Data report: middle Miocene to Pliocene planktonic foraminiferal biostratigraphy of the northern part of the Shikoku Basin, IODP Expedition 322 Site C0012

Hiroki Hayashi, Kazuki Yamashita, Pawan Govil, Yuki Idehara, Takayuki Tanaka, and Hiroshi Nishi

Abstract

Planktonic foraminifers collected from Site C0012 drilled during Integrated Ocean Drilling Program Expedition 322 in the northern part of the Shikoku Basin, northwestern Pacific Ocean, were examined to establish a reference biostratigraphy of the Nankai Trough Seismogenic Zone. With the exception of several barren intervals, planktonic foraminifers are present throughout the cores at the studied site. Nineteen biohorizons are recognized at the studied site. Among these, four biohorizons are refined and fifteen are newly detected after the onboard study. The studied sequence correlates with Zones M7 to PL4, ranging in age from middle Miocene to Pliocene. A new age-depth plot of the studied site is presented on the basis of foraminiferal data from this study combined with nannofossil biohorizons determined by the onboard study.

Introduction

The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) was designed for the comprehensive understanding of the repeated mega-earthquake zone along the subduction boundary of the Philippine Sea Plate. Integrated Ocean Drilling Program (IODP) Expedition 322 is a part of the second stage of the NanTroSEIZE project. One of the main purposes of the expedition was to characterize incoming sediment and the upper igneous basement prior to their arrival at the subduction front of the Nankai Trough (see the “Expedition 322 summary” chapter [Underwood et al., 2010]). During the expedition, the R/V Chikyu drilled at Sites C0011 and C0012 in the northern part of the Shikoku Basin in the northwest Pacific Ocean. Site C0012 (32°44.888′N, 136°55.024′E, 3510.7 m water depth) is located near the crest of a prominent basement high known as Kashinosaki Knoll (Fig. F1). At this site, ocean floor sediment and igneous basement rocks were recovered with a rotary core barrel (RCB) system from 60–537.81 and 537.81–576 m coring depth below seafloor (CSF-A), respectively. The uppermost 60 m of sediment was jetted and therefore was not collected. The recovered sediment is mainly composed of hemipelagic claystone to siltstone with many intercalating volcanic and sand layers.

The reconstruction of the detailed deformation process of the Nankai Seismogenic Zone requires a combined stratigraphic ap-
proach that includes biostratigraphic methods. According to results of the first stage of NanTroSEIZE, sediment from the Pliocene to late Miocene accretionary complex of the subduction zone bears calcareous microfossils including planktonic foraminifers (Ashi et al., 2009; Hayashi et al., 2011). The sediment composing the accretionary prism was originally deposited as continuous ocean-floor sediment of the Shikoku Basin. The onboard study (see the “Site C0012” chapter [Expedition 322 Scientists, 2010]) revealed that the Pliocene to middle Miocene interval of Site C0012 yields planktonic foraminiferal fossils. Therefore, this site has a good potential for establishing a standard biostratigraphy for the middle to late Miocene interval of the Nankai Seismogenic Zone. Thus, the purpose of this study is to construct a planktonic foraminiferal biostratigraphy of Site C0012 as a reference biostratigraphy for the NanTroSEIZE project.

