Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Sioturbation Drilling Dist. Visual Core description 0 - section 1 to diahom rich sitt 135 cm 135-146 cm : asht 20 30 section 8-50 cm to section 4. 10 cm: 40 50 Section 4-10cm to section 4 150cm = diatom x sections top-diaton silt 60 @ owh layer Secto 6 (130-134 cm 70 gas expandinh clades 80 90 100 125 a Sossil remains + class 110 120 Section 6.94 cm 130 140

VI339 C DH Section Top Depth

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Visual Core description Drich silt Dkgransh grag

Drock dangrey

grane - Scc 6

plan.

ash mothes 20 30 40 50 60 70 80 90 100 110 120 130 140

\/	

Expedition 323
Bering Sea

		Bering Sea			ories	Ma	jor Li	thology	Minor Lithology
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Samples	Visual Core description	
10 20 30 40 50 60 70 80 90 110 110 120 130 140		564 1041 401 401 401	98-120 20-126 G all sare	82. 829 P	TO T		55	Pebble IID pratum si	

Observer: _____ Date: _____

 $\underbrace{\text{$V$B39}}_{\text{Site}} \; \underbrace{\text{C}}_{\text{Hole}} \; \underbrace{\text{IO}}_{\text{Core}} \; \underbrace{\text{3}}_{\text{Section}}$

Expedition 323 Bering Sea Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Lithology Color Visual Core description 10 20 30 40 50 60 Mot 70 80 90 100 10 110 120 130 330 140

> Observer: __ Date:

4	ri.
_	
) (

Expedition 323 Bering Sea

Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Visual Core description 10 20 30 40 50 60 · Draturiousilt 70 80 90 100 110 120 130 140

		1	
		4	
		- 7	
	1		

 $\begin{array}{c|cccc} U1339 & C & 10 & 5 \\ \hline Site & Hole & Core & Section \end{array}$

Expedition 323 Bering Sea Major Lithology Structures/Accessories Minor Lithology Graphic Representation Bioturbation Drilling Dist. Lithology Color Visual Core description 10 20 30 40 50 60 70 80 90 Pet Consusand 100 110 120 130 140

> Observer:_ Date:

1

V1339 C 10 6 Top Depth

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Color Visual Core description 10 20 30 40 50 60 70 80 Pelo 80 90 100 110 127-120 131 DAM 130 -Green as nother MS ONI 140 MMENTUN

Observer: _____ Date: ____

Date:

Expedition 323 Bering Sea Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Visual Core description 10 10-1/ DAM 20 30 40 50 60 70 80 90 100 110 120 130 140

Expedition 323 **Bering Sea** Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Lithology Color Visual Core description 20 30 40 50 60 70 80 90 100 110 120 130 140

Observer: Date:

Leg	Site	Hole	Core	Туре	Sec	Interv Top	ral (cm) Bottom
323	1339	C	10	H	2	111	

Sediment/Rock Name	Diatom Silt	Observer	Okine
-----------------------	-------------	----------	-------

Percent Texture				
Silt	Clay			
90	10			
	Silt			

Percent	Component	
SILIC	ICLASTIC GRAINS/MINERAL	
	Framework minerals	
7		3
23		10
	K-feldspar (Orthoclase, Microcline	
7	∠Rock fragments	3
	Accessory/trace minerals	
	Micas	
	Biotite	
	Muscovite	
	Clay Minerals	
	Chlorite	
	Glauconite	
	Chert	
	Zircon	
2		1
		-
	Authigenic minerals	
	Barite	
	Phosphorite/Apatite	
	Zeolite	_
	Opaque minerals	
	Pyrite	
	Magnetite	
	Fe-oxide	
	Carbonates	
	Calcite	
	Dolomite	
VOLC	ANICLASTIC GRAINS	
13	Crystal grain	
	Vitric grain	
	Lithic grain	

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria Nassellaria
48	
40	Diatoms 20
	Pennate
	Chaetoceros Resting Spores Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others
	1 11

Leg	Site	Hole	Core	Туре	Sec	Interva Top	l (cm) Bottom	
323	1339	C	10	1-1	4	69		

Sediment/Rock
Name

diatom vich site

Observer A A

Percent Texture	
Silt	Clay
90	10

ercent	Component	
SILIC	CICLASTIC GRAINS/MINERAL	
	Framework minerals	
12	Quartz	3
22	Feldspar	17
	K-feldspar (Orthoclase, Microcline)	
	Plagioclase	
	Rock fragments	
	Accessory/trace minerals	
	Micas	
	Biotite	
	Muscovite	
	Clay Minerals	
	Chlorite	
	Glauconite	
	Chert	
	Zircon	
4	Ferromagnesium minerals	/
	A. Mhistoria ania ania anala	
	Authigenic minerals	_
	Barite	
	Phosphorite/Apatite	_
	Zeolite	
	Opaque minerals	
	Pyrite	
4	Magnetite /	_
	Fe-oxide	
	Carbonates	
	Calcite	
	Dolomite	
VOLC	ANICLASTIC GRAINS	
	Crystal grain	
	,	
17	Vitric grain	
1	Lithic grain	_

Percent	Component							
BIOG	ENIC GRAINS							
	Calcareous							
	Foraminifera							
	Planktonic foraminifera							
	Benthic foraminifera							
	Nannofossils							
	Coccoliths							
	Discoasters							
	Pteropods							
	Siliceous							
	Radiolarians							
	Spumellaria							
	Nassellaria							
40	Diatoms 🕷 10							
	Centric							
	Pennate							
	Chaetoceros Resting Spores							
	Silicoflagellates							
	Sponge spicules							
	Dinoflagellates							
	Others							
	Pollen							
	Organic debris							
	Plant debris							
	Ebridians							
	Echinoderm							
	Fish remains (teeth, bones, scales)							
	Bryozoans							
	Bivalves							
	Others							

Leg	Site	Hole	Core	Type	Sec	Interva	I (cm)	
LUg	O.to	11010 0010		The Section of the Section		Sec	Тор	Bottom
323	1339	0	10	H	7	3/		

Sediment/Rock Name	diatom.	0020
		- N. J. J. J. V.

Observer accord

Percent Texture							
Sand	Silt	Clay					
7	00	PAGE.					

Percent	Component
SIL	CICLASTIC GRAINS/MINERAL
	Framework minerals
	Quartz
	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
	✓ Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
_	Crystal grain
	\ P(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Vitric grain
	Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
95	Nassellaria
1962	Diatoms 20
	Centric
	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
XI.	b/
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

 $U1339 \underbrace{C}_{\text{Site}} \underbrace{A1}_{\text{Hole}} \underbrace{I}_{\text{Core}}$ Section Top Depth

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Color Visual Core description 20 30 40 75-85 grad.cont. 50 60 70 80 90 100 115-120 gnot cont. 110 120 189-142 intermixed 130 140

U1338 C 11 2 Site Hole Core Section Top Depth

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Lithology Color Visual Core description 10 20 30 40 50-60 grad kent.
60-63 intermixed destast 50 60 81-89 former b of clasts, angular, light, up to 1cm. 6, dolonise? 70 80 96-100 cracles 100 110 105-145 blue green 120 anolder 130 140

Observer: _______ Date: <u>7/21</u>

 $\underbrace{\textit{U1338}}_{\text{Site}} \; \underbrace{\textit{C}}_{\text{Hole}} \; \underbrace{\textit{A1}}_{\text{Core}} \; \underbrace{\textit{Section}}_{\text{Top Depth}}$

Expedition 323
Bering Sea

	Bering Sea			ories	Ma	jor Li	thology Minor Lithology
	Graphic Representation Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Samples	Visual Core description
10 20 30 40 50 60 70 80 90 100 110 120 130 140			Bio	Stru	IVIQ	Sam	78-84 isolated clash, non to con scale, light, subangular

Observer: ______ Date: 7/21

CM333 C 11 Site Hole Core Section Top Depth

7/21

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Lithology Color Visual Core description 20 30 50-53 g-not cont 40 50 59-62 donle ash filled burrows 65-75 grad. cont. 60 70 80 90 100 110 120-130 intermixed 120 donte only 130 140

 $\frac{11833}{\text{Site}} = \frac{C}{\text{Hole}} = \frac{M}{\text{Core}} = \frac{S}{\text{Section}} = \frac{S}{\text{Top Depth}}$

Date: 7/21

Expedition 323 Bering Sea Minor Lithology Major Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 16 isolated clast 9,5 cm, She bang when 23 slump cont., tilted 20 30 40 50 60 65-75 grad cont 70 80 90 112-116 intermined 100 dente and 110 134-136 slande and layer grad cont 120 130 140

 $\frac{11333}{\text{Site}} = \frac{11}{\text{Hole}} = \frac{6}{\text{Core}} = \frac{1}{\text{Section}} = \frac{1}{\text{Top Depth}}$

Expedition 323
Reging Sea

		Bering Sea			ories	Ma	jor Li	ithology Minor Lithology
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Samples	Visual Core description
10 20 30 40	- And Andrews	72121611	Koram rich	0	S	5/95		2,4 an clark Ash langer, 12-14 dark ash langer, grad. top. sharp base 24 dark ash langer
50	∃ ∃∞₩∞	Stall	C	Pasker	C	WAL		27-28 grad. cont.
60 70 80 90 100 110 120			O'and					36,38,88,108,128 cracks 50-53 internixed darkash B8-104 internixed darkash brumash 0-17 thin bedded, 17-29 thickly laminated whitish green with dark ashes
ı	-1			OI	oserver:	I		Date: 7/21

U1333 C A Core Section Top Depth

Expedition 323 **Bering Sea** Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Leg	Site	Hole	Core	Туре	Sec	Interva Top	l (cm) Bottom
323	V1339	_	1.5	+	1	42	42

Sediment/Rock Name	Diatom ooze	Observer	Kelsie

	Percent Texture	
Sand	Silt	Clay

ercent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
15	Quartz
5	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
2	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
(6)	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
l	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOLC	ANICLASTIC GRAINS
	Crystal grain
5	Vitric grain
	Lithic grain

Percent	Component
BIOG	SENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
	Diatoms
50	Centric
25	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others
41	

Leg	Site	Hole	Core	Туре	Sec	Interva Top	I (cm) Bottom
323	01339	<i>C</i>	11	+	4	90	90

Sediment/Rock Name	Dialon	0020	Observer	Kelsie

	Percent Texture	
Sand	Silt	Clay
- Tania		U.U.
		l

ercent	Component
	CICLASTIC GRAINS/MINERAL
	Framework minerals
5	Quartz
2	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
	Pyrite
	Magnetite
	Fe-oxide
	Carbonatos
	Carbonates Calcite
	Dolomite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
5	Vitric grain
	Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
-	Diatoms
50	Centric
35	Pennate
	Chaetoceros Resting Spores
_	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
1	Bryozoans
	Bivalves
	Others

Leg	Site	Hole	Core	Туре	Sec	Interva	I (cm)
- 3	9,10			1,750		Тор	Bottom
323	1339	(1.1	H	6	19	19

Sediment/Rock Name	Diaton ooze	Observer	Kelsie

	Percent Texture		
Sand	Silt	Clay	

rcent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
2	Quartz
	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
2	Rock fragments metam.
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
-	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
	Solomico
VOL	ANICLASTIC GRAINS
	Crystal grain
	Vitric grain
	Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
20	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
	Diatoms
40	Centric
35	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

Leg	Site	Hole	Core	Туре	Sec	Interva Top	l (cm) Bottom
373	V1339	C	11	14	b	23	23

Sediment/Rock Name Silizoflagellace - bearing

diation porce

Observer Kelsic

Clav	
Clay	

ercent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
2	
(Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
5	Zeolite
	Opaque minerals
	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
10	Vitric grain
	Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
3	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
1	Nassellaria
	Diatoms
40	Centric
35	Pennate
	Chaetoceros Resting Spores
5	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

Leg	Site	Hole	Core	Туре	Sec	Interva Top	l (cm) Bottom
323	1339	-	ĬΙ	14	6	140	140

Sediment/Rock Name

Diation silt

Observer Kelsie

Percent Texture			
Sand	Silt	Clay	
	Ψ.		

ercent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
35	Quartz
10	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
3	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
2	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOLC	ANICLASTIC GRAINS
	Crystal grain
5	Vitric grain
	Lithic grain

	IC GRAINS alcareous Foraminifera Planktonic foraminifera Benthic foraminifera Nannofossils Coccoliths
Ce	Foraminifera Planktonic foraminifera Benthic foraminifera Nannofossils
	Foraminifera Planktonic foraminifera Benthic foraminifera Nannofossils
	Benthic foraminifera Nannofossils
	Nannofossils
	Coccoliths
	Discoasters
1	Pteropods
Sil	liceous
	Radiolarians
	Spumellaria
	Nassellaria
	Diatoms
30	Centric
20	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
Ot	hers
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	<u>Fish remains (teeth, bones, scales)</u>
	Bryozoans
	Bivalves
	Others

 $\frac{11333}{\text{Site}} \quad \frac{C}{\text{Hole}} \quad \frac{12}{\text{Core}} \quad \frac{1}{\text{Section}} \quad \frac{1}{\text{Top Depth}}$

Expedition 323 Bering Sea Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 10 20 30 40 50 blueish greyish molles for 60 70 80 148-125 grad cont.
125-120 south or he land,
128-130 grad cont. 90 100 110 120 147-148 isol-clast, light, well-nouncled, 130 140

Observer: ______ Date: _____

U1339 C 12 C Site Hole Core Section Top Depth

Expedition 323 Bering Sea Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 5-10 grand cont. 20 mobiles, blueish.
grenish nichtes 30 40 50 55-60 grad cont 66-70 u a 68-81 isolated clasts, subange forr, light 60 70 80 90 100 106-115 110 120 130 140

 $U_{\overline{Site}}^{1389} C_{\overline{Dore}}^{2} S_{\overline{Section}}^{3} T_{\overline{DopDepth}}^{3}$

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 20 30 blueish -. Hir. 40 50 isolated gregist laminal 60 70 80 90 100 110 130-135 grad. cont. 120 130 140

Observer: _____ Date: ____

 $\frac{11339}{\text{Site}} \quad \frac{C}{\text{Hole}} \quad \frac{12}{\text{Core}} \quad \frac{4}{\text{Section}} \quad \frac{1}{\text{Top Depth}}$

Date:

Expedition 323 Bering Sea Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Visual Core description 10 20 10-8 shamp cent. 30 40 dade : brownish and 50 60 70 80 90 100 110 120 130 140

Observer: _

 $U_{\frac{1335}{\text{Site}}} C_{\frac{12}{\text{Hole}}} S_{\frac{5}{\text{Core}}} S_{\frac{5}{\text{Section}}} T_{\frac{5}{\text{Top Depth}}}$

Date:

Expedition 323 Bering Sea Major Lithology Structures/Accessories Minor Lithology Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 20 blueish. Hr. brownish ash patche, the 30 40 50 60 70 80 90 100 110 120 130 140

U133 C 12 6 Core Section Top Depth

Date:

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Visual Core description 7-15 intermixed boorsmile and 20 30 40 46-48 isolested clast, Subramded, 3%, 50 60 70 80 90 100 110 120 130 140

 $\underbrace{11839}_{\text{Site}} \quad \underbrace{C}_{\text{Hole}} \quad \underbrace{12}_{\text{Core}} \quad \underbrace{T}_{\text{Section}} \quad \underbrace{Top \, Depth}$

Date:

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Visual Core description 10 ash patches the. 20 30 40 50 60 70 80 90 100 110 120 130 140

 $\frac{U_1333}{\text{Site}}$ $\frac{C}{\text{Hole}}$ $\frac{12}{\text{Core}}$ $\frac{CC}{\text{Section}}$ $\frac{C}{\text{Top Depth}}$

Date:

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 10 Ash patches thr. 20 30 40 50 60 70 80 90 100 110 120 130 140

Leg	Site	Hole	Core	Туре	Sec	Interva Top	, ,
323	V1339	C	12	+4	2	64	Bottom 64

Sediment/Rock Name	Foram-rich	diatom	0026	Observer	Kelsie

Percent Texture			
Sand	Sift	Clay	
- 1		l	

rcent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
8	Quartz
2	Feldspar
	K-feldspar (Orthoclase, Microcline
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	A (1)
	Authigenic minerals
	Barite
10	Phosphorite/Apatite
10	Zeolite
1	Opaque minerals Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
/OLC	ANICLASTIC GRAINS
	Crystal grain
5	Vibriain
3 I	Vitric grain

ercent	Component
BIOG	ENIC GRAINS
	Calcareous
? 15	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
•	Nassellaria
	Diatoms
40	Centric
20	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales
	Bryozoans
	Bivalves
	Others

Leg	Site	Hole	Core	Туре	Sec	Interva Top	I (cm) Bottom
323	PEEIU	C	12	ft	3	1100	110

Sediment/Rock Name	
Name	

Diatom DOZE

Observer Kelsic

Percent Texture		
Sand	Silt	Clay
Dalito	Jiji	CIBY
- 1		I.

rcent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
10	Quartz
10	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
7	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
2	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
/OLC	ANICLASTIC GRAINS
	Crystal grain
	,
5	Vitric grain
	Lithic grain

BIOGENIC GRAINS Calcareous	
Planktonic foraminifera Benthic foraminifera Benthic foraminifera Nannofossils Coccoliths Discoasters Pteropods Siliceous Radiolarians Spumellaria Nassellaria Diatoms Centric Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	BIOG
Planktonic foraminifera Benthic foraminifera Benthic foraminifera Nannofossils Coccoliths Discoasters Pteropods Siliceous Radiolarians Spumellaria Nassellaria Diatoms Centric Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	
Benthic foraminifera Nannofossils Coccoliths Discoasters Pteropods Siliceous Radiolarians Spumellaria Nassellaria Diatoms Centric Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	3
Nannofossils Coccoliths Discoasters Pteropods Siliceous Radiolarians Spumellaria Nassellaria Diatoms Centric Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	
Coccoliths Discoasters Pteropods Siliceous Radiolarians Spumellaria Nassellaria Diatoms Centric Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	
Discoasters Pteropods Siliceous Radiolarians Spumellaria Nassellaria Diatoms Centric Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	
Siliceous Nadiolarians Spumellaria Nassellaria Diatoms Centric Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	
Siliceous Radiolarians Spumellaria Nassellaria Diatoms Centric Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	
Nassellaria Nassellaria Diatoms Centric Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	
Nassellaria Nassellaria Diatoms Centric Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	
Spumellaria Nassellaria Diatoms Centric Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	· l
Nassellaria Diatoms Centric Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	
Diatoms Centric Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	
20 Pennate Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	
Chaetoceros Resting Spores Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	50
Silicoflagellates Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	20
Sponge spicules Dinoflagellates Others Pollen Organic debris Plant debris Ebridians	
Others Pollen Organic debris Plant debris Ebridians	
Others Pollen Organic debris Plant debris Ebridians	
Pollen Organic debris Plant debris Ebridians	
Pollen Organic debris Plant debris Ebridians	
Organic debris Plant debris Ebridians	
Plant debris Ebridians	
Ebridians	
Echinoderm	
Fish remains (teeth, bones, scales	
Bryozoans	
Bivalves	
Others	

Leg	Site	Hala	Core	Type Sec	Interva	ıl (cm)	
Leg	Site	Tiole	Core	Type	Sec	Тор	Bottom
323	U1339	((2	Н	6	130	130

Sediment/Rock Name	Diatom	5114	
	45 (5)	3 '	

Observer	Kelsie
----------	--------

Clas
Cla

rcent	Component				
SILICICLASTIC GRAINS/MINERAL					
	Framework minerals				
2.5	Quartz				
20	Feldspar				
	K-feldspar (Orthoclase, Microcline				
	Plagioclase				
	Rock fragments				
	Accessory/trace minerals				
	Micas				
	Biotite				
	Muscovite				
	Clay Minerals				
	Chlorite				
	Glauconite				
	Chert				
	Zircon				
	Ferromagnesium minerals				
	1 offormagnosium minorals				
	Authigenic minerals				
	Barite				
	Phosphorite/Apatite				
	Zeolite				
	Opaque minerals				
1	Pyrite				
<u>`</u>	Magnetite				
	Fe-oxide				
	Carbonates				
	Calcite				
	Dolomite				
	Dolomite				
VOLC	ANICLASTIC GRAINS				
	Crystal grain				
	Vitrio grain				
5	Vitric grain				
	Lithic grain				

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
	Diatoms
40	Centric
10	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Visual Core description 20 State Diagramon State of the St 30 40 Lammal, blue-gray 50 37-41 olarlead, when its 60 70 80 90 100 110 120 130 140 20

Date:

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Visual Core description As wary lawine /bustons blueger, o. santhick 20 30 40 27-37 internixed denlease 50 70 90 100 118-119 is stated clast, 110 Subjounded, 2 cm \$ 120 130 140

 $\underbrace{\mathcal{O}_{\mathsf{Site}}^{\mathsf{A339}}}_{\mathsf{Site}} \underbrace{\mathcal{O}_{\mathsf{Core}}}_{\mathsf{Hole}} \underbrace{\frac{3}{\mathsf{Section}}}_{\mathsf{Top}\,\mathsf{Depth}}$

Date:

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 20 ash patches the 30 40 50 60 88-90 grad. kans. 89-92 brownish a st. 70 80 layer, slapes, 90 100 110 120 130 140

Site Hole Core Section Top Depth

Expedition 323
Region Sea

Bering Sea Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Color Visual Core description 20 30 40 50 60 70-100 good, cont 70 80 90 100 110 120 130 140

Observer: _____ Date: ____

U.1338 C 1/3

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Visual Core description 20 ash patches the 30 50 60 67-87 light orth layer, upper part slightly bid. 70 Strang courts., 80 74-86 fall-in? 90 102-105 olach ash potal, 100 Shall frags. 110 120 grad. cont Aport30 130 140

> Observer: Date:

Site Hole Core Section Top Depth

Expedition 323 Bering Sea Major Lithology Structures/Accessories Minor Lithology Graphic Representation Bioturbation Drilling Dist. Visual Core description 10 20 30 40 50 70 80 90 100 110 120 130 140

Observer: _____ Date: ____

CM338 C /3 7
Site Hole Core Section Top Depth

Date: _

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Visual Core description 10 20 30 40 50-53 shell frags 53-56 intermixed dordiash 50 60 70 80 90 100 110 120 130 140

Observer: _

 $\frac{\text{$1339} \quad \textit{C}}{\text{Site}} \frac{\textit{AS}}{\text{Hole}} \frac{\textit{AS}}{\text{Core}} \frac{\textit{CC}}{\text{Section}} \frac{\textit{Top Depth}}{\textit{Top Depth}}$

Expedition 323 Bering Sea Major Lithology Structures/Accessories Minor Lithology Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 0-2 am light and patch 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Leg	Site	Hole	Core	Туре	Sec	Interva Top	I (cm) Bottom
323	1339	۷	13	1-1	1	18	81

Sediment/Rock Name	Ü
Name	ļ,

Diatom silt

Observer Kelsie

Percent Texture								
Silt	Clay							
	Percent Texture Silt							

Comments:

Percent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
20	Quartz
20	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
5	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
2	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
5	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
i i	Calcite
	Dolomite
VOLC	ANICLASTIC GRAINS
	Crystal grain
5	Vitric grain
	Lithic grain

Percent	Component							
BIOG	ENIC GRAINS							
	Calcareous							
	Foraminifera Planktonic foraminifera Benthic foraminifera							
	Nannofossils							
	Coccoliths							
	Discoasters							
	Pteropods							
	Siliceous							
	Radiolarians							
	Spumellaria							
(Nassellaria							
	Diatoms							
3-0	Centric							
10	Pennate							
	Chaetoceros Resting Spores							
1	Silicoflagellates							
	Sponge spicules							
	Dinoflagellates							
	Others							
	Pollen							
	Organic debris							
	Plant debris							
	Ebridians							
	Echinoderm							
	Fish remains (teeth, bones, scales)							
	Bryozoans							
	Bivalves							
	Others							
	47							

SM

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

Leg	Site	Hole	Core	Туре	Sec	Interva Top	l (cm) Bottom
323	V1339	٢	13	H	l	110	110

Sediment/Rock Name	Diatom silt	Observer	Kelsie

Percent Texture	
Silt	Clay
	Percent Texture Silt

Comments:

ercent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
25	Quartz
20	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
1	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOLC	ANICLASTIC GRAINS
	Crystal grain
	No.
5	Vitric grain
	Lithic grain

Percent	Component							
BIOG	ENIC GRAINS							
	Calcareous							
	Foraminifera							
	Planktonic foraminifera							
	Benthic foraminifera							
	Nannofossils Coccoliths							
	Discoasters							
	Pteropods							
	Siliceous							
	Radiolarians							
	Spumellaria							
	Nassellaria							
	Diatoms							
35	Centric							
15	Pennate							
	Chaetoceros Resting Spores							
J	Silicoflagellates							
	Sponge spicules							
	Dinoflagellates							
	Others							
	Pollen							
	Organic debris							
	Plant debris							
	Ebridians							
	Echinoderm							
	Fish remains (teeth, bones, scales)							
	Bryozoans							
	Bivalves							
	Others							

 $\underbrace{0.183S}_{\text{Site}} \underbrace{\frac{1}{\text{Hole}}}_{\text{Hole}} \underbrace{\frac{1}{\text{Core}}}_{\text{Section}} \underbrace{\frac{1}{\text{Top Depth}}}_{\text{Top Depth}}$

Date:

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Visual Core description 10 20 30 57-50 indemixed 40 50 60 70 80 90 100 110 120 130 140

Observer: _

 $\frac{11335}{\text{Site}} = \frac{14}{\text{Hole}} = \frac{7}{\text{Core}} = \frac{7}{\text{Section}} = \frac{7}{\text{Top Depth}}$

Expedition 323 Bering Sea Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Visual Core description 20 Carolin al 30, 102, 121, 126, 140-142 cu 30 40 100 - 140 reddish gregish 50 127-130 big in orsh pala 60 70 80 90 100 110 120 130 140

 $\underbrace{\text{$U$} / \text{$J$} \text{$S$}}_{\text{Site}} \underbrace{\frac{1}{\text{Hole}}}_{\text{Hole}} \underbrace{\frac{1}{\text{V}}}_{\text{Core}} \underbrace{\frac{3}{\text{Section}}}_{\text{Top Depth}}$

Date:

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 0-14 veit turrow Skoliko 20 30 blueish-and restelish. Freyish burrows Hisylvent 40 50 70 80 90 100 110 120 130 140

 $\frac{\text{U1339}}{\text{Site}} = \frac{C}{\text{Hole}} = \frac{14}{\text{Core}} = \frac{4}{\text{Section}} = \frac{1}{\text{Top Depth}}$

Date:

Expedition 323 Bering Sea

Major Lithology Structures/Accessories Minor Lithology Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 20 Adolish-and bled. 30 40 50 60 70 80 90 100 110 120 130 140

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Visual Core description 10 20 reen-realist bemous Cracks at 70, 100-102 30 ans 40 50 60 70 80 90 100 110 120 130 143-145 grad. cont 140

 $\frac{\text{(1/339)}}{\text{Site}} \quad \frac{\text{C}}{\text{Hole}} \quad \frac{\text{7Y}}{\text{Core}} \quad \frac{6}{\text{Section}} \quad \frac{1}{\text{Top Depth}}$

Date: _

Expedition 323

		Bering Sea			ories	Ma	jor L	ithology Minor Lithology
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Samples	Visual Core description
10 20 30 40 50 60 70 80 90 100 110 120 130		State of the state		Statut		slight		8-11 grad. cont. 14-16 deshe ash layer, biotens, conto. 16-25 deshe ash patelles 49-46 grad. 46-43 deshe ash layer, sharp bose 60-63 ash patel Concel at 79-75 ash patelles Har.

