 1532      | 1530            | 12X-5   | 107.84    | 1603    |           |      |
| 3H_3         | 23.34     | 1571           | 1314       | 1450   | 8H-2           | 69.00     |                | 1517      | 1467            | 13X-1   | 111 67    | 1005    | 1533      | 1    |
| 311-3        | 27.88     | 1371           | 1514       | 1506   | 8H_2           | 69.72     | 1507           | 1517      | 1407            | 13X-1   | 111.07    | 1600    | 1333      |      |
| 211-4        | 25.10     | 1562           | 1314       | 1300   | 011-2<br>9LL 2 | 70.56     | 1377           | 1515      | 1514            | 137-1   | 110.27    | 1606    |           |      |
| 211-4        | 25.12     | 1505           |            |        | 8H 3           | 70.50     | 1600           | 1313      | 1314            | 142 1   | 179.27    | 1570    |           |      |
| 2015         | 20.40     | 1371           | 1514       | 1500   | 011-3          | 70.04     | 1009           | 1511      | 1510            | 147-1   | 121.44    | 12/2    |           |      |
| ンローン<br>ンローン | 27.11     |                | 1202       | 1500   | 이미-4<br>이니 4   | 72.14     | 1557           | 1311      | 1310            | 147-2   | 122.94    | 1600    |           |      |
| 0-⊓C         | 27.65     | 1572           | 1302       | 1208   | 0H-4           | 72.23     | 1337           | 1517      | 1510            | 147-3   | 124.33    | 1609    |           |      |
| 0-⊓C         | 27.95     | 1372           | 1522       | 1515   | 6-H9           | 73.04     | 1564           | 1217      | 1510            | 157-1   | 130.99    | 1594    |           |      |
| 3H-7         | 28.39     |                | 1523       | 1515   | 8H-5           | /3./Z     | 1564           | 1524      | 1520            | 15X-1   | 140.65    | 1600    |           |      |
| 40-1         | 29.85     | 1500           | 1210       | 1210   | 0⊓-0           | 75.10     | 1560           | 1524      | 1520            | 107-2   | 142.08    | 1023    |           |      |
| 4H-1         | 29.95     | 1280           | 1          |        | 8H-6           | /5.25     | 1208           | 1500      | 1500            | 16X-4   | 144.98    | 1611    |           |      |
| 4H-Z         | 31.30     | 1500           | 1411       |        | 9H-1           | 77.31     | 1570           | 1529      | 1520            | 16X-5   | 146.65    | 1593    |           |      |
| 4H-Z         | 31.42     | 1283           | 1517       |        | 9H-1           | 77.41     | 15/8           | 1525      | 1520            | 16X-6   | 148.18    | 1642    |           |      |
| 4H-3         | 32.88     | 1070           | 1217       |        | 9H-2           | /8.86     | 1507           | 1525      | 1520            | 1/X-1   | 150.25    | 1282    | 1541      |      |
