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Abstract
Sand samples collected during Integrated Ocean Drilling Program
Expeditions 338 and 315 at Site C0002 show a variety of lithic
fragment types. The lithic component in these sediments includes
grains of sedimentary, metamorphic, volcanic, and plutonic ori-
gin. An atlas of lithic grain types from Site C0002 serves as a use-
ful reference for petrographic provenance analysis in the Kumano
Basin and the underlying prism sediments. The relative abun-
dance of monocrystalline mineral grains and grain ratios are sub-
ject to textural and diagenetic controls external to provenance.
Lithic grains, in particular, provide very specific and reliable infor-
mation on variations in sediment source.

Introduction
Lithic grains are polycrystalline particles that can in many cases
be identified as belonging to specific parent lithologies. Although
monocrystalline grains may have internal textures (e.g., Bernet
and Bassett, 2005; Lee et al., 1998), the provenance information
in monocrystalline grains (quartz, feldspar, and dense minerals) is
primarily derived from their composition, which for feldspars and
dense minerals can be modified by dissolution and replacement
during diagenesis (e.g., Milliken and Mack, 1990; Milliken, 1988;
Morton, 1984). Grain ratios (e.g., quartz-feldspar-lithic fragments)
are also subject to control by grain size (Ingersoll et al., 1984), a
factor that is not fully removed even by the Gazzi-Dickinson
point-count technique that extracts large monocrystals from
lithic grains (Milliken et al., 2012; Decker and Helmold, 1985). In
lithic fragments themselves, however, provenance information
resides mostly in their textures, which are less subject to post-
depositional alteration (Milliken, 1988) and unaffected by grain
size once a grain is sufficiently large to preserve the texture. Lithic
grains are “recognizable fragments of the source terrane” (Decker
and Helmold, 1985) and as such constitute an easily accessible
and exceptionally reliable type of information on sediment
source. Survival of lithic grains during sediment transport is fa-
vored in far-distal sands that avoid reworking in coastal deposi-
tional systems (Dutton and Loucks, 2010).

The atlas presented here intends to serve as a reference for the
lithic grain types observed within the sand-size (62 µm to 2 mm)
grain fraction of the Kumano Basin and underlying Nankai accre-
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tionary prism. Our grain identifications draw on ma-
terials presented in several published petrography re-
sources (Usman et al., 2014; Fergusson, 2011;
Milliken et al., 2007; Underwood and Fergusson,
2005; Fergusson, 2003; Garzanti and Vezzoli, 2003;
Marsaglia, 1992; Marsaglia et al., 1992; De Rosa et al.,
1986; Taira and Niitsuma, 1986; Scholle, 1979).

Methods and materials
Core and cuttings sandy sediment samples (10 cm3)
were collected through the basin and prism strati-
graphy during Integrated Ocean Drilling Program
(IODP) Expedition 338 (Strasser et al., 2014). Where
possible, intervals with no sample coverage were
completed with material recovered during IODP Ex-
pedition 315 (see the “Expedition 315 Site C0002”
chapter [Expedition 315 Scientists, 2009]). Sampling
distribution was ~1 sample per core/cuttings where
available. A total of 99 Miocene–recent samples were
obtained.

Semiconsolidated sediments of each sample were
fully disaggregated with the help of a sonicator and
were wet-sieved using 62 µm mesh to isolate the
sand-size fraction. Dried sand was impregnated with
blue-dyed epoxy and mounted into thin sections.
Each sample was stained following the method out-
lined by Houghton (1980), in which Ca-plagioclase
is stained pink, K-feldspar is stained yellow, glass
may take one or both colors, and Na-plagioclase re-
mains unstained.

Each sample was studied under a transmitted-light
microscope (plane- and cross-polarized modes), and
photomicrographs of representative lithic fragments
were taken. Unless otherwise indicated, the grain of
interest is at the center of the image.

