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Abstract
Integrated Ocean Drilling Program Hole 1256D is one of the few
deep holes that penetrate through the upper oceanic crust and of-
fers a unique chance to study its anisotropic properties as a func-
tion of depth. In this report, we present the results of anisotropy
analysis using downhole sonic logging data acquired in Hole
1256D. The analysis is based on the detection of shear wave split-
ting in azimuthally anisotropic formations; however, poor bore-
hole conditions, high levels of noise, and insufficient tool rota-
tion presented significant challenges in this analysis. Anisotropy
could be reliably evaluated only over a few select depth intervals,
and they suggest very low shear wave anisotropy, within a range
of 0%–1%. In particular, the deepest logged section within the
sheeted dike interval is characterized by good borehole conditions
and high coherence of shear wave fields, but shear wave velocity
appears to be isotropic and/or characterized by weak anisotropy
below the detection limit of the Dipole Sonic Imager used to ac-
quire the data.

Introduction
Understanding in situ properties of oceanic crust has been an im-
portant goal of marine geology and geophysics. Seismic studies,
in particular, have provided crucial insights into structure and in-
trinsic properties of oceanic crust (e.g., Carbotte et al., 2008;
Harding et al., 1989; Tolstoy et al., 2008; Vera and Diebold, 1994).
Although seismic velocity profiles in oceanic crust are well under-
stood (e.g., Spudich and Orcutt, 1980; White et al., 1992), the an-
isotropy of seismic waves has received less attention. Observa-
tions of seismic anisotropy may provide useful insights into
intrinsic properties of crust and mantle, such as preferred orienta-
tion of mineral fabric and structural features, and the distribution
of in situ stress and strain (e.g., Russo and Silver, 1994; Savage,
1999; Schoenberg and Sayers, 1995; Silver and Chan, 1988). In
the upper crust, seismic anisotropy is usually attributed to microf-
racturing and large-scale fractures (Rasolofosaon et al., 2000; Ste-
phen, 1985), whereas in the low crust and mantle, it is related to
the crystal preferred orientation or fabric of anisotropic minerals
(Ko and Jung, 2015; Rasolofosaon et al., 2000).

Several active-source seismic studies of P and S body waves have
reported 1% to 5% azimuthal anisotropy in the upper crust, at-
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tributed to near-vertical water-filled cracks in Layer 2
(Dunn and Toomey, 2001; Stephen, 1985; White and
Whitmarsh, 1984). No apparent spreading-rate de-
pendence of the anisotropy magnitude was ob-
served, but it was reported to decrease with depth
due to gradual crack closing in the upper 2 km of the
crust (Dunn and Toomey, 2001). Observed aniso-
tropy direction varied from roughly ridge-parallel
(Dunn and Toomey, 2001) to ridge-oblique by 20°–
60° (Stephen, 1985; White and Whitmarsh, 1984).
Due to limited spatial resolution, these seismic stud-
ies could constrain anisotropy directions only within
a 10° azimuthal range, at best. An alternative tech-
nique with potentially higher azimuthal resolution
is provided by dipole sonic logging tools, which re-
cord cross-dipole shear wave fields around boreholes
using orthogonal source and receiver pairs (Esmersoy
et al., 1994; Iturrino et al., 2005). These data are usu-
ally acquired continuously with depth and can be
analyzed for the presence of shear wave splitting in
anisotropic formations. Dipole logging tools have
been used routinely in the Ocean Drilling Program
(ODP) and the Integrated Ocean Drilling Program
(IODP) in recent years and allow for anisotropy mea-
surements of oceanic crust of different ages when re-
corded at different geographic sites and under differ-
ent tectonic settings.