Observer: _

Expedition 323
Rering Sea

		Bering Sea			ories	Ma	jor L	Lithology Minor Lithology
_	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Samples	Visual Core description
140		Stay		Phone I				ash partches ther,

U1333 C 14 Section Top Depth

Expedition 323 **Bering Sea** Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Visual Core description 20 30 40 50 60 70 80 90 100 110 120 130 140

Observer: _____ Date: ____

 $\underbrace{\text{U133S}}_{\text{Site}} \; \underbrace{\text{C}}_{\text{Hole}} \; \underbrace{\text{My}}_{\text{Core}} \; \underbrace{\text{CC}}_{\text{Section}} \; \underbrace{\text{Top Depth}}$

Date:

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Visual Core description 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Observer: _

Date:

Expedition 323 Bering Sea Major Lithology Structures/Accessories Minor Lithology Bioturbation Drilling Dist. Visual Core description 3-4 darkante layer, strangs 20 30 58-60 grad out 40 50 25-85 dank grey 60 bunow, brown 70 80-85 grad cont. 85-150 and patelly, gayish matte 80 90 100 110 120 130 140

 $\frac{\text{U1339}}{\text{Site}} \quad \frac{C}{\text{Hole}} \quad \frac{\text{15}}{\text{Core}} \quad \frac{2}{\text{Section}} \quad \overline{\text{Top Depth}}$

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 2-5 brown-blueich Burgers don of 20 60-62 brownish and layer, shamp base, grade tops 30 40 70-75 interrured charle and 50 60 75 slengeont 70 80 90 100 110 120 130 140

 $\frac{2}{\text{Site}} \frac{2}{\text{Hole}} \frac{2}{\text{Core}} \frac{2}{\text{Section}} \frac{2}{\text{Top Depth}}$

Date: ____

Expedition 323

			Bering Sea			ories	Ma	jor Li	thology Minor Lithology
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Samples	Visual Core description
10 20 30 40	dimbindimbin		Stage		200) () () () () () () () () () (ash patales on so
60 70 80	uluuluuluu	18	SHA		N		N		134-135 stell frage,
90	1111111								
110									
120									
130									
140	1								

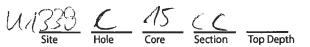
V1339 C 1/5 Gore Section Top Depth

Date:

Expedition 323 **Bering Sea** Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Visual Core description 20 107 crach 5-150 veoletist, -grapel burrens 30 Piology 7 40 50 60 70 80 90 100 110 120 130 140

Site Hole Core Section Top Depth

Date:


Expedition 323 Bering Sea Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 20 30 122-124 grad cont. 40 50 60 70 80 123-124 light ord, laye 90 1/13-150 Skolithos into ment section? 100 110 120 130 140

 $\frac{1}{1}$ Site $\frac{1}{1}$ Hole $\frac{1}{1}$ Core $\frac{1}{1}$ Section Top Depth

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 0-5 grown cont 10 0-21 Oldithos 20 burrow supto Bec. of 30 40 50 60 80-30 grad.cont 70 80 90 100 110 120 130 140

 $\frac{U1339}{\text{Site}} \frac{C}{\text{Hole}} \frac{1S}{\text{Core}} \frac{7}{\text{Section}} \frac{1}{\text{Top Depth}}$

Expedition 323 Bering Sea Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Visual Core description Glucish. Hr. 20 30 40 50 60 70 80 90 100 110 120 130 140

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Bioturbation Drilling Dist. Lithology Visual Core description 10 12-17 yellowish layer with concretion brand, alolowish? 20 30 40 34-42 yellowish 50 layer, small class up to o sen, 60 70 80 90 100 110 120 130 140

Lea	Site	Нага	Соге	Tuna	Interva	val (cm)				
Leg	Site	поте	Core	Туре	Sec	Тор	Bottom			
323	1339	0	15	+1	ì	62.5	62.5			

Sediment/Rock Name Diatom 002c	Observer	Kelsie

	Percent Texture	
Sand	Silt	Clay

Comments:

rcent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
5	Quartz
5	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite Zeolite
	Zeonte
	Opaque minerals
2	Pyrite
	Magnetite
1	Fe-oxide
	T & Oxido
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
5	Vitric grain
)	Lithic grain

rcent	Component
BIOG	ENIC GRAINS
	Calcareous
1	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
1	Coccoliths
	Discoasters
	Pteropods
	Siliceous
l	Radiolarians
	Spumellaria
	Nassellaria
- 10	Diatoms
50	Centric
20	Pennate
	Chaetoceros Resting Spores
2	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others
	- di (4)

		E	xpedit Berin			ories			UN33S C 16 1 Top Depth Scale
		Graphic Representation		Лбо	Bioturbation	Structures/Accessories	Drilling Dist.	ition	Major Lithology Minor Lithology
		Graph Repre	Color	Lithology	Biotur	Struct	Drillin	Induration	Visual Core description
10			52	<	SER	C	Show		10-11 Crack
30 40	11111111		5						darte, brown ash parchestly,
50	目								
60 70	11111								
80									. *´_)
90						S.			
100		*	in .		2				
110									
120									
130									
140									
	3	- 1							

Observer: _

Date:

		E	xpedit Berin	tion 32 g Sea	23	sories		$\frac{11335}{\text{Site}} \frac{C}{\text{Hole}} \frac{16}{\text{Core}} \frac{2}{\text{Section}} \frac{1}{\text{Top Depth}} \frac{1}{\text{Scale}}$
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist. Induration	Major Lithology Minor Lithology Visual Core description
10 20 30	dereter bee		KS.				Ç	50-88 mood
40 50	1111111111		MA	C	Ohar t	e.	N N	
70 80								
90 100 110								132-140 bioturs. Light ade
120 130 140	mhadanhaha							

Observer: _____ Date: _____

		Expedition 323 Bering Sea ୍ୟୁ							Site Hole Core Section Top Depth Scale
	Graphic	Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50		O a a		Ø	Strant	e	Many C. I show the		
70 80 90 100 110 120									

Observer:

Date:

	Expedition 323 Bering Sea								Site Hole Core Section Top Depth Scale
		ntation		`	tion	ss/Access	oist.	Ę	Major Lithology Minor Lithology
	_	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Visual Core description
10			Sit	5	159		SIN		
20	E		4		7	~	127	æ.	
30		F.	AL						
40									
50	1								
60									
70									
80	11								
90									
100									
110									
120									
130									
140									

Observer:_

Date:

Leg	Site	Hole	Core	Туре	Sec	Interval (cm)		
						Тор	Bottom	
323	U1339	0	16	H	2	60	60	

Sediment/Rock Name Foran - bearing diahon silt Observer Kelsie

Comments:

Area with white dots on core

ercent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
20	Quartz
10	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
1	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
10	Vitric grain
	Lithic grain

rcent	Component
BIOG	ENIC GRAINS
	Calcareous
10	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
-	
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
	Diatoms
30	Centric
20	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Other
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

Leg	Site	Hole	Core	Туре	Sec	Interva	l (cm)
Leg	Oite	11016	Cole	, ype	360	Тор	Bottom
323	1339	_	17	H]	72	72

Sediment/Rock Name Foram bearing diatom oute Observer Kelsie

Percent Texture							
Sand	Silt	Clay					

Comments:

cent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
15	Quartz
5	Feldspar
	K-feldspar (Orthoclase, Microcline
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
10	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
	Dolomite
/OLC	ANICLASTIC GRAINS
	Crystal grain
5	Vitric grain
	Lithic grain

BIOGENIC GRAINS Calcareous Foraminifera Planktonic foraminifera Benthic foraminifera Nannofossils Coccoliths Discoasters Pteropods Siliceous										
Foraminifera Planktonic foraminifera Benthic foraminifera Nannofossils Coccoliths Discoasters Pteropods Siliceous										
Foraminifera Planktonic foraminifera Benthic foraminifera Nannofossils Coccoliths Discoasters Pteropods Siliceous										
Benthic foraminifera Nannofossils Coccoliths Discoasters Pteropods Siliceous										
Nannofossils Coccoliths Discoasters Pteropods Siliceous										
Coccoliths Discoasters Pteropods Siliceous										
Discoasters Pteropods Siliceous										
Pteropods Siliceous										
Siliceous										
Radiolarians										
Spumellaria										
Nassellaria										
Diatoms										
40 Centric										
20 Pennate										
Chaetoceros Resting Spore	es									
Silicoflagellates										
Sponge spicules										
Dinoflagellates										
Others										
Pollen										
Organic debris										
Plant debris										
Ebridians										
Echinoderm										
Fish remains (teeth, bones, sca	iles)									
Bryozoans										
Bivalves										
Others										

Leg	Site	Hole	Core	Туре	Sec	interval (cm) Top Bottom		
323	1539	C	17	+1	5	101	101	

Sediment/Rock Name

Diatom ooze

(spicule - bening?)

Observer Kelsie

Percent Texture							
Sand	Silt	Clay					

Comments:

rcent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
10	Quartz
10	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite Zeolite
	Zeonte
	Opaque minerals
2	Pyrite
	Magnetite
	Fe-oxide
	1 0 Oxido
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
0	Vitrio grain
8	Vitric grain Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
· ·	Nassellaria
	Diatoms
45	Centric
20	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
3-5	Sponge spicules
1	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

		E	xpedi Berir	tion 3 ng Sea		sories			$\frac{\mathcal{U}_{\overline{33}}}{\overline{\text{Site}}} = \frac{1}{\overline{\text{Hole}}} = \frac{1}{\overline{\text{Core}}} = \frac{1}{\overline{\text{Section}}} = \frac{1}{\overline{\text{Top Depth}}} = \frac{1}{\overline{\text{Scale}}}$
		Graphic Representation		ř	ation	Structures/Accessories	Dist.	u O	Major Lithology Minor Lithology
	_	Graphic Represe	Color	Lithology	Bioturbation	Structu	Drilling Dist.	Induration	Visual Core description
10									
20			>						-
30	111		VA 7.0V		SP. 8		BANK		blue-are ich hand to
			-		100	77. 57.	Q,		blue-grenish burnousth.
40									puncther the
50									
60									
70									
80	目								
90									
100	目								
110									
120					ı,				
130	目								
140									

Observer:

Date: _

		E	xpedi Berin	tion 32 1g Sea	23	sories		Site Hole Core Section Top Depth Scale
	16	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Major Lithology Minor Lithology Visual Core description
10 20 30 40	Littlich Hirri Breeze		VIRLOV	1		5	Chiew.	gregish burrous flor. Only patches flor.
60 70 80			54					69-75 light ash layer, fining upward, grad, top, shaptane
1100 1110 1120 1130	<u> </u>							

Observer:

Date:

		į		ition 3 ng Sea		ories			$\frac{1336}{\text{Site}} = \frac{17}{\text{Hole}} = \frac{3}{\text{Core}} = \frac{3}{\text{Section}} = \frac{3}{\text{Top Depth Scale}}$
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10	Littliii	-	2						0-20 ast mobile un tocu scale
30 40	Inteller	©	5		1. B	~	Strock		40 ash filled burners
50 60					J. J.		A.C.		
70 80	111111111								115-125
90	111111111								
110	Luntun	W.)	111	9.					
130	milim	s _i or	18 23 d.	and wanter					
170)	E					

			lition 3 ng Sea		ories			Site Hole Core Section Top Depth Scale
	Graphic Representation		ğ	oation	Structures/Accessories	Dist.	ion	Major Lithology Minor Lithology
	Graphi	Color	Lithology	Bioturbation	Structu	Drilling Dist.	Induration	Visual Core description
10								5.6 interneddolokosa
20		ŀ						
30						V7		
40				N.W.	Ç	LASIM		110 0000 1001 0000
50			4	-1				48 isoloted redelat, subjounded, 1cm & 76-80 gap
60			2					7
70			dia.			OWY		76-80 gap
80			MON			2-		
90	1		200					
100	1		3.6		e	300		
110	luuluur				80	43		123 isolated class, dale, subspiraled,
120								O. 5 cm
130	Impiri							
140								

Observer:	Date:	
	 C-200	

		E		tion 3 ng Sea		ories			Site Hole Core Section Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40			CHYS	7	N. T.		Selfor)	38-44 internixed date orsh
70	1111111								96-98 grad cont
80 90				olimbe					
100		122	Edwey Si	98 m					
110 120	1		3	0					
130									
140									

	E		ition 3: ng Sea		ories			VISSB C 17 6 Site Hole Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 110 110 120 130		SK312 AN ANAIN	distrance of a distrance of	1054		Shows		69-91 intermised dark ash 91-82 dark and mottles 82-150 ablueish grapish.

Observer:	Date:

		Expedi Berir	tion 3 ng Sea		ories			V1339 C 17 7 Site Hole Core Section Top Depth Scale
	ntation		>	tion	Structures/Accessories	Dist.	E	Major Lithology Minor Lithology
	Graphic Representation	Color	Lithology	Bioturbation	Structur	Drilling Dist.	Induration	Visual Core description
10 20 30		51 411						0-35 clark ash paklesum toci
40 50		5						47-57 tilded slamp cont.
70	111111111	12/2						
90								
100								
110								
120								
130	=							
140								

		E	xpedi Berir	ition 3 ng Sea	23 1	ories			V1339 C 17 8 Site Hole Core Section Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Wisual Core description
	日			T	Ī	<u> </u>	Ī	Ē	
10	H								·
W30	П			ł					
20	囯		PI	į	2				
					Acres 1		7		
30	固		13	,C	1	ξ,,	A_{γ}		
					-		-9-		
40	且								
	ΙĦ								
50	┸								
	I∃								
60	듸						П		
	II								
70	日								
LI LI									
80							П		
					Н		П		
90	\exists						Ш		
100									
	\exists								
110	님								
	=								
120	甘						$ \ $		
122	\exists						$ \ $		
130	目								
140	#								
140	目								
- 1	\exists			n l			П		

		E	xpedi Berir	tion 3 ng Sea	23	es			$\frac{\text{U1339}}{\text{Site}} \frac{C}{\text{Hole}} \frac{17}{\text{Core}} \frac{C}{\text{Section}} \frac{1}{\text{Top Depth}} \frac{1}{\text{Scale}}$
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10	Hanling		514		7337		2000	36	
30			9)		1				
40 50	11111	7	AL						
60 70	111111								
80									
90 100									
110									
120									
140									

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

Leg	Site	Hole	Core	Туре	Sec	Interva	ıl (cm)
Log	One	TIOLE	COTE	lype	Sec	Тор	Bottom
323	V:339	C	18	Н	4	49	49

Sediment/Rock Name

Observer Kelsie

Percent Texture								
Sand	Silt	Clay						

Comments:

rcent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
3	Quartz
3	Feldspar
	K-feldspar (Orthoclase, Microcline
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
60	Dolomite
	DOIOINILE
VOL	ANICLASTIC GRAINS
	Crystal grain
10	Vitric grain
	Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
3	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
	Diatoms
10	Centric
10	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

Leg	Site	Hole	Core	Туре	Sec	Interval (cm)			
209	One	11016	COTE	Type	360	Тор	Bottom		
323	U1339	C	18	H	5	58	58		

Sediment/Rock Name

Diatom ouze

Observer Kelsie

Thalatiothing

Comments:

	Percent Texture	
Sand	Silt	Clay

Percent	Component							
SILI	CICLASTIC GRAINS/MINERAL							
	Framework minerals							
1								
5	Feldspar							
	K-feldspar (Orthoclase, Microcline)							
	Plagioclase							
	Rock fragments							
	Accessory/trace minerals							
	Micas							
	Biotite							
	Muscovite							
	Clay Minerals							
	Chlorite							
	Glauconite							
	Chert							
	Zircon							
	Ferromagnesium minerals							
	Authigenic minerals							
	Barite							
	Phosphorite/Apatite							
	Zeolite							
	Opaque minerals							
2	Pyrite							
	Magnetite							
	Fe-oxide							
	Carbonates							
_	Calcite							
	Dolomite							
VOL	CANICLASTIC GRAINS							
	Crystal grain							
10	Vitric grain							
	Lithic grain							

Percent	Component								
BIOG	ENIC GRAINS								
	Calcareous								
	Foraminifera								
	Planktonic foraminifera								
	Benthic foraminifera								
	Nannofossils								
	Coccoliths								
	Discoasters								
	Pteropods								
	Siliceous								
	Radiolarians								
1	Spumellaria								
	Nassellaria								
	Diatoms								
20	Centric								
60	Pennate								
- 0 -	Chaetoceros Resting Spores								
	Silicoflagellates								
	Sponge spicules								
	Dinoflagellates								
	Dirionagenates								
	Others								
	Pollen								
	Organic debris								
	Plant debris								
	Ebridians								
	Echinoderm								
	Fish remains (teeth, bones, scales)								
	Bryozoans								
	Bivalves								
	Others								

		Ņ!	Expedi Berir	tion 3 ng Sea		sories			Site Hole Core Section Top Depth Scale
		Graphic Representation		λί.	ation	Structures/Accessories	Dist.	ou	Major Lithology Minor Lithology
		Graphic Represe	Color	Lithology	Bioturbation	Structur	Drilling Dist.	Induration	Visual Core description
10			Sta	. (SUR			and a	11,17,27 sharp cont. -dicton vill
20		-	9/2			TO THE PARTY OF TH	MAN VAN	_	-dichen oon
30			5 y 5/2	Carrier .	9			_	- light fire ask
40	11111								
50									==
60	目								
70									
80									
90									
100						41			-
110									
120									
130									
140									3
- 1	\exists	- 1	1						

	E	Expedit Berin	ion 32 g Sea	23	ories			Site Hole Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology
10	1111 1111 1118	0 C/4IV	ži,	NO OVAV Bio	-t š	Dri	Jul	Visual Core description
30			C	といる。イ		Chart	jaŭ.	dont and layer 19-26, shorp.
40		7						26-30 dark and intermixed
60	1111111	VID						
70 80	Imili							
90	Thurst.							
110	п							
120	11111111111							
140	1							

			Expedi Berir	tion 3: ng Sea		sories			CLASSS C 18 3 Site Hole Core Section Top Depth Scale
		ntation		>	ıtion	Structures/Accessories	Dist.	5	Major Lithology Minor Lithology
		Graphic Representation	Color	Lithology	Bioturbation	Structur	Drilling Dist.	Induration	Visual Core description
10			5						
20			~						~
20	目		P		6		3		
30	Ħ			C		C	Vieto.		
40					-6				
50									
60									
70									
70									
80	I								
90	H								
100	=								106-117 light yellowish laner
110			4						106-117 light yellowish layer, Grad, manbe delanite?
120	=	Z.	30						117-130 dark ash partely
130	=								
140	1								
- 1	\exists								

Observer:	Data
	Date:

ĵ	E	xpediti Bering			ories			Site Hole Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 100 110 120 130 140		SYUN JOS SYUN				Nwod.		43-53 yellowish granular layer, good, maybeddomile?

Observer:	Date:	

	I	Expediti Bering		23	ories			$\frac{1338}{\text{Site}} = \frac{18}{\text{Hole}} = \frac{5}{\text{Section}} = \frac{1}{\text{Top Depth}} = \frac{1}{\text{Scale}}$
	Graphic Representation	o	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	nduration	Major Lithology Minor Lithology
	- 1		_==	Ê	Stru		<u>u</u>	Visual Core description
10		2						8
20	Ħ	5						
30								40.50 grad cont
40	∄,,,							
50		/// _/						52-76 bedeling with shirt
60		一年の						52-76 bedeling with slight colour changes, curscale
70	3							€/:
80		51						
90	<u> </u>	25						
100								
110	= //							All transit
	3///	14)	-					MO-115 gradicent.
120	∄ │		1	117/4				MIS-132 light burrows num scale
130	1	2×6	-					TOWN PROPERTY OUR TOWN TOWN TO COLO
140		77						

Tea.	
Observer:	Date:
	Date

		Expedi Berir	tion 32 ng Sea		ories			Site Hole Core Section Top Depth Scale
	Graphic	entation	Л	ation	Structures/Accessories	Dist.	ion	Major Lithology Minor Lithology
	Graphi	Kepres	Lithology	Bioturbation	Structu	Drilling Dist.	Induration	Visual Core description
10		54412						50-55 grad, cont
30	E							
40			C	Slashi		MUSIC		Cracks of 36-37,62-63, 70-74,
50		1/1/1		7				82 cm
60		5						
70 80		0.5						
90	=							114-116 Gradicart.
100	4					$ \ $		ansered growing court,
110		11/1/2	7					
120	4	y =						
130		5/4/2						
140								

Observer:	Date:	
OD3CI VCI	 Dutc.	 _

			Expedi Berir	tion 32 ng Sea		ories			Site Hole Core Section Top Depth Scale
		ntation		_	tion	s/Access	ist.	Ē	Major Lithology Minor Lithology
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Visual Core description
10									
20			V7						
30	E		417	O	J. Bry Ch	C	Wind		
40		OUGEKA			~J		,		42 112 20 10 10 10 10 10 10 10 10
50									42-43 donleash larger, intermixed
60			A						
70			VIII						
80									105-115
90									
100									
110	11111111		1///						
120									
130									
140									
	🏻	- 1		- 1					

Observer: _

Date: _

Expedition 323 Bering Sea

Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Visual Core description 20 30 40 50 60 70 80 90 100 110 120 130 140

Observer: _

	E	xpedit						1339 C 21 1
		Berin	g Sea		ies			Site Hole Core Section Top Depth Scale
	ç				Structures/Accessories			
	Graphic Representation		<u>></u>	ation	'es/Ac	Dist.	e O	Major Lithology Minor Lithology
	raphic	Color	Lithology	Bioturbation	ructui	Drilling Dist.	Induration	Visual Core description
5	<u> </u>	ڻ ()		<u> </u>	<u> </u>		=	-0-8-fractured V
]		578,					
10		4	WAL!					9-12 adk
20		C. reconstruction						
	3	**************************************						
30	H	į			A.			
		1		W(360m. 7mm palese V
40								
		i i						
50	7							
]		hS					
60			IVA	50				
70	Ė	and the second second	1011					
			[07]					
80])	4//					
:	3	and the second second						
90								
]	A face entropy.						
100	=			V				127 1087
110	🗐	:		ク				107-188. Irono colored mothers 7-2 m sately
110								A BOOK CONDON HABBORED IN KIND IN THE
120	=	į.						A STATE OF THE STA
								The second secon
130								135-145
								Several cracks C
140	3							
	=							
							_	

		Expedi Berir	ition 32 ng Sea		ories		$\frac{1339}{\text{Site}} \frac{C}{\text{Hole}} \frac{21}{\text{Core}} \frac{2}{\text{Section}} \frac{1}{\text{Top Depth}} \frac{1}{\text{Scale}}$
	Graphic	Representation Color	Lithology	Bioturbation	Structures/Accessories Drillina Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10		Jen Juft Juft	7	&	<u> </u>	hear hear hear hear hear hear hear hear	I wen deater lightgray layor with dark mirely 54 43
30		The second secon					
40 50	1	determination of the second se	D.S	5			` ,
60	11111	944					
70 80	1						
90							95-4. white public V
100 110	1	·					
120	٥						165 5mm populev.
130							
140				146 m			145 Darnowl

Observer: Date:

	E	xpedit Berin	tion 3 g Sea		ies				$\frac{\cancel{339}}{\text{Site}}$	Hole	2/ Core	Section	Top Depth	Scale
,	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lith Visual Core	ology e description		— <u></u> м	inor Litholog	у	
10 20 30 40 50 60		J. S. C.		2					Carren		orithe			
80 90 100		<u>U</u>												
30		576	and and					125-127	ook or	LA F			. •	

Observer: Date:

			lition 3 ing Sea		ories			Site Hole Coré Section Top Depth Scale
1	Graphic	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90			0.5		0			49.50. galde black V 66-68 crack C
40					0			175-136 pabble. white found

Observer: __

	E		tion 32 ng Sea					Site Hole Core Section Top Depth Scale
,	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 110 110 120 130 140		La company of the contract of		5				105-106 crod c 113-115 crus d
1.					i	1		

	I	Expedi Berir	tion 32 ng Sea	23	sories			Site Hole Core Section Top Depth Scale
1	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 110 110		R D D D D D D D D D D D D D D D D D D D	RS.	\mathcal{C}^{2}				Y graduations charge to diatons come. Soundarry not clear. Orack. 109-115 110-00 13. gradual boundary

		Expedi Berii	ition 3 ng Sea	23	ories			Site Hole Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50		5/2 5/2 T	D.S.	5				
70 80					and the second s	and the second	Control of the Contro	62cm
90 100 110								
130								

	E		tion 3 ng Sea		ries			Site Hole Core Section Top Depth Scale
*	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40		0/we 54/2	5/2 DW					56.110-15 grad. b. 156-30 30 diaton 007e. \$0 cm.
60 70								
80 90								
100								
110 120				_				
130 140								

not inputed!!