Results
A total of 162 photomicrographs are included (Figs.
F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
F14, F15, F16, F17, F18, F19, F20, F21, F22, F23,
F24, F25, F26, F27). The sample number, lithic type,
and lithostratigraphic unit of each photographed
grain are included in Table T1. Lithic grains were
grouped into sedimentary lithic fragments (SRFs)
(Figs. F1, F2, F3, F4, F5, F6, F7, F8, F9), volcanic
lithic fragments (VRFs) (Figs. F10, F11, F12, F13,
F14, F15), plutonic lithic fragments (PRFs) (Figs. F16,
F17, F18, F19), and metamorphic lithic fragments
(MRFs) (Figs. F20, F21, F22, F23, F24, F25). SRFs
were further divided into clay-rich (Figs. F1, F2, F3,
F4, F5) and silt-rich (Figs. F6, F7A–F7D) mudstones,
sandstones (Fig. F7E–F7F), argillaceous cherts (Fig.
F8), and cherts (Fig. F9). VRFs were divided into fel-
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sitic (Figs. F10, F11), microlitic (Fig. F12), lathwork
(Fig. F13), trachytic lathwork (Fig. F14), and pumice
(Fig. F15). PRFs, with the exception of K-feldspar-
quartz intergrowths (Fig. F18), were not divided.
MRFs were divided into quartz rich (Fig. F20),
quartz-mica rich (Fig. F21), micaceous (Fig. F22),
chlorite rich (Fig. F23), epidote rich (Fig. F24), and
others (Fig. F25). Petrographic definitions of each of
these lithic fragment categories can be found in Mar-
saglia (1992), Marsaglia et al. (2013), and Milliken et
al. (2007).

Grains that are not lithic fragments, such as poorly
disaggregated muds (Fig. F26) or postdrilling sulfate
precipitates (Fig. F27) were included under the cate-
gory Artifacts.
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Figure F1. Sedimentary rock fragments: clay-rich mudstones. Grains rich in clay-size clay minerals with minor
admixtures of possible organic matter and opaque crystals such as pyrite. Left = plane-polarized light, right =
cross-polarized light.
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Figure F2. Sedimentary rock fragments: clay-rich mudstones. Grains rich in clay-size clay minerals with minor
admixtures of possible organic matter and opaque crystals such as pyrite. Bottom grain (E, F) contains a mod-
erate amount of clay-size carbonate. Left = plane-polarized light, right = cross-polarized light.
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Figure F3. Sedimentary rock fragments: clay-rich mudstones. Color zoning in these samples is likely the result
of varying degrees of epoxy penetration during the thin section making process. This interpretation is based
upon the similarity to variable epoxy impregnation commonly observed in whole-rock mudstone thin sec-
tions. Left = plane-polarized light, right = cross-polarized light.
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Figure F4. Sedimentary rock fragments: clay-rich mudstones. A, B. Grain has fractures filled with microcrys-
talline quartz (chert). C, D. Near-opaque grain has fracture filled with chlorite. Grain in lower right has a chert-
filled fracture. E, F. Clay-rich mudstone grain containing a sand-size quartz clast. Left = plane-polarized light,
right = cross-polarized light.
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Figure F5. Sedimentary rock fragments: clay-rich mudstones. Silt-size particles are quartz and feldspar. Mud-
stones are silt bearing. Left = plane-polarized light, right = cross-polarized light.
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Figure F6. Sedimentary rock fragments: silt-rich mudstones. Silt-size particles are quartz and feldspar. Left =
plane-polarized light, right = cross-polarized light.
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Figure F7. Sedimentary rock fragments: silt-rich mudstones. A–D. Mudstones (silt-rich). E, F. Muddy sandstone.
Large sand-size grain; on right side is a metamorphic rock fragment composed of quartz, feldspar and chlorite.
Smaller grains include quartz and feldspar. Left = plane-polarized light, right = cross-polarized light.
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Figure F8. Sedimentary rock fragments: argillaceous cherts. A, B. Opaque crystals are probably pyrite. Left =
plane-polarized light, right = cross-polarized light.
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Figure F9. Sedimentary rock fragments: cherts and other microcrystalline quartz. A, B. Fine grained. C, D. Well-
rounded grain, potentially formed within a vesicle of a volcanic rock fragment (Fig. F15E–F15F). While not
strictly sedimentary, this grain is interpreted to have formed through water-rock interaction similar in nature
to diagenesis. E, F. Oversized grain with fractures filled with microcrystalline quartz. Left = plane-polarized
light, right = cross-polarized light.
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Figure F10. Volcanic rock fragments: felsitic grains are characterized by microcrystalline quartz and feldspar
crystals of equant dimensions. The presence of abundant feldspar is denoted by the prominent yellow stain.
These grains also contain a substantial admixture of clay-size clay minerals and various opaque crystals. Left =
plane-polarized light, right = cross-polarized light.
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F11. Volcanic rock fragments: felsitic grains are characterized by microcrystalline quartz and feldspar
crystals of equant dimensions. The presence of abundant feldspar is denoted by the prominent yellow stain.
These grains also contain a substantial admixture of clay-size clay minerals and various opaque crystals. Left =
plane-polarized light, right = cross-polarized light.
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F12. Volcanic rock fragments: microlitic grains containing distinct microcrystals of feldspars floating in
a finer grained groundmass of variable feldspar and quartz content. A, B. Note the unstained microliths,
probable albitic plagioclase. Left = plane-polarized light, right = cross-polarized light.
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F13. Volcanic rock fragments: lathwork. A, B, E, F. Highly altered grains. C, D. Note the unstained mi-
croliths, probable albitic plagioclase. Left = plane-polarized light, right = cross-polarized light.
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F14. Volcanic rock fragments: trachytic lathwork. Lath crystals are plagioclase. E, F. Note dual K-feldspar
and plagioclase staining in the groundmass. Left = plane-polarized light, right = cross-polarized light.
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F15. Volcanic rock fragments: pumice, increasing degree of devitrification. Note the microcrystalline
quartz-filled vesicle in E and F. Left = plane-polarized light, right = cross-polarized light. 