Borehole studies of shear wave anisotropy in oceanic
crust to date are sparse. Iturrino et al. (2005) ana-
lyzed sonic logs from Deep Sea Drilling Project Hole
395A near the Kane Fracture Zone on the Mid-Atlan-
tic Ridge and ODP Hole 735B near the Atlantis Frac-
ture Zone on the Southwest Indian Ridge (slow to in-
termediate crustal spreading rates). The results
revealed a complex pattern of varying degree of an-
isotropy with depth from 1% to 15%, with the mean
direction of the fast shear wave velocity (VS) oriented
oblique to (Hole 395A) and perpendicular to (Hole
735B) nearby ridge segments, but varying widely
about the mean VS at different depths. The authors
attributed this result to a combination of intrinsic ef-
fects from fracturing, foliation, and porosity hetero-
geneity, as well as to stresses potentially inducing
changes in the local borehole environment. Resolv-
ing the sources of anisotropy in the oceanic crust at
both locations proved to be challenging. However,
those sites are located in the vicinity of an active
fracture zone, which may considerably complicate
both the stress field and the tectonic setting near the
site. In this study, we analyze shear wave anisotropy
in another deep hole, ODP/IODP Hole 1256D, lo-
cated on the undeformed flank of the East Pacific
Rise.

Hole 1256D is one of the few deep holes that pene-
trate through the upper oceanic crust and offers a
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unique opportunity to study anisotropy as a func-
tion of crustal depth. The site is located on the Cocos
plate on the eastern flank of the East Pacific Rise (Fig.
F1), which formed ~15 m.y. ago at a fast spreading
rate (>200 mm/y full rate) (see the “Expedition 335
summary” chapter [Expedition 335 Scientists,
2012]). Drilled during four expeditions (ODP Leg 206
and IODP Expeditions 309, 312, and 335) to a total
depth of ~1522 meters below seafloor (msbf), Hole
1256D intersects roughly 250 m of sediment, 700 m
of lava, 350 m of sheeted dikes, and then encounters
gabbro at ~1410 mbsf (Fig. F2). Sonic logging data
were recorded during three of the four expeditions,
but they did not record data over the full depth in-
terval due to obstructions in sections of the hole
during operations. In this report, we present aniso-
tropy analysis and results over the longest logged in-
terval of Hole 1256D using the Dipole Sonic Shear
Imager (DSI; 300–1215 mbsf; acquired during Expe-
dition 309), which recorded the highest data quality
and allows for the best estimations of shear wave an-
isotropy.

Methods and materials
Principles of sonic anisotropy analysis

Sonic anisotropy analysis of downhole logging data
utilizes the physical phenomenon of shear wave
splitting. When a shear wave propagates through an-
isotropic media, it is polarized, or “split,” into two
directions aligned with the fast and slow axis of the
formation. In the case of aligned fractures and/or
other structural features, the fast direction is along
the strike of these features; for stress-induced aniso-
tropy, the fast shear aligns with the direction of the
far-field maximum principal stress (Ellis and Singer,
2007; Sinha and Kostek, 1996). Thus, by measuring
the polarization direction and the difference in the
arrival times of the fast and slow shear waves, it is
possible to infer the direction and degree of forma-
tion anisotropy. For most downhole logging mea-
surements, sonic waves travel along the borehole
axis and are polarized in various azimuthal orienta-
tions with respect to the axis (Fig. F3). They are,
therefore, most sensitive to the azimuthal variability
of formation properties in the plane perpendicular to
the borehole axis. In a vertical borehole, this means
that the highest sensitivity to azimuthal variations
occurs in the horizontal plane (e.g., produced by
subvertical features and/or unequal horizontal
stresses). Such media are classified as transversely iso-
tropic with a horizontal axis of symmetry, or TI-H.

The DSI that was deployed in Hole 1256D utilizes di-
rectional sources and receivers, allowing for oriented
recording of polarized shear waves in an anisotropic
2
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formation (Ellis and Singer, 2007). Four waveforms
are analyzed simultaneously at each depth from two
source-receiver pairs (two in-line and two cross-line).
In order to determine the fast and slow directions for
an arbitrary azimuthal orientation of the tool in the
borehole, the four wave fields are numerically ro-
tated into the principal planes using the Alford rota-
tion procedure (Alford, 1986). In this procedure, the
following parameters characterize the measured an-
isotropy and are simultaneously derived: the fast
shear azimuth (FSH), cross-energy, and traveltime
anisotropy. The numerically rotated fast and shear
wave forms are processed to determine fast-shear
and slow-shear slownesses (inverse of VS) and to
compute shear slowness anisotropy. The details of
the processing algorithms can be found in Ellis and
Singer (2007), Sinha and Kostek (1996), and Sinha et
al. (1994). The next section summarizes the main an-
isotropy parameters needed to understand the out-
comes of the sonic anisotropy analysis conducted in
Hole 1256D.

