Data report: crystallographic-preferred orientations determined by electron backscattered diffraction in isotropic gabbroic rocks from the sheeted dike/gabbro transition zone in superfast spread crust, ODP Hole 1256D

Jeremy Deans2 and Benoît Ildefonse3

Abstract

Ocean Drilling Program (ODP) Hole 1256D is the first in situ penetration into the sheeted dike/gabbro transition zone and was drilled over the course of several expeditions. The hole was initiated during ODP Leg 206 and lengthened during Integrated Ocean Drilling Program Expeditions 309, 312, and 335. Nine samples were analyzed from two gabbroic sections (Gabbros 1 and 2) recovered from Expedition 312 for crystallographic-preferred orientation of plagioclase, clinopyroxene, olivine, and orthopyroxene. Plagioclase and clinopyroxene are the focus of this study because these two phases are the most modally abundant minerals. Our results are compared with shape-preferred orientations from the same samples. The results demonstrate the absence of crystallographic-preferred orientation in any phases analyzed. Even though the nature of the sheeted dike/gabbro transition zone is still poorly constrained, our results are similar to those reported in rocks that have been interpreted to represent the crystalized axial melt lens in the Oman ophiolite.

Introduction

Ocean Drilling Program (ODP) Hole 1256D is the first complete penetration of the upper oceanic crust reaching the uppermost part of the gabbroic lower crust. Hole 1256D was drilled between ODP Leg 206 (Shipboard Scientific Party, 2003) and Integrated Ocean Drilling Program Expeditions 309 and 312 (Expedition 309/312 Scientists, 2006) and 335 (Expedition 335 Scientists, 2012). Hole 1256D is located in 3635 m of water in the Guatemala Basin (6°44.2′N, 91°56.1′W) on 15 Ma oceanic crust of the Cocos plate, which formed along the East Pacific Rise at a full spreading rate of >200 mm/y (Wilson, 1996). Below a 250 m thick section of sedimentary cover, 810 m of lavas and 346 m of sheeted dikes were penetrated with recovery between 5% and 30%. The first gabbroic rocks were encountered at 1407 meters below seafloor (mbsf) during Expedition 312. The recovered crustal section is characterized by a 115 m thick dike–gabbro transition zone that includes two ~52 and ~12 m thick gabbro intervals intruded into diabase dikes with granoblastic textures (Fig. F1) (Wilson et al., 2006; Expedition 335 Scientists, 2012; Ildefonse et al., 2014).

2Department of Geosciences, Texas Tech University, Lubbock TX 79409, USA. jeremy.deans@ttu.edu

3Géosciences Montpellier, Université de Montpellier, 34095 Montpellier Cedex 5, France.
The gabbroic rocks from the two gabbro intervals (Gabbros 1 and 2; Fig. F1) are isotropic, referred to as “varitextured,” and are similar to those described at the same level of the crustal section exposed in the Oman ophiolite (e.g., MacLeod and Yaouancq, 2000; France et al., 2009). These gabbros potentially represent the top of the crystallized axial melt lens (Wilson et al., 2006; Koepke et al., 2008, 2011; France et al., 2009; Alt et al., 2010). The gabbroic bodies have been interpreted as relatively small intrusive bodies rooting into a larger melt lens below (Koepke et al., 2008; Alt et al., 2010). Another interpretation is the gabbroic bodies represent the main melt lens in which the granoblastic diabases between Gabbros 1 and 2 and those below Gabbro 2 represent large stoped enclaves of sheeted dikes (France et al., 2009).

We present here an analysis of the crystallographic preferred orientations (CPO) of the most abundant primary silicate phases (plagioclase and clinopyroxene) in 9 samples from the Gabbro 1 and 2 intervals to document the variability of their magmatic fabrics. Seven of the nine measured samples (Table T1) were also used by Trela et al. (2015) for shape-preferred orientation (SPO) measurements of plagioclase. The samples used in this study are from 1412.99–1494.36 mbsf in Cores 312-U1256D-214R through 232R. All samples have textures that are essentially isotropic, with tabular plagioclase, subophitic clinopyroxene, minor orthopyroxene, Fe-Ti oxides, and olivines. Secondary amphibole is abundant. Some samples (e.g., 312-U1256D-231R-1, 92–94 cm) have anorthositic domains characterized by lower proportions of clinopyroxene and smaller grain size than the surrounding rock. Other samples contain veins filled with chlorite (e.g., 220R-1, 14–17 cm) and/or amphibole (e.g., 223R-2, 7–9 cm).