Methods and materials

Samples used for this research were collected from Hole C0012A at an interval of 1–2 samples per core. We treated 51 samples ranging in age from middle Miocene to Pliocene. The stratigraphy of the studied site is divided into seven units; Unit I (0.0–150.86 m CSF-A) is upper Shikoku Basin deposits mainly composed of hemipelagic silty clay to silty claystone with thin interbeds of volcanic ash. Unit II (150.86–219.81 m CSF-A) is middle Shikoku Basin deposits consisting of silty claystone alternating with volcanic sandstone. Unit III (219.81–331.81 m CSF-A) is lower Shikoku Basin hemipelagites characterized by bioturbated silty claystone. Unit IV (331.81–418.29 m CSF-A) is lower Shikoku Basin turbidites consisting of alternations of silty claystone, clayey siltstone, and siltstone. Unit V (415.58–528.51 m CSF-A) is volcaniclastic-rich sediment composed of silty claystone alternating with tuff. Unit VI (528.51–537.81 m CSF-A) consists of pelagic claystone. Unit VII (537.81 m CSF-A to the bottom) is the Kashinosaki Knoll basement and is mainly composed of basalt. Each microfossil sample was collected from undisturbed hemipelagic sediment from Unit I to Unit VI. Sediment samples of 0.5–1.0 g dry weight were disaggregated through the sodium tetraphenylborate method (Hanken, 1979). After the samples became macerated, each was wet-sieved through a 63 µm screen. Dried residues were then divided into suitable volumes yielding around 200 planktonic foraminiferal specimens with the use of a sample splitter. Planktonic foraminiferal specimens larger than 125 µm were picked up under a binocular microscope. Scanning electron microphotographs of selected index species were obtained with a JCM-5000 (JEOL Co. Ltd., Japan). To calculate foraminiferal flux (number/cm²/k.y.), we used the onboard data set of dry density and accumulation rate (see the “Site C0012” chapter [Expedition 322 Scientists, 2010]).

The quality of each biohorizon was determined on the basis of the criteria of Hayashi et al. (2013) as follows (Fig. F2):

- Quality A = biohorizons recognized by continuous occurrences above their lowest occurrence and below their highest occurrence.
- Quality B = biohorizons showing discontinuous occurrence above their lowest occurrence and below their highest occurrence.
- Quality C = biohorizons characterized by both rare and sporadic occurrences of the marker taxa.

Taxonomic names in this study generally follow Wade et al. (2011) and Hayashi et al. (2013) except for Paragloborotalia siakensis. This species has previously been regarded as a junior synonym of Paragloborotalia mayeri by many workers (e.g., Bolli and Saunders, 1982). On the basis of scanning electron microphotographs of both holotypes newly redrawn by Zachariasse and Sudijono (2012), we identified all of our specimens as P. siakensis rather than P. mayeri.

We used the planktonic foraminiferal zonation defined by Berggren et al. (1995) and revised by Wade et al. (2011). The astronomically tuned timetable of planktonic foraminiferal biohorizons in the current timescale (ATNTS2004; Lourens et al., 2004) has been revised in part by Wade et al. (2011). Independent of this, Tian et al. (2008) presented an astronomically tuned timescale over the past 23 Ma at Ocean Drilling Program (ODP) Site 1148 in the South China Sea. We considered both ages for biohorizons of this study.

Results

With the exception of several barren interval, 72 taxa belonging to 20 genera of planktonic foraminifers were detected at Site C0012 (Table T1). Fossil preservation is generally moderate to poor. In particular, sediment from the lower part of Unit II to the upper part of Unit III has very rare occurrences of the marker taxa. With the exception of several barren interval, 72 taxa belonging to 20 genera of planktonic foraminifers were detected at Site C0012 (Table T1). Fossil preservation is generally moderate to poor. In particular, sediment from the lower part of Unit II to the upper part of Unit III has very rare occurrences of planktonic foraminifers with poor preservation and barren intervals (Table T1; Fig. F3). These barren samples contain only thick-walled benthic foraminifers with surfaces disfigured by dissolution. Therefore, the rare occurrences and barren intervals might be the results of dissolution processes beneath the carbonate compensation depth.

A total of 19 biohorizons were recognized in this study (Table T2). During the onboard preliminary
observation, five biohorizons were reported from CC samples (see the “Site C0012” chapter [Expedition 322 Scientists, 2010]). Among them, the lowest biohorizon, characterized by the first occurrence of *Orbulina universa*, should be disregarded because our study detected a younger biohorizon marked by the first occurrence of *Fohsella peripheroacuta* below this horizon. Other four biohorizons (8, 10, 14, and 17 of Table T2) were redefined after examination of section samples in this study.