| 4H-3         | 32.95     | 15/5           |            |        | 9H-2           | 78.94     | 1597           | 1544      | 1541            | 178-2   | 152.41    | 1 ( 1 0 | 1541      |      |
| 4H-4         | 34.45     | 1569           | 1 - 1 - 1  | 1500   | 9H-3           | 80.28     | 1500           | 1544      | 1541            | 1/X-3   | 153.16    | 1618    |           |      |
| 4H-5         | 35.82     | 4 5 9 9        | 1511       | 1508   | 9H-3           | 80.35     | 1598           |           |                 | 1/X-4   | 154.51    | 1605    |           |      |
| 4H-5         | 35.91     | 1580           | 1.5.4.5    | 1540   | 9H-4           | 81.86     | 1 5 9 9        | 1525      | 1521            | 1/X-5   | 156.25    | 1601    |           |      |
| 4H-6         | 37.38     |                | 1516       | 1510   | 9H-4           | 81.94     | 1583           |           |                 | 17X-6   | 157.76    | 1634    |           |      |
| 4H-6         | 37.46     | 1571           |            |        | 9H-5           | 83.37     |                | 1533      | 1521            | 18X-1   | 159.76    | 1639    |           |      |
| 4H-7         | 38.26     |                | 1511       | 1510   | 9H-5           | 83.44     | 1595           |           |                 | 18X-2   | 160.02    | 1608    |           |      |
| 4H-7         | 38.34     | 1576           |            |        | 9H-6           | 84.85     |                | 1529      | 1519            | 18X-3   | 162.08    | 1619    |           |      |
| 5H-1         | 39.37     |                | 1509       | 1451   | 9H-6           | 84.94     | 1593           |           |                 | 18X-3   | 162.15    |         |           | 1    |
| 5H-1         | 39.47     | 1590           |            |        | 10H-1          | 86.85     |                | 1405      | 1511            | 18X-4   | 163.66    | 1606    |           |      |
| 5H-2         | 40.85     |                | 1524       |        | 10H-1          | 86.93     | 1560           |           |                 | 19X-1   | 169.43    | 1568    |           |      |
| 5H-2         | 40.92     | 1606           |            |        | 10H-2          | 88.36     |                | 1521      | 1510            | 19X-2   | 170.85    | 1623    |           |      |
| 5H-3         | 42.36     |                | 1518       | 1521   | 10H-2          | 88.43     | 1581           |           |                 | 19X-3   | 172.44    | 1605    |           |      |
| 5H-3         | 42.45     | 1571           |            |        | 10H-3          | 89.75     |                | 1528      | 1520            | 20X-1   | 179.07    | 1606    |           |      |
| 5H-4         | 43.88     |                | 1521       | 1514   | 10H-3          | 89.82     | 1568           |           |                 |         |           |         |           |      |