50 µm 50 µm

100 µm100 µm

100 µm100 µm

B

D

F

A

C

E

Proc. IODP | Volume 338 19



S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F16. Plutonic rock fragments: quartz-plagioclase-k-feldspar aggregates. Feldspars denoted by staining.
Left = plane-polarized light, right = cross-polarized light. 
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F17. Plutonic rock fragments. C, D, E, F. Note carbonate alteration on feldspars. For C and D, alternative
interpretation would be carbonate-altered sandstone clast, however, sedimentary fabrics are not clear. Left =
plane-polarized light, right = cross-polarized light. 
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F18. Plutonic rock fragments: quartz-K-feldspar intergrowths. Left = plane-polarized light, right = cross-
polarized light. 
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F19. Plutonic rock fragments. A, B. Quartz-muscovite aggregate. C, D. Quartz-plagioclase aggregate.
E, F. Quartz-epidote-plagioclase (albite) aggregate. Left = plane-polarized light, right = cross-polarized light. 
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F20. Metamorphic rock fragments: quartz-rich, foliated. Left = plane-polarized light, right = cross-po-
larized light.
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F21. Metamorphic rock fragments: quartz-mica rich, foliated. Left = plane-polarized light, right = cross-
polarized light.
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F22. Metamorphic rock fragments: micaceous. Left = plane-polarized light, right = cross-polarized light.
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F23. Metamorphic rock fragments: chlorite schists. E, F. Alteration has obscured individual chlorite
crystals. Left = plane-polarized light, right = cross-polarized light. 
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F24. Metamorphic rock fragments: epidote-rich. Left = plane-polarized light, right = cross-polarized
light. 
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F25. Metamorphic rock fragments. A, B. Feldspar-rich, foliated. C, D. Quartz-carbonate-mica aggregate,
nonfoliated. Lack of foliation would also be consistent with the alternative interpretation of carbonate-altered
plutonic rock fragments. E, F. Low-grade metamorphic rock fragment (slate) or, alternatively, a fissile silty mud-
stone. Left = plane-polarized light, right = cross-polarized light.
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F26. Artifacts: undisaggregated silty mud grains. This interpretation is supported by the size of these
fragments, which far exceeds the sizes of the dominant grains in this sediment. Component grains within these
large aggregates are also equivalent in size to the surrounding particles. Left = plane-polarized light, right =
cross-polarized light.
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Figure F27. Artifacts: postdrilling sulfate precipitates. Gypsum saturation is not normally expected in the
sulfate-poor fluids of the Nankai margin (see fig. F10 in Milliken et al. [2012] for further explanations). Left =
plane-polarized light, right = cross-polarized light.
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S.G. Ramirez and K.L. Milliken Data report: atlas of lithic grain types at Site C0002
Table T1. Photographed grains shown in figures. (Continued on next page.)