The last occurrences of *Dentoglobigerina altispira altispira* (the base of Zone PL5) and *Sphaeroidelliopsis seminulina* sensu lato (the base of Zone PL4) should be located above Sample 322-C0012A-2R-4, 0.0–8.0 cm (64.54 m CSF-A). *Globorotalia plesiotumida* sparsely occur and the last occurrence of this species is estimated to be above Sample 3R-1, 60.0–68.0 cm (70.14 m CSF-A). The last occurrence of *Globoturborotalita nepentes* (the base of Zone PL2) is clearly between Samples 3R-1, 60.0–68.0 cm (70.14 m CSF-A), and 4R-1, 50.0–58.0 cm (79.54 m CSF-A). The zonal maker species *Globorotalia tumida* appears in two samples, with the first occurrence (the base of Zone PL1a) recognized between Samples 4R-1, 50.0–58.0 cm (79.54 m CSF-A), and 5R-4, 50.0–58.0 cm (93.54 m CSF-A). Only one specimens of *Hirsutella margaritae* was detected in this study from Sample 10R-5, 60.0–68.0 cm (137.14 m CSF-A). However, this species was also observed in Samples 4R-CC, 14.0–19.0 cm (80.79 m CSF-A), and 7R-CC, 10.0–15.0 cm (107.95 m CSF-A) during the onboard study (see the “Site C0012” chapter [Expedition 322 Scientists, 2010]). Therefore, the first occurrence of this species is suggested to be below Sample 10R-5, 60.0–68.0 cm. *Globorotalia lenguansis*, the zonal marker of the base of Zone M14, was found in Sample 9R-1, 42.0–50.0 cm. Considering the sporadic occurrence of this species reported during the onboard study (see the “Site C0012” chapter [Expedition 322 Scientists, 2010]), the last occurrence of this species is implied to be above Sample 9R-1, 42.0–50.0 cm (121.46 m CSF-A). *Globorotalioidea congobatus* was recognized from Samples 4R-CC, 14.0–19.0 cm (80.79 m CSF-A), and 6R-CC, 10.5–15.5 cm (101.845 m CSF-A) during the onboard study (see the “Site C0012” chapter [Expedition 322 Scientists, 2010]). In this study, however, we detected only one individual of this species in Sample 4R-1, 50.0–58.0 cm (79.54 m CSF-A). Thus the first occurrence of this species should be located below Sample 6R-CC, 10.5–15.5 cm (101.845 m CSF-A). The dominant coiling direction of *Neoglobopuadrina acostaensis* switches from sinistral to dextral between Samples 11R-5, 74.0–82.0 cm (146.78 m CSF-A), and 11R-7, 46.0–54.0 cm (149.50 m CSF-A). The first occurrence of *G. plesiotta-
required to clarify the reason of the discrepancy in this region.

Figure F3 represents the age-depth plot of Site C0012 using biohorizons of calcareous nannofossils (see the “Site C0012” chapter [Expedition 322 Scientists, 2010]) and planktonic foraminifers (this study). The results indicate that foraminiferal biohorizons of this study generally are consistent with the calcareous nannofossil data. In particular, comparison of the two different timetables reveals that biohorizons of the study by Tian et al. (2008) are more concordant with calcareous nannofossil data than those of the study by Wade et al. (2011) (Fig. F3). This result can be explained by the difference in ecological provinces: Tian et al. (2008) constructed their astronomically tuned timescale by using sites in the South China Sea, approximately 2300 km southwest of Site C0012, whereas that of Wade et al. (2011) is mainly based on Atlantic sites (ODP Sites 925 and 926) and eastern equatorial Pacific sites (ODP Legs 111 and 138). Among these biohorizons, the last occurrences of *G. dehiscens* and *F. peripheroronda* have been previously reported as diachronous around the Japanese Islands. Motoyama et al. (2004) mentioned that the age of the last occurrence of *G. dehiscens* was estimated at approximately 8.4–9.6 Ma at ODP Leg 186 in the Sanraku forearc basin in northeastern Japan. The last occurrence of *F. peripheroronda* was numerically determined as 13.0 Ma by biotite K-Ar ages in the Karasuyama area in the central part of the Honshu Island (Hayashi and Takahashi, 2002). The precise understanding of diachronous biohorizons around Japan requires further studies.