# Table T30. Thermal conductivity, Hole U1333A.

| Core, section,<br>interval (cm) | Depth<br>CSF (m) | Thermal<br>conductivity<br>(W/[m·K]) |
|---------------------------------|------------------|--------------------------------------|
| 320-U1333A-                     |                  |                                      |
| 1H-3, 115                       | 4.15             | 0.824                                |
| 2H-3, 115                       | 13.65            | 1.080                                |
| 3H-3, 115                       | 23.15            | 1.048                                |
| 4H-3, 115                       | 32.65            | 1.127                                |
| 5H-3, 115                       | 42.15            | 1.307                                |
| 7H-3, 115                       | 61.15            | 1.177                                |
| 8H-3, 115                       | 70.45            | 1.205                                |
| 9H-3, 115                       | 80.15            | 1.344                                |
| 10H-3, 115                      | 89.65            | 1.215                                |
| 11X-3, 115                      | 99.15            | 1.129                                |
| 12X-3, 115                      | 104.85           | 1.083                                |
| 13X-2, 115                      | 112.95           | 0.993                                |
| 14X-3, 115                      | 124.15           | 0.830                                |
| 15X-3, 115                      | 133.75           | 0.974                                |
| 16X-3, 115                      | 143.35           | 0.780                                |
| 17X-3, 115                      | 152.95           | 1.046                                |
| 18X-3, 115                      | 161.89           | 0.830                                |
|                                 |                  |                                      |

 Table T31. Shipboard core top, composite, and corrected composite depths, Site U1333.

