Series of volcaniclastic turbidites immediately below the sea floor from 1995-recent eruptions. Two thin turbidites within coarse hemipelagic sediment. A stack of mixed bioclastic-volcaniclastic turbidites at base of core.
Mixed volcaniclastic graded sand-mud layered turbidite sequences overlying a thick layer of hemipelagic mud. The hemipelagic mud layer contains many fine laminae of green material of fine grain size, potentially glauconite.
"One hemipelagic calcareous ooze (13-62 cm) sits sandwiched between volcanic turbidite layers. Three turbidites grading from mud to fine sand (4-13 cm), silt-fine mud to medium sand (62-91 cm) and silt-fine mud to fine-medium sand (91-97 cm), respectively, are observed. The top (0-4 cm) and the bottom (97-100 cm) of this section comprises turbidites. Two vague greenish layers are observed in the background hemipelagic sediment (31-34 cm and 39-41 cm), which may be related with volcanic eruptions during this quiet period."
Volcaniclastic sand overlying hemipelagic mud
Hemipelagic mud with a small amount of biogenic clasts of medium sand size. PAL sample at base of section.
The upper part of this section (0-113 cm) is a hemipelagic sediment containing a vague green layer at 35-36 cm. There is a volcanic turbidite (113-129 cm) below this hemipelagic layer grading from silt-fine mud to medium sand. Below this layer, there is a distinct medium-sand sized greenish layer (129-131 cm), which may be a volcanic fallout deposit. Hemipelagic layers start again at 131 cm until 150 cm, but volcanic fine sand is sandwiched between at 137 and 138 cm.
Volcaniclastic unit containing three basaltic fall/flow? pyroclastic units. The basaltic units are normally graded, fining upward. These units are separated from each other by volcaniclastic sand and mud units which contain angular scoriaceous clasts mixed throughout.
This section is entirely composed of volcaniclastic sand. Most of the section is dominated by coarse grained sand, some medium sand parts exist. Biogenic clasts (less than 2 mm) are scattered.
This section is entirely composed of medium-sized volcanioclastic sand. A patch of very coarse sand to granule consisting of lava fragments is included in the middle part.

- Medium-grained colour.
- Distinctive vertical streak of medium-coarse grains (fluid escape) surrounded by calcite cement.
- Very little variation in grain size changes from top to bottom.

Single flow rounded clasts of clay - probably Holocene.
Basically coarse sand but granule grains are occasionally included. Biogenic clasts (< 5 mm) are also included.
Upper 24 cm is composed of coarse to very coarse sand. Lower part is contorted muddy carbonate ooze with limestone fragments. The boundary between these layers is contorted.
Coarse volcaniclastic sand unit containing massive igneous clasts and minor mud clasts.

Hole 340-U1394A-2H Section 7, Top of Section: 13.57 CSF-A (m)
Coarse volcaniclastic sandstone containing rounded massive igneous clasts.