Key anisotropy parameters
In total, three parameters quantifying the amount of
anisotropy, slowness anisotropy, traveltime aniso-
tropy, and energy anisotropy, are computed during
these processing steps:

• Slowness anisotropy is the difference between the
fast and slow slowness calculated on rotated wave-
forms and normalized to the average slowness. It
is the main indicator of the magnitude of shear
wave anisotropy (in percent of average VS).

• Traveltime anisotropy is the arrival-time differ-
ence between the rotated fast and shear waves
averaged across the receiver array and normalized
by the average arrival time to compute a percent-
age difference. This serves as a secondary indicator
of anisotropy and requires good borehole condi-
tions to be meaningful.

• Energy anisotropy is a spectral parameter that
quantifies the amount of energy in the cross-com-
ponent waveforms and is computed as a percent-
age of total energy in all four rotated wave field
components. Two related parameters are also
computed: the minimum and the maximum
cross-energy. The minimum cross-energy, when
close to zero, indicates that the Alford rotation
procedure was successful. The maximum cross-
energy is proportional to the degree of anisotropy
and should be significantly greater than the mini-
mum cross-energy if, in fact, shear wave splitting
is observed.

Sonic anisotropy analysis is most reliable when the
following measurement conditions are satisfied:
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• The tool is consistently rotating while logging the
borehole, thus providing full azimuthal coverage,
and the FSH does not track the tool orientation.
Tool rotation is recorded during data acquisition
with the Pad 1 azimuth (P1AZ). Typically, tools
rotate during logging, but they may become
“locked” at a particular azimuth due to irregulari-
ties in the well bore. Tool azimuth is an important
quality control parameter to make sure that calcu-
lated FSH is independent of the tool orientation in
the borehole.

• Borehole conditions are good and borehole diam-
eter is not significantly enlarged in any orienta-
tion around the hole. Hole quality can be checked
using a caliper log, which measures borehole
diameter in two orthogonal directions.

• The minimum cross-energy is small or close to
zero and the maximum cross-energy is signifi-
cantly greater than the minimum cross-energy.
This indicates that shear wave splitting has been
measured and the Alford rotation procedure was
successful. Slow and fast velocity components can
then be reliably separated.

Under these conditions, both slowness and travel-
time anisotropy estimates should be similar and al-
low for a reliable magnitude estimate of anisotropy
in the formation. The FSH indicates the strike of the
formation anisotropy, the intrinsic features that are
potentially responsible for causing it, and/or the ori-
entation of the maximum horizontal stress in the
formation.

Frequency-slowness analysis (dispersion plots)
An additional and powerful tool for detecting the
presence of shear wave anisotropy and understand-
ing its nature is the analysis of shear wave disper-
sion. Shear waves in boreholes are produced by flex-
ural waves created by directional sources, locally
deforming the borehole perpendicular to its axis.
These flexural waves are inherently dispersive (i.e.,
their velocity depends on frequency; Sinha et al.,
1994). In an anisotropic formation, curves of the
slow and fast shear wave velocity separate as a func-
tion of frequency, and the pattern of this separation
on a dispersion plot may allow for stress-induced
and intrinsic sources of anisotropy to be distin-
guished (Fig. F4). For intrinsic anisotropy, for exam-
ple, the fast shear wave travels parallel to the strike
of formation features and the slow shear wave travels
perpendicularly to them. The fast and slow shear
wave dispersion curves are nonintersecting over the
entire frequency band. The fast-shear direction de-
termined form the rotated waveform indicates the
strike of anisotropic features in the formation. For
stress-induced anisotropy, when anisotropy is due to
3
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stress imbalance in the borehole cross-sectional
plane, the fast shear aligns with the direction of the
far-field stress and the fast and slow shear wave dis-
persion curves cross over at an intermediate fre-
quency (Fig. F4; Sinha et al., 2000). For an isotropic
formation, the fast and slow shear slownesses are
identical and overlap in the dispersion plot.