|         | Depth   | Depth Offset |        | pth (m) |
|---------|---------|--------------|--------|---------|
| Core    | CSF (m) | (m)          | CCSF-A | CCSF-B  |
| 320-U13 | 33A-    |              |        |         |
| 1H      | 0.00    | 4.66         | 4.66   | 4.05    |
| 2H      | 9.50    | 3.68         | 13.18  | 11.46   |
| 3H      | 19.00   | 6.84         | 25.84  | 22.47   |
| 4H      | 28.50   | 6.57         | 35.07  | 30.50   |
| 5H      | 38.00   | 7.80         | 45.80  | 39.83   |
| 6H      | 47.50   | 9.75         | 57.25  | 49.79   |
| 7H      | 57.00   | 11.30        | 68.30  | 59.39   |
| 8H      | 66.50   | 13.38        | 79.88  | 69.47   |
| 9H      | 76.00   | 15.73        | 91.73  | 79.77   |
| 10H     | 85.50   | 17.36        | 102.86 | 89.44   |
| 11X     | 95.00   | 18.77        | 113.77 | 98.93   |
| 12X     | 100.70  | 19.45        | 120.15 | 104.48  |
| 13X     | 110.30  | 21.65        | 131.95 | 114.74  |
| 14X     | 120.00  | 21.91        | 141.91 | 123.40  |
| 15X     | 129.60  | 21.33        | 150.93 | 131.24  |
| 16X     | 139.20  | 21.33        | 160.53 | 139.59  |
| 17X     | 148.80  | 21.33        | 170.13 | 147.94  |
| 18X     | 158.40  | 21.33        | 179.73 | 156.29  |
| 19X     | 168.00  | 21.33        | 189.33 | 164.63  |
| 20X     | 177.60  | 21.33        | 198.93 | 172.98  |
| 21X     | 181.60  | 21.33        | 202.93 | 176.46  |
| 22X     | 182.60  | 21.33        | 203.93 | 177.33  |
| 320-U13 | 33B-    |              |        |         |
| 1H      | 0.00    | 0.00         | 0.00   | 0.00    |
| 2H      | 7.70    | 0.01         | 7.71   | 6.70    |
| 3H      | 17.20   | 2.07         | 19.27  | 16.76   |
| 4H      | 26.70   | 3.18         | 29.88  | 25.99   |
| 5H      | 36.20   | 3.98         | 40.18  | 34.94   |
| 6H      | 45.70   | 5.84         | 51.54  | 44.82   |
| 7H      | 55.20   | 8.03         | 63.23  | 54.98   |
| 8H      | 64.70   | 8.77         | 73.47  | 63.88   |
| 9H      | 74.20   | 9.93         | 84.13  | 73.16   |
| 10H     | 83.70   | 13.21        | 96.91  | 84.27   |
| 11H     | 93.20   | 15.33        | 108.53 | 94.37   |

|         | Depth   | Offset | Top de | pth (m) |
|---------|---------|--------|--------|---------|
| Core    | CSF (m) | (m)    | CCSF-A | CCSF-B  |
| 12H     | 102.70  | 16.80  | 119.50 | 103.91  |
| 13H     | 112.20  | 17.85  | 130.05 | 113.09  |
| 14H     | 121.70  | 19.75  | 141.45 | 123.00  |
| 15H     | 131.20  | 20.86  | 152.06 | 132.23  |
| 16H     | 140.70  | 20.86  | 161.56 | 140.49  |
| 17H     | 150.20  | 20.86  | 171.06 | 148.75  |
| 18H     | 159.70  | 20.86  | 180.56 | 157.01  |
| 19X     | 162.70  | 20.86  | 183.56 | 159.62  |
| 20X     | 172.30  | 20.86  | 193.16 | 167.96  |
| 320-U13 | 333C-   |        |        |         |
| 1H      | 0.00    | 0.00   | 0.00   | 0.00    |
| 2H      | 1.60    | 2.30   | 3.90   | 3.39    |
| 3H      | 11.10   | 2.66   | 13.76  | 11.96   |
| 4H      | 20.60   | 3.28   | 23.88  | 20.76   |
| 5H      | 30.10   | 6.55   | 36.65  | 31.87   |
| 6H      | 39.60   | 6.53   | 46.13  | 40.11   |
| 7H      | 49.10   | 9.13   | 58.23  | 50.63   |
| 8H      | 58.60   | 10.90  | 69.50  | 60.43   |
| 9H      | 68.10   | 13.24  | 81.34  | 70.73   |
| 10H     | 77.60   | 14.81  | 92.41  | 80.36   |
| 11H     | 87.10   | 14.60  | 101.70 | 88.43   |
| 12H     | 93.10   | 17.13  | 110.23 | 95.86   |
| 13H     | 98.10   | 17.00  | 115.10 | 100.09  |
| 14H     | 107.60  | 20.20  | 127.80 | 111.13  |
| 15H     | 117.10  | 20.50  | 137.60 | 119.65  |
| 16H     | 126.60  | 20.66  | 147.26 | 128.05  |
| 17H     | 131.10  | 20.63  | 151.73 | 131.94  |
| 18H     | 140.60  | 20.63  | 161.23 | 140.20  |
| 19H     | 150.10  | 20.63  | 170.73 | 148.46  |
| 20H     | 154.10  | 20.63  | 174.73 | 151.94  |
| 21H     | 163.20  | 20.63  | 183.83 | 159.85  |
| 22X     | 163.20  | 20.63  | 183.83 | 159.85  |
| 23X     | 172.80  | 20.63  | 193.43 | 168.20  |
| 24X     | 176.00  | 20.63  | 196.63 | 170.98  |