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

Lan	Site	Illala	0	T	C	Interval ((cm)
Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom
323	V1339	D)	H	4A	100cm	

Sediment/Rock Diatron Clay

Observer Bet

B-573

Percent Texture
Sand Silt Clay
20 &0

V-	5
V	

Percent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
5	Quartz
5	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
30	Clay Minerals Lots in Recipel
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	1 chonaghesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Zeonte
	Opaque minerals
3 1	Pyrite
	Magnetite
	Fe-oxide
	7 e-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
Į.	7
5 1	Vitric grain
5 A	Lithic grain
	Littilo grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria Dietema
11.0	Diatoms
40	Centric
10	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
1	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

Leg	Site	Hole	Core	Туре	Sec	Interval Top	(cm) Bottom
323	U1339	\mathcal{Q}	1	И	1	80 cm	

Sediment/Rock Name Diarom 903e Observer

Comments: $\sqrt{-88}$

Sand Silt C

Bell

Percent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
	Quartz
	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
5	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
2	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
5	Vitric grain
	Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
	Diatoms
50	Centric C. oculis-indis
70	Pennate
15	Chaetoceros Resting Spores
12	Silicoflagellates
2	Sponge spicules
- A	Dinoflagellates
	Dirionagenates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

Leg	Site	Hole	Core	Туре	Sec	Interva Top	II (cm) Bottom
323	01339	D	N	H	3	12	CFA

I I I I I I I I I I I I I I I I I I I					G
Maille 1 DIATIM I WANTER OUSE	r Jela	Observer	Faramintre 003e	DI 11-12000	Sediment/Rock Name

 $\begin{array}{c} B & b7 \\ 5 & -23 \end{array}$

(larmimae)

	Percent Texture	
Sand	Silt	Clay

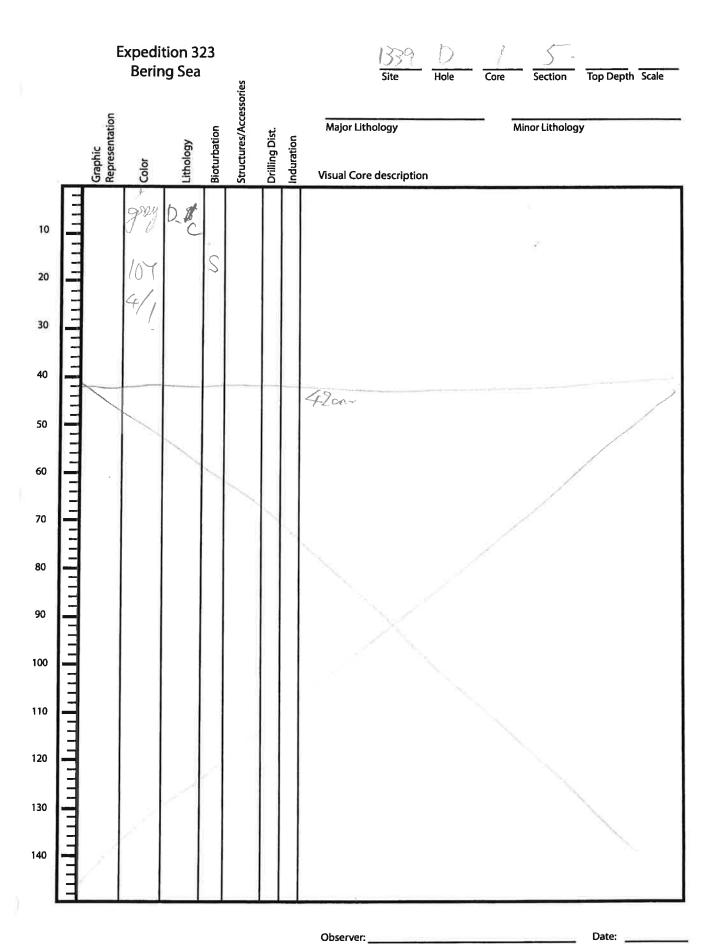
ercent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
Z	Quartz 🔨
	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
3	Rock fragments X
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
IV	Clay Minerals X
	Chlorite
	Glauconite
	Chert
	Zircon
-	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
3	Zeolite X
	Opaque minerals Pyrite 🙏
5	Pyrite 🙏
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
	V(L)
	Vitric grain
	Lithic grain

Percent	Component							
BIOG	SENIC GRAINS							
	Calcareous							
	Foraminifera X							
20	Planktonic foraminifera X							
10	Benthic foraminifera X							
	Nannofossils							
10	Coccoliths							
	Discoasters							
	Pteropods							
	Siliceous							
	Radiolarians							
	Spumellaria							
	Nassellaria							
	Diatoms							
20	Centric ×							
5	Pennate X							
	Chaetoceros Resting Spores							
	Silicoflagellates							
2	Sponge spicules X							
	Dinoflagellates							
	Oth							
	Others							
	Pollen							
	Organic debris							
	Plant debris							
	Ebridians							
	Echinoderm							
	Fish remains (teeth, bones, scales)							
	Bryozoans							
	Bivalves							
	Others							

		Expedi Berir	tion 32 ng Sea	23				Site Hole Core Section Top Depth Scale
	,				Structures/Accessories			
	Graphic	Selledio	ogy	Bioturbation	:ures/Acc	Drilling Dist.	ation	Major Lithology Minor Lithology
	Grap	Color	Lithology	Biotu	Struct	Drillin	Induration	Visual Core description
10			1					-
20		Į						**
30		O/ive	bW					
40		17	JAV					
50								
60		t-V		a				
70		51 4/2	*					
80								
90								-55 diaten ooze
100								
110		1						
120								120-122 crock
130								
140		j	J					

Observer: _____ Date: _____

		ı		ition 32 ng Sea		ories			$\frac{\sqrt{339}}{\text{Site}} \frac{\sqrt{339}}{\text{Hole}}$	Core Section Top Depth Scale
		Graphic Representation		logy	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology	Minor Lithology
		Grapl	- John J. 1	Lithology	Biotu	Struc	الله	Indur	Visual Core description	
10	11111		1 0: e							✓
20	H		0,0							
30				ρW					2	
40			5/2		d	/*				
50					0(
60										
70										
80	7	-	5Y 25/1	V.	_				81-90 gra	
90	111		251		-				e v	
100	1111		5Y		Ŋ				1 /	
110	mountminul		420						112-113 molling	
130										
140										
	=		G.							V


Observer: _____ Date: ____

			dition 3 ing Sea		sories			Site Hole Core Section Top Depth Scale
	ohio	Representation	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology
	<u> </u>	Glor Repre		Bo	Sfr	<u> </u>	<u>Ind</u>	Visual Core description
10		Ohu Ohu	th	0				4-19. Laminas USY 5/3 and 5/4/2 -120m St Diadom Forami Sova cross
20		Tight !	gen .	2				19-32
30		2.5,	E. U.	5				34-36 mottle with with
40								
50		030	,					
60	uluuluuluu	57	DA	V			×	graduational boundary 32 n 100.
70		5/2	C	2				32~100.
80								
90								.*.
100								
110								
120		10T						
130		4//						
140	1	J						

Observer:	Date:	

	i	Expedit Berin	tion 32 1g Sea		ries			Site Hole Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 100 110 120 130		704/1	R C	Y	5			through the recture 1~2m. door scattered. 89-93 milling with ask -100 on SS diatom clay ~

Observer:	Date:	

	E	Expedi Berir	tion 3 ng Sea		ories			Site Hole Core Section Top Depth Scale	_
	Graphic Representation		logy	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology	-
	Grapl	Color	Lithology	Biotu	Struc	Drillin.	Indur	Visual Core description	_
10		919 107 5/1	DA	5				12cm	
20								PAL	
30		1							
40			1						
50									
60					1	M			
70									
80	ulu								
90						l			
100									
110	4								
120	1								
130	∄ │								
140									

Observer: _____ Date: _____

`		edition 32 ering Sea		δ.		V1339 D 2H All Section Top Depth Scale
	ű			ccessorie		LITHOUGH ONLY
	Graphic Representation	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Major Lithology Minor Lithology
		Lithol	<u></u>	<u>₩</u>		Visual Core description
ήę	= SY WI	È				Diatomsit I-5/4/1
20		I	Ш		_	I-10/4/
7	3					
30						
- 40				7	-	1
350	=					74 Dichmsitt
60	3					
77.50	E WINDE) I			_	- delete bandan Datamven for
4 70	341/1	112 #27				. Omsier sit
80	= 1	I				
S 90	1073/1	89				-80-92 ASH 80-89 & 92-1016
c 100	=10-[4]1	92	_	-	+	
110	= 5434	85	85,		-	1 12 311/ FON UNA SIS
V		24 E 2				Frams 5-80 to 6-85
<u>120</u>		1				DKAMS S DKAMS - DKAMENISH AMAY
130	15 N	<i>y</i>				DVARY - DKGreens.
140	= 41.		-		+	Ash J. dar granish gran
10	Ĭ					Ash J. Markarm

Observer:	Date:

+		E	xpedit Berin	ion 3 g Sea	23	vries			Site Hole Core Section Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
100 200 300 400 500 600 700 800 900 1100 1200	autonhadradanhadradanhadradanhadra	Gr.	8		BE SEE MILLINEX SEE		DI.	Inc	Visual Core description
140	圓					145		-	- Branwle

Date: __

1

Expedition 323 Bering Sea Structures/Accessories Graphic Representation Major Lithology Minor Lithology Bioturbation Drilling Dist. Induration Color Visual Core description 10 20 30 36 40 50 60 70 80 90 100 110 113 120 130 140

		1	
-	-	+	
		1	

 $V_{1339} = D_{\text{Hole}} = 2H_{\text{Core}} = 3_{\text{Section}} = 0$

Expedition 323 Bering Sea Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Lithology Color Visual Core description 10 20 30 40 50 60 70 80 90 100 110 120 130 140

1)		xpedition 323 Bering Sea			sories	Ma	jor Li	thology	Minor Lithology
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Samples	Visual Core description	
10 20 30 40 50 60 70 80 90 100 110	Graphi	Color	Litholo	ड्र इ.स. 38-47 Burnal.		Drilling	Sample	- Many pelase - May Dark - Cream mothes assisting & coa.	/SL
140									

Date:

Expedition 323 Bering Sea Major Lithology Minor Lithology Structures/Accessories Graphic Representation Bioturbation Drilling Dist. Lithology Color Visual Core description 20 Forams throngert 30 40 50 60 b 70 80 Francics & Robbes AD 90 100 93-124 110 120 130 -Pep. 136 140

Observer:

Expedition 323 Bering Sea Structures/Accessories Graphic Representation Bioturbation Major Lithology Minor Lithology Drilling Dist. Induration Color Visual Core description 10 Shall 20 30 39/ 40 Forans to rejurnet 50 60 70 80 90 100 Pch 110 120 130 140

Observer:_

1	,	1	Exped Beri	ition 3 ng Sea	23				Site Hole Core Section Top Depth Scale
		_				Structures/Accessories			
		Graphic	Schrädin	Хбо	Bioturbation	ures/Acc	Drilling Dist.	rtion	Major Lithology Minor Lithology
		Graph	Color	Lithology	Biotur	Struct	Prillin	Induration	Visual Core description
	10	=							in the second se
						13-	_	_	Rimilepas
	20								
	30	=							
	40	3				20			
						37-		-	Pab,
	50	3							
ī	60	-							
į	70	=							
	80	3							
	90	1							
]							
1	00	7	l						
1	10	4							
1	20	3							
:4:	30	=							
16	30								
1	40								
	- 1	7							

Observer:

	E	xpedit Berin	ion 32 g Sea	23	027			V1339 D 24 CC Section Top Depth Scale
	_				ssories			
	ntation		>	ıtion	es/Acce	Dist.	u c	Major Lithology Minor Lithology
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Visual Core description
••								:4
10	II I							38
20	H							
30								
40								
50								
60								
70								
80								
90								
100								
110								
120	4							
130	The second							
140								
	4				i			

Observer:

Date:

Leg	Site	Hole	Core	Туре	Sec	Interv	al (cm)
Leg	Site	Tible	Cole	lighe	Sec	Тор	Bottom
323	1339	D	2	H	A	55	

Sediment/Rock Name diatem self	Observer	akira
-----------------------------------	----------	-------

	Percent Texture	
Sand	Silt	Clay
June	Oill	City

Percent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
201	Quartz
3/1	Feldspar /5 20
M'=	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
7	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
4	
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
6	Vitric grain "⊋
	Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria Nassellaria
4)	Diatoms 20
72	Centric
	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Dirionagenates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

Leg	Site	Hole	Core	Туре	Sec	Interval Top	(cm) Bottom
323	1339	D	2	1-1	3A.	Bin	

Sediment/Rock Name	diaton rich -	silo
	Pine	ashes.
Comments:	Por	

Observer

Percent Texture	
Silt	Clay
Cm Del	200/0
10 80	2910
	Silt W & C

rcent	Component
SILI	CICLASTIC GRAINS/MINERAL
- , ,	Framework minerals
	Quartz 3 livry
7	
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
_	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	<i>i</i> ∠Glauconite
-	Chert
	Zircon
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Zeonte
	Opaque minerals
	Pyrite
	Magnetite
	Fe-oxide
_	Carbonates
	Calcite
	Dolomite
/OLG	CANICLASTIC GRAINS
-	Crystal grain
	VPL -
2)	Vitric grain
	Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
35	Diatoms //)
- 17	Centric
	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
*	Sponge spicules /
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

Leg	Site	Hole	Core	Туре	Sec	Interval(Top	cm) Bottom
323	1339	D	2	H	3 _A	43 out	

Sediment/Rock Name	diaton sill	Observer akorus	
-----------------------	-------------	-----------------	--

Sand Silt Clay		
	_	and
90 10		

ercent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
9	Quartz 3
37	Feldspar / (
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	✓Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
3	Pyrite /
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
	Bolomito
VOL	CANICLASTIC GRAINS
	Crystal grain
9	Vitric grain
	Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
47	Diatoms 20/5
**	Centric
	Pennate
	Chaetoceros Resting Spores
	✓ Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves Others
	Others

Leg	Site	Hole	Core	Туре	Sec	Interva Top	al (cm) Bottom
323	1339	D	200	H	6	60	

Sediment/Rock	N 75 M2		av .
Name	deatom silt	Observer	akiru

Percent Texture	
Silt	Clay
Ca	>8
	Percent Texture Silt

ercent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
15	Quartz 5
29	Feldspar / /
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
_	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	√ Glauconite 7
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
5_	Pyrite 3 2
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
	1/20:
6	V Vitric grain 2
	Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
111.	Diatoms /
74	Centric
_	
	Pennate Charteseres Posting Spares
	Chaetoceros Resting Spores Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

	E	Expedit Berin	tion 32 ig Sea	23	ories		Site Hole Scale	<u>. </u>
	Graphic Representation	ъ	Lithology	Bioturbation	Structures/Accessories	Drilling Dist. Induration	Major Lithology Minor Lithology	
10 20 30 40 50 60 70 80 90 100 110 120 130		525 1 1 1 525 1 1 1 1 1 1 1 1 1 1 1 1 1	DIAN OF A	Bioth	Struc	Drilli	19-29 all Comment: forem Tests see thense How. in	
	SECT		1 S	SE	(H)	0 01	Observer: Date:	

SAME AG SECHON 1 80 - 150 m So in 2000 2 07 8000

		E	xpedit Berin	ion 32 g Sea	23	10			$\frac{3}{\text{Site}}$	Hole	Core	Section	Top Depth Scale
		ion			_	Structures/Accessories			Major Lithology		_ = = = = = = = = = = = = = = = = = = =	Ainor Litholog	NV
		Graphic Representation	ъ	Lithology	Bioturbation	ıctures/₽	Drilling Dist.	Induration			,,	mior Ettilolog	,
	П	Reg	<u>§</u>	<u>\$</u>	<u>Š</u>	- Şŧ	E I I	<u>2</u>	Visual Core descript	ion			
10	Ē											2	
20			£64									35	
30			+- (%										
40			(FON (HOFT	LES ou L	(of	
50			-										
60	1111		Je Je										
70	1111		707	DM	V		100		77 6001				
80			4/				**	-	80 cm SJ	diator	v fen	e ask	,
90	Ξ		4										
100	=		600	į									
110	11111												
120	1111												
130													
140													

			Expedi Berir	tion 32 ng Sea	23	sories			Site Hole Core Section Top Depth Scale
		Graphic Representation		X 6	ation	Structures/Accessories	Dist.	ion	Major Lithology Minor Lithology
	_	Graphic Repres	Color	Lithology	Bioturbation	Structu	Drilling Dist.	Induration	Visual Core description
10									
20			- Tan						at [*]
30			100						
40			107						
50	Ħ				<				
60				DFA					
70									76-80 Erak.
80									76-80 Otak.
90									
100									
110	11								117-119 balow
120	Е								The state of the s
130		- 1							139145. biolullalar
140	11111	ا الو	V	-	m	*			biolullalan

	Expedition 323 Bering Sea ୍ଞ୍ରି	Sitè Hole Core Section Top Depth Scale
	Graphic Representation Color Lithology Bioturbation Structures/Accessories Drilling Dist.	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80	See	8-4, 12, 13 motte. 40, 45, 53 parte. 2-5.
100 110 120 130	DATE OF THE PARTY	100-100 gruduationals bounday. 134 to diaton org. plonelites @ 122 cm 120-121

Observer: _

		i	Expedi						133PD 3 5 30cm
9			Berin	ıg Sea		S			Site Hole Core Section Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
Joans	10 20 30 40 50 60 70 80 90 110 110 120 130		on olive that I have a some of	ДO) I I I I I I I I I I I I I I I I I I I	Str	JO.	0	diator one
			4/2						

		E		tion 32 ng Sea	23	sories			$\frac{1339}{\text{Site}}$ $\frac{5}{\text{Hole}}$ $\frac{3}{\text{Core}}$ $\frac{5}{\text{Section}}$ $\frac{5}{\text{Top Depth Scale}}$
		Graphic Representation		Æ	ation	Structures/Accessories	Dist.	io	Major Lithology Minor Lithology
		Graphic Represe	Color	Lithology	Bioturbation	Structu	Drilling Dist.	Induration	Visual Core description
10	1111		Olive	DW.					
20			51						
30			4/2						
40		~~		_					to 900
50	1111	-	Ĭ						Gross &.
60					4				
70	11111			D.W					10 100
80				-VV					60-130 C several cracks
90	=		100000000000000000000000000000000000000						
100		** K.		8.					
110	=			614					æ
120	킠			D.W					
130	4								
140									

Observer: _

Date:

			xpedi Berir	tion 32 ng Sea	23	sories			Site Hole Core Section Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30	mhanhan		村外	DX S D.W	~				e e e e e e e e e e e e e e e e e e e
50	Littin		74.						43 cm
70	mulm								
80 90	111111111							/	
100						/	1	1	
120	Juntun		1	/					
140		1							~ .

Observer: _

			xpedi Berir	tion 32 ng Sea	23	sories				/ <u>339</u> Site	Hole	Core	Section	Top Depth	Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Litl Visual Core	nology e description	1	- Ā	Ainor Lithology	,	
10	111111		104	D2	2				8cr	PAL					
20									16 cm						
30	=									**					H
40															
50															
60 70															
80	111111														
90															
100	T														
110															
120															
130	1														
140	<u> undendambadan</u>														

Observer:

Date:

insM

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

Leg	Site	Hale	Core	Туре	Sec	Interval	(cm)	
Log	Oite	11016	Cole	Type	Sec	Тор	Bottom	
	1338	D	3		5	Soan		

Sediment/Rock Name	1.03A)d	Flue	AS 14
-----------------------	---------	------	-------

Observer

	Percent Texture	
Sand	Silt	Clay
i		
- 1		1

ercent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
04	Quartz
	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
60	Muscovite
- 6	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
-10%	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
5	Vitric grain
,	Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
1.5	Nassellaria
51-0	Diatoms
	Centric
	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others
	Cition

X

Leg	Site	Hole	Core	Туре	Sec	Interval (Top	cm) Bottom
	1530	D	2		5	30 cm	

Sediment/Rock Name	SLATON OOSE	Observer	_
-----------------------	-------------	----------	---

DENTOMS 50%.

SILICICIANTIC 20%.

