Volcaniclastic sand and tephra layers interlayered with hemipelagic clay and volcaniclastic mud.
Late Pleistocene

1.90
1.85
1.80
1.75
1.70
1.65
1.60
1.55
1.50
1.45

Shipboard samples

Age

Magnetic susceptibility (SI)

6000
4000
2000
0

GRA

bulk density (g/cm³)

3
2
1
0

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

Grain size of graded layers (top, base)

High

Moderate

Rare

Absent

Matrix alteration intensity

Matrix sorting

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine sand

Very fine mud

MAJ lith and MIN lith grain size

Matrix type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine sand

Very fine mud

Graphic log - Average grain size matrix sediment

Gra

Graphic lithology

Core

image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Massive mixed volcaniclastic and bioclastic sand

Hole 340-U1400A-1H Section 2, Top of Section: 1.44 CSF-A (m)
Volcaniclastic sand deposits interlayered with hemipelagic clay. Graded pumice bed present near section base.
Hemipelagic clay. PAL sample from section middle.
Massive volcaniclastic sand. Volcanic gravel at the top probably caused by drilling disturbance.
Volcaniclastic sand with grain size layering in the middle part of the section. Hemipelagic clays are intercalated.
Volcaniclastic sand interlayered with hemipelagic clay

Hole 340-U1400A-2H Section 3, Top of Section: 6.05 CSF-A (m)
Volcaniclastic sand.

Whole section homogeneous or massive, ungraded medium - fine sand with no structure observed. Followed during core recovery.
Late Pleistocene

Magnetic susceptibility (SI)

GRA
bulk density (g/cm³)

Cobbles
Pebbles
Granules
Very coarse sand
Coarse sand
Medium sand
Fine medium sand
Fine sand
Fine mud
Silt-fine mud
Very fine mud

Grain size of graded layers (top, base)

Matrix alteration intensity

Matrix sorting

MAJ lith and MIN lith grain size

Matrix type %

Pebbles or coarser
Granules
Very coarse sand
Coarse sand
Medium sand
Fine medium sand
Fine sand
Very fine sand
Silt-fine sand
Fine mud

Graphic log - Average grain size matrix sediment

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Core length (cm)

Depth CSF-A (m)

Volcaniclastic sand with differing proportions of pumice and mud clasts.

Core 340-U1400A-2H Section 6, Top of Section: 9.21 CSF-A (m)
Hemipelagic mud. PAL sample from section top.
Massive volcanic sand containing mud clasts and muddy pebble-rich layer at the top.

Graphic log - Average grain size matrix sediment

MAJ lith and MIN lith

Grain size of graded layers

Matrix alteration intensity

Matrix sorting

Core image

Massive medium dark grey sand.

Fall 10, Debris Cones

Massive volcanic sand containing mud clasts and muddy pebble-rich layer at the top.

Hole 340-U1400A-3H Section 1, Top of Section: 10.7 CSF-A (m)
Late Pleistocene

Age

Massive volcaniclastic sand with granule to small pebble-sized pumice clasts, underlying hemipelagic clay.

Hole 340U-3400A-3H Section 3, Top of Section: 13.43 CSF-A (m)
Late Pleistocene

Shipboard samples

<table>
<thead>
<tr>
<th>Age (m)</th>
<th>Magnetic susceptibility (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Grain size of graded layers (top, base)

- Cobbles
- Pebbles
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine mud
- Very fine mud

Matrix alteration intensity

- High
- Moderate
- Rare
- Absent

Matrix sorting

- Good
- Poor

MAJ lith and MIN lith grain size

- Pebbles or coarser
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine sand
- Fine mud

Graphic log - Average grain size matrix sediment

Graphic lithology

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

- Volcaniclastic sand.
 - Hole 340-U1400A-3H Section 4, Top of Section: 14.64 CSF-A (m)
Late Pleistocene