# Table T32. Splice tie points, Site U1333. (See table notes.)

| Hole, core, section, | Dept   | h (m)  |        | Hole, core, section. | Dept   | h (m)  |
|----------------------|--------|--------|--------|----------------------|--------|--------|
| interval (cm)        | CSF    | CCSF-A |        | interval (cm)        | CSF    | CCSF-A |
| 320-                 |        |        |        | 320-                 |        |        |
| U1333B-1H-5, 22      | 6.22   | 6.22   | Tie to | U1333A-1H-2, 6       | 1.56   | 6.22   |
| U1333A-1H-5, 76      | 6.76   | 11.42  | Tie to | U1333B-2H-3, 71      | 11.41  | 11.42  |
| U1333B-2H-6, 31      | 15.51  | 15.51  | Tie to | U1333C-3H-2, 26      | 12.86  | 15.51  |
| U1333C-3H-6, 63      | 19.23  | 21.88  | Tie to | U1333B-3H-2, 111     | 19.81  | 21.88  |
| U1333B-3H-6, 93      | 25.63  | 27.70  | Tie to | U1333C-4H-3, 82      | 24.42  | 27.70  |
| U1333C-4H-5, 83      | 27.43  | 30.70  | Tie to | U1333B-4H-1, 82      | 27.52  | 30.70  |
| U1333B-4H-6, 35      | 34.55  | 37.73  | Tie to | U1333C-5H-1, 108     | 31.18  | 37.73  |
| U1333C-5H-5, 98      | 37.08  | 43.63  | Tie to | U1333B-5H-3, 45      | 39.65  | 43.63  |
| U1333B-5H-5, 93      | 43.13  | 47.11  | Tie to | U1333C-6H-1, 98      | 40.58  | 47.11  |
| U1333C-6H-4, 131     | 45.41  | 51.94  | Tie to | U1333B-6H-1, 40      | 46.10  | 51.94  |
| U1333B-6H-6, 130     | 54.50  | 60.35  | Tie to | U1333A-6H-3, 9       | 50.59  | 60.35  |
| U1333A-6H-5, 106     | 54.56  | 64.32  | Tie to | U1333B-7H-1, 109     | 56.29  | 64.32  |
| U1333B-7H-6, 96      | 63.66  | 71.69  | Tie to | U1333C-8H-2, 69      | 60.79  | 71.69  |
| U1333C-8H-7, 23      | 67.83  | 78.73  | Tie to | U1333B-8H-4, 76      | 69.96  | 78.73  |
| U1333B-8H-6, 81      | 73.01  | 81.78  | Tie to | U1333A-8H-2, 59      | 68.39  | 81.78  |
| U1333A-8H-4, 46      | 71.26  | 84.65  | Tie to | U1333C-9H-3, 31      | 71.41  | 84.65  |
| U1333C-9H-4, 21      | 72.81  | 86.05  | Tie to | U1333B-9H-2, 41      | 76.11  | 86.05  |
| U1333B-9H-6, 105     | 82.75  | 92.69  | Tie to | U1333A-9H-1, 95      | 76.95  | 92.69  |
| U1333A-9H-3, 140     | 80.40  | 96.13  | Tie to | U1333C-10H-3, 72     | 81.32  | 96.13  |
| U1333C-10H-6, 29     | 85.39  | 100.21 | Tie to | U1333B-10H-3, 29     | 86.99  | 100.21 |
| U1333B-10H-6, 131    | 92.51  | 105.73 | Tie to | U1333A-10H-2, 137    | 88.37  | 105.73 |
| U1333A-10H-7, 3      | 94.53  | 111.88 | Tie to | U1333B-11H-3, 36     | 96.56  | 111.88 |
| U1333B-11H-5, 103    | 100.23 | 115.56 | Tie to | U1333A-11X-2, 29     | 96.79  | 115.56 |
| U1333A-11X-4, 14     | 99.64  | 118.40 | Tie to | U1333C-13H-3, 30     | 101.40 | 118.40 |
| U1333C-13H-7, 26     | 107.36 | 124.36 | Tie to | U1333B-12H-4, 36     | 107.56 | 124.36 |
| U1333B-12H-6, 143    | 111.63 | 128.43 | Tie to | U1333C-14H-1, 63     | 108.23 | 128.43 |
| U1333C-14H-3, 33     | 110.93 | 131.13 | Tie to | U1333B-13H-1, 108    | 113.28 | 131.13 |
| U1333B-13H-5, 146    | 119.66 | 137.51 | Tie to | U1333A-13X-4, 106    | 115.86 | 137.51 |
| U1333A-13X-6, 89     | 118.69 | 140.34 | Tie to | U1333C-15H-2, 125    | 119.85 | 140.34 |
| U1333C-15H-5, 125    | 124.35 | 144.85 | Tie to | U1333B-14H-3, 40     | 125.10 | 144.85 |
| U1333B-14H-7, 45     | 131.15 | 150.90 | Append |                      |        |        |