Results
Figure F5 summarizes the results of shear wave aniso-
tropy analysis for Hole 1256D. The tool azimuth pro-
file indicates that the tool was not rotating consis-
tently inside the borehole over most of the logged
interval. At least three depth intervals, however, ex-
hibit a consistent tool rotation (~400–500 and 625–
760 mbsf and deeper than 980 mbsf). Caliper logs
show large washouts (borehole enlargements)
throughout the hole, but the caliper is nearly in
gauge at 490–520, 600–625, 700–780, and 850–910
mbsf and deeper than 1080 mbsf. With poor bore-
hole conditions, obtaining reliable anisotropy pa-
rameters is not feasible. Waveform processing was
unable to achieve consistent near-zero values for the
minimum cross-energy, so fast and slow components
of the shear wave field are poorly distinguished. The
best results from the processing show several inter-
vals where this parameter is close to zero: ~500,
~710, ~820, and ~990 mbsf and deeper than 1080
mbsf (Fig. F5). However, even in these zones, the
maximum cross-energy is not very high, indicating
low energy and little shear splitting. Consequently,
there is almost no difference between the fast and
slow shear wave slownesses at these depths, suggest-
ing that either the formation is isotropic in a hori-
zontal plane or that anisotropy could not be de-
tected or both (the slowness resolution of the DSI is
2 µs/ft [i.e., 1%–2%] of the measured slowness
range). The computed slowness anisotropy is 1% of
average VS (Fig. F5) and is quite variable. The com-
puted time anisotropy is much greater, up to 10% in
certain intervals, but these values are likely overesti-
mated because of the poor borehole conditions. As
expected, there is no dominant orientation of the
fast VS azimuth in isotropic intervals (Fig. F5). Fast
shear azimuth is variable and averages 90°, the me-
dian value of the range of all possible orientations
(0°–180°); therefore, it does not help to differentiate
a fast VS azimuth. Hole conditions toward the bot-
tom of the logged interval are consistent, however,
and the computation of anisotropy parameters is re-
liable. Over this interval, our sonic anisotropy analy-
sis suggests that the lower oceanic crust is isotropic
in a horizontal plane.
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Figure F6 illustrates the sonic waveform data and the
anisotropy computation over the lower interval of
Hole 1256D (1140–1190 mbsf). The interval is char-
acterized by a relatively large difference between the
minimum and maximum cross-energy values (Fig.
F5) and relatively high coherence of the fast and
slow components (Fig. F6). The fast and shear slow-
ness curves can be reliably determined and are
nearly identical. The estimated anisotropy is close to
zero, which suggests that the formation is isotropic
in the plane perpendicular to the borehole (i.e., in
the horizontal plane). This interval corresponds to
the sheeted dike section of the oceanic crust (Fig.
F2); given the vertically oriented morphologies in
this formation that are similar in all azimuthal direc-
tions, it is anticipated to be isotropic in a horizontal
plane unless a strong stress imbalance or preferred
crack orientation is present. Low estimates of aniso-
tropy, however, are also computed at shallower
depths in intervals where the borehole conditions
are good and sonic logging waveforms have high co-
herence (i.e., 310–340, 470–530, and 970–1005 mbsf
and deeper than 1060 mbsf). Within all of these in-
tervals, dispersion curves show overlapping curves
for fast and shear slownesses at all frequencies (Fig.
F7). From these consistent analyses of sonic aniso-
tropy over select intervals in Hole 1256D, our results
clearly suggest that at sonic logging frequencies
these sections of upper oceanic crust are character-
ized by isotropic shear wave velocity in a horizontal
plane.