Faunal references

Biorbulina bilobata (d’Orbigny), 1846, p. 164, pl. 9, figs. 11–14.

*Cataphysax unicus*us Bolli, Loeblich, and Tappan, 1957, p. 37, pl. 7, figs. 9a–9c.

Dentoglobigerina altispira altispira (Cushman and Jarvis), 1936, p. 5, pl. 1, figs. 13a–13c; Pl. P1, fig. 1.

Dentoglobigerina altispira globosa (Bolli), 1957, p. 111, pl. 24, figs. 9a–10c.

Fohsella peripheroronda (Blow and Banner), 1966, p. 294, pl. P1, figs. 2a–2c.

Fohsella peripheroronda (Blow and Banner), 1966, p. 294, pl. 1, figs. 1a–1c.

Globigerina angustiambulicata Bolli, 1957, p. 109, pl. 22, figs. 12a–13c.

Globigerina bulboides d’Orbigny, 1826; Banner and Blow, 1960, pl. 1, figs. 1–4.

Globigerina falconensis Blow, 1959, p. 177, pl. 9, figs. 40a–40c, 41.

Globigerina praebulloides Blow, 1959, p. 180, pl. 8, figs. 47a–47c; pl. 9, fig. 48.

Globigerina pseudociperoensis Blow, 1969, p. 381, pl. 17, figs. 8, 9.

Globigerinella obesa (Bolli), 1957, p. 119, pl. 29, figs. 2a, 3.

Globigerinella siphonifera (d’Orbigny), 1839, p. 83, pl. 4, figs. 15–18; Banner and Blow, 1960, p. 22–23, figs. 2a–2c.

Globigerinita glutinata (Egger), 1893, p. 371, pl. 13, figs. 19–21.

Globigerinita uvula (Ehrenberg), 1861, pl. 2, figs. 24–25.

Globigerinoides bollii Blow, 1959, p. 189, pl. 10, figs. 65a–65c.

Globigerinoides conglobatus (Brady), 1879, p. 28; Brady, 1884, pl. 80, figs. 1–5.

Globigerinoides quadrilobatus (d’Orbigny), 1846, p. 164, pl. 9, figs. 7–10.

Globigerinoides ruber (d’Orbigny), 1839, p. 82, pl. 4, figs. 12–14.

Globigerinoides sacculifer (Brady), 1877, p. 535; Brady, 1884, pl. 80, figs. 11–17.

*Globigerinoides subquadrate*us Brönnimann, 1954, p. 680, pl. 1, figs. 8a–8c; Pl. P1, fig. 3.

Globigerinoides trilobus (Reuss), 1850, p. 374, pl. 447, figs. 11a–11c.

Globoconella conoides (Walters), 1965, p. 124, figs. 8i–8m.

Globoconella conomiozea (Kennett), 1966, p. 235, figs. 10a–10c.

Globoconella miozea (Finlay), 1939, p. 326, pl. 29, figs. 159–161.

Globoconella sphericomiozae (Walters), 1965, p. 126, figs. 8n–8s.

Globoquadrina baroemoenensis (LeRoy), 1939, p. 263, pl. 6, figs. 1–2.

Globoquadrina dehiscens (Chapman, Parr and Collins), 1934, p. 569, pl. 11, figs. 36a–36c; Pl. P1, fig. 5.

Globoquadrina venezuelana (Hedberg), 1937, p. 681, pl. 92, fig. 72b.

Globorotalia adamantae Saito, 1963, p. 173, pl. 54, figs. 4a–5c.

Globorotalia bykovae (Aisenstat), in Subbotina et al. (1960), p. 69, pl. 13, figs. 7a–8b.

Globorotalia iwaiensis Takayanagi and Oda, in Takayanagi et al. (1976), p. 376, pl. 1, figs. 2a–2c, 3a–3c.

*Globorotalia linguens*is Bolli, 1957, p. 120, pl. 29, figs. 5a–5c.

Globorotalia pleisiotumida Blow and Banner, 1965, p. 1353, figs. 2a–2c.