Hole 340-U1394A-2H Section CC, Top of Section: 14.44 CSF-A (m)
Late Pleistocene

Shipboard samples
Age
Magnetic susceptibility (SI)
GRA bulk density (g/cm³)
Matrix alteration intensity
Core length (cm)
Depth CSF-A (m)
Core image
Grain size
Clast type %
Average grain size
Matrix sorting
Graphic log -
MIN lith
MAJ lith
Cobbles
Pebbles
Granules
Very coarse sand
Coarse sand
Medium sand
Fine medium sand
Fine sand
Fine mud
Silt-fine mud
Very fine mud
Series of thin turbidites in upper part, possibly deformed. Lower part is coarse mixed volcaniclastic-bioclastic sand with mud clasts.
Very poorly sorted volcaniclastic and hemipelagic sand with calcareous ooze. This section might represent turbidites derived from landslides, which are mixtures of volcaniclastic and sedimentary rocks, but both grain sizes are similar. Poorly sorted but weak normal grading is observed from 92 to 150 cm.
Very poorly sorted volcaniclastic sand with calcareous sand.
<table>
<thead>
<tr>
<th>Age (ka)</th>
<th>Magnetic Susceptibility (SI)</th>
<th>GRA</th>
<th>Bulk Density (g/cm³)</th>
<th>Matrix Alteration Intensity</th>
<th>Matrix Sorting</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.00</td>
<td>2.00</td>
<td>3.00</td>
<td>1.00</td>
<td>50</td>
<td>Very coarse sand</td>
</tr>
<tr>
<td>19.05</td>
<td>1.95</td>
<td>2.95</td>
<td>0.95</td>
<td>40</td>
<td>coarse sand</td>
</tr>
<tr>
<td>19.10</td>
<td>1.90</td>
<td>2.90</td>
<td>0.90</td>
<td>30</td>
<td>medium sand</td>
</tr>
<tr>
<td>19.15</td>
<td>1.85</td>
<td>2.85</td>
<td>0.85</td>
<td>20</td>
<td>fine sand</td>
</tr>
<tr>
<td>19.20</td>
<td>1.80</td>
<td>2.80</td>
<td>0.80</td>
<td>10</td>
<td>fine mud</td>
</tr>
<tr>
<td>19.25</td>
<td>1.75</td>
<td>2.75</td>
<td>0.75</td>
<td>5</td>
<td>silty fine mud</td>
</tr>
<tr>
<td>19.30</td>
<td>1.70</td>
<td>2.70</td>
<td>0.70</td>
<td>2</td>
<td>very fine mud</td>
</tr>
</tbody>
</table>

Core Description

- **Volcanic Ash:** Well preserved, with 30% biogenic clasts.
- **Depth:** CSF-A (m) 18.8
Very poorly sorted volcaniclastic sand with 30% biogenic clasts.

Hole 340-U1394A-3H Section 5, Top of Section: 20.3 CSF-A (m)
Very poorly sorted volcanoclastic sand with 30% biogenic clasts.
Late Pleistocene

Magnetic susceptibility (SI)
- GRA
- bulk density (g/cm³)
- GRA
- Magnetic susceptibility (SI)

Matrix alteration intensity
- Matrix sorting
 - Cobbles
 - Pebbles
 - Granules
 - Very coarse sand
 - Coarse sand
 - Medium sand
 - Fine medium sand
 - Fine sand
 - Fine mud
 - Silt-fine mud
 - Very fine mud

MIN lith
- grain size
- Clast type %
- Pebbles or coarser
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine sand
- Fine mud

MAJ lith
- grain size
- Clast type %
- Pebbles or coarser
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine sand
- Fine mud

Graphic log - Average grain size matrix sediment

Graphic lithology

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Hole 340-U1394A-3H Section 7, Top of Section: 22.91 CSF-A (m)

Very poorly sorted volcanoclastic sand with 30 % biogenic clasts.
Late Pleistocene

Magnetic susceptibility (SI)

GRA

bulk density (g/cm³)

3

2

1

0

High

Moderate

Rare

Absent

Matrix alteration intensity

Matrix sorting

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

MIN lith grain size

MAJ lith grain size

Clast type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Very fine sand

Silt-fine sand

Fine mud

Hole 340-U1394A-3H Section CC, Top of Section: 23.55 CSF-A (m)

Volcaniclastic coarse material in the core catcher.

Graphic log - Average grain size matrix sediment

Graphic lithology

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Volcaniclastic coarse material in the core catcher.

Hole 340-U1394A-3H Section CC, Top of Section: 23.55 CSF-A (m)
Volcaniclastic sand with small amount of carbonate sand mixed in.

<table>
<thead>
<tr>
<th>Depth CSF-A (m)</th>
<th>Core length (cm)</th>
<th>Core image</th>
<th>Graphic log - Average grain size matrix sediment</th>
<th>MA/Jth grain size</th>
<th>MIN Jth grain size</th>
<th>Matrix alteration intensity</th>
<th>GRA bulk density (g/cm³)</th>
<th>Magnetic susceptibility (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Two igneous pebbles: one andesite, one basalt.
Late Pleistocene

Age (m) 24

Age (m) 24

Hole 340-U1394A-6X Section CC, Top of Section: 33.5 CSF-A (m)

Six andesitic pebbles up to 50 mm in diameter. No alteration. Sub angular shape.
Late Pleistocene