Methods

Plagioclase and clinopyroxene CPOs were measured using the electron backscatter diffraction (EBSD) technique (e.g., Prior et al., 2009) using two scanning electron microscopes (SEM) at the University of Montpellier, France: a JEOL JSM-5600 and CamScan 500XE crystal probe. Both systems are equipped with Oxford/Nordlys EBSD detectors; the diffraction patterns were collected and processed using the Channel 5 suite of programs. The JSM-5600 and crystal probe were used at accelerating voltages of 15 and 20 kV, respectively, and a working distance of 25 mm. Crystallographic orientation maps were obtained for each sample, scanning the thin section by moving the stage with step sizes ranging from 21 to 60 µm. The step sizes are at least 10 times smaller than the grain size of the phases of interest. The indexing rate (fraction of patterns that are automatically indexed during mapping) ranges from ~50% to 80% in the raw maps. We use the HKL reference data files to index olivine, clinopyroxene, and orthopyroxene and an in-house (Géosciences Montpellier, France) reference data file to index plagioclase. The raw data contain all indexed pixels with a mean angular deviation (MAD; i.e., the angle between the acquired diffraction pattern and the indexing solution proposed by the software) of <1.3°. The first stage of postacquisition data processing was done using the Tango software of the Channel 5 suite to increase the quality of the maps, consisting of removing isolated pixels that are either nonindexed or indexed as a given phase and surrounded by pixels indexed for another phase and filling nonindexed pixels that have a minimum of 5 neighboring pixels with the same orientation.

EBSD data sets were then processed using MTEX (version 4.0.23), a free Matlab toolbox for analyzing and modeling crystallographic orientation (http://mtex-toolbox.github.io) (Hielscher and Schaeben, 2008; Bachmann et al., 2010). We used MTEX to identify grains and produce maps from the EBSD data, calculate pole figures of the plagioclase and clinopyroxene preferred orientation, analyze the crystallographic misorientations within grains, and calculate CPO strength and shape indexes.

Grains were identified from the EBSD data by choosing a 10° threshold. If the misorientation between two adjacent pixels of the same phase is >10°, then it is assumed a grain boundary is present. Grains that have a surface <5 pixels could be erroneous measurements and were removed from the data set. Twins in both plagioclase and clinopyroxene were distinguished from grain boundaries by filtering out the 178°–180° misorientations in grain boundary identification. Pole figures were calculated using both the grid data set from EBSD mapping (grid data) and the average crystallographic orientation for each grain (grid data). The second option is preferred to avoid the over-representation of larger grains when the grain size distribution is heterogeneous at the thin section scale.

The CPO strength for each phase is determined using both the orientation distribution function (ODF) J-index exclusively based on crystallographic orientations (e.g., Bunge, 1982; Mainprice and Silver, 1993), and the M-index (Skemer et al., 2005) based on the misorientation angle distribution across a sample. J-index values vary between 1 (for a uniform distribu-
within a crystal (Nscopy. The KAM is, for each pixel, the average mis-
tortion related to undulose extinction in optical micro-
subgrain boundaries or the progressive misorienta-
tion between domains separated by the grain. The M2M allows for the visualization of the
pixel and the average crystallographic orientation of that
domain. The M2M is calculated as:
\[M_{2M} = \frac{1}{N} \sum_{i=1}^{N} \theta_i \]
where \(\theta_i \) is the angle of misorientation for each adjacent pair of pixels, and \(N \) is the
number of pixels.