Globorotalia rikuchensis Takayanagi and Oda, in Takayanagi et al. (1976), p. 372, pl. 1, figs. 4a–4d, 5a–5c.

Globorotalia tumida (Brady), 1877, p. 535; Brady, 1884, pl. 103, figs. 4–6.; Pl. P1, figs. 4a–4c.

Globoturborotalita decoraperta (Takayanagi and Saito), 1962, p. 85, pl. 28, figs. 10a–10c.

Globoturborotalita druyi (Akers), 1955, p. 654, pl. 65, fig. 1.

Globoturborotalita extremus (Bolli and Bermúdez), 1965, p. 139, pl. 1, figs. 10–12.

Globoturborotalita nepentes (Toddi), 1957, p. 301, figs. 7a–7b; Pl. P1, fig. 6.
Globoturborotalita obliquus (Bolli), 1957, p. 113, pl. 25, figs. 10a–10c.
Globoturborotalita woodi (Jenkins), 1960, p. 352, pl. 2, figs. 2a–2c.
Hirsutella margaritae (Bolli and Bermúdez), 1965, p. 139, pl. 1, figs. 16–18; Bolli and Bermúdez, 1978, p. 138, pl. 1, figs. 1–9.
Hirsutella praemargaritae (Catalano and Sprovieri), 1969, p. 523, pl. 1, figs. 5a–5c.
Hirsutella praescitula (Blow), 1959, p. 221, pl. 19, figs. 128a–128c.
Hirsutella scitula (Brady), 1882, p. 716; Banner and Blow, 1960, pt. 1, p. 27, pl. 5, fig. 5.
Menardella archeomenardii (Bolli), 1957, p. 119, pl. 28, figs. 11a–11c.
Menardella menardii (Parker, Jones and Brady), 1865, Pt. XII Menardella praemenardii (Cushman and Stainforth), 1945, p. 70, pl. 13, figs. 14a–14c.
Neogloboquadrina acostaensis (Blow), 1959, p. 208, pl. 17, figs. 106a–106c; Pl. P1, figs. 7a–7b.
Neogloboquadrina acostaensia (Schwager), 1866, p. 255, pl. 7, fig. 113; Banner and Blow, 1960, p. 7, pl. 2, fig. 3.
Neogloboquadrina continua (Blow), 1959, p. 218, pl. 19, figs. 125a–125c.
Neogloboquadrina dutertri (d’Orbigny), 1839, p. 84, pl. 4, figs. 19–21; Banner and Blow, 1960, pt. 1, pl. 2, fig. 1.
Neogloboquadrina humerosa (Takayanagi and Saito), 1962, p. 78, figs. 1a–2b.
Neogloboquadrina incompta (Cifelli), 1961, p. 83, pl. 4, figs. 1–7.
Neogloboquadrina kagaensis (Maiya, Saito and Sato), 1976, p. 409, pl. 3, figs. 4a–4b, 5, 6a–6c.
Neogloboquadrina pachyderma (Ehrenberg), 1861, p. 276; Banner and Blow, 1960, pt. 1, p. 4, pl. 3, figs. 4a–4c.
Neogloboquadrina praetropicalis Foresi, Iacarino and Salvatorini, 2002, p. 327, pl. 1, figs. 1–13; pl. 2, figs. 1–12.
Neogloboquadrina praehumerosa (Natori), 1976, p. 232, pl. 2, figs. 1a–1c, 3a–3c.
Neogloboquadrina pseudopachyderma (Cita, Premoli-Silva and Rossi), 1965, p. 233, pl. 20, figs. 3a–3c, 4a–3c, 6; pl. 31, figs. 6a–6c.
Orbulina suturalis Brönnimann, 1951, pt. 4, p. 135, Text fig. IV, figs. 15, 16, 20.
Orbulina universa d’Orbigny, 1839, p. 3, pl. 1, fig. 1.
Paragloborotalia siakensis (LeRoy), 1939, p. 262, pl. 4, figs. 20–22; Pl. P1, figs. 8a–8b; holotype redrawn by Zachariae and Sudijono, 2012, p. 161, fig. 5.
Pulleniatina primalis Banner and Blow, 1967, p. 142, pl. 1, figs. 2a–2c.
Sphaeroidinellopsis disjuncta Finlay, 1940, p. 467, pl. 67, figs. 224–228.
Sphaeroidinellopsis seminulina (Schwager), 1866, p. 256, pl. 7, fig. 112; Pl. P1, figs. 9a–9b.
Sphaeroeliodinella subdehiscens (Blow), 1959, p. 195, pl. 12, figs. 71a–72; Banner and Blow, 1960, p. 15, figs. 5a–5c.
Tenuitella clemenciae (Bermúdez), 1961, p. 1321, pl. 17, fig. 10.
Tenuitella minutissima (Bolli), 1957, p. 119, pl. 29, fig. 1.
Turborotalita quinqueloba (Natland), 1938, p. 149, pl. 6, figs. 7a–7c.