<table>
<thead>
<tr>
<th>Age</th>
<th>43.40</th>
<th>43.35</th>
<th>43.30</th>
<th>43.25</th>
<th>43.20</th>
<th>43.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipboard samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic susceptibility (SI)</td>
<td>6000</td>
<td>4000</td>
<td>2000</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk density (g/cm³)</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix alteration intensity</td>
<td>High</td>
<td>Moderate</td>
<td>Rare</td>
<td>Absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix sorting</td>
<td>Cobbles</td>
<td>Pebbles</td>
<td>Granules</td>
<td>Very coarse sand</td>
<td>Coarse sand</td>
<td>Medium sand</td>
</tr>
<tr>
<td>MIN lith grain size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAJ lith grain size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clast type %</td>
<td>Pebbles or coarser</td>
<td>Granules</td>
<td>Very coarse sand</td>
<td>Coarse sand</td>
<td>Medium sand</td>
<td>Fine medium sand</td>
</tr>
</tbody>
</table>

Graphic log - Average grain size matrix sediment

U1394A-8X NO RECOVERY
Hemipelagic mud with thin turbidite layers. A mud clast in the top part of the section.
Volcaniclastic sand at top, hemipelagic sediments in middle, lower part volcaniclastic sand.

Hole 349-U1394A-9X Section CC, Top of Section: 62.77 CSF-A (m)
Stratified hemipelagic sediments with thin turbidite(? sand.

Graphic log - Average grain size matrix sediment

Volcaniclastic gravel in a muddy sandy matrix. In the lower part a lens of dark sand (volcaniclastic fine sand) hemipelagic sediment.
Late Pleistocene

<table>
<thead>
<tr>
<th>Age</th>
<th>Magnetic susceptibility (SI)</th>
<th>GRA</th>
<th>Bulk density (g/cm³)</th>
<th>Matrix alteration intensity</th>
<th>Matrix sorting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>72.35</td>
<td>3</td>
<td>2</td>
<td>High</td>
<td>Very coarse sand</td>
</tr>
<tr>
<td>10</td>
<td>72.30</td>
<td>2</td>
<td>1</td>
<td>Moderate</td>
<td>Coarse sand</td>
</tr>
<tr>
<td>20</td>
<td>72.25</td>
<td>1</td>
<td>0</td>
<td>Rare</td>
<td>Medium sand</td>
</tr>
<tr>
<td>30</td>
<td>72.20</td>
<td>0</td>
<td>0</td>
<td>Absent</td>
<td>Fine medium sand</td>
</tr>
<tr>
<td>40</td>
<td>72.15</td>
<td></td>
<td></td>
<td></td>
<td>Fine sand</td>
</tr>
<tr>
<td>50</td>
<td>72.10</td>
<td></td>
<td></td>
<td></td>
<td>Fine mud</td>
</tr>
<tr>
<td>60</td>
<td>72.05</td>
<td></td>
<td></td>
<td></td>
<td>Silt-fine mud</td>
</tr>
<tr>
<td>70</td>
<td>72.00</td>
<td></td>
<td></td>
<td></td>
<td>Very fine mud</td>
</tr>
</tbody>
</table>

Graphic log - Average grain size matrix sediment

Lithology Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Core image

Volcaniclastic sand and hemipelagic mud

Hole 340-U1394A-10X Section CC, Top of Section: 72.27 CSF-A (m)
Two pieces of andesite clasts with a diameter of 4 cm.
One normally graded sequence of volcaniclastic turbidite (from medium to fine sand).
Hemipelagic sediments. Muddy to sandy with few lenses of fine sand.

Magnetic susceptibility (SI)

GRA bulk density (g/cm³)

Matrix alteration intensity

Matrix sorting

MIN lith

MAJ lith

Graphic log - Average grain size

Core image

Depth (CSF-A m)

Core length (cm)

Graphic lithology

Clast type %

Fine sand lenses

Succession of green and grey layers

Very light grey to beige

Succession of green and grey layers

Hemipelagic sediment
Grey colored hemipelagic silt sediments with fine-medium sand.