In summary, poor borehole conditions and insuffi-
cient tool rotation presented significant challenges
for sonic anisotropy analysis in Hole 1256D. Anisot-
ropy parameters could be reliably determined from
the logging data over limited depth intervals. They
clearly suggest that the upper oceanic crust is nearly
isotropic in a horizontal plane, with VS anisotropy
estimates between 0%–1% of the average horizontal
VS, and/or that weak shear-wave anisotropy is below
the detection limit of the DSI used to acquire the
data.
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N.V. Zakharova and D.S. Goldberg Data report: analysis of shear wave anisotropy
Figure F1. Age map of the Cocos plate and adjacent regions of the Pacific and Nazca plates based on magnetic
anomalies (see the “Expedition 335 summary” chapter [Expedition 335 Scientists, 2012]). Select DSDP and
ODP sites that reached basement are indicated by circles; FZ = fracture zone.
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N.V. Zakharova and D.S. Goldberg Data report: analysis of shear wave anisotropy
Figure F2. Sonic tool deployments and stratigraphic column in Hole 1256D showing the major and minor lith-
ologic divisions of the upper oceanic crust, after Expedition 335 Scientists (2012) and Expedition 309/312
Scientists (2006). Sonic tool data were analyzed over the depth interval highlighted in red.
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N.V. Zakharova and D.S. Goldberg Data report: analysis of shear wave anisotropy
Figure F3. Schematic diagram of shear wave spitting in downhole logging caused by azimuthal alignment of
subvertical cracks. Dipole sonic wave fields are analyzed for azimuthal orientation and degree of anisotropy.
After Ellis and Singer (2007).
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N.V. Zakharova and D.S. Goldberg Data report: analysis of shear wave anisotropy
Figure F4. Schematic cross-dipole dispersion curves illustrating isotropic and anisotropic formations. In homo-
geneous isotropic medium (left panel), observed dispersion curves for the orthogonal fast and slow shear wave
components (red and blue curves) are identical and match modeled flexural wave dispersion (black circles). In
homogeneous anisotropic medium (middle panel), such as one with intrinsic anisotropy created by cracks or
other features, the fast and slow dispersion curves are offset, but parallel. In inhomogeneous anisotropic
medium (right panel), such as created by stress-induced anisotropy, the two observed dispersion curves
crossover at an intermediate frequency (Arroyo Franco et al., 2006).
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N.V. Zakharova and D.S. Goldberg Data report: analysis of shear wave anisotropy
Figure F5. Sonic anisotropy analysis results, Hole 1256D. Tool azimuth is as indicated by the orientation of Pad
1, minimum and maximum cross-energy is after Alford rotation, and fast-shear and slow-shear slowness is de-
termined from the rotated wave fields. For fast-shear azimuth, smoothed data is the 10 m running average.
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N.V. Zakharova and D.S. Goldberg Data report: analysis of shear wave anisotropy
Figure F6. An example of shear wave field with relatively high coherency in the bottom part of Hole1256D
(sheeted dike section). The first track on the left shows borehole diameter recorded by two orthogonal calipers.
Rotated fast and slow shear wave fields are shown in the middle, along with corresponding coherency plots of
shear-wave arrivals. Shear slowness: black = compressional slownesses. Slow and fast slownesses are very
similar, thus, suggesting isotropic formation. Fast-shear azimuth (red; determined by Alford rotation): gray =
uncertainty.
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N.V. Zakharova and D.S. Goldberg Data report: analysis of shear wave anisotropy
Figure F7. Example of flexural wave dispersion plot at 480 mbsf, Hole 1256D. Green and red dashed lines in-
dicate compressional wave and shear-wave slownesses, respectively. Dispersion curves for dipole flexural wave
computed are from rotated slow and fast shear wave fields. Green circles correspond to Stoneley wave slowness,
which provides an upper limit for flexural wave slowness (Ellis and Singer, 2007). Overlapping fast and slow
dispersion curves are indicative of isotropic formation.
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