Parameters, the misorientation to the mean (M2M),
arameters, the misorientation to the mean (M2M),
that the preferred rotation axes are [001] and [100]
in plagioclase and [010] in clinopyroxene. These are
consistent with minor plastic deformation, resulting
from the activation of the [001](010) and [100](001)
slip systems in plagioclase (e.g., Montardi and Main-
price, 1987; Stünitz et al., 2003) and of the [001](100)
slip system in clinopyroxene (e.g., Bascou et al., 2002).

Grid data and grain data pole figures are displayed in
Figures F6 and F7, respectively. None of the 9 mea-
sured samples show any significant CPO. The first ei-
genvector of the orientation tensor in each pole figure
varies greatly in direction from one sample to the
other with no systematic trend downhole (Figs. F6,
F7). CPO strength, quantified by the J- and M-in-
dexes, is always very low (Table T1; Fig. F1). Note
that J values can be abnormally high (italic in Table
T1) when the grain number is low enough that the
ODF calculation is statistically meaningless (e.g.,
clinopyroxenes in Sample 215R-2, 77 cm) (Fig. F2)
or when one or a few large grains dominate the signal
in grid data (e.g., plagioclase in Sample 222R-1, 142
cm). These effects are particularly strong for very
weak CPOs. The absence of significant CPO is con-
firmed by the almost perfect match in the misorienta-
tion histograms between the misorientation distribu-
tion curves calculated for a theoretical uniform
distribution (i.e., no fabric) and for uncorrelated pix-
els (Fig. F5). Any significant CPO should produce an
uncorrelated pixel misorientation curve that is dif-
fent from the uniform distribution curve. The shape of symmetry of the CPOs, quantified here
with the BA (plagioclase) and BC (clinopyroxene) in-
dexes logically do not reveal significant deviation from a circular shape of the 3-D fabric ellipsoid (Ta-
ble T1; Fig. F2). Both indexes are close to 0.5 on aver-
age, with a slight tendency for a prolate shape in pla-
gioclase (BA_{mean} = 0.56 for grid data and 0.58 for
grain data) and for an oblate shape in clinopyroxene
(BC_{mean} = 0.43 for grid data and 0.46 for grain data).

Results
Three examples of EBSD maps are shown in Figures
F2, F3, and F4. The index rate is not optimal in these
samples because of the relative abundance of second-
ary phases (e.g., amphiboles and chlorite), which
were not systematically indexed in all measurement
runs. These three examples are representative of all
measurements presented herein; there is no signifi-
cant misorientation in the grains shown by either
M2M or KAM, attesting to the magmatic nature of the
textures in these samples. Figure F5 displays the
misorientation histograms for Samples 312-U1256D-
223R-2, 120 cm, and 232R-2, 38 cm (Figs. F3, F4). As
in all samples, the misorientation in clinopyroxene
grains is a bit higher (19% on average between 2°
and 20°) than in plagioclase grains (3% on average
between 2° and 20°). The inverse pole figures for mi-
orientation angles between 2° and 20° (Fig. F5) show
that the preferred rotation axes are [001] and [100]
in plagioclase and [010] in clinopyroxene. These are
in all samples, the misorientation in clinopyroxene
grains is a bit higher (19% on average between 2°
and 20°) than in plagioclase grains (3% on average
between 2° and 20°). The inverse pole figures for mi-
orientation angles between 2° and 20° (Fig. F5) show
that the preferred rotation axes are [001] and [100]
in plagioclase and [010] in clinopyroxene. These are
consistent with minor plastic deformation, resulting
from the activation of the [001](010) and [100](001)
slip systems in plagioclase (e.g., Montardi and Main-
price, 1987; Stünitz et al., 2003) and of the [001](100)
slip system in clinopyroxene (e.g., Bascou et al., 2002).