Acknowledgments

This research used samples provided by the Integrated Ocean Drilling Program (IODP). We would like to express our appreciation to the members of the NanTroSEIZE project for their valuable discussions and helpful encouragements. This study was funded by Grants-in-Aid 23740377 from the Japan Society for the Promotion of Science. Figure F1 was produced by GMT software developed by Wessel and Smith (1991).

References

H. Hayashi et al.

Data report: middle miocene to pliocene planktonic foraminifers

d’Orbigny, A., 1846. Foraminifères Fossiles du Bassin Tertiaire de Vienne (Autriche): Paris (Gide et Comp.) http://gallica.bnf.fr/ark:/12148/bpt6k97267b

Initial receipt: 6 June 2012
Acceptance: 22 September 2014
Publication: 12 December 2014
MS 322-206
Figure F1. Map showing Site C0012 with previous Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program sites in and around Nankai Trough in the northwestern Pacific Ocean.
Figure F2. Schematic illustration of quality criterion (A–C) of biohorizons (partly modified after Hayashi et al., 2013). LO = last occurrence, FO = first occurrence.
Figure F3. Age-depth plot for Site C0012 and depth plots of planktonic foraminiferal (PF) flux, benthic foraminiferal (BF) flux, and planktonic/total foraminiferal (P/T) ratio. Planktonic foraminiferal biohorizons are plotted on the basis of Wade et al. (2011) and Tian et al. (2008) timescales. Nannofossil data are quoted from the onboard data (see the “Site C0012” chapter [Expedition 322 Scientists, 2010]). Biohorizon numbers are defined in Table T2.
Table T1. Stratigraphic distribution of planktonic foraminiferal species, Hole C0012A. This table is available in an oversized format.