OTHER 30%. Comments:

Percent Texture Silt Clay

	QT 482 30%
Percent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
100	Quartz
12.	Feldspar
62	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	✓ Micas
	Biotite
5-/	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
37	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOLC	CANICLASTIC GRAINS
7010	Crystal grain
)	Oiyətai gi aiii
20	SC Vitrio grain
50	Vitric grain Lithic grain
	Littile grain

Percent	Component
BIOG	SENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Ollica
	Siliceous
	Radiolarians
	Spumellaria
K() -/	Nassellaria
20/	Diatoms
	Centric
	Pennate
	Chaetoceros Resting Spores Silicoflagellates
	Ø, Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others
	(6)

			Expedit Berin	ion 32 g Sea	Bioturbation Structures/Accessories		V 1339 D UH Section Top Depth Scale						
		Graphic Representation	Color			Drilling Dist. Induration	Major Lithology Minor Lithology Visual Core description						
	10	mulminini Mariantinini Mariantinininininininininininininininininin	dra ()										
2	30 40		161 111			E	- 80cm Diatom five ash						
3	50 60		80	<u> </u>	- Und								
(y)	70	hillin	9×0/2 NII	M		(3)	-60 Diatom ouze						
6	90		104 11p		0-276	rad (S)							
	100						3 Diatom voze						
CC	120												
	140												

Observer: _

Date:

	E	xpedit Berin	ion 32 g Sea	23	ories			Site Hole Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 110 110 120 130	ուղադարարարարարարարարություրություրարարարու			145-150 Mot Gran 40-107 Mit faire Si. bisturb to, 2-147		55-163 FAS CAS CAD MAN (SUPY-S)		2.5

+		kpedit Berin	ion 32 g Sea			V1339 D 44 Z Site Hole Core Section	Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation Structures/Accessories	Drilling Dist.	Major Lithology Minor Litholo Visual Core description	gy
10				2.5 Shell			
20	1						
30 40							
50							
60							
70	1						
80							
90							
100 110							
120						A COLL MOVED	
130	-		9	0×5 >>	-	_1325-134 ADA	
140			1211 100	`			
7)			N	rod		Observer:	Date:

X	E		tion 3 ng Sea		ories			Site Hole Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10				Mon	8	M	24	Mes-dk fire asn
20					,			
30				/				
40				sand		y&	_	-crack
50				Shavet t			_	-48- 41-132) V
60				Sto	11)~		0,	
70					102250		SAS to	
80		•			V		4	79-und landry V
90						93	5	- Void
100						103	_	-crack
110								7
120						13)		- Crack V
130						14	Ч-	- Crack
140								

Observer: _

			ion 32 g Sea	23	ories			Site Hole Core Section Top Depth Scale	
	i,	Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 110		Re Re	S	רוב	Bio	Str	THE STATE OF THE S) luc	-10-13 VOID -44-50 CVACKS -72-94 CVACKS -116-132 CVACKS
130						ropo) F	es	

Observer:

_		Expedition 323 Bering Sea -ខ្ញុំ							VI334 D 4H 5 Site Hole Core Section To						Top Depth Scale
	×.	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration		Lithology Core desc			Mi	nor Litholog	зу
	10	Line													
	20				14	Mot	+	74		all	M	Hrus	dai	K 951	^
	30					_ V ((
	40	3													
	50	1													
	60														
	70	3													
	80				879	-Mo	H								
	90	1													
	100														
	110 =														
	120			4											
	130	=													

Observer: Date:

\	Expedition 323 Bering Sea - ਵੁੱ							Site Hole Core Section Top Depth Scale						
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description						
10					(15)	P	2							
20					2Y 24	La		,						
30					MIT	racks	1	-gas exp Mod,						
40					4,10	2-480								
50						20								
60	1													
70	1													
80														
90														
110														
120	1													
130														
140														

Observer:	Date:	

		E	xpedi	tion 32	23				U1339 D 4H CC
			Berin	ıg Sea		S			Site Hole Core Section Top Depth Scale
						Structures/Accessories			
		ation			5	/Acce	يب		Major Lithology Minor Lithology
		iic Senta		99	batic	ures,	ğΟį	ation	
		Graphic Representation	Color	Lithology	Bioturbation	truct	Drilling Dist.	Induration	Visual Core description
	П	<u> </u>	T T		Ü	,	Ë	Ē	
	=								
10	H								J [∓]
	ᆸ								"
20	녀				ı				
	H					,			
30	H								
	H								
40	ΙŦ								
40	日								
	lЭ								
50	너								
	H								
60	Ы								
	В								
70	녀								
	17								
80	Ы								
	Э								
00	14								
90	Э								
	Е								
100	ᆸ								
	=								
110	H								
	Н								
120	듸								
	H								
130	Ы								
.50	目								
	🗆								
140	\exists								
	\exists								

MSM

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

Leg	Site	Hole	Core	Туре	Sec	Interva	
		11010		1.750		Тор	Bottom
	1339	0	5		2	Soan	

Sediment/Roc Name	k
Name	

DUATOM FINE ASH

Observer

IM

Percent Texture			
Silt	Clay		
	Percent Texture Silt		

Percent	Component
SILIC	CICLASTIC GRAINS/MINERAL
3.	Framework minerals
5%	Quartz
5-1	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
9%.	Micas
	Biotite
	Muscovite
5 ×	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	A salida
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Onagua minorala
C57.	Opaque minerals Pyrite
-1/-	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
30%	Vitric grain
1011	Lithic grain
	Littiic graiii

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
50%	Diatoms
	Centric
	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

Loa	Site	Hole	Core	Туре	Sec	Interval (cm)		
Leg	Site					Тор	Bottom	
	DOP	5	5		B/;	60		

Sediment/Rock Name	DIATOM	0020
	DIATOM	007

Observer (WA

	Percent Texture	
Sand	Silt	Clay
- 4		

Percent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
67	Quartz
6-1.	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
5%	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOLC	CANICLASTIC GRAINS
	Crystal grain
1	
10%	Vitric grain
	Lithic grain

Percent	Component						
BIOG	SENIC GRAINS						
	Calcareous						
	Foraminifera						
	Planktonic foraminifera						
	Benthic foraminifera						
	Nannofossils						
	Coccoliths						
	Discoasters						
	Pteropods						
	Siliceous						
	Radiolarians						
	Spumellaria						
	Nassellaria						
754	Diatoms						
177	Centric						
	Pennate						
	Chaetoceros Resting Spores						
	Silicoflagellates						
	Sponge spicules						
	Dinoflagellates						
	Dirionagenates						
	Others						
	Pollen						
	Organic debris						
	Plant debris						
	Ebridians						
	Echinoderm						
	Fish remains (teeth, bones, scales)						
	Bryozoans						
	Bivalves						
	Others						

O X

IODP Expedition 323
SEDIMENT SMEAR SLIDE WORKSHEET

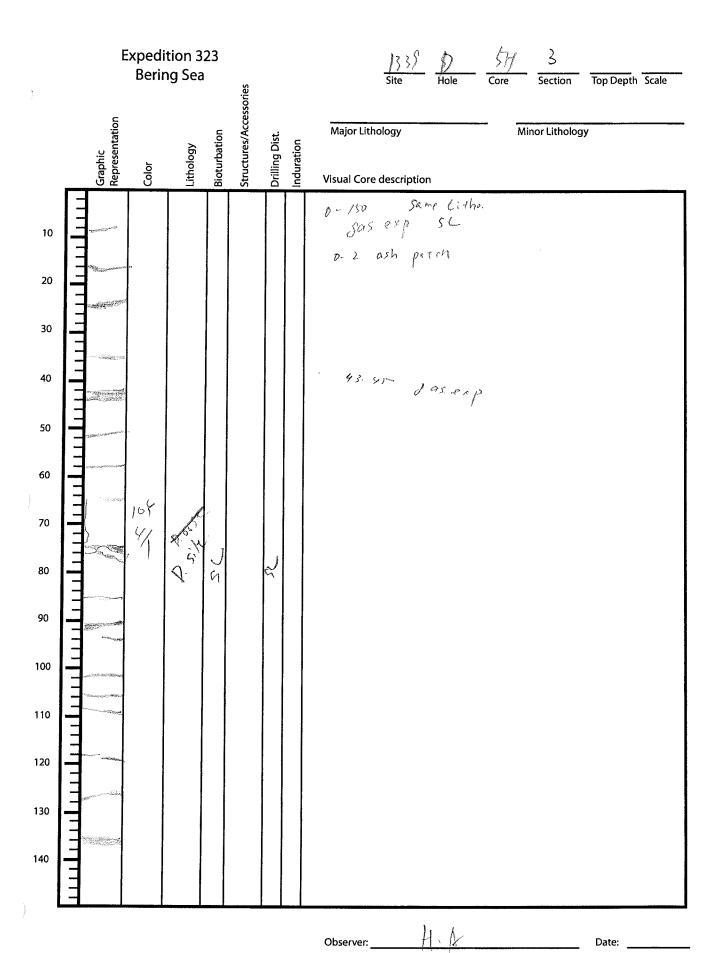
Log	Site	Uala	Corr	T	Sec	Interval	(cm)	Ī
Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom	
		0	4		5	50an		

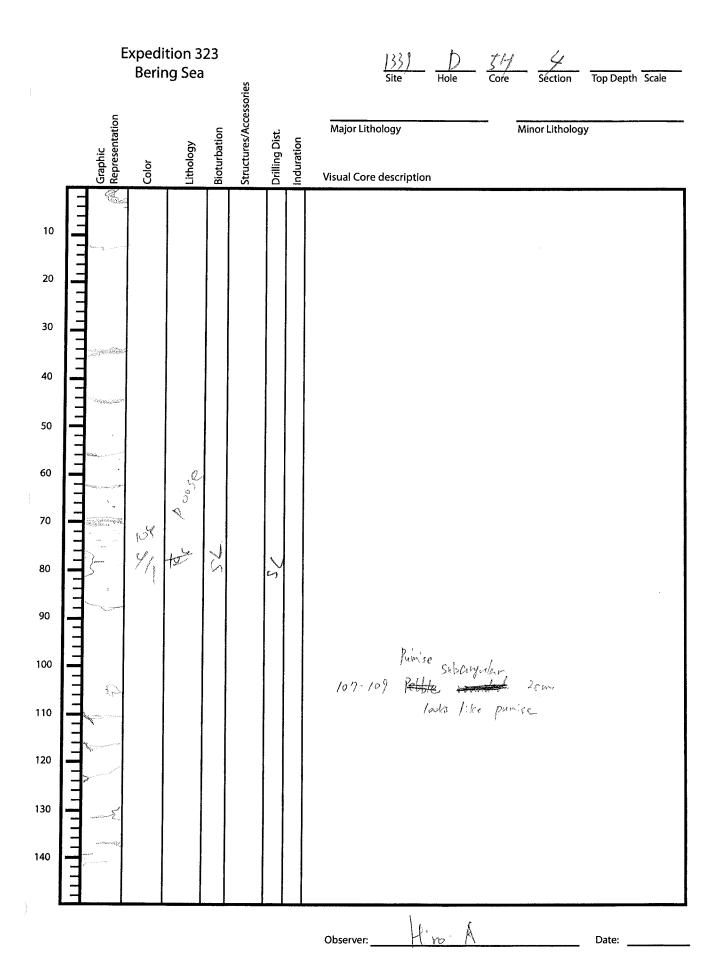
Sediment/Rock
Name

DIATOM DOFE

Observer

lwa


Percent Texture							
Silt	Clay						


Percent	Component							
SILICICLASTIC GRAINS/MINERAL								
	Framework minerals							
	Quartz							
	Feldspar							
	K-feldspar (Orthoclase, Microcline							
	Plagioclase							
	Rock fragments							
	Accessory/trace minerale							
	Accessory/trace minerals Micas							
	Biotite							
	Muscovite Clay Minerals							
	Chlorite							
	Glauconite							
	Chert							
	Zircon Ferromagnesium minerals							
	r enomagnesium millerais							
	Authigenic minerals							
	Barite							
	Phosphorite/Apatite							
	Zeolite							
	Opaque minerals							
	Pyrite							
	Magnetite							
	Fe-oxide							
	re-oxide							
	Carbonates							
	Calcite							
	Dolomite							
VOL	LANICLASTIC GRAINS							
TOL	Crystal grain							
)	Oryotal grain							
204	Vitric grain							
	Lithic grain							

Percent	Component							
	ENIC GRAINS							
	Calcareous							
	Foraminifera							
	Planktonic foraminifera							
	Benthic foraminifera							
	Nannofossils							
	Coccoliths							
	Discoasters							
	Pteropods							
	Siliceous							
	Radiolarians							
	Spumellaria							
	Nassellaria							
15%	Diatoms							
	Centric							
	Pennate							
5%	Chaetoceros Resting Spores							
	Silicoflagellates							
	Sponge spicules							
	Dinoflagellates							
	Others							
	Pollen							
	Organic debris							
	Plant debris							
	Ebridians							
	Echinoderm							
	Fish remains (teeth, bones, scales)							
	Bryozoans							
	Bivalves							
	Others							
	1							

	E	xpedit Berin	tion 32 ig Sea					Site Hole Core Section Top Depth Scale
	Graphic Representation		Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology
	Re Ga	Color	<u> </u>	<u></u>	Str	ا <u>آ</u> اعد	<u>Ē</u>	Visual Core description 8-2 St. Dist. Drilling Puntane
10				らし				+ 2 Poble to the kopple to
20	1111							19-40 St. Biotur.
30				Mo D		_		31- no vertical coast gas expassion
40		104						Jan 1913 and
50						sL		
60								
70		5485	'70 112	SL				20-72 prad. 20-50 Dolomite Layer? 20 10-20 grad. 21 Pebble subangular Black
80				-				8
90	<u>-</u>							
100		104			0			S& Pelfles
110		4/1						
120	1							
130		7				ŞL		
140								
•	<u> </u>					_		Observer: Date:

		dition 323 ing Sea	ries	Site Hole Core Section Top Depth Scale
	Graphic Representation Color	Lithology Bioturbation	Structures/Accessories Drilling Dist. Induration	Major Lithology Minor Lithology Visual Core description
10 20 30				osh per perch
40 50 60		54	and the second	48-51 50 50 puncture 43 71 45 - 32 sas exp.
70		P.00	56	74-150 " 74-98 Arry Rech. Fred Bio.
90		700		
110			su	12 8 /2.
130				
· Adding	-1		<u> </u>	Observer: Date:

		tion 323 ng Sea	sories		Site Hole Core Section Top Depth Scale
_	Graphic Representation Color	Lithology Bioturbation	Structures/Accessories Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10	NY 1 2 4/2	Med 91	60		10-22 Jacexp 12-13 am parch 32.54 Josexp 30-33 ST 7/2 color patch 60-95- Acad Bio E 60-104 Gas esp. 130-132 panchine 130-132 panchine 141-144 panchine

Observer:	H	ivo	X	Date:		
ODSCIVEI.		\$ \$.8	 Date.	•	

	E	xpedit Berin			ories			Site Hole Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10		54						Soc. 5 125 a 64 Sec. 67 grad Band.
30 40							3,	1 3x - 1xx, losexp. st
50 60		54						
70 80 90				55				103~120 grad. con:
100	11111111		Di curr			ŞŸ		
120	11111111	54 4/2						
140	1							

Observer:	Date:

		E	Expedi Berir	tion 32 ng Sea		sories			Site Hole Core Section Top Depth Scale
		Graphic Representation		λ£	ation	Structures/Accessories	Dist.	uo	Major Lithology Minor Lithology
	_	Graphic Represe	Color	Lithology	Bioturbation	Structur	Drilling Dist.	Induration	Visual Core description
10									
20			54 4/2		25				b-19 ans exp
30					c.				m D ste had 15t at 1
40	11-78-1		5734		Mot	**			28-14 Ked. Bioturbation ashy paceh
			غار د يد		J				
50		<u> </u>	5°T		7 4	***************************************			
60		:		,					
70									
80						į			
90									·
100									
110						:			
120									
130									
140									
	1	l							

Observer: _____ Date: ____

			Expedi	tion 3	23							A co	and the
			Berii	ng Sea		ies			Site	Hole	Core	Section	Top Depth Scale
		Graphic Representation		бо	Bioturbation	Structures/Accessories	g Dist.	tion	Major Lithology		<u>-</u>	Minor Litholog	,
		Graph Repre	Color	Lithology	Biotur	Structi	Drilling Dist.	Induration	Visual Core description				
							Ī						
10	E				SL								
20				Component and decrease, risk has	and the second sections.	nderson houselessed a 44 2 1 °C	p+ +2123000	N Wirginskijs	the control of the co				
30													
40													
													1
50	E												
60													
70													
80													
90													
100													
110													
						:							
120	=												
130													
140						:							
	4												

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

Leg	Site	Hole	Core	Туре	Sec	Interva Top	i (cm) Bottom
323	V1339	Œ	5	Н	3	80	80

Sediment/Rock Name	Diaton silt	Observer	Kelsie

Sand Silt	Clay

Comments:

Percent	Component
	CICLASTIC GRAINS/MINERAL
SILIC	Framework minerals
30	Quartz
10	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
2	Rock fragments
	rtook nagments
	Accessory/trace minerals
1	Micas
	Biotite
	Muscovite
	Clay Minerals
į .	Chlorite
)	Glauconite
	Chert
	Zircon
\	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
(Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOLC	ANICLASTIC GRAINS
	Crystal grain
5	Vitric grain
<u></u>	Lithic grain

Percent	Component
	ENIC GRAINS
<u> </u>	Calcareous
	Foraminifera
	Planktonic foraminifera
1	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
	Diatoms
30	Centric
20	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

Leg	Site	Hole	Core	Туре	Sec	Interva Top	l (cm) Bottom
323	(339)	Ü	5	H	6	3	3

Sediment/Rock Name	Diatom	silty	clay	Observer	Kelsie

	Percent Texture	
Sand	Silt	Clay
	60	40

Comments:

Percent	Component
	CICLASTIC GRAINS/MINERAL
OILK	Framework minerals
10	
5	
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Trook Haginonia
	Accessory/trace minerals
5	Micas
	Biotite
	Muscovite
15	Clay Minerals
1	Chlorite
	Glauconite
	Chert
·	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
1	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
\/01.0	ANIOLACTIC OPANIC
VOLC	ANICLASTIC GRAINS
	Crystal grain
1	
5	Vitrio quoin
ا ر	Vitric grain
	Lithic grain

F	
Percent	Component
BIOG	ENIC GRAINS
,,	Calcareous
	Foraminifera
	Planktonic foraminifera
<u> </u>	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
l	Nassellaria
	Diatoms
35	Centric
20	Pennate
	Chaetoceros Resting Spores
3	Silicoflagellates
1	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

		E		tion 32					V1339 D 6
			Berir	ng Sea		ries			Site Hole Core Section Top Depth Scale
	2	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 70 80 90 110 1110 1120 1130							Mount		puncting to ack the
	=								Gap 138-150

Date: __

		xped Beri	ition 3 ng Sea	23				VISSA D 6 2 Site Hole Core Section Top Depth Scale
	Ę				Structures/Accessories			
	Graphic Representation	.	Lithology	Bioturbation	tures/Ac	Drilling Dist.	Induration	Major Lithology Minor Lithology
	Grap Repr	Color	Lift	Biotu	Struc	T Daliii T	Indu	Visual Core description
10								
20		Syl				5		·
30		30		E.		300		pundences the day live so
40								
50								
60								
70								
80								
90								
100								
110								
120								
130								
140								

Date: _

	I	Expedi Berii	ition 3: ng Sea	23				VI 339 D 6 3 Section Top Depth Scale
7	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology
10 20 30 40 50 60 70 80 90 110 110 1120 1130		SX 45	ļ	Slade		Ara od.		mostly punctures

	E		tion 32 ng Sea		رب د			V 1339 D 6 Y Top Depth Scale
3	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40		S. Y.	diasamsial					punctures at 8-10, 46-50, 63-65
60 70		114	,					93-102 Skolithres 2 cm p
80 90		から	Distant on the					102-110 dolostone, concretion, hard, int. biotub.
100 110 120	Ga		Johnson James			June 1		113-120 gap, heavy coreolist.
130 140		101/2 101/2 101/2	7. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.					109-131 fine och 127-131 Sharp von Lax oforsh

Observer: Date:

		E		tion 32 ng Sea	a				Site Hole Core Section Top Depth Scale
	,	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 70 80 90 1100 1110 1120 1130			57412		40000		wood, Stratil		ash partches there.
	El								

Date: __

			ition 32 ng Sea		ories		$V1339$ \overline{D} \overline{Core} $\overline{Section}$ $\overline{Top Depth}$ \overline{Scale}	
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Major Lithology Option Winor Lithology Visual Core description	
10 20 30 40		5 3 3 E S	High Single Wings		S		25-27 internixed clarkast 21-25 agrad cent., 27-30grad.co 35-36 sharp cont.	ng fo
60		=					30-36 daskarah leurer 36-1500 h pateles Har.	
70								
90	111111							
100								
110								
120								
140								

Observer: Date	::
----------------	----

Major Lithology Minor Lithology Visual Core description 10 20 30 30 30 30 30 30 30 30 3	th Scale	Core Section Top Depth	Site Hole Core Section Top D					tion 3. ng Sea	Expedi Berir	E	
20 January 18 January		Minor Lithology			Drilling Dist. Induration	Structures/Access	Bioturbation	Lithology	Color	Graphic Representation	
1100	Sec.	ixedlight ask	Sintern	0-30 34-			5		SYUN		20 30 40 50 60 70 80 90 110 120

Observer:

			E	xpedi	tion 3	23				V1339 D 6 CC
				berir	ng Sea	l	ories			Site Hole Core Section Top Depth Scale
			. <u>c</u>				ccesso			Major Lithology Minor Lithology
		į.	sentat		у́бс	bation	ures/A	g Dist.	tion	Major Lithology Minor Lithology
	î	Graph	Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Visual Core description
				SZ	Of:			63		
	10			14		5	,	Sin.		
		H		7	1)%					·
	20		i visu uairein i	kistostas ittisises kiristos kai	n dievogrin-pasyraai	ind association	and the second seco	2.4 (1000-064)	44400 ₆₇₂	w.
		13	- Gancon							
	30	Ħ						Professional State of the State	ensiste and the	
	40	E								
		3								
	50	=	ı							
		3								
	60	3								
- American		=								
	70	7								
	80	1								
		E								
	90	4								
		\exists								
•	00	\exists								
	10	3								
!	10	F								
1	20	4								
		=								
1	30	4								
		=					i			
1	40	=								
	L	1								

Date: ___

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

Leg	Site	Hole	Core	Туре	Sec	Interval (cm) Top Bottom				
323	23 V1339 D		6	H	5	81	781			

Sediment/Rock Name	 ail+	Observer	Kelsie
	 	<u> </u>	

	Percent Texture	
Sand	Silt	Clay
		[
1		

Comments:

Percent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
25	Quartz
	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
2	Rock fragments
	Accessory/trace minerals
	Accessory/trace minerals
	Micas Biotite
	Muscovite Clay Minorale
	Clay Minerals Chlorite
-	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	1 chomagnesium milierais
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
1	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOLÇ	ANICLASTIC GRAINS
1	Crystal grain
1	
5	Vitric grain
	Lithic grain

Percent	Component
	ENIC GRAINS
Biodi	Calcareous
1	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
	Diatoms
30	Centric
2.5	Pennate
	Chaetoceros Resting Spores
2	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

	i	Expedi Berii	ition 3 ng Sea		sories			$\frac{U_{1339}}{\text{Site}} \frac{D}{\text{Hole}} \frac{Z}{\text{Core}} \frac{A}{\text{Section}} {\text{Top Depth}} {\text{Scale}}$
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10		2	G Sign	- Weile	C	05		0-90 blueish gree, ich ber.
304050								135-145 grad cont
60 70								
90 100								
110								
130 140		57 14/2	e) 2)					

		E	xpedi Berir	tion 3 ng Sea	23				$\frac{1339}{\text{Site}} = \frac{7}{\text{Hole}} = \frac{2}{\text{Sore}} = \frac{7}{\text{Section}} = \frac{2}{\text{Top Depth}} = \frac{1}{\text{Scale}}$
		u		-		Structures/Accessories			
		Graphic Representation	'n	Lithology	Bioturbation	ctures/Ac	Drilling Dist.	Induration	Major Lithology Minor Lithology
		Gra	Colo	<u> </u>	Biot Biot	Stru	<u> </u>	<u>n</u>	Visual Core description
10									
20					D	:	Ç		•
				<u> </u>	5.	C			
30	目		1						
40	Ħ		A D	S					
50	目	·							
60	E								
70									
80	目								
90	目								
100									
110									
120									
130									
140									

Observer:

			ition 3					U1338	D	7	3	
		Beri	ng Sea	1	ories			Site	Hole	Core	Section	Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Visual Core description	on	<u> </u>	linor Litholog	у
10 20 30 40 50 60 70 80 90 110 110		147 147			C	Shink		40-50 gr				4,101

Date: ___

		Expedit Berin	tion 3 ig Sea		sories			V1339 D 7 4 Site Hole Core Section Top Depth Scale					
	Graphic	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description					
10 20 30 40 50 60 70 80				mod				light grey brurows 40-86 50-60 grad cont. blueish sincorns 86-100 don't ash patches the					
100 110 120 130								Ma-120 dala jordela					

Observer: _____ Date: _____

	E	xpedi						U1339 D 7 5
		Berir	ng Sea		ries			Site Hole Core Section Top Depth Scale
3	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Winor Lithology Visual Core description
10 20 30 40 50 60 70		10/201 Story Story Story	die his al			District Control of the Control of t		20-28 fining up. 20-28 fining up. 26-28 slaup, work. 30-36 ash patch 50-55 grad work.
90 100								121-133 intermixed dente art
110 120	111111							125-130 grad. cont.
130		1/1/1 52						
140		45						

Observer:

	E	xpediti Bering		23				U1339 D		4	6	
		Delili	y sea		sories			Site Hole	•	Core	Section	Top Depth Scale
	ntation		>	tion	Structures/Accessories	Oist.	Ë	Major Lithology		- -	linor Litholog	у
	Graphic Representation	Color	Lithology	Bioturbation	Structur	Drilling Dist.	Induration	Visual Core description				
10								10-15 grad. LA	1 - 1	L		
20								great of	A. Veri	, ę		
30		5										
40		Par .				M Co						
ĺ					C			ash mottle				
50	-							- Wan imo me	/J 1	rva.		
60												
70												
80								85-130 June	A.			
90						2						
100						748.V	.					
110	4											
120												
130												
140	1											
ı				l								