Magnetic susceptibility (SI)

- 6000
- 4000
- 2000
- 0

GRA bulk density (g/cm³)

- 3
- 2
- 1
- 0

Matrix alteration intensity

- High
- Moderate
- Rare
- Absent

Matrix sorting

- Cobbles
- Pebbles
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine mud
- Very fine mud

Graphic log - Average grain size

MAJ lith

<table>
<thead>
<tr>
<th>Grain Size</th>
<th>Clast Type %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemipelagic silt</td>
<td>Pebbles or coarser</td>
</tr>
<tr>
<td>Silt to sandy</td>
<td>Granules</td>
</tr>
<tr>
<td>Volcanic turbidite</td>
<td>Very coarse sand</td>
</tr>
<tr>
<td>normally graded</td>
<td>Coarse sand</td>
</tr>
<tr>
<td>and stratified</td>
<td>Medium sand</td>
</tr>
<tr>
<td>at the base</td>
<td>Fine medium sand</td>
</tr>
<tr>
<td></td>
<td>Fine sand</td>
</tr>
<tr>
<td></td>
<td>Fine mud</td>
</tr>
<tr>
<td></td>
<td>Silt-fine sand</td>
</tr>
<tr>
<td></td>
<td>Very fine sand</td>
</tr>
</tbody>
</table>

Core image

- Core length (cm)
- Depth CSF-A (m)
- Core number
- Graphic lithology

Core disturbance

- Drilling disturbance
- Core length (cm)
- Depth CSF-A (m)

Graphic lithology

- Core image
- Graphic log - Average grain size

Core sample

- Hole 340-U1394A-14X Section 2, Top of Section: 111.9 CSF-A (m)
Hemipelagic sediments (green dark color) with volcanic-bioclastic turbidites.

Hole 340-U1394A-14X Section CC, Top of Section: 112.47 CSF-A (m)

<table>
<thead>
<tr>
<th>Depth CSF-A (m)</th>
<th>Core length (cm)</th>
<th>Graphic log - Average grain size</th>
<th>MAJ lith grain size</th>
<th>MIN lith grain size</th>
<th>Matrix alteration intensity</th>
<th>GRA bulk density (g/cm³)</th>
<th>Magnetic susceptibility (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Carbonate oozes (hemipelagic sediment) containing small granules of andesitic lava.
Late Pleistocene

<table>
<thead>
<tr>
<th>Age</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>120.80</td>
<td>120.75</td>
<td>120.70</td>
<td>120.65</td>
<td>120.60</td>
<td>120.55</td>
<td>120.50</td>
<td>120.45</td>
<td>120.40</td>
<td>120.35</td>
<td></td>
</tr>
</tbody>
</table>

Shipboard samples

Age

Magnetic susceptibility (SI)

<table>
<thead>
<tr>
<th>GRA</th>
<th>Bulk density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Matrix alteration intensity

<table>
<thead>
<tr>
<th>GRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Matrix sorting

- Cobbles
- Pebbles
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine mud
- Very fine mud

MIN lith grain size

MAJ lith grain size

<table>
<thead>
<tr>
<th>GRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Clast type %

- Pebbles or coarser
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine sand
- Very fine mud

Hemipelagic fine mud and fine-medium sand.

Hemipelagic sediment

Silty to muddy

Turbidite

Rich in feldspar

Fine sand at the base with feldspars dominant

Core image

Drilling disturbance

Core length (cm)

Depth (CSF-A m)

Core image

Graphic log - Average grain size

Matrix sediment

Graphic lithology

Core

Hole 340-U1394A-15X Section CC, Top of Section: 120.34 CSF-A (m)

Hemipelagic fine mud and fine-medium sand.
Late Pleistocene

Shipboard samples

Age

Magnetic susceptibility (SI)

GRA
bulk density (g/cm³)

High
Moderate
Rare
Absent

Matrix alteration intensity

Matrix sorting

cobbles
pebbles
granules
very coarse sand
coarse sand
medium sand
fine medium sand
fine sand
fine mud
silt-fine mud
very fine mud

MIN lith grain size

cobbles
pebbles
granules
very coarse sand
coarse sand
medium sand
fine medium sand
fine sand
fine mud
silt-fine mud
very fine mud

MAJ lith grain size

clast type %
pebbles or coarser
granules
very coarse sand
coarse sand
medium sand
fine medium sand
fine sand
fine mud
silt-fine sand
very fine sand