Figure Lithic grain type

Sample number/
Expedition, hole, core, 
section, interval (cm) Unit

F1A, F1B SRF (mudstone, clay rich) 338-C0002F-215-SMW V
F1C, F1D SRF (mudstone, clay rich) 315-C0002D-5H-5, 35–37 I
F1E, F1F SRF (mudstone, clay rich) 338-C0002L-4X-CC, 36–37.5 II
F2A, F2B SRF (mudstone, clay rich) 338-C0002F-213-SMW IV
F2C, F2D SRF (mudstone, clay rich) 338-C0002L-13X-1, 15–16.5 II
F2E, F2F SRF (mudstone, clay rich) 315-C0002D-7H-7, 75–77 I
F3A, F3B SRF (mudstone, clay rich) 338-C0002J-6R-1, 62–63.5 IV
F3C, F3D SRF (mudstone, clay rich) 338-C0002F-42-SMW III
F3E, F3F SRF (mudstone, clay rich) 338-C0002L-9X-7, 79.5–81 II
F4A, F4B SRF (mudstone, clay rich) 338-C0002F-58 SMW IV
F4C, F4D SRF (mudstone, clay rich) 338-C0002L-16X-5, 64–65 II
F4E, F4F SRF (mudstone, clay rich) 315-C0002D-14H-4, 81–83 I
F5A, F5B SRF (mudstone, clay rich) 338-C0002K-6T-3, 20–21.5 II
F5C, F5D SRF (mudstone, clay rich) 338-C0002K-7X-3, 30–31.5 I
F5E, F5F SRF (mudstone, clay rich) 315-C0002D-14H-4, 81–83 I
F6A, F6B SRF (mudstone, silt rich) 338-C0002F-58-SMW IV
F6C, F6D SRF (mudstone, silt rich) 338-C0002F-68-SMW IV
F6E, F6F SRF (mudstone, silt rich) 338-C0002F-58-SMW IV
F7A, F7B SRF (mudstone, silt rich) 338-C0002F-233-SMW V
F7C, F7D SRF (mudstone, silt rich) 338-C0002K-6T-3, 20–21.5 II
F7E, F7F SRF (sandstone) 338-C0002F-77-SMW IV
F8A, F8B SRF (argillaceous chert) 315-C0002B-63R-1, 74–76 IV
F8C, F8D SRF (argillaceous chert) 338-C0002F-120-SMW IV
F8E, F8F SRF (argillaceous chert) 338-C0002F-161-SMW IV
F9A, F9B SRF (chert) 338-C0002F-84-SMW IV
F9C, F9D SRF (chert) 315-C0002B-1R-3, 125–127 II
F9E, F9F SRF (chert) 338-C0002J-6R-1, 62–63.5 IV
F10A, F10B VRF (felsitic) 315-C0002D-11H-6, 108–110 I
F10C, F10D VRF (felsitic) 315-C0002D-11H-6, 108–110 I
F10E, F10F VRF (felsitic) 338-C0002K-5T-1, 30–31.5 II
F11A, F11B VRF (felsitic) 338-C0002F-51-SMW IV
F11C, F11D VRF (felsitic) 338-C0002F-77-SMW IV
F11E, F11F VRF (felsitic) 338-C0002-F-233-SMW V
F12A, F12B VRF (microlitic) 338-C0002L-22X-7, 39–40 II
F12C, F12D VRF (microlitic) 338-C0002F-58-SMW IV
F12E, F12F VRF (microlitic) 338-C0002-F-233-SMW V
F13A, F13B VRF (lathwork) 315-C0002D-8H-2, 27–29 I
F13C, F13D VRF (lathwork) 338-C0002F-42-SMW III
F13E, F13F VRF (lathwork) 315-C0002B-63R-1, 74–76 IV
F14A, F14B VRF (trachytic lathwork) 315-C0002B-59R-1, 33–35 IV
F14C, F14D VRF (trachytic lathwork) 338-C0002F-58-SMW IV
F14E, F14F VRF (trachytic lathwork) 338-C0002F-98-SMW IV
F15A, F15B VRF (pumice) 338-C0002L-6X-6, 26–28 II
F15C, F15D VRF (pumice) 315-C0002B-14R-1, 112–114 II
F15E, F15F VRF (pumice) 315-C0002B-59R-1, 33–35 IV
F16A, F16B PRF 315-C0002D-8H-2, 27–29 I
F16C, F16D PRF 315-C0002B-14R-1, 112–114 II
F16E, F16F PRF 338-C0002J-6R-1, 62–63.5 IV
F17A, F17B PRF 338-C0002F-90-SMW IV
F17C, F17D PRF 338-C0002F-209-SMW IV
F17E, F17F PRF 338-C0002F-213-SMW IV
F18A, F18B PRF (quartz-K-feldspar intergrowth) 338-C0002K-3T-CC, 25.5–27 II
F18C, F18D PRF (quartz-K-feldspar intergrowth) 338-C0002K-5T-1, 30–31.5 II
F18E, F18F PRF (quartz-K-feldspar intergrowth) 338-C0002L-16X-5, 64–65 II
F19A, F19B PRF 338-C0002K-3T-CC, 25.5–27 II
F19C, F19D PRF 315-C0002B-63R-1, 74–76 IV
F19E, F19F PRF 338-C0002F-51-SMW IV
F20A, F20B MRF (quartz rich) 338-C0002K-11X-4, 10–11.5 II
F20C, F20D MRF (quartz rich) 338-C0002L-24X-6, 67–68 II
F20E, F20F MRF (quartz rich) 338-C0002J-6R-1, 62–63.5 IV
F21A, F21B MRF (quartz-mica rich) 338-C0002F-51-SMW IV
F21C, F21D MRF (quartz-mica rich) 338-C0002F-58-SMW IV
F21E, F21F MRF (quartz-mica rich) 338-C0002F-120-SMW IV
F22A, F22B MRF (micaceous) 315-C0002D-5H-5, 35–37 I
F22C, F22D MRF (micaceous) 338-C0002K-11X-4, 10–11.5 II
F22E, F22F MRF (micaceous) 338-C0002F-182-SMW IV
F23A, F23B MRF (chlorite rich) 338-C0002F-174-SMW IV
F23C, F23D MRF (chlorite rich) 338-C0002F-199-SMW IV
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SRF = sedimentary lithic fragment, VRF = volcanic lithic fragment, PRF = plutonic lithic fragment, MRF = metamorphic lithic fragment.