Date: ___

		I	Expedi Berii	ition 32 ng Sea	23				V (13 <u>39</u> Site	Hole	Core	Section	Top Depth Scale
		5		J		Structures/Accessories				Tiole			
		Graphic Representation	-	Lithology	Bioturbation	ctures/Ac	Drilling Dist.	Induration	Major Lithology		N	linor Litholog	у
	Г	Grap Rep	Color	T É	Biot	Stru	ا ق	nd L	Visual Core description				
10													
20													
30													
40			(3)		N.S.		2						
50				C	Š	r	10 m						
60	目												
70													
80							******	NJ.					
90													
100													
110													
120													
130													
140													
·													

		E	xpedit Berin	ion 3 g Sea	23				U	433 Site		Hole	Core	CC Section	Top Depth	Scale
	raphic	Representation	Color	Lithology Bioturbation		Structures/Accessories	Structures/Accessories Drilling Dist.		Major Lithology Visual Core description					Ainor Litholog		
10 20 30 40 50 60 70 80 90 100 110 120 130			and an article of the second o				Si same									

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

Leg	Site	Hole	Core	ore Type		Interval (cm) Top Bottom				
323	U1339	D	1	+	E	38	37			

Sediment/Rock Name	Diatom rich dayey silt	Observer	Kelsie
		<u> </u>	

	Percent Texture	
Sand	Silt	Clay
	60	40

Comments:

Percent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
10	Quartz
5	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
··········	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
20	Clay Minerals
1	Chlorite
<i>f</i>	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
- 1	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOLC	ANICLASTIC GRAINS
	Crystal grain
<u> </u>	
10	Vitric grain
	Lithic grain

	T								
Percent	Component								
BIOG	ENIC GRAINS								
1	Calcareous								
<u> </u>	Foraminifera								
	Planktonic foraminifera Benthic foraminifera								
	· · · · · · · · · · · · · · · · · · ·								
	Nannofossils Coccoliths								
	Discoasters								
	Pteropods								
	Oili								
	Siliceous								
	Radiolarians								
	Spumellaria								
	Nassellaria								
	Diatoms								
	Centric								
10	Pennate								
	Chaetoceros Resting Spores								
<u> </u>	Silicoflagellates								
	Sponge spicules								
	Dinoflagellates								
	Other and								
	Others								
	Pollen								
	Organic debris Plant debris								
	Ebridians								
-	Echinoderm								
	Fish remains (teeth, bones, scales)								
	Bryozoans								
	Bivalves								
	Others								
	i								

		lition 323 ing Sea	S		Site Hole Core Section Top Depth Scale
	Graphic Representation Color	Lithology Bioturbation	Structures/Accessories	Drilling Dist. Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60					28-72 grad cont. 49-5-1 grad cont. 56-58 strangesont. 58-7-1 light och molder. 70-83 grad.
90 100 110					82-100 dade adiadencised 95-100 grad, cont. 100-100 grade cont. 128-132 grade cont. 132-150 grade cont.
130 140	11111111111111111111111111111111111111				132-150 greyish bussows

Observer:	 Date:	

 $\frac{1}{1}$ $\frac{1}$

Expedition 323 **Bering Sea** Structures/Accessories Major Lithology Minor Lithology Graphic Representation Bioturbation Drilling Dist. Lithology Visual Core description 10 20 30 Right
13.81 ash patch

dark
10.56 patches and
bens your mother than 40 50 70 80 90 100 110 120 130 140

Observer: _____ Date: ____

		Expedi Berii	ition 32 ng Sea		ıo.			MARTINE Site Hole Core Section Top Depth Scale
	Graphic	Representation Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70				1835x				
90 100 110 120 130		S.5/4						137-140 grad cont. 140-143 dente on, grad top, showles

Observer: Date:

		E	xpedit Berin	tion 32 ng Sea					Site Hole Core Section Top Depth Scale
				J		ssories			Site Hole Cole Section Top Depth Scale
		: entation		λfe	ation	Structures/Accessories	Dist.	u O	Major Lithology Minor Lithology
	1	Graphic Representation	Color	Lithology	Bioturbation	Structu	Drilling Dist.	Induration	Visual Core description
	Ħ		5						
10	目		SE						00 10.10
20	H								ade patelles the.
30									12 20 :
									17-20 icolatedalet, su bronneled, 3cm p, grey
40	目					i			Sam & grey
50	H								, h i
60	El		. 4						
		W							60-65 growt.
70			4/2						20.200 - ald
80		NP)	M						La profusio
90	E		5>						
			³ /4						
100									
110									
120									
	=	ļ							
130	=	,							
140	=======================================								141-146 intermixed and
	=								11 11 1 1 4 6 1 x HOWN IXLOX ONOLY

Date: __

	Expedition 323 Bering Sea		ories			$ \begin{array}{c ccccc} & & & & & & & & & & & \\ \hline & & & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & &$			
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 110 110 120		Grap Sept	Colo	Litho	Bioth	Struc	Drilli	npul	Sould granulant laybr 95-110 denter brownish and patales
140									

Observer:

Date: ___

		E	xpedi Berir	tion 3 ng Sea	23	es			Site Hole Core Section Top Depth Scale
	1	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10									· ·
20 30		statulista area area e e e e e e e e e e e e e e	Top Va		Ø,	C			
40							Word !	.	Who patches Her.
50 60							Eddinos varios de la compansió		2
70									
80 90									
100									
110			erajónosadákas törökésésés anissa	nount is single in the single	. Profession and the second	e Carino de grando de	i samentani and a	K4000 501 To	
130									
140									

		E	xpedi Borir	tion 3. ng Sea	23				U1338 D 8 7
			DCIII	ig sea		ories			Site Hole Core Section Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
,	П	<u>ت</u> م	<u> </u>	: <u></u>	<u> </u>	<u> </u>	٥	ڃ	visual Core description
10	Ħ								·
	目		_antion,						·
20	目		B.		3		9		
	Ħ		70 ju 40 ju		交				
30	日						-11%		
40	E								
40	目								
50	F			and the last property of the second s	anner's physical d	ganganik plan fi siyasal ka gerikaan Siya	The second	entage of the lateral	-w _{ay} ,
			٠,						
60	1								
70									
70	F								
80	目								
	7								
90	=					:			
100	=								
100	F								
110	E								
	=======================================								
120	4								
130									
140	且			ļ					
	=								
- 1	上								

Observer:

Date: ____

		I	Expedi Berir	tion 3 ng Sea	23				N4838 D & CC
			DCIII	19 300		sories			Site Hole Core Section Top Depth Scale
		ation			ت د	Structures/Accessories	1 2		Major Lithology Minor Lithology
		Graphic Representation	ō	Lithology	Bioturbation	ictures	Drilling Dist.	Induration	
		1	Color		Biot	Sfru	Ğ	<u>n</u>	Visual Core description
	H		TOL				0		
10	目		6		\rangle \(\) \(Ç	J.		
20			Can Can	(**************************************		24	н	
30		Zaponijana usosnija roma	and the gramme of the production and the second	*Adalament salah dalah berdam pengi	e stankovskih	de representation and the	na sugara-veri	ee.	
40	目	PX	l						
	El		** TATALAN MARIENTAN MARIENTAN	ENTERNISTE LANGUAGE	**********	THE RESIDENCE OF THE PERSON NAMED IN	es reservative	entaration of	
50									
60	固								
	H								
70	目								
80	且								
	E								
90									
100									
110									
120									
120	\exists								
130	4								
	=								
140		ļ							
	4								

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

ĺ		0.1			-	0	Interva	l (cm)
	Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom
	323	01339	P	8	H	5	Ligar	4-

Sediment/Rock Name	Fine ash	Observer	Kelsie

Percent Texture	
Silt	Clay
5/	
	Percent Texture Silt

Comments:

Percent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
	Quartz
	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	·
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
5	Crystal grain
<u> </u>	Quartz
	Feld.
95	Vitric grain
	Lithic grain

Component
NIC GRAINS
Calcareous
Foraminifera
Planktonic foraminifera
Benthic foraminifera
Nannofossils
Coccoliths
Discoasters
Pteropods
Siliceous
Radiolarians
Spumellaria
Nassellaria
Diatoms
Centric
Pennate
Chaetoceros Resting Spores
Silicoflagellates
Sponge spicules
Dinoflagellates
Dirionagonated
Others
Pollen
Organic debris
Plant debris
Ebridians
Echinoderm
Fish remains (teeth, bones, scales)
Bryozoans Bivalves
Others
- Cu 1010

SM

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

	0:1-	11-1-	0		0	Interva	al (cm)
Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom
323	D1339	2	8	H	6	102	102

|--|

	Percent Texture	
Sand	Silt	Clay
	85	15

Comments:

Percent	Component								
SILICICLASTIC GRAINS/MINERAL									
	Framework minerals								
20	Quartz								
10	Feldspar								
	K-feldspar (Orthoclase, Microcline)								
	Plagioclase								
	Rock fragments								
	Accessory/trace minerals								
	Micas								
	Biotite								
	Muscovite								
10	Clay Minerals								
	Chlorite								
1	Glauconite								
	Chert								
	Zircon								
	Ferromagnesium minerals								
.,,.,	•								
	Authigenic minerals								
	Barite								
	Phosphorite/Apatite								
	Zeolite								
	Opaque minerals								
2	Pyrite								
	Magnetite								
	Fe-oxide								
	Carbonates								
	Calcite								
	Dolomite								
VOLC	CANICLASTIC GRAINS								
I	Crystal grain								
10	Vitric grain								
	Lithic grain								

Percent	Component										
BIOGENIC GRAINS											
Calcareous											
1	Foraminifera										
	Planktonic foraminifera										
	Benthic foraminifera										
	Nannofossils										
	Coccoliths										
	Discoasters										
	Pteropods										
	Siliceous										
	Radiolarians										
	Spumellaria										
1	Nassellaria										
	Diatoms										
30	Centric										
20	Pennate										
	Chaetoceros Resting Spores										
	Silicoflagellates										
	Sponge spicules										
	Dinoflagellates										
	Others										
	Pollen										
	Organic debris										
	Plant debris										
	Ebridians										
	Echinoderm										
	Fish remains (teeth, bones, scales)										
	Bryozoans										
	Bivalves										
	Others										

5., Y		. Training	Expèdi						U1338 D 9 1
			Berir	ng Sea		es			Site Hole Core Section Top Depth Scale
	ì	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10	11111			:			,		·
20									
30					~ ~		. A		
40			Constant	\$ D.					
50									durk ash patelies ther.
60		ng personal sa							
70									64 No Cated Canning
80									
90	T								
100	T								
110									
120									
130									
140									

Observer:

		Expedit Bering	ion 3 g Sea	23	ories			$\frac{\sqrt{\cancel{339}}}{\text{Site}} \frac{\mathcal{D}}{\text{Hole}} \frac{\mathcal{G}}{\text{Core}} \frac{\mathcal{Z}}{\text{Section}} \overline{\text{Top Depth Scale}}$
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 100 110 120 130								109-40 shall frag.

Observer: Date:

	E	xpedit						U1338 D 9 3
		Berin	g sea		ries			Site Hole Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 110 120 130 140		SUN SOUR SUN						35-40 gradicent. 90-94 interessed light and 125-136 greenish

Observer: _____ Date: _____

		E		ition 3					U1339 D 9 4
			Derii	ng Sea	1	ories			Site Hole Core Section Top Depth Scale
		ation			ē	Structures/Accessories	냢		Major Lithology Minor Lithology
		Graphic Representation	Color	Lithology	Bioturbation	uctures	Drilling Dist.	Induration	,
	` _	<u>કું જ્</u>	<u> </u>	<u> </u>	<u>B</u>	\$.	<u>ā</u>	ᆵ	Visual Core description
10									
	=		2						<i>,</i>
20			A CONTRACTOR OF THE PARTY OF TH		8		18		
30				C	3		\$		blueich-greejist pakkerthe
40									and sur year year
50									
50	E								
60	目								
70	昌								
80									
90	目								
100									
110									
120									
130	_								
140									
	且		l						

			ition 3 ng Sea					W1339	<u> </u>	. 9	5		
		Den	ng sea		ories			Site	Hole	Core	Section	Top Depth	Scale
	Graphic	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology	on	<u> </u>	inor Litholog	у	,
10 20 30 40 50 60 70 80 90 110 110 120 130 140		2,5		No state of the st	TS.	D		bluess 4 lightard ground to	a Car				25/5,
1								1					

Date: ___

		E	Expedi	tion 3	23				U1333 D 9 6
			beni	ng Sea		ories			Site Hole Core Section Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
	Е	ن ۾	3	<u> </u>	<u> </u>	\$5	٦	٤	visual Core description
10	目		and the same						·
	目				p				·
20	目		1000000		7		4		
30	固			(co		٤.,	Š	i^	blulish. Hr.
	Ħ								
40	目								
50	目								
60	目								
70	目								
80	H								90-55
90		177	1						
			///	/					
100			S.J. 7.2						
110			12	managang di diganggan gi kanin	nacio de provincio (II)	andrialistic resistant (decisionis suspe	**************************************	···	
	=								
120									
130									
140	E								

Date: ____

		Expedi Berii	ition 3 ng Sea	23	ories			$\frac{\sqrt{1330}}{\text{Site}} = \frac{\mathcal{O}}{\text{Hole}} = \frac{\mathcal{O}}{\text{Core}} = \frac{\mathcal{O}}{\text{Section}} = \frac{1}{\text{Top Depth Scale}}$
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10		5				33.6		internixed dark and
20	The state of the s	<u> </u>	tang and a distribution for the security of th		dece - e - e - e - e - e - e - e - e - e	10 Del	to	w
30 40		Section (make a superior of the superio	es discourbois	ongryss d4	
50	1							
60								
70 80								
90								
100								
110	1							
120 130								
140								
	#			l				

	E		tion 3: ng Sea		sories			U1339 D 10 1 Top Depth Scale
,	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90	Grand Company of the	NOV-1/1		OIB STOCKE	Str	Dri		gren-blueish burrows the. 10-120 grad cont. 63 isolated clast, 1 cm & donk Subarg.
110								
120 130		54						
140		2						

Observer:	Date:	4372274229
Observer.	Date.	

	E		tion 3. ng Sea		sories			$\frac{\text{C1339}}{\text{Site}} = \frac{\text{D}}{\text{Hole}} = \frac{\text{10}}{\text{Core}} = \frac{\text{Q}}{\text{Section}} = \frac{1}{\text{Top Depth Scale}}$
	Graphic Representation Color Lithology				Structures/Accessories	Drilling Dist.	ıtion	Major Lithology Minor Lithology
	Graph	Color	Lithology	Bioturbation	Struct	Drillin	Induration	Visual Core description
10		1	- W		2			. · · · · · · · · · · · · · · · · · · ·
20		1						
30				Ser Ser	C	slingly!		
40				55				
50		•	. nome					44-50 intermixed ash
60								
70]							
80								
90								
100								
110								
120								
120								
130								
140								

		tion 323 ng Sea <u>ខ</u> ែ	Site Hole Core Section Top Depth Scale
,	Graphic Representation Color	Lithology Bioturbation Structures/Accessories	Major Lithology Minor Lithology Winor Lithology Winor Lithology Winor Lithology Winor Lithology
10 20 30 40 50 60 70 80 90 1100 1110 1120 1130 1140 1140	CAND CAND TO NOT AND TO THE PARTY OF THE PAR	slight modi	yellowish 25-42 light green bureaus, up to 25-42 light green bureaus, up to 44-45 date ash bed 60-75 light grey barrows, up to 20m \$ 1506 rectical 113-115

Observer:	Date:	
-----------	-------	--

	E	xpedit		23				U1338 D 10 4
		Berin	g Sea		es			Site Hole Core Section Top Depth Scale
	_				Structures/Accessories			
	Graphic Representation			ion	s/Acc	<u>i</u> ;	_	Major Lithology Minor Lithology
	ohic 'esen'	<u>.</u>	Lithology	Bioturbation	cture	Drilling Dist.	nduration	
3	Grap Repu	Color	Litho	Biot	Stru	Orill	ludu	Visual Core description
		100						
10		Ox H						
		19						·
20		2						14-16 brownish ordepatch
		2.54 2/1						
30	_	74		8		¢.		48-26 whitish ash layer, biotust.
,	13		Ć	NA SA	C	Ž.		
40	=			in Contract		4		top, drago bone
40								
		3						
50		3/4						
]							
60	3							•
	3							
70	3							
	<u> </u>							69. De 8 / 1 0 0 0
80		5						200 brownish and lander,
		7.5%						2-30 brownish and layer, sleep topt base
90	=	· 4						seem for the formation of the seems of the s
]							
100	-							and the second
								113-121 dark ash intermixed
110	3	- Can	İ					
	# ***	2						
120	∃ ′, ′	pili Section	l					
	#							blueish grey ich mis bles Her.
130			l					- Touris graft to the same of the .
	1 .		ľ					
140	-							
	∃							
l	-							

Observer:	Date:	
-----------	-------	--

		E		tion 32 1g Sea	23	ories			V1336 D 10 165 Site Hole Core Section Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10			792						·
30				C	9:4:	Q	(j.s.) (s.		21-24 Internixed dark ash
40 50					•			Se	
60 70							N~ Ó₫.		
80 90	1111111								
100								-Л	05
110 120	111111					en con	ががフ	Ì	
130 140							X & I lind	1	Leavy (10101) beary 155 Cracle at 145-146
							3	٠.	Concle at My-1120

Observer: _____ Date: ____

	E		tion 32 ig Sea		sories			M335 D 10 M6 Section Top Depth Scale
ï	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80		10/4/7				~ \$\\\\		37-45 internixed and 72-73 biolinob. light and layer 84-84 darde and layer 84-30 darde and mobbles
1100 1110 120 1130								

Observer: Date:

		E		ition 3 ng Sea		sories			Site Hole Core Section Top Depth Scale
	3	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30			10/2		S.S.				8-10 biolimbe and langer
40 50 60							,		
70						STATE OF THE PROPERTY OF THE P		Springstyp dy man o	
80 90									
100									
120									
130 140									

		E	Expedi	tion 3	23				U1333 D 110 CC
			berii	ng Sea	l	ories			Site Hole Core Section Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
	E	© Æ		<u>;</u>	ia i	72	Ť	ء	visual Core description
10	固				_/		2		·
	目		FO.		5	(Z		÷
20	目		8		7		2	-	
30	Ħ		P. C.						
50	F								
40	目	was a supplementary of the second		No secure de la constitución de la	o constant	god sincersament of a	ga syekirin	Manu.	
		Pt							
50			and the second s	***************************************	and the state of t	Administration some	K SACTORY	ikk aloni silagi.	
60	目								
	Ħ								
70	H								
80									
90	H								
100									
110									
120									
130									
140	1								

		Expedi Berii	tion 3 ng Sea	23	es			11339 $\frac{1}{\text{Site}}$ Hole $\frac{1}{\text{Core}}$	
	Graphic	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Visual Core description	Minor Lithology
10 20 30 40 50 60 70 80 90 100 110 120 130						MID		blertish gety	

			tion 3 ng Sea		sories			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Graphic Representation	ō	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology
1		Gra	Color	<u> </u>	Bio	Str	Ä	<u>n</u>	Visual Core description
10			2		2220	140			blueish grenish.
20	日				~				ancisa graying.
30									
40									107-115 interrired date ask
50									and the contraction of the contr
60									Craduat 8-9,29-70 cm
70									
80	1								
90	目								
100									
110									
120									
130									
140									

Observer:	Date:	
-----------	-------	--

		E	xpedi Berin	tion 3 ng Sea	23				Site Hole Core Section Top Depth Scale
				J - 40		ssories			Site Hole Core Section Top Depth Scale
		Graphic Representation		>	tion	Structures/Accessories	Dist.	Ę	Major Lithology Minor Lithology
		Graphic Represe	Color	Lithology	Bioturbation	tructure	Drilling Dist.	Induration	Visual Core description
	H	O &				S		=	
10					3	·			·
20	固		2		, pow		\$ \\ \&		
	目					C	35		
30	目		5						60-65 internissolast
40	目								
	E								83 icolarded small pelola
50	目								97 "
60	目							İ	
70									
70									
80									
90									
100									
110	ゴ								
120									
120									
130	=								
140									
	1								

	E	ion 32 g Sea		ories			Site Hole Core Section Top Depth Scale	
ì	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60		1/1/ SUS		FUNS.	C	J/10/1		32 chell frags. 30-40 grad cont.
90 100 110 120 130		7/4				1 Querry Ship		87-90 grad. cont.

Observer:	Date:	
-----------	-------	--

		pedition Bering		23	ories			Site Hole Core Section Top Depth Scale
,	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Wisual Core description
10 20 30 40 50 60 70 80 90 100 110 120 130		10 SES		Lich		Shapping I show the		10-42 internixed and, patelle. 70-10 logaps at 29-80, 84-67, 100-103000. 65-70 grant cont.

Date: ___

	I	Expedi Berir	tion 3 ng Sea					U1339 D 11 6
	_		. 5		essories			Site Hole Core Section Top Depth Scale
	Graphic Representation) j	Bioturbation	Structures/Accessories	g Dist.	tion	Major Lithology Minor Lithology
	Graph Repre	Color	Lithology	Biotur	Struct	Drilling Dist.	Induration	Visual Core description
10								
		5/	į					
20				5				
30						5		
40]///	////	ÜÜ	, 250	C	2		35-45 grade cont.
50		101		120 J	29			₩
]	4		\$ **				
60		ŕ						
70	目 /.							
80								75-80-1
90		5						75-80 grad.
		8						
100		, T						98-105 internixed dont only
110								18-108 1 4 tem, 2001 Denje 1024
120	=				i			1. Ord Date 1 cm de
130								Ma isolated clast 1 cm \$1 elongated, dock
								elongated, were
140								

	E		ition 3 ng Sea					U1339 D 11 7
		DCIII	ig Jea		ories			Site Hole Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 100 110 120 130 140			State 1 Total	NVOM.		This was		20-30 growd. 20-27 33-43 gap 48-43 gap 60-61 gap 90-1100 growd.

Observer: _____ Date: ____

	E	xpedi Berir	ition 3 ng Sea	23 1	и			V	7133 <u>(</u> Site	}_	Hole	AA Core	Section	Top Depth	Scale
ì	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lit		ption			Ninor Litholog	эу	
10 20 30 40 50 60 70 80 90 110 110 120 130				Sign.		Child I was I of strain	3 8								

		E	xpedi	tion 3	23				U1838 D 11 CC
			Berir	ng Sea	ì	ries			Site Hole Core Section Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
1	П	ت ∞	<u> </u>	<u>:</u>	<u> </u>	_ ☆	T	٤	visual Core description
10	H		55				1		·
10	目		16		S	c			
20	囯		1	(2		
	El				~7				
30	H	and the second		e distribute minima professora de la constitución d		TRAPENTAL LA	24.700.00.00	evirenzet.	wilds
		t	AL	e-wion.					
40	目			and the second s	and the last state of the	er minnt ger i te a Versolada an Salan		eningsa (n.)	
50	目								
	目								
60	=								
70	目								
	H								
80	E								
90	3								
100									
	E								
110									
120									
	=								
130									
	\exists								
140	7								
ı	\exists								

		Expedition 323 Bering Sea 						Site Hole Core Section Top Depth Scale
15	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10		MAN		12/100		mad		1-3 dark ash Congre
30 40								35 isolated alast, run p, Subrounded
50	Huntu							
70 80								
90 100								
110	111111111111111111111111111111111111111							
130	minin							

		E	xpedit Berin			ies			$\frac{U1339}{\text{Site}} \frac{\sqrt{3}}{\text{Hole}} \frac{\sqrt{2}}{\text{Core}} \frac{2}{\text{Section}} \frac{1}{\text{Top Depth Scale}}$
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10	an han han		ひちゃ		7		Sk		0-55: dash gety burrows
30 40 50	111111111111111111111111111111111111111				1 A0 VV		Skir		24-25 dark anh patel
60 70	1111111111		54			69			
90			453		NAC				100-110 grand,
100 110 120]]]] Sty.	С					
130			3						
- 1	\exists			- 1	- 1			- 1	

Observer:	Date:

	E	xpedit Berin	tion 32 g Sea	23	v			U1335 D 12 B Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 110 110 120 130 140		The LOV		slight about		Think made		37.33 intermixed cloude ash layer 54,56,65-63,80 deade ash layers 65-68 sharp boase, grad for 68-70 burrens filled with darkash 85 sharp cont. 54-85 laminated interpol (darkash, ohistom core, forcum: rich datom core; mutam scale crads at 93, 106,112, 124-125,132, 136,142 cm; gap 148-150 85-150 ash mobiles

		Expedition 323 Bering Sea				sories			4	/1379 Site	Hole	12 Core	Section	Top Depth S	cale
		Graphic Representation		λí.	ation	Structures/Accessories	Dist.		Major Lith	nology		- N	Minor Litholog	У	
	_	Graphic Represe	Color	Lithology	Bioturbation	Structu	Drilling Dist.	١	Visual Core	e descriptio	on				
10															
									ash 1	molte	Elsth		**		
20			20												
30	H		NO/412				1 Wild								
40	Ħ						\$								
50					S W										
60					2		-5	3							
							mod								
70	目						00/1								
80	11111						-7	2							
90							,								
100	Ē					5	5								
110															
120	1														
130															
140	mhadanlar														
	=														

		E	Expedi Berir		sories			Site Hole Core Section Top Depth Scale	
0		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 110 110 120	<u>undendandan bankan bankan bankan banka karkar</u>		DANIS		Shight		mod,		ash mobbles Her.