Grid data and grain data pole figures are displayed in
Figures F6 and F7, respectively. None of the 9 mea-
sured samples show any significant CPO. The first ei-
genvector of the orientation tensor in each pole figure
varies greatly in direction from one sample to the
other with no systematic trend downhole (Figs. F6,
F7). CPO strength, quantified by the J- and M-in-
dexes, is always very low (Table T1; Fig. F1). Note
that J values can be abnormally high (italic in Table
T1) when the grain number is low enough that the
ODF calculation is statistically meaningless (e.g.,
clinopyroxenes in Sample 215R-2, 77 cm) (Fig. F2)
or when one or a few large grains dominate the signal
in grid data (e.g., plagioclase in Sample 222R-1, 142
cm). These effects are particularly strong for very
weak CPOs. The absence of significant CPO is con-
firmed by the almost perfect match in the misorienta-
tion histograms between the misorientation distribu-
tion curves calculated for a theoretical uniform
distribution (i.e., no fabric) and for uncorrelated pix-
els (Fig. F5). Any significant CPO should produce an
uncorrelated pixel misorientation curve that is dif-
fent from the uniform distribution curve. The shape of symmetry of the CPOs, quantified here
with the BA (plagioclase) and BC (clinopyroxene) in-
dexes logically do not reveal significant deviation from a circular shape of the 3-D fabric ellipsoid (Ta-
ble T1; Fig. F2). Both indexes are close to 0.5 on aver-
age, with a slight tendency for a prolate shape in pla-
gioclase (BA_{mean} = 0.56 for grid data and 0.58 for
grain data) and for an oblate shape in clinopyroxene
(BC_{mean} = 0.43 for grid data and 0.46 for grain data).
Conclusions

CPO measurements and analysis presented herein show that gabbric rocks in the Gabbro 1 and 2 intervals do not exhibit significant crystallographic fabrics; hence, there is no record in the crystallographic data to suggest significant magmatic flow in these gabbric intrusions. Trela et al. (2015) reported “distinct and consistent” plagioclase SPO in samples Gabbrs 1 and 2; however, this is not confirmed by the results presented here. Our results are consistent with textures observed (i.e., no preferred shape or crystallographic orientation) in ophiolites at the sheeted dike complex–fossilized melt lens transition zone (e.g., MacLeod and Yaouancq, 2000; France et al., 2009). However, this study cannot further constrain the structural context of Gabbrs 1 and 2 within this transition zone.

Acknowledgments

This research used samples and/or data provided by the Integrated Ocean Drilling Program (IODP). We thank the crew of the R/V JOIDES Resolution and the IODP United States Implementing Organization’s technical staff for their outstanding work during Expedition 335. We thank Fabrice Barou for assistance with EBSD analysis, David Mainprice for his invaluable advice on using MTEX, and Eric Ferre for making his thin sections available. We also thank Jill A. VanTongeren for her input on the manuscript. This work was supported by a postexpedition activity award from the USSSP for Aaron Yoshinobu and Jeremy Deans.

References

Initial receipt: 7 September 2015
Acceptance: 5 July 2016
Publication: 6 September 2016
MS 335-204
Figure F1. Lithostratigraphy overview of the upper–lower crust transition recovered in Hole 1256D (Expedition 335 Scientists, 2012) and depth variations of plagioclase J- and BA-indexes (grain data). ODF = orientation distribution function.
Figure F2. Electron backscatter diffraction maps for Sample 312-U1256D-215R-2, 77–79 cm. See text for further explanation. A. Indexed phases. B, C. Orientation. Color scale indicates the minimum angle between the measured pixel and the reference (0,0,0) Euler orientation. D, E. Misorientation to grain mean. F, G. Kernel average misorientation.
Figure F3. Electron backscatter diffraction maps for Sample 312-U1256D-223R-2, 120–122 cm. See text for further explanation. A. Indexed phases. B, C. Orientation. Color scale indicates the minimum angle between the measured pixel and the reference (0,0,0) Euler orientation. D, E. Misorientation to grain mean. F, G. Kernel average misorientation.
Figure F4. Electron backscatter diffraction maps for Sample 312-U1256D-232R-2, 38–40 cm. See text for further explanation. A. Indexed phases. B, C. Orientation. Color scale indicates the minimum angle between the measured pixel and the reference (0,0,0) Euler orientation. D, E. Misorientation to grain mean. F, G. Kernel average misorientation.
Figure F5. Misorientation distribution for Samples 312-U1256D-223R-2, 120–122 cm, and 232R-2, 38–40 cm. Inverse pole figures show preferred orientation of rotation axes corresponding to misorientations between 2° and 10°.
Figure F6. Grid data poles. See text for further explanation. Black squares = orientations of first eigenvector. North poles (black ticks) are parallel to the top of the core.
Figure F7. Grain data poles. See text for further explanation. Black squares = orientations of first eigenvector. North poles (black ticks) are parallel to the top of the core.
Figure F8. Plot of J-index (grain data) for plagioclase as a function of shape-preferred orientation (axial ratio of the fabric ellipse) in thin sections. See text for further explanation.
Table T1. Electron backscatter diffraction data, Hole 1256D.