<table>
<thead>
<tr>
<th>Event (base of zone)</th>
<th>Age BW/11 (Ma)</th>
<th>Age TJ08 (Ma)</th>
<th>Top, core, section, interval (cm)</th>
<th>Depth CSF-A (m)</th>
<th>Bottom, core, section, interval (cm)</th>
<th>Bottom depth CSF-A (m)</th>
<th>Mean depth CSF-A (m)</th>
<th>Range (±m)</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO Dentoglobigerina altispira altispira (PL5)</td>
<td>3.47</td>
<td>3.18</td>
<td>2R-4, 0.0–8.0</td>
<td>64.54</td>
<td>64.54</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO Sphaeroidinellopsis seminulina sensu lato (PL4)</td>
<td>3.59</td>
<td>—</td>
<td>2R-4, 0.0–8.0</td>
<td>64.54</td>
<td>64.54</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO Globorotalia plesiutumida</td>
<td>3.77</td>
<td>—</td>
<td>3R-1, 60.0–68.0</td>
<td>70.14</td>
<td>70.14</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO Globoturborotalita nepenthes (PL2)</td>
<td>4.37</td>
<td>4.43</td>
<td>4R-1, 50.0–58.0</td>
<td>79.54</td>
<td>79.54</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO Globorotalia tumida (PL1a)</td>
<td>5.57</td>
<td>5.77</td>
<td>4R-1, 50.0–58.0</td>
<td>79.54</td>
<td>79.54</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO Hirsutella mangantha</td>
<td>6.08</td>
<td>10R-5, 60.0–68.0</td>
<td>137.14</td>
<td>—</td>
<td>—</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO Globorotalia lenticularis (M14)</td>
<td>6.13</td>
<td>—</td>
<td>9R-1, 42.0–50.0</td>
<td>121.46</td>
<td>121.46</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO Globigerinoides conglobatus</td>
<td>6.20</td>
<td>6R-CC, 10.5–15.5</td>
<td>101.85</td>
<td>—</td>
<td>—</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StoD Neogloboquadrina acostaensis</td>
<td>6.34</td>
<td>11R-5, 74.0–82.0</td>
<td>146.78</td>
<td>149.50</td>
<td>148.14</td>
<td>1.36</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO Globorotalia plesiutumida (M13a)</td>
<td>8.58</td>
<td>21R-4, 40.0–48.0</td>
<td>239.64</td>
<td>247.60</td>
<td>243.62</td>
<td>3.98</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO Globoturborotalita extremus</td>
<td>8.93</td>
<td>—</td>
<td>16R-4, 70.0–78.0</td>
<td>192.74</td>
<td>192.74</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO Globoquadrina dehiscens</td>
<td>5.92</td>
<td>10.26</td>
<td>24R-4, 52.0–60.0</td>
<td>268.26</td>
<td>273.27</td>
<td>2.51</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO Neogloboquadrina acostaensis (M13a)</td>
<td>9.83</td>
<td>10.50</td>
<td>26R-2, 68.0–76.0</td>
<td>284.42</td>
<td>284.42</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO Paragloborotalia siakensis (M12)</td>
<td>10.46</td>
<td>11.50</td>
<td>25R-1, 53.0–61.0</td>
<td>273.27</td>
<td>279.42</td>
<td>3.08</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO Globoturborotalita decoraperta</td>
<td>11.49</td>
<td>26R-2, 68.0–76.0</td>
<td>284.42</td>
<td>—</td>
<td>—</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO Globigerinoides subquadratus</td>
<td>11.54</td>
<td>27R-3, 38.0–46.0</td>
<td>295.12</td>
<td>300.01</td>
<td>297.57</td>
<td>2.44</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO Globoturborotalita nepenthes (M11)</td>
<td>11.63</td>
<td>12.13</td>
<td>31R-5, 74.0–82.0</td>
<td>336.48</td>
<td>336.48</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO Fohsella peripheroacuta</td>
<td>13.80</td>
<td>—</td>
<td>37R-1, 35.0–43.0</td>
<td>385.89</td>
<td>385.89</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO Fohsella peripheroronda (M7)</td>
<td>14.24</td>
<td>50R-3, 70.0–78.0</td>
<td>512.74</td>
<td>385.89</td>
<td>385.89</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BW11 = Wade et al. (2011), TJ08 = Tian et al. (2008). FO = first occurrence, LO = last occurrence, StoD = coiling direction change from sinistral to dextral.
Plate P1. 1. *Dentoglobigerina altispira altispira* (Cushman and Jarvis); Sample 322-C0012A-2R-4, 0.0–8.0 cm. 2a–2c. *Fohsella peripheroacuta* (Blow and Banner); Sample 41R-6, 12.0–20.0 cm. 3. *Globigerinoides subquadratus Brönnimann*; Sample 28R-3, 65.0–73.0 cm. 4a–4c. *Glororotalia tumida* (Brady); Sample 2R-4, 0.0–8.0 cm. 5. *Globorugina dehiscens* (Chapman, Parr and Collins); Sample 44R-3, 92.0–100.0 cm. 6. *Globoturborotalita nepenthes* (Todd); Sample 7R-3, 60.0–68.0 cm. 7a–7b. *Neogloboquadrina acostaensis* (Blow); Sample 10R-6, 60.0–68.0 cm. 8a–8b. *Paragloborotalia siakensis* (LeRoy); Sample 31R-5, 74.0–82.0 cm. 9a–9b. *Sphaeroidinellopsis seminulina* (Schwager); Sample 4R-1, 50.0–58.0 cm. Scale bars = 100 µm.