		E	xpedit Berin	tion 32 ng Sea	23	ories			U1339 D 12 6 Site Hole Core Section Top Depth Scale
		Graphic Representation		6	ation	Structures/Accessories	Dist.	ion	Major Lithology Minor Lithology
	_	Graphi Repres	Color	Lithology	Bioturbation	Structu	Drilling Dist.	Induration	Visual Core description
10									-
20			10						**
			Maria						
30	∃		سع						
40							Q		
50					SV.	C	150		65-78 intermixed darkash
60							7		03 10 10 Herry Ixed Werk 436
70									75-80grade
80		11/1/2	My						75-80 grad.
au		e ge	STE						30-93 grad,
90		flitte	TA						
100	-		at a						Il clast, deste, subonny, 1 cup
110	-	ľ	4,					7	*
120			1/2						98 clast, deste, subscry, 1cmp
130	\exists								136 clast, light, any, O,5 cin
973.01	=								
140									

Observer:	Date:

		Expedit Berin	tion 32 g Sea		и			$\frac{11339}{\text{Site}} = \frac{12}{\text{Hole}} = \frac{7}{\text{Core}} = \frac{7}{\text{Section}} = \frac{7}{\text{Top Depth Scale}}$
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 100 110 120 130 140		NOXUA				slight 1 mod. I slight I mid.	7.00 - 8 6	60 clast, lizer, rounded, 20m. o

Observer:	Date:

		E	xpedi Berir	tion 3 ng Sea	23				U1339 D 12 8 Site Hole Core Section Top Depth Scale
		ation				Structures/Accessories	ž;		Major Lithology Minor Lithology
		Graphic Representation	Color	Lithology	Bioturbation	Structures	Drilling Dist.	Induration	Visual Core description
10									= g**
20			2		Sonds		Ship		
30			4		1		40		
40									
50									
60								1	
70 80									
90									
100									
110									
120	1111111111								
130	111111								
140	111111								

		E	xpedit Berin	ion 3 g Sea	23	ories			141338 Site	Hole	<u>//2</u> Core	<u>CC</u> Section	Top Depth Scale
		ntation		<u>></u>	ation	Structures/Accessories	Dist.	u	Major Lithology		— Mi	nor Litholog	у
		Graphic Representation	Color	Lithology	Bioturbation	Structur	Drilling Dist.	Induration	Visual Core description				
10													
20			70%		\$	-	Sister					e.	
30			5	*	3		S						
		PA	FL					34					
40	Ħ					Will have been							
50													
60	目												
70													
80													
90													
100													
110													
120	1111												
130													
140													

Observer:	Date:	
_		

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

1	011.		2	_	0	Interva	l (cm)
Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom
323	U1339	D	12	14	3	74	74

Sediment/Rock Name	Foram - rich diatom ouze	Observer	Kelsie

	Percent Texture	
Sand	Silt	Clay
- 1		
- 1		

Comments:

cent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
2	Quartz
2	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
2	Zeolite
	Opaque minerals
1	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
/OLC	CANICLASTIC GRAINS
	Crystal grain
3	Vitric grain
	Lithic grain

Percent	Component							
	NIC GRAINS							
	Calcareous							
20	Foraminifera							
	Planktonic foraminifera							
	Benthic foraminifera							
	Nannofossils							
	Coccoliths							
	Discoasters							
	Pteropods							
	Siliceous							
	Radiolarians							
	Spumellaria							
	Nassellaria							
	Diatoms							
50	Centric							
25	Pennate							
	Chaetoceros Resting Spores							
2	Silicoflagellates							
	Sponge spicules							
1	Dinoflagellates							
	Others							
	Pollen							
	Organic debris Plant debris							
	Ebridians Echinoderm							
-								
	Fish remains (teeth, bones, scales)							
	Bryozoans							
	Bivalves							
	Others							
	10 10 10 10 10 10 10 10 10 10 10 10 10 1							

			xpedi Berir	tion 3 ng Sea		sories			11339 D 13 I Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30	Innhantantan		TOWNER	C	tylongs.	ПС	Shapt		ard patelles Hor.
50 60 70	ساسماسماس								
90 100 110									35-37 puncture 51 puncture
130 140									

	I		tion 323 g Sea	и		11/339 D 13 2 Top Depth Scale
	Graphic Representation	Color	Lithology Bioturbation	Structures/Accessories	Drilling Dist. Induration	Major Lithology Minor Lithology Visual Core description
10	nulmuln	10		a a		14-20 ash, patelles
30 40	Harata	P	10/MF	C	Chilar	
50 60 70	Ludun					
80 90	mulant			-4		
100	mlumlu T					
120 130 140			VW ODY	-		
140						

Observer:	Date:	
-----------	-------	--

	Expedition 323 Bering Sea				Site Hole Core Section Top Depth Scale
,	Graphic Representation Color	Lithology	Bioturbation Structures/Accessories	Drilling Dist.	Major Lithology Minor Lithology Usual Core description
10 20 30 40 50 60 60	20/11/2		mod.	Short	10-11 clast, 2 cm p, reddist, , Subaryulan
70				mod. Sight	96-136 Enge blueish-gree, ish Surrows domp. 120-142 light gree, molthing

	Expedition 323 Bering Sea				sories			$\frac{\text{1339}}{\text{Site}} \frac{\text{13}}{\text{Hole}} \frac{\text{13}}{\text{Core}} \frac{\text{4}}{\text{Section}} \frac{\text{Top Depth Scale}}{\text{Top Depth}}$
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 110 110 120 130			10/4/2			Shippint most	65	45-47 intermited brown ash 63-100 123-125 dash ash patch 127-135 dash small bumows

Observer:	Date:	

		Expedition 323 Bering Sea							VA335 D Site Hole	Core Section Top Depth Scale
		ntation		>	ıtion	Structures/Accessories	Oist.	u	Major Lithology	Minor Lithology
	-	Graphic Representation	Color	Lithology	Bioturbation	Structur	Drilling Dist.	Induration	Visual Core description	
10	11111111		10/1/2			ć	Slight		Schell frags.	4
30	111111		2				1 man			
40	11111					5	Sold of the sold o		93-108 Olan	Pash months.
50	Ī									The table
60										
70										
80	111111									
90	=									
100	╡									
110										
120	=======================================									
130										
140										

Observer:	Date:	
)=======

		E	xpedit Berin	tion 3 g Sea	23	S.				lole	13 Core	6 Section	Top Depth	Scale
		Graphic Representation		logy	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology		. Mi	nor Litholog	у	· · · · · · · · · · · · · · · · · · ·
		Grapl	Color	Lithology	Biotu	Struc		Indur	Visual Core description					
10												2		
20			70.		Z.		Shir					al i		
30			5	C	1	C	XX.							
40			10											
50														
60														
70														
80														
90	1111													
100	11111													
110	-													
120														
130	adreadoredoredored								142-145dg	£ .	C. Ar	1/26-1		
140		A CONTRACTOR OF THE PARTY OF TH		-					1192-19100	AL M	ou en			
					- 1		H							

Date: ___

		E	xpedi Berin	tion 3 ig Sea	23	ries			$\frac{U/1335}{\text{Site}} \frac{\mathcal{D}}{\text{Hole}} \frac{13}{\text{Core}} \frac{7}{\text{Section}} \frac{7}{\text{Top Depth Scale}}$
		Graphic Representation	ŏ	Lithology	Bioturbation	Structures/Accessories	Orilling Dist.	Induration	Major Lithology Minor Lithology
		Re Ga	- Š	圭	Biol	<u> </u>	Ä	힐	Visual Core description
10			7.						e e e e e e e e e e e e e e e e e e e
20			8		<u>ک</u> برانک		X		
30			7	C	1		7	4	
40							wood.		
50									
70									
80	1111								
90	1111								
100	11111								
110									
120									18
130									
140					_	page and defended			A42-145 donle only Course

Date:

		E	xpedi Berir	tion 3 ng Sea	23	8			U1339 J 13 Societion Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology
,		<u>હ</u> જ્	r [©]		_ <u>``</u>	Str	$\overline{}$	=	Visual Core description
10			1-				DOWS		
20			8/2		Show.		K		
30			r.	(m	755		4		
40									
50								-	
60	=								
70				37					
80									
90									
100									
110 120									
130 140									
140									

Observer: _

Date: ___

		E	Expedit Berin	ion 3 g Sea	23 1	ies			$\frac{U1339}{Site} = \frac{13}{Hole} = \frac{CC}{Section} = \frac{1}{Top Depth} = \frac{1}{Scale}$
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10	11111		100		B		2		
20			P	C	YOUNK		000		
30									
40		P	7						
50						West Cho			Tell-page (
60									
70									
80	1								
90	1								
100	1								
110									
120									
130									
140	Ī								

Date:

		E	xpedi Berir	tion 3: ng Sea	23	es			$\frac{1339}{\text{Site}} = \frac{14}{\text{Hole}} = \frac{14}{\text{Core}} = \frac{1}{\text{Section}} = \frac{1}{\text{Top Depth}} = \frac{1}{\text{Scale}}$
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10	ullin		Mode		1800 B		Voyas		
20			73		1		5	4	
30						-		_	
40	1111								
50									
60	1111								
70									
90									
100									
110									
120									
130	adandaalaalaa								
140									
	#								

Date: _

		Expedit Berin			sories			$\frac{11339}{\text{Site}} = \frac{19}{\text{Hole}} = \frac{2}{\text{Core}} = \frac{2}{\text{Section}} = \frac{2}{\text{Top Depth Scale}}$
	Graphic	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 110 110 110		10 Line Nothing		Shirt		that I was		0-4 light ash patilles 20-24 good. 29-26 dark ash layer 26 sharp cont. 66-68 dark ash patch

Date:

	E	xpediti Bering		23	ories		Site Hole Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Major Lithology Minor Lithology Visual Core description
100 = 100 = 11000 = 11000 = 11000 = 11000 = 11000 = 11000 = 11000 = 11000 = 11000 = 11000 = 11000 =		24/2		Shelpt.		Shight I might	25 blueish-greezish. Hm. 78-84 dark ash pakeh 85-91 light ash pakeh 98-125

Observer: _____ Date: _____

	E	tion 32 g Sea	23	ories			Site Hole Core Section Top Depth Scale	
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 110 110 110		SUP		Strongly		Shahr	.9	126-08 dah and Cayer, sharp basi, fining upwards, sharp top.

Observer: _

Date: _____

		E		tion 32 ng Sea	23	ories			V1339 D 14 Socion Top Depth Scale
		Representation		X 6	ation	Structures/Accessories	Dist.	ion	Major Lithology Minor Lithology
	, i	Represe	Color	Lithology	Bioturbation	Structu	Drilling Dist.	Induration	Visual Core description
10			104						92
20			4						
30			12	13.0	\$. S. S.	C ₂₈	SVA		
40					52				35-43 internized darkach
50									
60									
70	1111								
80									
90	=								
100									94-108 lange Skolithron,
110	4	1							blueish
120									
130									8
140	1111111								

Observer:	Date:

		E	Expedi Berir	ition 3 ng Sea	323 a	ories			Site Hole Core Section Top Depth Scale	
		Graphic Representation		26	ation	Structures/Accessories	Dist.	ion	Major Lithology Minor Lithology	
	, —	Graphic Represe	Color	Lithology	Bioturbation	Structu	Drilling Dist.	Induration	Visual Core description	
10			-/-						<u>=</u>	
20	Ē		2/2/10						·*	
30	Ē		P							- 24
									30-34 historis. ash langer Scormus	1
40	Ξ				200		SW.			
50	1				54	C				
60										
70	=									
80	\exists							0		
90	=						3006	0 4		
100							Ø.			
110	=						-	10	05	
120	\exists									
	=					Q	Rich			
130							F.		~	
140										

Date:

		E		tion 32 ng Sea		sories			$U_{\frac{1335}{\text{Site}}} = \frac{D}{\text{Hole}} = \frac{14}{\text{Core}} = \frac{7}{\text{Section}} = \frac{7}{\text{Top Depth Scale}}$
		ntation		_	tion	ss/Access	Jist.	5	Major Lithology Minor Lithology
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Visual Core description
10									*
10	目		7,2						
20	Ħ		2/2/2						25-1128 blueish greg 184
30	目		7						25-125 blueist gregish
40					Si		4		
	目			C	Ex.	C	30		
50	目								
60	目								
70	昌								
80									
90									
100									
110	mulii.								
120									
130	1								
140	Ē								
	Ξ								

Observer:	Date:	

		E	xpedit Berin	ion 3 g Sea	23	ories			M1339 D 14 S Section Top Depth Scale
		Graphic Representation		26	ation	Structures/Accessories	Dist.	ion	Major Lithology Minor Lithology
	·	Graphic	Color	Lithology	Bioturbation	Structu	Drilling Dist.	Induration	Visual Core description
10			104		, f ,		C		
20			5	0	7.5		200		4 €
30					2		5		
40	Ē								
50									
60									
70									
80									
90									
100									
110									
120									
130									
140	111111								

Observer:	D	ate:
Observer		ate.

		Exped	dition 3	23				U1335 3 14 CC
		Ber	ing Sea	3	ories			Site Hole Core Section Top Depth Scale
	phic	Representation Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology
	<u> </u>	Repre Color	<u> </u>	Biot	Str	<u> </u>	<u>a</u>	Visual Core description
10		10	24	4.		3		e WŠ
20	Ħ.	É		100	•			
30		PAL			y i tembri (di Artigra)			
40								
50								
60								
70								
80								
90								
100								
110	ı] III							
120								
130								
140								

Date: __

	E	xpedit Berin			ies		Site Hole Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	
10				K	e	5	V2-9 dolomite V
30						5	-28 notule moved to top V
40 50		754	2,5	n	Z.		47-49 mo-barren V
60) 70				67			e
80 90							
100				5			
120 130							124-128 Viace
140	aug.	1-3	shoot				145- ash v
) !		25	7				Observer: Date:

- 2

		Expedi [.]	tion 32 ng Sea	23				1339 D 15 2
		Delli	iy sea		ories			Site Hole Core Section Top Depth Scale
	ation			e o	Structures/Accessories	st.	_	Major Lithology Minor Lithology
	Graphic Representation	5	Lithology	Bioturbation	actures	Drilling Dist.	Induration	
	-1 % %	Ge	==	<u></u>	Şŧ	۵	Ind	Visual Core description
10	Ħ							-2. Work shapper
	[]							
20		0		5				
30	Ħ	0						
]	3/2	h W					,
40	3		b, W	43				-5540cm diatom voze
50	녈							
60	4							1/
	3	ety.	[₁]	K	6.			67-76
70		257	OSK.					aske
80								
90	3		Ţ.					<i>f</i>
		164	bc	93				95-97 crack 84-127 several cracks
100	3	4/	D,S					SUPVENIE CONTRACT
110	4	-7/	1					
120	3	<i>d</i>		5				
	3	S	D					
130	1	<i>j</i> -						
140	4							
	=							

Observer: _____ Date: _____

		lition 32 ng Sea			$\frac{1339}{\text{Site}}$ $\frac{157}{\text{Hole}}$ $\frac{157}{\text{Core}}$ $\frac{1}{5}$	ection Top Depth Scale
	Graphic Representation Color	Lithology	Bioturbation Structures/Accessories	Drilling Dist. Induration		Lithology
10 20 30 40 50 60 70 80 90 110 110 120 130 140			Bio Sfr.	Dril Indi	105-108 Cred V 128-129 Barrow V 136-138 Barrow V 14344 ask 25+5/2 144-50544	n Deviter Gaterin
	dark 50	849 GY41,			Observer:	Date:

		E	xpedi Berin	tion 32 ng Sea		ies			$\frac{\cancel{339}}{\text{Site}} \frac{\cancel{\cancel{5}}}{\text{Hole}} \frac{\cancel{\cancel{5}}}{\text{Core}} \frac{\cancel{\cancel{5}}}{\text{Section}} \overline{\text{Top Depth Scale}}$
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10			\$67/	V	n	<i>></i>			-4cm. Destrabation with ash .
20			104 41.	ĎΣ					
30		0	1	č.			The second second		32cm skell!
40 50					1			1	34-50 ab+ 1: + 1/2
60			1						34-50. g. b to diaton ordine
70	11111		Olive	b.w V	S V	,			
80		_					1 1	8	78-83 god apparaces V
90			54						
110			412						1/5-120 CAROL V
120									125-127 cras V
130	1								
140			77						147.9.b.V
			10	17					Observer: Date:

		E	xpedition Bering			ries			Site Hole Core Section Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30	hadinahan	P	100 100		7 7				16 m mothy with out V 27 cm clast black 3 m V 33 in shall fragged I mon V
50 60 70									63. J.b.
80 90		Q .	6						87cm motting without
100		9	5Y 4/2						98-99
120 130	1								
140									

Observer: _____ Date: _____

		Ber	dition 3 ring Sea		sories			Site Hole Core Section Top Depth Scale
	Graphic	Representation Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30								10.12,77. white club shell ?
40 50		V 57 4/2		S				59-90 several crucky
70		ghavening .	í		0			480m black did 5mm
90				1				90cm
110							1	
130						المستعب		
140		_						

Observer: _

Date: _

	Expedition 323 Bering Sea . శ్రీ						Site Hole Core Section Top Depth Scr						
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description				
10 20 30 40 50 60 70 80 90 110 110 1120			542						Stactured 20 cm - Bollor 32 cm PAL.				

Date: _

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

	0.11					Interval (cm)		
Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom	
523	VI339	D	15	H	2A	4 ocm		

Sediment/Rock Name	diatom	mze	Observer	Beth
	000			

B 65 5-23

Comments: $\sqrt{-/2}$

Pe	rcent Texture	
Sand	Silt	Clay

Percent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
10 1	Quartz
5	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
2	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
-046	Muscovite
2	Clay Minerals
2	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
2 1	
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
	- Value
2 12	Vitric grain
	Lithic grain

Percent	Component									
BIOG	ENIC GRAINS									
	Calcareous									
	Foraminifera									
	Planktonic foraminifera									
	Benthic foraminifera									
	Nannofossils									
	Coccoliths									
	Discoasters									
	Pteropods									
	Siliceous									
	Radiolarians									
	Spumellaria									
2 1	Nassellaria									
1 04	Diatoms									
40 1	Centric									
20	Pennate									
3	Chaetoceros Resting Spores									
	Silicoflagellates									
	Sponge spicules									
	Dinoflagellates									
	Others									
	Pollen									
	Organic debris									
	Plant debris									
	Ebridians									
	Echinoderm									
	Fish remains (teeth, bones, scales)									
	Bryozoans Bivalves									
	Others									
	Olliers									

UTHOLOGY

,)		Expedition 323 Bering Sea	ories	$V13\frac{39}{Site}$ $\frac{D}{Hole}$ $\frac{10H}{Core}$ $\frac{A11}{Section}$ $\frac{1}{Top Depth}$ $\frac{1}{Scale}$				
		Graphic Representation Color Lithology	Structures/Accessories Drilling Dist. Induration	Major Lithology Visual Core description Minor Lithology Aux grans	ngrey			
				Visual Core description WWK-1174	, ,			
\	10	107 4/11	77	17-80 grad SS-90 Diatom Sitt	Itigra ash			
	20			- 108 Sharp -				
2	30			Farams Scattered mixec				
	40			15				
3	50							
	60		5-U 5	Mid Ash	A			
4	70	D 47-50TE 5		SS-70. Piatra av-2c.	Same			
•	80	= 5/ 6/1	7:3		F. ash a			
5	90	- 511911 - 7	5-	Coarse Ash gray	Ă,			
	100							
6	110		٤	* * · · · · · · · · · · · · · · · · · ·				
	120			T.				
	120	5 111 27		Fine Ash Tol grad 27-28	٨			
	130		1 1 1	B = Sharp. light arm	+			
	140			I				
)		y IV		Observer: Date:				
				Dole.	8			

		Ex	cpedit Berin			ories			VI339 Depth Scale
	raphir	Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60						1-7 Mot	of Se se SS-10 Musi Gas Edu		- Crack - Crack
90 100 110 120 130						107° 124° Plan	99 4.00	う	- Crack - Punc.

Observer: Both

V	+		xpedit Berin	tion 3 ig Sea	23	ssories			V) <u>339</u> Site	D LUH Se	Ction Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Visual Core description		ithology
10 20 30 40 50 60 70 80 90 100 110 130					38-82 Mot. DK	60.5	20-111-SI BAS CH		- Shell Frey.	g. Banthic	Forams
									Observer: Beh		Date:

Observer: BOD	Date:	

+	\	E	xpedit Berin						U <u>1331</u> Site	Hole	16H Core	Section Section	Top De	epth Scale
		Graphic Representation	-	Lithology	Bioturbation Structures/Accessories	Orillian Diet	Induration	Major	Lithology		Min	or Litholog	у	
	_	Grap Rep	Color	Lith	Biotu		100	Visual C	ore description	1				
10	1111									CA	racks:	144		
20					(iv			Peb.				103-1	04	
30					2	7	2					121	1	
40					Mo Mo	d.	2					12	124	2-131
50					B	' 1						13	\$ D	2-131 134- 139
60							3					100		
70						N						17	ν	
80														
90	=													
100						3	3							
110	=======================================					KNA CA	0000							
120	=======================================					28 A	2/							
130						143-	5							
140														
	<u> </u>													

Observer: Date:

1		xpedit Berin			sories		VI 339 D NOH Gore Section Top Depth Scale				
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist. Induration	Major Lithology Minor Lithology Visual Core description				
10 20 30 40 50 60 70 80 90 100 110 120 130					119	6as 84 10 10 2 4, 137-146 Must	Void-115-17 DX Mol, PPS 140-143Peb.				