Notes: Spliced section ends at 150.95 m CCSF-A. Sampling below this depth will not recover a complete stratigraphic sequence and can continue in any of the holes at Site U1333 below 150.95 m CCSF-A.



# Table T33. Magnetostratigraphic and biostratigraphic datums, Site U1333. (See table note.) (Continued on next page.)

|                                                | Age    | Depth      | Error |
|------------------------------------------------|--------|------------|-------|
| Event                                          | (Ma)   | CCSF-A (m) | (m)   |
|                                                |        |            |       |
| C6n–C6r                                        | 19.722 | 2.61       |       |
| C6r–C6An.1n                                    | 20.040 | 4.14       |       |
| C6An.1n–C6An.1r                                | 20.213 | 5.85       |       |
| C6An.1r–C6An.2n                                | 20.439 | 6.73       |       |
| C6An.2n–C6Ar                                   | 20,709 | 7.88       |       |
| C6Ar-C6AAn                                     | 21 083 | 9.93       |       |
| $C6\Delta 4n - C6\Delta 4r 1r$                 | 21.005 | 10.56      |       |
| C6AAr1r C6AAr1p                                | 21.132 | 12.50      |       |
|                                                | 21.403 | 12.07      |       |
| COAAr. TH-COAAr. 2r                            | 21.403 | 15.59      |       |
| C6AAr.2r–C6AAr.2n                              | 21.659 | 15.04      |       |
| C6AAr.2n–C6AAr.3r                              | 21.688 | 15.94      |       |
| C6AAr.3r–C6Bn.1n                               | 21.767 | 16.54      |       |
| C6Bn.1n–C6Bn.1r                                | 21.936 | 17.38      |       |
| C6Bn.1r–C6Bn.2n                                | 21.992 | 17.64      |       |
| C6Bn.2n–C6Br                                   | 22.268 | 19.52      |       |
| C6Br–C6Cn.1n                                   | 22.564 | 21.62      |       |
| C6Cn.1n–C6Cn.1r                                | 22.754 | 22.16      |       |
| C6Cn 1r–C6Cn 2n                                | 22 902 | 23.00      |       |
| C6Cn 2n-C6Cn 2r                                | 23 030 | 23.82      |       |
| C6Cn 2r C6Cn 3n                                | 23.050 | 25.02      |       |
| 66Cn 2n 66Cr                                   | 22.270 | 25.02      |       |
|                                                | 23.340 | 20.21      |       |
| $C_{0}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1$ | 24.022 | 30.24      |       |
| C/n.1n–C/n.1r                                  | 24.062 | 30.46      |       |
| C7n.1r–C7n.2n                                  | 24.147 | 31.04      |       |
| C7n.2n–C7r                                     | 24.459 | 33.09      |       |
| C7r–C7An                                       | 24.756 | 35.11      |       |
| C7An–C7Ar                                      | 24.984 | 36.23      |       |
| C7Ar–C8n.1n                                    | 25.110 | 37.41      |       |
| C8n.1n–C8n.1r                                  | 25.248 | 38.55      |       |
| C8n.1r-C8n.2n                                  | 25.306 | 38.85      |       |
| C8n 2n–C8r                                     | 26.032 | 43 31      |       |
| C8r_C9n                                        | 26 508 | 47.15      |       |
| Con Cor                                        | 20.300 | 55 00      |       |
| $C_{1}^{0}$                                    | 27.996 | 61 47      |       |
| $C_{10} = C_{10} = 1$                          | 27.000 | 64.21      |       |
|                                                | 20.120 | 04.31      |       |
|                                                | 28.164 | 64.93      |       |
| Clon.2n–Clor                                   | 28.318 | 66.19      |       |
| C10r–C11n.1n                                   | 29.166 | 79.00      |       |
| C11n.1n–C11n.1r                                | 29.467 | 84.11      |       |
| C11n.1r-C11n.2n                                | 29.536 | 84.87      |       |
| C11n.2n–C11r                                   | 29.957 | 90.69      |       |
| C11r-C12n                                      | 30.617 | 98.40      |       |
| C12n-C12r                                      | 31.021 | 102.02     |       |
| C12r-C13n                                      | 33.232 | 126.56     |       |
| C13n-C13r                                      | 33 705 | 133 10     |       |
| C13r_C15n                                      | 35 126 | 137.07     |       |
| C15n C15r                                      | 25 254 | 137.07     |       |
|                                                | 25.234 | 137.40     |       |
|                                                | 25.520 | 138.30     |       |
|                                                | 35.554 | 139.06     |       |
| C16n.1r-C16n.2n                                | 35.643 | 139.54     |       |
| C16n.2n–C16r                                   | 36.355 | 143.85     |       |
| C16r–C17n.1n                                   | 36.668 | 145.56     |       |
| C17n.1n–C17n.1r                                | 37.520 | 149.97     |       |
| C17n.2n–C17n.2r                                | 37.907 | 150.13     |       |
| C17n.2r-C17n.3n                                | 37.956 | 150.53     |       |
| C17n.3n–C17r                                   | 38.159 | 151.63     |       |
| C17r–C18n.1n                                   | 38,449 | 152 52     |       |
| C18n 1n–C18n 1r                                | 39.554 | 160.28     |       |
| C18n 1r_C18n 2n                                | 39 602 | 160.20     |       |
| C19n 2n C19r                                   | 10 004 | 162 40     |       |
|                                                | 40.084 | 103.00     |       |
|                                                | 41.358 | 175.46     |       |
|                                                | 41.510 | 1/5.58     |       |
| CT9r-C20n                                      | 42.536 | 180.01     |       |
| C20n–C20r                                      | 43.789 | 182.23     |       |