<table>
<thead>
<tr>
<th>Age (ka)</th>
<th>Magnetic susceptibility (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.00</td>
<td>2</td>
</tr>
<tr>
<td>17.00</td>
<td>3</td>
</tr>
<tr>
<td>18.00</td>
<td>4</td>
</tr>
<tr>
<td>19.00</td>
<td>5</td>
</tr>
<tr>
<td>20.00</td>
<td>6</td>
</tr>
<tr>
<td>21.00</td>
<td>7</td>
</tr>
<tr>
<td>22.00</td>
<td>8</td>
</tr>
<tr>
<td>23.00</td>
<td>9</td>
</tr>
<tr>
<td>24.00</td>
<td>10</td>
</tr>
<tr>
<td>25.00</td>
<td>11</td>
</tr>
<tr>
<td>26.00</td>
<td>12</td>
</tr>
<tr>
<td>27.00</td>
<td>13</td>
</tr>
<tr>
<td>28.00</td>
<td>14</td>
</tr>
<tr>
<td>29.00</td>
<td>15</td>
</tr>
<tr>
<td>30.00</td>
<td>16</td>
</tr>
</tbody>
</table>

Shipboard samples

- **GRA**
 - Bulk density (g/cm³)
 - 0.00
- **GRA**
 - Grain size of graded layers
 - Coarse sand
 - Medium sand
 - Fine sand
 - Fine mud
 - Silt-fine mud
 - Very fine mud

- **Core**
 - Image
 - Depth CSF-A (m)
 - 0.00
 - Core length (cm)
 - 0.00
 - Drilling disturbance
 - Absent

- **MAJ lith and MIN lith grain size**

- **Matrix type %**
 - Pebbles or coarser
 - Granules
 - Very coarse sand
 - Coarse sand
 - Medium sand
 - Fine medium sand
 - Fine sand
 - Fine mud
 - Silt-fine mud
 - Very fine mud

- **Matrix sorting**
 - Absent
 - Fine
 - Very fine

- **Matrix alteration intensity**
 - Absent
 - Fine
 - Very fine

- **Grading type**
 - Uniform
 - Discontinuous
 - Discontinuous

- **Lithology**
 - Nannofossil ooze
 - Nannofossil ooze
 - Nannofossil ooze

- **Volcaniclastic sand interlayered with hemipelagic clay.**

- **Hole 340-U1400A-3H Section 5, Top of Section: 15.99 CSF-A (m)**

- **Lake Reservoir**
Volcaniclastic sand interlayered with hemipelagic clay.

Hole 340-U1400A-3H Section 6, Top of Section: 17.34 CSF-A (m)

Graphic log - Average grain size matrix sediment

MAJ lith and MIN lith grain size

Granule size of graded layers

Matrix alteration intensity

Matrix sorting

Magnetic susceptibility (SI)

GRA bulk density (g/cm³)

Core length (cm)

Core image

Depth (CSF-A (m))

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Volcaniclastic sand interlayered with hemipelagic clay.
Volcaniclastic sand.
Late Pleistocene

- Hole 340-U1400A-3H Section CC, Top of Section: 19.11 CSF-A (m)

- Volcaniclastic sand. PAL sample from section middle.

Graphic Log - Average grain size

- **MAJ lith and MIN lith grain size**
- **Grain size of graded layers**
- **Matrix alteration intensity**
- **Matrix sorting**
- **GRA bulk density (g/cm³)**
- **Magnetic susceptibility (SI)**
- **Matrix type %**

Core image

- **Core length (cm)**
- **Depth CSF-A (m)**
- **Drilling disturbance**
- **Pebbles or coarser**
- **Granules**
- **Very coarse sand**
- **Coarse sand**
- **Medium sand**
- **Fine medium sand**
- **Fine sand**
- **Fine mud**
- **Silt-fine mud**
- **Very fine mud**