Observer: ______ Date: _____

	<u> </u>	xpedit Berin	ion 32 g Sea		sories		V <u>1339</u> D Site Hole	Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist. Induration	Major Lithology Visual Core description	Minor Lithology
10 20 30 40 50 60 70 80 90 100 110 120 130					126 127 Ash Bed 1360	675 CUp. MW. 22-53; 89-148	Forams!	Cracks - 23 - Mod 24 - Mod 13-51 89 - Mod 99 1 104 114 Mod 120 132-134 - Mod
							Observer: But	Date:

		E	xpedit Berin	tion 32 g Sea				$\sqrt{\frac{1339}{\text{Site}}}$ DHole	Core Section Top Depth Scale
Ø	hir	Representation	٦.	Lithology	Bioturbation Structures/Accessories	Drilling Dist.	Induration	Major Lithology	Minor Lithology
	ě	Rep	Color	Ę	Stru	<u></u>	귤	Visual Core description	
10					A = 0,0			Fining	Cracks 24-85- Man 80-109-Mon
20					21-			-DY M-L	
30					WO	THE PERSON NAMED IN		- DK Mot	
40									
50	Ξ							90)	
70					(kg)	, —		Peb	
80									
90					ৰ ণ	-		DV K No.	u a l
100					96			DK BOATSEAS	n with
110									
120	=								
130									
140									

Observer:	BA	Date:

C	1	Expedit Berin		23	ories			VI339 D I LA CC Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 100 110 120 130 140								Mod Dist 6-395 27 31-37.5

Observer: Date:

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

	0.1				0	Interv	al (cm)
Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom
523	1339	D	16 -	H		90	

Sediment/Rock Name	diatom silts	Observer	Okorus
	1 0/00/0//1 3/10		001 - 000

	Percent Texture	
Sand	Silt	Clay
3	87	10

Comments:

SILIC	Component CICLASTIC GRAINS/MINERAL
JILIO	Framework minerals
6	Quartz
11	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Trook fragmente
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals Barite Phosphorite/Apatite Zeolite
2	Opaque minerals
3	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite Dolomite
	Calcite
VOLC	Calcite
VOLC	Calcite Dolomite
	Calcite Dolomite ANICLASTIC GRAINS
	Calcite Dolomite ANICLASTIC GRAINS

Percent	Component
BIOGI	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	•
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
574	Diatoms 50
1.10	Centric
	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
***************************************	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

				<u> </u>		Interva	l (cm)
Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom
323	13390	b	16	H	4	70	

Sediment/Rock Name	diatom onze	Observer A RUTIN
	Will Color	- VGCVIA

F	ercent Texture	
Sand	Sitt	Clay
(7)	00	10
O	40	

Comments:

Percent	Component										
SILIC	ICLASTIC GRAINS/MINERAL										
	Framework minerals										
11 \$	Quartz										
11 \$	Feldspar 7										
6. (K-feldspar (Orthoclase, Microcline)										
	Plagioclase										
	Rock fragments										
	Accessory/trace minerals										
	Micas										
	Biotite										
	Muscovite										
	Clay Minerals										
1	Chlorite										
	Glauconite										
	Chert										
	Zircon										
	Ferromagnesium minerals										
	Authigenic minerals										
	Barite										
	Phosphorite/Apatite										
	Zeolite										
174	Opaque minerals										
1 2 80	Pyrite /										
-0	Magnetite										
	Fe-oxide										
	Carbonates										
	Calcite										
	Dolomite										
VOLO	CANICLASTIC GRAINS										
_5	Crystal grain 3										
7 1	Vitric grain										
,)	Lithic grain										

Percent	Component										
	ENIC GRAINS										
	Calcareous										
	Foraminifera										
	Planktonic foraminifera										
	Benthic foraminifera										
	Nannofossils										
	Coccoliths										
	Discoasters										
	Pteropods										
	Siliceous										
	Radiolarians										
	Spumellaria										
	Nassellaria										
65-78	Diatoms 40.50 FF SF										
12 %	Centric										
	Pennate										
	Chaetoceros Resting Spores										
	Silicoflagellates										
	Sponge spicules										
	Dinoflagellates										
	Others										
	Pollen										
	Organic debris										
	Plant debris										
	Ebridians										
	Echinoderm										
	Fish remains (teeth, bones, scales)										
	Bryozoans										
	Bivalves										
	Others										

		lition 323 ng Sea	sories		Site Hole Core Section Top Depth Scale
	tation	u	s/Acces	ist.	Major Lithology Minor Lithology
	Graphic Representation Color	Lithology	Structures/Accessories	Drilling Dist.	Visual Core description
10		7			10-14 printerel
20					
30	104	DS			32-35 parture
40		§ 3			45-50 pano w
50					
60					
70					70 g.b
80		light Olive			73 cm
90					
100					
110				نر ا	
120					
130					
140					

31-35/ 37-39/tob 39-40/60 40-42/tob

Observer: _____ Date: ____

	Expedition 323 Bering Sea							Site Hole Core Section Top Depth Scale
	Graphic Representation		- Af	ation	Structures/Accessories	Dist.	o	Major Lithology Minor Lithology
7	Graphic Represe	Color	Lithology	Bioturbation	Structur	Drilling Dist.	Induration	Visual Core description
10		1 Dig						<i>y</i>
20		8 9 7 7						M 1/1
30		76	7			ash Lan 24-25. bioture	ash Lon 24-25. bioturbated	
40		1						
50								
60		54						
70		4/2	5					
80	0							76cm 1cm pelble black V
90								
100						100-104 cas expansion		
110							e.	
120								
130								
140								

Observer:	Date:

	Expedi Berir	tion 3 ng Sea		ries			$\frac{\sqrt{339}}{\text{Site}} \frac{D}{\text{Hole}} \frac{\sqrt{77}}{\text{Core}} \frac{3}{\text{Section}} \frac{1}{\text{Top Depth}} \frac{1}{\text{Scale}}$
	Graphic Representation Color	ббо	Bioturbation	Structures/Accessories	Drilling Dist.	ition	Major Lithology Minor Lithology
	Graph Repre	Lithology	Biotur	Struct	Drillin	Induration	Visual Core description
10			5				a-
20)	50				
30	e dive		K	/			
40							
50	= 61 4/z		74.4				
60							
70							
80							00. 0h
90	3 8 1		5				90 cm fig
100							5 pelbles, light brown.
110	cat six						98-100. 5 pelbles. light brown. C -765cm ca.7 cm. 5 diaton-00ze.
120							
130							
140							×

Date: _

		Expedition 323 Bering Sea ୍ଞ୍ରି					Site Hole Core Section Top Depth Scale
	Graphic	Color	Lithology Bioturbation	Structures/Accessories	Drilling Dist.	nduration	Major Lithology Minor Lithology
	ا ا		<u> </u>	<u>*</u>	T	Ĭ	Visual Core description
10		57					¥
20		day					
30		ANNE ANNE				ŀ	-30cm 55
40		70					4344 white pebles. 2-3 mm W
50			5				
60	目	21/	۵				
70	68	gred	4 1 68 ask				68-75
80	一 污		D V				88-90 cracks (
90			10		=	Q	88-90 crack V.
100	듸	W.					
110		98 -	S S	(10/-103. Creek
120	H						
and Part 111	Ⅎ						
130							11 /28
	30						133-136 >2cm yeelso/
140		V	150				

Date:

	Expedition Bering		ories	Site Hole Core Section Top Depth Scale
	ation	La	/Access	Major Lithology Minor Lithology
191	Graphic Representation Color	Lithology Bioturbation	Structures/Accessories Drilling Dist.	Visual Core description
10	15-	n 8		B-7 mottling with asf
20				
30				
40				
50	350	2		50-64
60				50-14 dolomite filling 52-59 mobile.
70				
80				
90				
100				
110				109-110 barrow schouters 5
120				
130				
140				,

	Expedition 323 Bering Sea								Site	Hole	77 Core	Section	Top Depth Scale
		ation			on	/Access	št.	_	Major Lithology		- M	nor Litholog	у
	<u>:</u>	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Visual Core description	1			
10												¥	
20			4										
30			Con										
40			104	DS									
50	ППП		1										
60													
70	ППП		1	· g	5				73. g.b				
80	Ħ		7	Ø					13. 8.0				
90	=		\										
100	1111		O/No	bw									
110	ПП												
120	1111		\										
130													
140	min		The second secon						s				

	-	pedition 32 Bering Sea		ories			Site Hole Core Section Top Depth Scale
	ntation	λ(ation	Structures/Accessories	Dist.	гo	Major Lithology Minor Lithology
19	Graphic Representation	Color	Bioturbation	Structur	Drilling Dist.	Induration	Visual Core description
10	5	7		3		/	2-13ct 2 while polities 3-7mm
20		DW					
30							
40		8					40-42 cook layer (mothers) V
50		live a					5 3 9 b 59-83 ask
60		N. N.	5				59-83 ask
70	= 0	sh osk					
80		5/1					76-83 Denington V
90	=	Lead					
100	= 10	4. 05					
110		N. Carlotte					115-116-12 01 0 000 1
120		ask	1	1			115-116. 15 on black goelble. V 116-123 oak
130		75) 3/ ₁	K				
140	10/	122					

Observer: _

Date: _

	E	tion 32 ig Sea	23	ories			Site Hole Core Section Top Depth Scale	
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology
	- 5 <u>8</u>	<u>ვ</u>	_ 5	∺	Str	ă	Ĕ	Visual Core description
10			P'E					æ
20		30		5				
30								
40								36cm
50	1							
60								
70	-						1	
80	=							
90								
100						1	Ž	
110	=			2				
120			2					
130								
140								
	-							

		Ex	pedit Berin	ion 32 g Sea	23	ories			Site Hole Core Section Top Depth Scale
	hic	Representation	_	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology
	ق ا	Repr	Color	Ęţ	Bioti	Stru		Indu	Visual Core description
10			Park-						9
20									
30		1							26cm
40									
50					1	1			
60							1	/	
70								,	
80									\times
90	-								
100	=					9	Ż	/	
110	=				×	1			
120				1					
130			×						
140		2							

Date: _

				_		Interval	(cm)
Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom
323	V1339	D	17	H	YA	3 Ven	

Sediment/Rock Name Diatum Observer Beh					
	Diatom	ouze	396	Observe	Beh

B 69 5 31

Comments: V

	Percent Texture	
Sand	Silt	Clay
	9/1	115
	10	1 10

ercent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
5	Quartz
2	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
5	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
10	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	· · · · · · · · · · · · · · · · · · ·
	Authigenic minerals
	Barite
	Phosphorite/Apatite
1_	Zeolite
	Opaque minerals
1	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICI ACTIC CDAINS
VOL	CANICLASTIC GRAINS
	Crystal grain
	Vitric grain

ercent	and, slic I than other							
	ENIC GRAINS							
Diog	Calcareous							
	Foraminifera							
	Planktonic foraminifera							
	Benthic foraminifera							
	Nannofossils							
	Coccoliths							
	Discoasters							
	Pteropods							
	Cilianaus							
1 4	Siliceous Radiolarians							
1	Spumellaria							
=	Nassellaria							
	Diatoms							
	Centric							
-	Pennate							
	Chaetoceros Resting Spores							
	Silicoflagellates							
	Sponge spicules							
	Dinoflagellates							
3.1	Others							
	Pollen							
	Organic debris							
	Plant debris							
	Ebridians							
	Echinoderm							
	Fish remains (teeth, bones, scales)							
	Bryozoans							
	Bivalves							
	Others							
	7.113.2							

		Hole		Tuna	Cas	Interval (cm)		
Leg	Site		Core	Туре	Sec	Тор	Bottom	
323	V1339	D	17	#	3	105		

Sediment/Rock Name			Diatum	0632		Observer B	et
	0 - 17			U		Percent Texture	
	5				Sand	Silt	Clay
	6-18	2					
	> 10						
Comments:	Vic						
	V - 5						

ercent	Component
SILI	CICLASTIC GRAINS/MINERAL
-	Framework minerals
5	Quartz
	Feldspar
	K-feldspar (Orthoclase, Microcline)
-	Plagioclase
3	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
5	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
2	Zeolite
	Opaque minerals
5	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
5	Vitric grain
	Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
40 1	
30 1	
5 "	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
7	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

X	Expedition Bering Se	a	$\frac{1339}{\text{Site}} \frac{18}{\text{Hole}} \frac{18}{\text{Core}} \frac{1}{\text{Section}} \frac{1}{\text{Top Depth Scale}}$
Sect.	Graphic Representation Color Lithology	Bioturbation Structures/Accessories	Major Lithology Minor Lithology Visual Core description
Jed - (10 20 30 40 50 60 70 80 590 100	5 all 10 1 1 5 5 5 6 5 6 5 1 1 1 1 1 1 1 1 1 1 1	Bio	De earry dolante solso? I Diatom roll Agrandon gray II Diatom roll Arrendit Arrendit Ash-black Dolante pale olive
110 120 130 140	541 511 14 541 511 14 541 511 14 541 511 14	6	A SKAN SOISO A S SS-40 DIAMM OUSE A SKAN SOLANY A SKAN SOLANY S S D-nch Silt

Observer: Both Date: _____

	E	xpedit Berin	tion 32 ig Sea	23	S			VI339 D TS I Section Top Depth Scale
	Graphic Representation	ō	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology
	Reg ag	Color	=======================================	Big	Str	۵	Ind	Visual Core description
10					28-3	4		Visual Core description - by, Law Spire 3 an peb. Punc 10, 18, 34, 38 86
20								, car spi
30	1					413	,	Punc 10,18,30,38
40	H				Nu (ő		8 (2
50					194 DX	7-0		
60	3				M31.			
70	=							
80								
90								
5-8	Ξ							
100	=						_	702
110	111							
120	=			Α				
	=							
130	4		X					
140	1				\	/		
ļ	4/						\	
								Observer: Date:

-		E		tion 32 ig Sea	23	ories			UI339 THO	lole	Core Section Top Depth Scale
		Graphic Representation		Убс	Bioturbation	Structures/Accessories	g Dist.	ıtion	Major Lithology		Minor Lithology
		Repres	Color	Lithology	Biotur	Structi	Drilling Dist.	Induration	Visual Core description		
10											Cracics
20								15	~		Cracics 73
30						19		agri			96
						ava	1	11/6	20		107
40	1							9	33		127
50					1	ŚΨ)		ワーと	707		
60						100	2				
70						11.					
80	=										
90	=										
100											
110	∄										
120											
	Ξ										
130	<u>=</u>										
140	=					(42)			1944		
									Observer:	·	Date:

3	<u> </u>	E	xpedit Berin	ion 32 g Sea		ories			$V13\underline{39}$ Site	Hole	Core	3 Section	Top Depth Scale
	N.	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Visual Core descripti	ion		1inor Litholog	
10 20 30 40 50 60 70 80 90 100 110 120 130					ン、なみをつ			96-110 Gas ExpS	-700				17 30 34 40 55.55 60 788 88 87-68/5 110-111 113,5-114,5

Observer: Bet Date: _____

1	E	xpedit Berin		23	ories		Ul 339 D 18 Gore Section Top Depth Scale
l	ntation		_	tion	Structures/Accessories	on Dist.	Major Lithology Minor Lithology
	Graphic Representation	Color	Lithology	Bioturbation	Structure	Drilling Dist. Induration	Visual Core description
10	=						Vall 84-855 Crack 18
	=					MA	Crack 18
20	=				23,	162	26 36 51
30					52 Pan	Gas to	51
40	Ħ					115	43-80
50	=					0	91
60							100
70							126
80	111						123 127 133
90	LIII						(5)
100							
110							
120							
130	=						
140							
)	=						n 1

Observer: BUM Date: _____

 $\frac{D}{Hole} = \frac{18}{Core} = \frac{5}{Section}$ **Expedition 323 Bering Sea** Structures/Accessories Graphic Representation Bioturbation Major Lithology Minor Lithology Drilling Dist. Induration Visual Core description 20 30 40 - blackprinice! Wash layer 43 50 60 70 80 90 100 110 120 130 140

Observer: _____ Date: _____

	Expedition 323 Bering Sea								VI339 Depth Scale Section Top Depth Scale
		ntation		_	tion	ss/Access	oist.	Ę	Major Lithology Minor Lithology
	_	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Visual Core description
10									
70									-
20							3		
30							25 t		
40							0		
50							12.5		
60							70-		
70	=								
70	1								
80								l	
90	╡								
100	=					(B)		-	P005
110						10,			
120									
									6-136-7-10 Mot. Tigner
130									6-156 1 10 1010 11301
140	4								
L	且								

Observer: _

Date: __

X	E	Expedition 323 Bering Sea						VI339 D IS Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10 20 30 40 50 60 70 80 90 1100 1100 1100 1100 1100 1100 11					19-	1.18 XXXXX VE 1-0)		- It gray finds - It gray finds show 22-53 51 70-140 51

	X	Expedi Berir	tion 32 ng Sea				VI 339 D L8 CC Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
10				15			Di la de la de la de
20				14			-Peb. Law sprov subary. 1×2cm 1×2cm 1×2cm Purcl.
30	1				+	,	-29 10-24 SI. ait
40							Purct.
50					Λ		
60		/					
70				1			
80							
90							
100							
110				\			
120		/-					
130	 				1		
140						\	

Observer: __

	0.11		0		C	Interva	l (cm)
Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom
323	V1339	D	18	4	34	50	

Sediment/Rock Name	Diatum osse	Observer	Bet
D	(A)	Percent Textu	ILO

B80 518

Comments:

Sand Silt	Cla

rcent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
5	Quartz
5	Feldspar
	K-feldspar (Orthoclase, Microcline
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
5	Zeolite
	Opaque minerals
	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
T	Calcite
3	Dolomite
	20.0.1.11.0
VOL	CANICLASTIC GRAINS
	Crystal grain
-	
_	Vitric grain Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
50	Diatoms
80	Centric
	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Birionagonatos
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

	0.11	[]		_	Sec	Interval	(cm)
Leg	Site	Site Hole C	Core	Core Type S		Тор	Bottom
323	U1339	D	18	H	6A	Hocm	

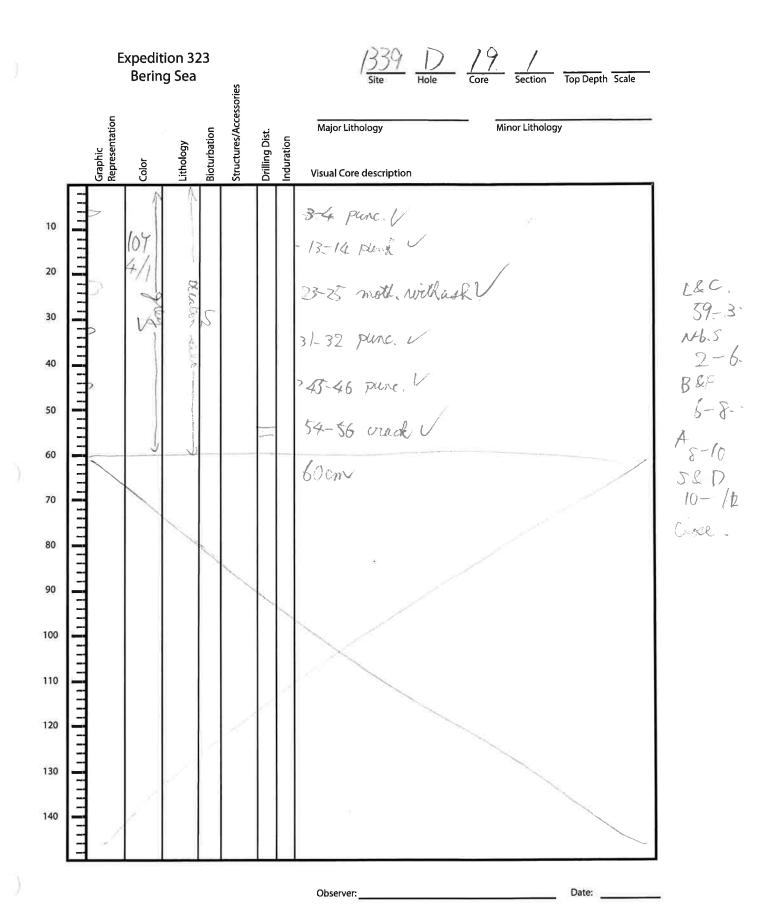
Sediment/Rock Name	Diatom	orge		Observer	Bet
0 15		V		Percent Textu	ге
	·-		Sand	Silt	Clay
5 18					
1/ -	1				
Comments:	1				

Percent	Component	
	CICLASTIC GRAINS/MINERAL	
	Framework minerals	
D	Quartz	
5	Feldspar	
	K-feldspar (Orthoclase, Microcline)	
	Plagioclase	
	Rock fragments	
	Accessory/trace minerals	
	Micas	
	Biotite	
	Muscovite	
	Clay Minerals	
	Chlorite	
	Glauconite	
	Chert	
	Zircon	
	Ferromagnesium minerals	
	Authigenic minerals	
	Barite	
	Phosphorite/Apatite	
	Zeolite	
_	Opaque minerals	-
	Pyrite	
	Magnetite	-
3	Fe-oxide	
	Carbonatas	
	Carbonates Calcite	
	Dolomite	-
	Dolonike	
VOL	CANICLASTIC GRAINS	
	Crystal grain	
7	Vitric grain	
	Lithic grain	

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
-y	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
/5:	Nassellaria
70	
\leftarrow	Centric
-	Pennate Ohnotes Besting Sperce
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	04
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

Leg	Site	[]	_		e Sec	Interva	al (cm)
		Site Hole	Core Ty	Туре		Тор	Bottom
323	V1339	D	18	H	CC	10	

Sediment/Rock Name Diatm (ich silt Observer


B-15 5-75

Comments: V -/ &

	Percent Texture	
Sand	Silt	Clay
	Dal	20
	00	100

ercent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
30	Quartz
13	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
2	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
	Pyrite
	Magnetite ,
-5	Fe-oxide
	Carbonates
	Calcite
5	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
	The second secon
10	Vitric grain
	Lithic grain

ercent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
102.00	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
	Diatoms
10	Centric
5	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others
	-

	Expedition 323 Bering Sea	Site Hole Core Section Top Depth Scale
	tation / tion	Major Lithology Minor Lithology
	Graphic Representation Color Lithology Bioturbation	Tigo National Core description Willion Ethiology
10 20 30	11111111111111111111111111111111111111	
50		Hom 55. dealow. silt
70		75
80	3 VOID	
90		53 84.86 2 cracks
100		
110	July 1	
120		
130		
140		n.

		Expedition 323 Bering Sea				ories			Site Hole Core Section Top Depth Scale
		Graphic Representation		- S	ation	Structures/Accessories	Dist.	ion	Major Lithology Minor Lithology
	_	Graphic	Color	Lithology	Bioturbation	Structu	Drilling Dist.	Induration	Visual Core description
10	HILL		X						ē
20		0	1						21-22. rothing with ask
30									
40									
50			gNili						37-60. pebbles. Notice / min - Trum
60		(j)*	0 0 104 41.		2				57-80. george, runder 1
70									
80									
90									93-95. moll with cream ash.
100)		
110							> 1		103-119 several chack,
120	mhmhm								
130									
140	111111		J						

Date: _

	Expedition 323 Bering Sea				sories	Site Hole Core Section Top Depth Scale				
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description	
10 20 30 40 50 60 70	aufuntuntuntuntuntuntun	Q	They have a	1 0,5	25				75-25 Icm black peller	
90	1111				W					
100			&	1		~ ~	7))	/	97cm g.b.	
110			Olive		r.	/			105-106 crack 101-115 several critical.	
120	111		54 54	D.W	5				· ×	
130	11111		4/2						* * *	
140	111111								le control of the con	

	Expedition 323 Bering Sea					ories	Site Hole Core Section Top D			
		itation			ion	s/Access	ist.	E	Major Lithology Minor Lithology	
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Visual Core description	
10	11111									
20										
30										
40			ľ			1				
50			Olive							
60			4/2		5					
70									m) m/	
80									73-76 sampling	
90	1111		(Principle							
100	1111						IA.		102 103 Craf	
110			90						y. =	
120										
130					130				7	
140	11111		- 53A		B				139-142 mottling with ash V	

	Expedition 323 Bering Sea				Si	Site Hole Core Section Top Depth Scale					
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description			
10		0/1/2	9	m	<i>(</i>			12 path			
30 40	0	5Y 3/2		5				30 on mothling with ash V			
50	3/	34h)		× .		<		5000 purc.V.			
70		4/10	Osk								
80 90	dondo	54									
100		4/2.									
110	Intern					C		1 Ke pene			
130	HIIII										
140		3									

		edition 3 ering Sea	ì	. Sales		Site Hole Core Section Top Depth Scale
	Graphic Representation	Color Lithology	Bioturbation	orructures/Accessories Drilling Dist.	Induration	Major Lithology Minor Lithology Visual Core description
	H	3 =	T		<u>ء</u> ا	visual core description
10		live T RW.				<i>★</i>
20	4	/2				**
30		和				26 9
40		he				dolomile V
50	= 5°		2			
60						70.9.
70		-1				70.J.
80		-57 in 4/2				
90		<u> </u>				
100		and 320 miles				95cm
110				1	-	
120						
130						
140						
	<u> </u>					

	Expedition 323 Bering Sea					Site Hole Core Section Top Depth Scale
	Graphic Representation	ž£.	ation	Structures/Accessories	ion Cist.	Major Lithology Minor Lithology
	Graphic Represe	Color	Bioturbation	Structures/Ac	Induration	Visual Core description
10						* 8
20		57 4/2				20.21
30	= 9	26 ash	-			20-21 cruck 26-32 ask crear 545/1V
40	= 3	3-2	S			*
50		57				445 Grackl
60		1				
70		V				
80						720m
90						
100	=				1	
110						
120						
130						
140						
	3/					

Observer: _

Date: _

	Expedition 323 Bering Sea				ories			Site Hole Core Section Top Depth Scale		
		itation			ion	s/Access	ist.	Ē	Major Lithology Minor Lithology	
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Visual Core description	
10			01						2	
20	1111	Ę	Olive 57	D.W						
30	11111		4/2	,	2				21/-28 cress U	
40			*				T		27-28 creek V 34 cm - Fractured V	
50							V		5000 Dai	
60									PAL 60 cm	
70										
80	millini									
90										
100										
110	ra II ra									
120	11111									
130										
140									G C C C C C C C C C C C C C C C C C C C	

	0.11			_	0	Interval (cm)		
Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom	
323	1339	D	79	H	2	44		

Sediment/Rock Name	distante
Hame	UCAM ON XXXI

Observer Akora

Comments:

Percent	Component	
SILIC	ICLASTIC GRAINS/MINERAL	
	Framework minerals	
24	Quartz	5
	Feldspar	
	K-feldspar (Orthoclase, Microc	line)
	Plagioclase	
	Rock fragments	
	Accessory/trace minerals	
	Micas	
	Biotite	
	Muscovite	
	Clay Minerals	
1)	Chlorite	
	Glauconite	
	Chert	
	Zircon	
	Ferromagnesium minerals	
	Authigenic minerals	
	Barite	
	Phosphorite/Apatite	
	Zeolite	
	Onague minavale	
9	Opaque minerals Pyrite	2
	Magnetite	
	Fe-oxide	
	Carbonates	
	Calcite	
	Dolomite	
VOLO	CANICLASTIC GRAINS	
9	Crystal grain	2
14	Vitric grain	3
	Lithic grain	

Percent	Component											
BIOGE	ENIC GRAINS											
	Calcareous											
	Foraminifera											
	Planktonic foraminifera											
	Benthic foraminifera											
	Nannofossils											
	Coccoliths											
	Discoasters											
	Pteropods											
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
	Siliceous											
	Radiolarians											
	Spumellaria											
	Nassellaria											
4	Diatoms (0)											
	Centric											
	Pennate											
	Chaetoceros Resting Spores											
	Silicoflagellates											
	Sponge spicules											
	Dinoflagellates											
	Othoro											
	Others Pollen											
	Organic debris Plant debris											
	Ebridians Echinoderm											
	Fish remains (teeth, bones, scales)											
	Bryozoans											
	Bivalves Others											
	Others											

Leg	Site	Hole	Core	Туре	Sec	Interva Top	l (cm) Bottom
393	1339	D	19	H	7	60.	