Average grain size

Matrix sediment

Graphic lithology
Core image

Drilling disturbance
Core length (cm)

Depth CSF-A (m)

Core top: 129.6 CSF-A (m)

Hemipelagic sediments, tephra layers, and hemipelagic below.
Late Pleistocene

0 10 20 30 40 50 60 70 80 90 100 110 132.20 132.15 132.10 132.05 132.00 131.95 131.90 131.85 131.80 131.75 131.70 131.65 131.60 131.55 131.50 131.45 131.40 131.35 131.30 131.25 131.20 131.15 131.10

Shipboard samples

Age

Magnetic susceptibility (SI)

6000 4000 2000 0

GRA

bulk density (g/cm³)

3 2 1 0

High Moderate Rare Absent

Matrix alteration intensity

Matrix sorting

Cobbles Pebbles Granules Very coarse sand Coarse sand Medium sand Fine medium sand Fine sand Very fine sand Silt-fine sand Fine mud

MIN lith grain size

MAJ lith grain size

Clast type %

Pebbles or coarser Granules Very coarse sand Coarse sand Medium sand Fine medium sand Fine sand Very fine sand Silt-fine sand Fine mud

Graphic log - Average grain size matrix sediment

Graphic lithology

Core

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Core image

Hemipelagic muddy sediments with mud clasts, bioclastics.

Hole 340-U1394A-16X Section 2, Top of Section: 131.06 CSF-A (m)
Hemipelagic fines with thin laminated fine sand. Bioturbation present.
Hemipelagic sediment with thin turbidite laminae, bioturbation common.
Grey-green (hemipelagic) coarse siltly-mud with common thin fine (turbidite) beds. Pervasive large scale overlapping bioturbation.
Grey-green (hemipelagic) coarse silty-mud. Thin (turbidite) sand layer overlain by well sorted granule (ash fallout) deposit. Pots of coarser sand (bioturbated?) lower down.
Grey-green (hemipelagic) coarse silty-mud with common thin fine (turbidite) beds. Common bioturbation.

Hole 340-U1394A-17X Section 6, Top of Section: 146.7 CSF-A (m)
Grey-green (hemipelagic) coarse silty-mud with common thin fine (turbidite) beds. Common bioturbation.
Strongly bioturbated grey-green hemipelagic silty mud, occasional thin (turbidite) fine sand. Black grains and shell fragments distributed throughout.
Hemipelagic clay with significant bioturbation containing clasts of biogenic material and mafic fragments.
Gray-light to gray colored silt-muddy carbonate ooze with occasional thin greenish layers. The entire unit is heavily bioturbated. Biogenic clasts are also included.

rather homogeneous siltstone with subtly graded mud laminae, some green
fine-scale and larger burrows bioturbated reasonably common.
Strongly bioturbated grey-green hemipelagic silty mud, occasional thin (turbidite) fine sand. Black grains and shell fragments distributed throughout.
Strongly bioturbated grey-green hemipelagic silty mud, occasional thin (turbidite) fine sand. Black grains and shell fragments distributed throughout.
Calcareous ooze with silt-fine mud grain size. Bioturbation is common throughout the section. Some moderate drilling disturbances are observed in the upper part. This section is divided into two parts depending on their color. Upper part is grayish brown and lower part is light gray in color.
Section consists mainly of hemipelagic mud with significant bioturbation and a small amount of calcareous fine sand. Biogenic clasts are present with some shell fragments ranging up to granule size.
Upper 22 cm consist of carbonate ooze with minor biogenic clasts, lower 24 cm include abundant biogenic fragments. Lowermost part is composed of alternating layers of sand and mud.
This section contains 2 cm thick black layer, which is well sorted silt and could be a fallout volcanic product. When the upper and lower parts of this section is compared to the lower sections such as 24X, it is obvious that these are poorly sorted and contain quite a few amount of granule-size lava fragments. This may suggest very active volcanic activity during the deposition of these layers. The upper and lower parts of the black tephra are volcanic turbidites.
Hemipelagic clay/volcaniclastic clay mix with differing amounts of bioturbation. PAL sample removed.
Top and bottom is bioturbated silty-muddy hemipelagic sediment. A dark-gray colored, well sorted layer in the middle of this unit (18.5-20 cm) may originate from an ash fall but not sure. Some volcaniclastic gravel is included.
Gray silty-mud carbonate sediments with moderate bioturbation. Coarse sand sized biogenic clasts are included.
Pieces from core catcher consisting of hemipelagic clay and pumice pebbles.
Mainly hemipelagic carbonate mud with normal grading, with dark greenish layer and a dark gray ash layer (17.19 cm).
Volcaniclastic sand overlying hemipelagic clay/volcaniclastic clay with bioturbation. PAL sample from base.
This section contains distinct dark gray layer of volcanic turbidite or fall out, which has normal grading in hemipelagic light gray sediments. Clear difference of this section from upper section is the absence of granules of volcanic lithic fragments, which may suggest relatively quiet period before destruction stage of nearby volcano.
Mix of volcaniclastic mud and hemipelagic clay interspersed with volcaniclastic sand layers. All have suffered significant bioturbation.
Hemipelagic carbonate mud with high intensity bioturbation.