Graphic lithology

- **Graphic log - Average grain size matrix sediment**

- **Core image**

- **Depth CSF-A (m)**

<table>
<thead>
<tr>
<th>Depth CSF-A (m)</th>
<th>Grain size of graded layers</th>
<th>Matrix type %</th>
<th>GRA bulk density (g/cm³)</th>
<th>Magnetic susceptibility (SI)</th>
<th>MAJ lith and MIN lith grain size</th>
<th>Matrix alteration intensity</th>
<th>Matrix sorting</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Dark grey/black mud/mud sand - probably Bedroom.
Late Pleistocene

<table>
<thead>
<tr>
<th>Age (m)</th>
<th>Magnetic susceptibility (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.60</td>
<td></td>
</tr>
<tr>
<td>20.55</td>
<td></td>
</tr>
<tr>
<td>20.50</td>
<td></td>
</tr>
<tr>
<td>20.45</td>
<td></td>
</tr>
<tr>
<td>20.40</td>
<td></td>
</tr>
<tr>
<td>20.35</td>
<td></td>
</tr>
<tr>
<td>20.30</td>
<td></td>
</tr>
<tr>
<td>20.25</td>
<td></td>
</tr>
<tr>
<td>20.20</td>
<td></td>
</tr>
<tr>
<td>20.15</td>
<td></td>
</tr>
<tr>
<td>20.10</td>
<td></td>
</tr>
<tr>
<td>20.05</td>
<td></td>
</tr>
<tr>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>19.95</td>
<td></td>
</tr>
<tr>
<td>19.90</td>
<td></td>
</tr>
<tr>
<td>19.85</td>
<td></td>
</tr>
<tr>
<td>19.80</td>
<td></td>
</tr>
<tr>
<td>19.75</td>
<td></td>
</tr>
<tr>
<td>19.70</td>
<td></td>
</tr>
<tr>
<td>19.65</td>
<td></td>
</tr>
<tr>
<td>19.60</td>
<td></td>
</tr>
<tr>
<td>19.55</td>
<td></td>
</tr>
<tr>
<td>19.50</td>
<td></td>
</tr>
<tr>
<td>19.45</td>
<td></td>
</tr>
<tr>
<td>19.40</td>
<td></td>
</tr>
<tr>
<td>19.35</td>
<td></td>
</tr>
<tr>
<td>19.30</td>
<td></td>
</tr>
<tr>
<td>19.25</td>
<td></td>
</tr>
<tr>
<td>19.20</td>
<td></td>
</tr>
<tr>
<td>19.15</td>
<td></td>
</tr>
<tr>
<td>19.10</td>
<td></td>
</tr>
<tr>
<td>19.05</td>
<td></td>
</tr>
<tr>
<td>19.00</td>
<td></td>
</tr>
</tbody>
</table>

Shipboard samples

<table>
<thead>
<tr>
<th>Age (m)</th>
<th>GRA</th>
<th>Bulk density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core: 340-U1400A-4H

Section 1, Top of Section: 19.2 CSF-A (m)

- Massive volcaniclastics with pisolith grade concentration at the top of unit. The top of the unit is occupied by a pebbly-muddy layer.

Core length (cm)

Depth CSF-A (m)

Drilling disturbance

Lithology

- Massive volcaniclastics with pisolith grade concentration at the top of unit. The top of the unit is occupied by a pebbly-muddy layer.

Matrix type %

- Pebbles or coarser
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine mud
- Very fine mud

Grain size of graded layers (top, base)

- Massive volcaniclastics with pisolith grade concentration at the top of unit. The top of the unit is occupied by a pebbly-muddy layer.

Matrix alteration intensity

- Moderate
- Rare
- Absent

Matrix sorting

- Poor
- Fair
- Good

Graphic log

- Average grain size
- Matrix sediment

Drilling disturbance

- Core
- Image

Massive volcaniclastics with pisolith grade concentration at the top of unit. The top of the unit is occupied by a pebbly-muddy layer.
Late Pleistocene

Age

Magnetic susceptibility (SI)

GRA

bulk density (g/cm³)

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

Grain size of graded layers (top, base)

High

Moderate

Rare

Absent

Matrix alteration intensity

Matrix sorting

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine sand

Fine mud

MAJ lith and MIN lith grain size

Matrix type %

Peab or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Very fine sand

Silt-fine sand

Fine mud
Volcaniclastic sand units interlayered with hemipelagic clay. Tephra layer may be intercalated with hemipelagic clay.