Sediment/Rock Name	diaton	0012.	(dolomite ruch)	Observ
-----------------------	--------	-------	-----------------	--------

Percent Texture								
Sand	Silt	Clay						

Comments:

rcent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
6	Quartz
12	Feldspar 2
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authinonia minorala
	Authigenic minerals Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
18	✓ Dolomite 3
_10	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
-	Vitric grain /.
b	

Percent	Component
BIOGE	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
60	Diatoms (O \
•	Centric
	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
1	Sponge spicules /
-	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

)	Expedition 323 Bering Sea	$\frac{323}{\text{Site}}$ $\frac{\sqrt{1339}}{\text{Hole}}$ $\frac{20 \text{ H}}{\text{Core}}$ $\frac{\text{N}}{\text{Section}}$ $\frac{1}{\text{Top Depth}}$ $\frac{1}{\text{Scale}}$
	Graphic Representation Color Lithology Bioturbation Structures/Accessories Drilling Dist.	Major Lithology Minor Lithology Visual Core description
10 20 20 20 30 40 3 50 60 40 80 5 90 100 6 110 120 7 130 8		Visual Core description I IOY YI Darkgrants nature 104 YI Darkgrants nature 15 - 90 Diatum 085c Thurst 9 5 5 m Dive grant Fine Ash 57 5 m Dive grant The Ash 57 5 m Dive grant
CC		Observer: Date:

		E	xpedit Berin	ion 32 g Sea	23				323 Site	U 1339 Hole	20H Core	Section	Top Depth Scale
				<i>3</i>		ssories			Site	riole	Core	Section	10p Deptil Scale
		Graphic Representation		>	tion	Structures/Accessories	Dist.	uc	Major Lithology			Minor Litholog	у
		āraphic Represei	Color	Lithology	Bioturbation	tructun	Drilling Dist.	Induration	Visual Core descrip	otion			
	\exists	0 &			\Box	· · ·	1-0	-	Sligwt				
10	\exists					9	12-6	_	MON			.21	
20	Ξ					px,	Z						
	=					Way	M						
30	Ξ						00						
40	Ξ					40,	5						
	=					27	N.S						
50	\exists												
60	╡												
70	Ξ												
	=												
80	∃						3						
90	∄						2						
100	╡						N						
	=						S		IV				
110	-												
110 120													
	Ξ						П						
130	Ξ			(1									
140	=												
	Ξ												

1	E	xpedit Berin	ion 32 g Sea			$\frac{323}{\text{Site}} \frac{\text{U } 133920 \text{ H}}{\text{Hole}} \frac{2}{\text{Core}} \frac{1}{\text{Section}} \frac{2}{\text{Top Depth Scale}}$
	Graphic Representation	Ĺ	Lithology	Bioturbation Structures/Accessories	Drilling Dist. Induration	Major Lithology Minor Lithology
4	Grap	Color	Litho		Drilli	Visual Core description
10	maja			DX FAS	u l	
20						
30	1111			35		- Gara Carla
40						- Grey Cash Mot.
50					1,00	3
60					NO 21	
70						
80					77.00	
90	1					
100	1				6.	
110				113		
120	=			113 Peb Gran		Aisp. subang.
130	=				1, 4	
140					IUD-	- Crack

Observer: _

Date: _

				tion 32 ig Sea			VI339 For Some Section Top Depth Scale
		Graphic Representation		ógó	Bioturbation Structures/Accessories	Drilling Dist. Induration	Major Lithology Minor Lithology
		Graph	Color	Lithology	Biotun Struct	Drilling Dist	Visual Core description
	10						
	20					5.0	
	30					Gasto	
	40					20-75	
	50						
	60	=			64	Mod	
)	70			Į.	D W	16 G.E.	
	80				191	W= White 51H SIZED	
	90	 			91/	51.	W= White sitt sized
	100	=			n	8	
	110				(N)	-126 Gars	
	120				(70)	10	
	130	1			(H)		
	140	1					.

	E:	xpedit Berin	tion 32 g Sea			323 U339 D 20# 4 Site Hole Core Section Top Depth Scale
	Graphic Representation		óðý	Bioturbation Structures/Accessories	g Dist. tion	Major Lithology Minor Lithology
	Graphi Repres	Color	Lithology	Bioturbation Structures/A	Drilling Dist. Induration	Visual Core description
10 20 30 40 50 60 70 80 90 100 110 130				412-21 Most 27-0 58 61		Mod-Mit-se biot. Ashad DKCiash. Peb roma 10 spure

	E	xpedit Berin	ion 32 g Sea	23				VI339 D 20# 5 Site Hole Core Section Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Minor Lithology
10 20 30 40 50 60 70 80 90 100 110 120 130					58 V3			- Frams! - Mot. DK Observer.

\		Expedi Berir	tion 32 ng Sea	23	ories			U\339) Hole	20H Core	Section	Top Depth Scale
	Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Visual Core description		Mir	nor Litholog	у
10 20 30 40 50 60 70 80 90 100 110 120	Gaphic Graphic Represe	Color	Pritholog	Bioturba	Structure Structure	Λ.	ON SR-110 MOUGE	Visual Core description S-81.5 Voi 19 Gran.				
	=											

Observer: Both

	E	xpedit Berin	ion 3 g Sea		ories			V 1339 D 20H 7 Section Top Depth Scale
	Graphic Representation		λ£	ation	Structures/Accessories	Dist.	ы	Major Lithology Minor Lithology
	Graphic Represe	Color	Lithology	Bioturbation	Structur	Drilling Dist.	Induration	Visual Core description
10								Void-43-44
20								Void-43-44 V2.5-63 72.5-74
30								12,5-14
40					Ų., ,			
50						5		
60						3-9		a ·
70						2		
80						MG(
90					9	No		
100	=							
110	=							
120	1							
130								
140	landa.							
	=							

Observer: ______ Date: _____

		Ε	xpedi Berin	tion 32 ig Sea	23	v			U1339 D 204 Section Top Depth Scale
		uo				Structures/Accessories			Major Lithology Minor Lithology
		Graphic Representation	W.	o you	Bioturbation	tures/A	Drilling Dist,	Induration	Major Ethiology
		Grap	Color	Lithology	Biotu	Struc	۵	Indu	Visual Core description
10	1-1-1								
20	11111								
20	THE								
30	-								
40	-			,					
50									
60									
70									
80									
90									
100									
110									
120									
130									
140									1.0
	=								

(a):

Observer: Bd Date:

			E		tion 32 ng Sea		ories			Site Hole	204 CC Section Top Depth Scale
			ntation		· <u>></u>	ation	Structures/Accessories	Dist.	o	Major Lithology	Minor Lithology
		_	Graphic Representation	Color	Lithology	Bioturbation	Structur	Drilling Dist.	Induration	Visual Core description	
	10									. *	
	20									Modalist	
	30		ı							Modalist	
	40										
	50										
):	60										
	70										
	80	H									
	90										
	100										
	110										
	120										
	130										
	140	111111									

Observer: Beth Date:

			_			Interva	al (cm)	•
Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom	
323	1339	D	20	H	34	90		

Sediment/Rock Name diaton moze.	Observer	Okera
---------------------------------	----------	-------

	Percent Texture	
Sand	Silt	Clay
Janu	Oill	Ciuj
- 1		
- 1		

cent	Component
SILIC	ICLASTIC GRAINS/MINERAL
	Framework minerals
19	Quartz
	Feldspar
	K-feldspar (Orthoclase, Microcline
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
.3	Pyrite /
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
/OLC	ANICLASTIC GRAINS
	Crystal grain
	Vitric grain

Percent	Component								
BIOG	ENIC GRAINS								
	Calcareous								
	Foraminifera								
	Planktonic foraminifera								
	Benthic foraminifera								
	Nannofossils								
	Coccoliths								
	Discoasters								
	Pteropods								
	Ollicanos								
	Siliceous V Radiolarians								
-	Tradicianans								
	Spumellaria								
	Nassellaria								
7/	Diatoms /5								
	Centric 10								
	Pennate 5								
	Chaetoceros Resting Spores								
	Silicoflagellates								
	Sponge spicules								
	Dinoflagellates								
	Others								
	Pollen								
	Organic debris								
	Plant debris								
	Ebridians								
	Echinoderm								
	Fish remains (teeth, bones, scales)								
	Bryozoans								
	Bivalves Others								
	Oulers								

Leg Site Hole Core Type Sec Interval (cm)
Top Bottom

Sediment/Rock	(a)	Observer A /
Name	Somal Stricule Ooze.	Cescoza
	3/00 /	

	Percent Texture	
Sand	Silt	Clay
Dulla		
- 1		

rcent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
20	Quartz
	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Zeonte
	Opaque minerals
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
	Vitric grain
	Lithic grain

	Component
BIOGE	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
,	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
20	Diatoms
	Centric
	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
60	Sponge spicules /5
00	Dinoflagellates
-	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
-	Bivalves
	Others

white seed SM

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

	0.11	v	0	Туре	0	Interva	l (cm)
Leg	Site	Hole	Hole Core		Sec	Тор	Bottom
323	1339	D	20	H	34	128.	

Sediment/Rock Name Spo	inge soil	le ooze	Observer	akina
------------------------	-----------	---------	----------	-------

	Percent Texture		
Sand	Silt	Clay	
- 1			

cent SILIC	Component Component CICLASTIC GRAINS/MINERAL
JILIO	Framework minerals
8	Quartz
0	Feldspar
	K-feldspar (Orthoclase, Microcline
	Plagioclase
	Rock fragments
	TOOK Hagments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
_	Authigenic minerals
	Barite
	Phosphorite/Apatite
_	Zeolite
	Opaque minerals
	Magnetite
	Fe-oxide
	I G-OXIGO
	Carbonates
	Calcite
	Dolomite
OLC	ANICLASTIC GRAINS
	Crystal grain
	Vitric grain

Percent	Component						
BIOGE	ENIC GRAINS						
	Calcareous						
	Foraminifera						
	Planktonic foraminifera Benthic foraminifera						
	Nannofossils						
	Coccoliths						
	Discoasters						
	Pteropods						
	Siliceous						
	Radiolarians						
40	Spumellaria						
	Nassellaria						
40	Diatoms						
-	Centric						
	Pennate						
	Chaetoceros Resting Spores						
	Silicoflagellates						
56	Sponge spicules 7						
	Dinoflagellates						
	Othoro						
	Others Pollen						
	Organic debris						
	Plant debris						
-	Ebridians						
	Echinoderm						
	Fish remains (teeth, bones, scales)						
	Bryozoans						
	Bivalves						
	Others						

Leg	Ott.	lita la	0		Caa	Interv	al (cm)
	Site	Hole Core		Type Sec		Top	Bottom
393	1339	D	20	H	7 _A	30	

	Percent Texture	
Sand	Silt	Clay
	E	
	-	S.0

SILIC	Component CICLASTIC GRAINS/MINERAL
OILIC	Framework minerals
// X	Quartz /
X	Feldspar
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
4	Ferromagnesium minerals /
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Loome
	Opaque minerals
4	Pyrite /
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
78	Dolomite 3
VOL	CANICLASTIC GRAINS
	Crystal grain
	Vitric grain

Percent	Component
BIOGE	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	, totopous
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
56 X0	Diatoms /
20 DX	Centric
	Pennate
	Chaetoceros Resting Spores
	Silicoflagellates
4	Sponge spicules /
×	Dinoflagellates
	Dirionagenates
	V 10-
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves Others
	Others

		Expedi Berir	tion 3 ng Sea	23	sories			$\frac{1339}{\text{Site}}$ $\frac{D}{\text{Hole}}$ $\frac{21}{\text{Core}}$ $\frac{1}{\text{Section}}$ $\frac{1}{\text{Top Depth Scale}}$
	Graphic Representation		λδ	oation	Structures/Accessories	J Dist.	tion	Major Lithology Minor Lithology
	Graphi Repres	Color	Lithology	Bioturbation	Structi	Drilling Dist.	Induration	Visual Core description
10					ž			11 cm orak V
20				2	6			TON O WAY
30								
40				<u> </u>	X			
50		1	D.5	14	le l			-
60		15		,,,				
70		101		5	770			
80		4/1						Grack
90	=							
100								Drad V
110								Crack V
120								
130								131-132 ask lenk
140		V						

Observer:

Date:

	E	n 323 Sea				Site Hole Core Section Top Depth Scale	
	Graphic Representation	Color	Lithology	Bioturbation Structures/Accessories	Drilling Dist.	Induration	Major Lithology Wisual Core description
10 20 30 40 50 60 70 80 90 100 110 120 130	Graph Representation of the second se	Digle grey 107 5/1	Litho	Struce	Drillin		Visual Core description O 3-b -30 grads b. V 43 crack V -55 cm destan rich clays silv 80-89 several oright 90-95 135-134 several pebblas mm / 5 cm ignouse rook 135 orack V
0.	=	ly L					

Observer: _

		pedition Bering Se	ea	sories		$\frac{\sqrt{339}}{\text{Site}} \frac{1}{\text{Hole}} \frac{21}{\text{Core}} \frac{3}{\text{Section}} \frac{3}{\text{Top Depth}} \frac{3}{\text{Scale}}$
	Graphic Representation	8	ation	Structures/Accessories Drilling Dist.	ion	Major Lithology Minor Lithology
	Graphic	Color	Bioturbation	Structures/A Drilling Dist.	Induration	Visual Core description
10		grey				7
20		101				
30		4/1				31 cm black pedole V
40						
50	-	-1/-	- -			50.g.bV
60						
70		Olive	5			75-80 and fractulal
80		57V				90 g. bl
90	<u> </u>	-1	-			909.60
100		104				
110		4/1				
120		Juy				
130						
140						×
	=	V				

Observer: _____ Date: _____

	-	pedition 32 Bering Sea				Site Hole Core Section Top Depth Scale
	ntation		Bioturbation	es/Access	E	Major Lithology Minor Lithology
	Graphic Representation	Color Lithology	Bioturbation	Drilling Dist.	Induration	Visual Core description
10						£"
20						
30		prey				26-29. pebble
40		7				
50	3 4					56-54 moth V
60						60-62 oracli
70			2			2
80		1				79-83 chack fractured
90	2	57				10kite aski
100		1				79-83 chack fractured 84 White ask i 90 96. moles ask V
		1				105-106. wak 16/2V.
110	3	aly				
120		14				
130		4				131 spot L
140						145 4000 of man

Observer:	Date:

		Expedition 323 Bering Sea ੁੰ	Site Hole Core Section Top Depth Scale
		Graphic Representation Color Lithology Bioturbation Structures/Accessories	Major Lithology Minor Lithology Visual Core description
		E S	
	10		
	20	grey	
	30		29-30 crack 1
	40	101	40 cm white pelble 5 mmy
	50		29-30 crack 1 34-36 crack 1 40 cm white pelble 5 mm/ -35 50 cm diaton odge
	60		
	70		71 crack - 74-75. crack V
	80	3 84 50	7 (4-1). Crack V
	90	= 257 6/, a coak	
	100		
	110		
	120	= 107	
	130		
	140	= Kirk	140 962
))		57	Observer: Date:

		dition 32 ing Sea		Site D Ocore Section Top Depth Scale			
	Graphic Representation Color	бò	Bioturbation Structures/Accessories	Major Lithology Minor Lithology			
	Graphi Repres Color	Lithology	Bioturbation Structures/A	Major Lithology Minor Lithology Winor Lithology Winor Lithology			
10	Tight Oliy	2 37		-5cm ss diatom ooze			
20		5/1		12cm g. D			
30		d'	5	33. mottl: V 76-37 crack V 35-38 skell. V			
40	I skell		W 15	35-38 ALOU.V			
50	3 979			tel 6 moths with with			
60			m	53-5 6 mother with ash V			
70				66-			
80							
90							
100							
110							
120							
130							
140							

Observer:

	E		tion 323 g Sea			$\frac{\sqrt{339}}{\text{Site}}$ $\frac{\sqrt{2}}{\text{Hole}}$ $\frac{\sqrt{2}}{\text{Core}}$ $\frac{\sqrt{2}}{\text{Section}}$ $\frac{\sqrt{2}}{\text{Top Depth}}$ $\frac{\sqrt{2}}{\text{Scale}}$
	ntation			Bioturbation Structures/Accessories	Jist.	Major Lithology Minor Lithology
	Graphic Representation	Color	Lithology	Bioturbation Structures/Ac	Drilling Dist. Induration	Visual Core description
10		1	4	m. 7		2-3 pure. V 13- Fractured V
		Drey			7	13- Fractured V
20		107				
30	Ħ		F			
40	₫	V				A ()
50	4	-		-	0	48 47-48 ail?
60	<u> </u>	54	23/1			PAL
	Ξ					58.
70						
80			as a			
90						
100	4					
110	1				Ш	
120						
	1111					
130	IIII					
140	TIT					*

Observer: _

SM

IODP Expedition 323 SEDIMENT SMEAR SLIDE WORKSHEET

	0.11		_	T	0	Interval (cm)		Ì
Leg	Site	Hole	Соге	Туре	Sec	Тор	Bottom	Ì
323	V1339	D	21	H	2A	SSam		

Sediment/Rock Name	Diatom	vich.	Clauren	silt	Observer Him A
-----------------------	--------	-------	---------	------	----------------

Percent Texture
Sand Silt Clay

40 60

Percent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
15016	Quartz (0 27
150%	Feldspar (2) -
200	K-feldspar (Orthoclase, Microcline)
N.	Plagioclase
20/0	Rock fragments / 34
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
260/0	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
2	Zeolite
20	
	Opaque minerals
906	Pyrite 5 5
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
	Vitric grain
	Lithic grain

Percent	Component
BIOG	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
_	Radiolarians
	Spumellaria
	Nassellaria
	Diatoms
203/	
290/0	Centric /5 /7 Pennate 52
40/0	Chaetoceros Resting Spores
	Silicoflagellates
50.73	Sponge spicules
	Dinoflagellates
	Dirionagenates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others

	011-		0	T	Caa	Interva	l (cm)
Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom
323	1339	D	21 H		5	50	50

	Percent Texture	
Sand	Silt	Clay
- 1		

Comments:

ercent	Component
SILI	CICLASTIC GRAINS/MINERAL
	Framework minerals
7	Quartz 7
10 3	Feldspar 3
	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
" 1	Clay Minerals /
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	,
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
m 7	Pyrite /
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
VOL	CANICLASTIC GRAINS
	Crystal grain
3	Vitric grain
2	vicio grain

D	0								
Percent	Component								
BIOG	ENIC GRAINS								
	Calcareous								
	Foraminifera								
	Planktonic foraminifera								
	Benthic foraminifera								
	Nannofossils								
	Coccoliths								
	Discoasters								
	Pteropods								
	Siliceous								
	Radiolarians								
	Spumellaria								
	Nassellaria								
	Diatoms								
15	Centric /r								
15	Pennate								
	Chaetoceros Resting Spores								
	Silicoflagellates								
	Sponge spicules /								
	Dinoflagellates								
	Dirionagenates								
	Others								
	Pollen								
	Organic debris								
	Plant debris								
	Ebridians								
	Echinoderm								
	Fish remains (teeth, bones, scales)								
	Bryozoans								
	Bivalves								
	Others								

3 13

41

1	O.T.		0	T	0	Interva	al (cm)
Leg	Site	Hole	Core	Туре	Sec	Тор	Bottom
323	1339	P	2114		6A	5	5

VICTOW - C	Sediment/Rock Name	Diatom	Doze	Observer	Hiw.A
------------	-----------------------	--------	------	----------	-------

Percent Texture								
Sand	Silt	Clay						
- 1								
		l						

cent	Component
SILIC	CICLASTIC GRAINS/MINERAL
	Framework minerals
1600	
30/6	Feldspar /
T	K-feldspar (Orthoclase, Microcline)
	Plagioclase
	Rock fragments
	Accessory/trace minerals
	Micas
	Biotite
	Muscovite
	Clay Minerals
	Chlorite
	Glauconite
	Chert
	Zircon
	Ferromagnesium minerals
	Authigenic minerals
	Barite
	Phosphorite/Apatite
	Zeolite
	Opaque minerals
	Pyrite
	Magnetite
	Fe-oxide
	Carbonates
	Calcite
	Dolomite
אטו כ	CANICLASTIC GRAINS
	Crystal grain
	Orystal graili
	Vitric grain

Percent	Component
BIOGI	ENIC GRAINS
	Calcareous
	Foraminifera
	Planktonic foraminifera
	Benthic foraminifera
	Nannofossils
	Coccoliths
	Discoasters
	Pteropods
	Siliceous
	Radiolarians
	Spumellaria
	Nassellaria
(8/0/0)	Diatoms
7801	
3%	
	Chaetoceros Resting Spores
	Silicoflagellates
	Sponge spicules
	Dinoflagellates
	Others
	Pollen
	Organic debris
	Plant debris
	Ebridians
	Echinoderm
	Fish remains (teeth, bones, scales)
	Bryozoans
	Bivalves
	Others
	1 - 1

		E		tion 32 ig Sea	23	ories			Site Hole Core Section Top Depth Scale
	U	Representation		· X6	ation	Structures/Accessories	J Dist.	tion	Major Lithology Minor Lithology
1	Graphi	Repres	Color	Lithology	Bioturbation	Structu	Drilling Dist.	Induration	Visual Core description
10									0-87 mod.dist.
20									0-87 mod.dist. 0-18 soupe, 18-87 gorly.
30							5		18-87 gas exp.
	=		VI	displ			mod.		1
40			ير الم	tiphen box					
50	=		تو	A00					
60	=			(
70	∄								
80									
90	=							-	Mi 130 - 7 I
100									M4-118 grand cont 118-113 dende och Cayer,
10									strang borne
20									132-136 tilted sharp cont.
30			>	Out.					
140			CHYON	H.S. WARE					19

Observer: _

Date:

		E	xpedi Berir	tion 3 ng Sea		ories			Site Hole Core Section Top Depth Scale	=
		tation			ion	s/Access	ist.	_	Major Lithology Minor Lithology	-
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Visual Core description	_
10	1111								3	
20										١
30			3	Š,	New		6		aslipatelies Home	
40			4		المندك	7	57			
50			7							
60										
70										
80										l
90										
100										
110										
120	1									
130										
140										
1000										

Observer:

		E		tion 32 ng Sea		ories			$\frac{1338}{\text{Site}} = \frac{D}{\text{Hole}} = \frac{22}{\text{Core}} = \frac{3}{\text{Section}} = \frac{1}{\text{Top Depth Scale}}$
		tation		5	tion	es/Access	Jist.	ڃ	Major Lithology Minor Lithology
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Visual Core description
10									3
20			(60						
30	100		5		~				33 isolowed clast, Acomo, subary, dark
40			,	■4	Sirker.	7	Silver		50-53 internixed dark acti
50					1		20		JULY JUHANIKER VOLUME STATE
60									
70									
80	1								
90	1								
100	1								
110									
120									
130									
140									

Observer:_

	ĺ	Expedit Berin	tion 32: ig Sea				$ \begin{array}{c cccc} \mathcal{U}1339 & \mathcal{D} & 22 & \cancel{4} \\ \hline \text{Site} & \text{Hole} & \text{Core} & \overline{\text{Section}} & \overline{\text{Top Depth Scale}} \end{array} $
	Graphic Representation			Bioturbation Structures/Accessories	Dist.	e Lo	Major Lithology Minor Lithology
	Graphic	Color	Lithology	Bioturbation Structures/Ac	Drilling Dist.	Induration	Visual Core description
10							u.c
20		2		28			
30		5	, , , , , ,	7	distri		
40			or		, A.		
50							
60							
70							
80							
90							
100					Jan.	-	-
110					30		
120							
130	=		l l				
140							*
50 60 70 80 90 110 110					in the state of th		

Observer: _

	Expedition 323 Bering Sea								Site Hole Core Section Top Depth Scale
		Graphic Representation	Color	Lithology	Bioturbation	Structures/Accessories	Drilling Dist.	Induration	Major Lithology Winor Lithology Visual Core description
10	14 1 144 1		50	29	CINC		\$\$ W		.,*
20	S 2 12 22		7	25	54		Χ,	to.	
30 40			24					_	
50	ПП								
60	11111								
70	11111								
80	11111								
90 100	1111								
110									
120									
130	11111								
140	1111								•

Observer: __

Date: ___