|                                                  | Age   | Depth      | Error |
|--------------------------------------------------|-------|------------|-------|
| Event                                            | (Ma)  | CCSF-A (m) | (m)   |
| Nannofossils                                     |       |            |       |
| B Sphenolithus disbelemnos                       | 22.8  | 20.63      | 0.75  |
| T Sphenolithus delphix                           | 23.1  | 23.06      | 0.19  |
| B Sphenolithus delphix                           | 23.2  | 23.31      | 0.06  |
| T Sphenolithus ciperoensis                       | 24.4  | 42.52      | 0.75  |
| X T. longus/T. carinatus                         | 24.7  | 35.61      | 0.16  |
| Tc Cyclicargolithus abisectus                    | 24.7  | 33.29      | 0.75  |
| T Sphenolithus distentus                         | 26.8  | 48.75      | 0.75  |
| Sphenolithus predistentus                        | 26.9  | 50.25      | 0.75  |
| B Sphenolithus ciperoensis                       | 27.1  | 52.50      | 1.50  |
| Sphanolithus distantus                           | 20.0  | 05.95      | 0.75  |
| T Raticulofanastra umbilicus                     | 30.0  | 110 /5     | 0.73  |
| T Coccolithus formosus                           | 32.0  | 172.45     | 0.75  |
| T Discoaster sainanensis                         | 34.4  | 136.00     | 0.35  |
| T Chiasmolithus arandis                          | 37.1  | 150.00     | 0.80  |
| B Dictvococcites bisectus                        | 38.0  | 158.38     | 0.75  |
| T Chiasmolithus solitus                          | 40.4  | 166.18     | 0.75  |
| T Nannotetrina                                   | 42.3  | 179.26     | 0.53  |
| B Reticulofenestra umbilicus >14 µm              | 42.5  | 180.95     | 0.62  |
| T Nannotetrina fulgens                           | 43.4  | 184.82     | 0.37  |
| B Nannotetrina fulgens                           | 46.8  | 200.29     | 0.63  |
| B Sphenolithus furcatolithoides                  | 45.8  | 201.19     | 0.26  |
| B Nannotetrina                                   | 48.0  | 201.19     | 0.26  |
| Radiolarians                                     |       |            |       |
| B Stichocorys delmontensis                       | 20.68 | 8.71       | 1.50  |
| T Theocyrtis annosa                              | 21.38 | 12.39      | 2.19  |
| B Calocycletta virginis                          | 21.39 | 12.39      | 2.19  |
| T Eucyrtidium mitodes                            | 21.95 | 17.22      | 1.50  |
| B Cyrtocapsella cornuta                          | 22.26 | 20.99      | 2.26  |
| B Cyrtocapsella tetrapera                        | 22.35 | 20.99      | 2.26  |
| T Antopriormis gracilis                          | 22.02 | 20.99      | 2.20  |
| T Liriospyris longicornuta                       | 22.90 | 27.41      | 1 50  |
| T Acrocubus octonylus                            | 24.12 | 33 56      | 2 16  |
| T / vchnocanoma anodora                          | 24.5  | 33.56      | 2.16  |
| B Liriospyris longicornuta                       | 25.29 | 40.64      | 1.50  |
| B Dorcadospyris scambos                          | 25.33 | 40.64      | 1.50  |
| T Dorcadospyris circulus                         | 26.17 | 43.66      | 1.52  |
| T Eucyrtidium plesiodiaphanes                    | 26.4  | 53.41      | 2.05  |
| T Lithocyclia angusta                            | 27.68 | 62.71      | 1.50  |
| T Theocyrtis setanios                            | 28.21 | 65.62      | 1.41  |
| B Theocyrtis annosa                              | 28.33 | 75.80      | 2.05  |
| Tristylospyris triceros > Dorcadospyris ateuchus | 28.60 | 75.80      | 2.05  |
| B Eucyrtidium mitodes                            | 29.41 | 83.77      | 1.50  |
| B Dorcadospyris circulus                         | 29.96 | 95.79      | 1.50  |
| T Theocyrtis tuberosa                            | 30.13 | 102.70     | 1.10  |
| T Lithocyclia crux                               | 30.13 | 102.70     | 1.10  |
| B Eucyrtidium plesiodiaphanes                    | 30.37 | 102.70     | 1.10  |
| B Dorcadospyris spinosa                          | 30.84 | 117.73     | 1.50  |
| T Dorcaaospyris pseudopapiilio                   | 30.84 | 117.73     | 1.50  |
| T Lithogyclig gristotolis gr                     | 22 51 | 119.30     | 0.30  |
| T Calocyclus hispida                             | 33.51 | 134.12     | 0.20  |
| T Cryptocarnium ornatum                          | 33.62 | 133.56     | 0.20  |
| T Lophocyrtis hadra                              | 33.75 | 134.68     | 0.17  |
| T Lychnocanoma amphitrite                        | 33.75 | 134.12     | 0.26  |
| T Lychnocanoma babylonis                         | 33.75 | 134.75     | 0.24  |
| Lithocyclia aristotelis > Lithocyclia angusta    | 33.82 | 134.44     | 0.07  |
| B Lithocyclia angusta                            | 34.13 | 135.36     | 0.36  |
| T Cryptocarpium azyx                             | 35.07 | 136.71     | 0.99  |
| T Thyrsocyrtis tetracantha                       | 35.30 | 137.88     | 0.19  |
|                                                  |       | 157100     |       |
| B Lophocyrtis hadra                              | 35.34 | 137.29     | 0.12  |