<table>
<thead>
<tr>
<th>Core, section, interval (cm)</th>
<th>Depth (mbsf)</th>
<th>Unit*</th>
<th>Rock type*</th>
<th>EBSD measurement step size (µm)</th>
<th>Grid data</th>
<th>Grain data</th>
<th>Average grain size (µm)</th>
<th>SPO†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ODF</td>
<td>J-index</td>
<td>M-index</td>
<td>BA-index</td>
</tr>
<tr>
<td>335-U1256D-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214R-2, 64–66</td>
<td>1412.99</td>
<td>85</td>
<td>Opx and olivine-bearing oxide gabbro</td>
<td>50</td>
<td>1.5</td>
<td>0.002</td>
<td>0.74</td>
<td>1.3</td>
</tr>
<tr>
<td>215R-2, 77–79</td>
<td>1417.90</td>
<td>86A</td>
<td>Disseminated oxide gabbro</td>
<td>20</td>
<td>1.7</td>
<td>0.002</td>
<td>0.52</td>
<td>1.7</td>
</tr>
<tr>
<td>220R-1, 14–17</td>
<td>1435.14</td>
<td>88B</td>
<td>Oxide gabbro</td>
<td>40</td>
<td>1.9</td>
<td>0.004</td>
<td>0.46</td>
<td>1.5</td>
</tr>
<tr>
<td>222R-1, 142–144</td>
<td>1446.02</td>
<td>89A</td>
<td>Oxide-bearing olivine gabbro</td>
<td>60</td>
<td>3.1</td>
<td>0.010</td>
<td>0.49</td>
<td>1.4</td>
</tr>
<tr>
<td>223R-2, 7–9</td>
<td>1450.85</td>
<td>89A</td>
<td>Opx-bearing olivine gabbro</td>
<td>30</td>
<td>1.7</td>
<td>0.002</td>
<td>0.58</td>
<td>1.3</td>
</tr>
<tr>
<td>223R-2, 120–122</td>
<td>1451.98</td>
<td>89C</td>
<td>Opx and olivine-bearing gabbro</td>
<td>28</td>
<td>1.3</td>
<td>0.001</td>
<td>0.56</td>
<td>1.1</td>
</tr>
<tr>
<td>231R-1, 92–94</td>
<td>1488.82</td>
<td>92A</td>
<td>Disseminated oxide gabbro</td>
<td>60</td>
<td>1.5</td>
<td>0.004</td>
<td>0.67</td>
<td>1.3</td>
</tr>
<tr>
<td>231R-2, 30–32</td>
<td>1489.49</td>
<td>92A</td>
<td>Disseminated oxide gabbro</td>
<td>30</td>
<td>1.7</td>
<td>0.004</td>
<td>0.73</td>
<td>1.4</td>
</tr>
<tr>
<td>232R-2, 38–40</td>
<td>1494.36</td>
<td>93A</td>
<td>Disseminated oxide gabbro</td>
<td>21</td>
<td>1.4</td>
<td>0.001</td>
<td>0.31</td>
<td>1.2</td>
</tr>
</tbody>
</table>

* = unit numbers and rock types are taken from the redescription of Expedition 312 cores by the Expedition 335 Scientific Party (see the Expedition 335 summary chapter [Expedition 335 Scientists, 2012]). † = plagioclase shape-preferred orientation (SPO) from Trela et al. (2015). EBSD = electron backscattered diffraction, ODF = orientation distribution function. Opx = orthopyroxene. Italicized values = abnormally high J-index values. — = no data.