F23E, F23F MRF (chlorite rich) 338-C0002F-213-SMW IV
F24A, F24B MRF (epidote rich) 338-C0002F-68-SMW IV
F24C, F24D MRF (epidote rich) 338-C0002F-98-SMW IV
F24E, F24F MRF (epidote rich) 338-C0002F-110-SMW IV
F25A, F25B MRF (other) 338-C0002J-6R-1, 62–63.5 IV
F25C, F25D MRF (other) 315-C0002B-63R-1, 74–76 IV
F25E, F25F MRF (other) 338-C0002F-250-SMW V
F26A, F26B Artifact (undisaggregated mud) 338-C0002L-9X-7, 79.5–81 II
F26C, F26D Artifact (undisaggregated mud) 338-C0002L-13X-6, 71–72.5 II
F26E, F26F Artifact (undisaggregated mud) 315-C0002B-14R-1, 112–114 II
F27A, F27B Artifact (sulfate precipitate) 338-C0002L-19X-7, 06–07 II
F27C, F27D Artifact (sulfate precipitate) 338-C0002L-20X-CC, 46–47 II
F27E, F27F Artifact (sulfate precipitate) 338-C0002L-20X-CC, 46–47 II

Figure Lithic grain type

Sample number/
Expedition, hole, core, 
section, interval (cm) Unit

Table T1 (continued).
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