## Table T33 (continued).

|                                       | Age   | Depth      | Error |
|---------------------------------------|-------|------------|-------|
| Event                                 | (Ma)  | CCSF-A (m) | (m)   |
| B Lophocyrtis jacchia                 | 37.06 | 145.87     | 1.50  |
| B Cryptocarpium azyx                  | 37.52 | 149.54     | 2.17  |
| T Dorcadospyris anastasis             | 38.45 | 152.84     | 1.13  |
| B Calocyclas turris                   | 38.67 | 152.84     | 1.13  |
| B Lithocyclia aristotelis group       | 39.73 | 158.43     | 2.04  |
| B Podocyrtis goetheana                | 40.16 | 164.58     | 1.50  |
| T Lophocyrtis biaurita                | 40.36 | 171.55     | 1.14  |
| T Podocyrtis trachodes                | 41.23 | 174.18     | 1.49  |
| B Cryptocarpium ornatum               | 42.10 | 177.74     | 2.05  |
| B Sethochytris triconiscus            | 42.40 | 180.24     | 0.45  |
| T Eusyringium lagena                  | 42.69 | 182.61     | 1.92  |
| B Theocyrtis perpumila                | 42.97 | 182.61     | 1.92  |
| Podocyrtis sinuosa > Podocyrtis mitra | 43.84 | 187.78     | 2.60  |

| Event                                | Age<br>(Ma) | Depth<br>CCSF-A (m) | Error<br>(m) |
|--------------------------------------|-------------|---------------------|--------------|
| T Podocyrtis phyxis                  | 44.44       | 192.00              | 1.63         |
| B P. ampla                           | 44.77       | 192.00              | 1.63         |
| Podocyrtis phyxis > Podocyrtis ampla | 44.77       | 192.00              | 1.63         |
| Foraminifers                         |             |                     |              |
| B Paragloborotalia kugleri           | 23.0        | 19.15               | 4.10         |
| B Paragloborotalia pseudokugleri     | 25.2        | 26.53               | 0.66         |
| T Paragloborotalia opima             | 26.9        | 54.96               | 1.62         |
| B Globigerina angulisuturalis        | 29.2        | 79.16               | 5.40         |
| T Subbotina angiporoides             | 29.8        | 86.52               | 0.94         |
| T Turborotalia ampliapertura         | 30.3        | 83.15               | 6.38         |
| B Paragloborotalia opima             | 30.8        | 101.25              | 1.50         |

Note: B = bottom, T = top, X = abundance crossover, Tc = top common.

## Table T34. Results from APCT-3 temperature profiles, Hole U1333B. (See table notes.)

|             | Temperature (°C)         |                             |                     |                                |                                               |
|-------------|--------------------------|-----------------------------|---------------------|--------------------------------|-----------------------------------------------|
| Core        | Average<br>at<br>mudline | Minimum<br>above<br>mudline | Depth<br>DSF<br>(m) | In situ<br>temperature<br>(°C) | Thermal<br>resistance<br>(m <sup>2</sup> K/m) |
| 320-U1333B- |                          |                             |                     |                                |                                               |
| 3H          | 1.516                    | 1.442                       | 26.7                | 2.52                           | 28.1                                          |
| 5H          | 1.622                    | 1.450                       | 45.7                | 3.43                           | 44.3                                          |
| 7H          | 1.516                    | 1.441                       | 64.7                | 4.05                           | 60.2                                          |
| 9H          | 1.509                    | 1.436                       | 83.7                | 4.55                           | 75.5                                          |
| Average:    | 1.541                    | 1.442                       |                     |                                |                                               |

Notes: In situ temperatures were determined using the TP-Fit software by Martin Heesemann. Thermal resistance was calculated from thermal conductivity data (see "Physical properties") corrected for in situ conditions (see "Downhole measurements" in the "Methods" chapter).