Hole 340-U1394A-24X Section CC, Top of Section: 208.06 CSF-A (m)
Late Pleistocene

Magnetic susceptibility (SI)

<table>
<thead>
<tr>
<th>Age</th>
<th>Magnetic susceptibility (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

GRA bulk density (g/cm^3)

<table>
<thead>
<tr>
<th>GRA bulk density (g/cm^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Matrix alteration intensity

- High
- Moderate
- Rare
- Absent

Matrix sorting

- Cobbles
- Pebbles
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine mud
- Very fine mud

MIN lith grain size

- MAJ lith grain size
- MIN lith grain size

Graphic log - Average grain size matrix sediment

- Anodesite clasts
- in the core catcher.
- Grey andesite
- Red andesite
- clasts

All rocks recovered are pebbles of hornblende andesite. Upper three are grey in color (5Y5/1) and lower two are reddish (5YR3/2).
Volcaniclastic pebble (vesiculated, white to grey, brown color) and sand in core catcher.
Basaltic to andesitic clasts in core catcher.
Sample	Type	Bed	Bottom	Top	Depth	Groundmass	Medium	Grain Mount	Volcanic Grain	Mineral Grain	Lithic Grain	Biogenic Grain	Oxides	Quartz	Clinopyroxene	Orthopyroxene	Amphibolite	Plagioclase	Oxides	Clinopyroxene	Orthopyroxene	Amphibolite	Plagioclase	Oxides	Quartz	Clinopyroxene	Orthopyroxene	Amphibolite	Plagioclase	Oxides	Quartz	Clinopyroxene	Orthopyroxene	Amphibolite	Plagioclase																																																													
80/7512-3A-02-01-16	340-U1394A-2H-2-W	65/66-TSB-TS#6	0	1	6.95	6.96	5	Groundmass is only present as small isolated pieces. Appears to be a microcrystalline matrix that is heavily oxidized.	30	0.58	subrounded	Grain mount	therefore fragmental.	40	0.6	lath	Grain mount	therefore fragmental.	20	1	elongate	Grain mount	therefore fragmental.	340-U1394A-6X-CC-W	9/13-TSB-TS#8	0	1	33.59	33.63	60	Microcrystalline matrix with plag, oxide, and amphibole (?) microlites.	70	3.5	euhedral	lath	25	4.6	euhedral	elongate	Grain mount	therefore fragmental.	5	0.58	subhedral	Grain mount	therefore fragmental.	340-U1394A-22X-1-W	27/28-TSB-TS#9	0	1	187.37	187.38	70	Glassy matrix with visible flow features.	70	4.1	subrounded	elongate	1	4.1	subrounded	20	0.7	subhedral	elongate	Pale green, unrimmed.	4	0.10	subhedral	Grain mount	therefore fragmental.	340-U1394A-2H-1-W	65/66-TSB-TS#10	0	1	197.37	197.38	70	Glassy matrix with visible flow features.	70	4.1	subrounded	elongate	1	4.1	subrounded	20	0.7	subhedral	elongate	Pale green, unrimmed.	4	0.10	subhedral	Grain mount	therefore fragmental.