Hole 340-U1400A-4H Section 3, Top of Section: 22.03 CSF-A (m)

<table>
<thead>
<tr>
<th>Depth (CSF-A) (m)</th>
<th>Core image</th>
<th>Graphic log - Average grain size of graded layers (top, base)</th>
<th>MAj lith and MIN lith grain size</th>
<th>Grain size of graded layers (top, base)</th>
<th>Matrix alteration intensity</th>
<th>Matrix sorting</th>
<th>Magnetic susceptibility (SI)</th>
<th>NRA bulk density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Graphical log:**
 - Homogeneous ungraded dark sand
 - Homogeneous massive dark gray/black sand
 - Brown sand
 - Dark brown sand
 - Deep brown sand
 - Homogeneous mud
 - Tephra layer
 - Hemipelagic mud

- **Core description:**
 - Homogeneous ungraded dark sand
 - Tephra layer
 - Hemipelagic mud

- **Matrix sorting:**
 - Cobbles
 - Pebbles
 - Granules
 - Very coarse sand
 - Coarse sand
 - Medium sand
 - Fine medium sand
 - Fine sand
 - Fine mud
 - Silt-fine mud
 - Very fine mud

- **Matrix alteration intensity:**
 - High
 - Moderate
 - Rare
 - Absent

- **Matrix type %:**
 - Pebbles or coarser
 - Granules
 - Very coarse sand
 - Coarse sand
 - Medium sand
 - Fine medium sand
 - Fine sand
 - Fine mud
 - Silt-fine sand
 - Very fine sand

- **Drilling disturbance:**
 - Core length (cm)
 - Depth CSF-A (m)

- **Graphic lithology:**
 - Homogeneous ungraded dark sand
 - Tephra layer
 - Homogeneous massive dark gray/black sand
 - Brown sand
 - Dark brown sand
 - Deep brown sand
 - Homogeneous mud
 - Tephra layer
 - Hemipelagic mud
Fine to medium-grained volcaniclastic sand.
Volcaniclastic and bioclastic sand interlayered with hemipelagic clay. Upper bioclastic sand layer is clast-rich and contains a large portion of pumice clasts.

as above...
Late Pleistocene

<table>
<thead>
<tr>
<th>Shipboard samples Age</th>
<th>Magnetic susceptibility (SI)</th>
<th>GRA bulk density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>4000</td>
<td>2000</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRA</th>
<th>bulk density (g/cm³)</th>
<th>GRA</th>
<th>bulk density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grain size of graded layers (top, base)</th>
<th>Cobbles</th>
<th>Pebbles</th>
<th>Granules</th>
<th>Very coarse sand</th>
<th>Coarse sand</th>
<th>Medium sand</th>
<th>Fine medium sand</th>
<th>Fine sand</th>
<th>Fine mud</th>
<th>Silt-fine mud</th>
<th>Very fine mud</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAJ lith and MIN lith grain size</td>
<td></td>
</tr>
<tr>
<td>MAJ lith %</td>
<td></td>
</tr>
<tr>
<td>MAJ lith sorting</td>
<td></td>
</tr>
<tr>
<td>Matrix alteration intensity</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matrix type %</th>
<th>Pebbles or coarser</th>
<th>Granules</th>
<th>Very coarse sand</th>
<th>Coarse sand</th>
<th>Medium sand</th>
<th>Fine medium sand</th>
<th>Fine sand</th>
<th>Very fine sand</th>
<th>Silt-fine sand</th>
<th>Fine mud</th>
</tr>
</thead>
</table>

Medium-grained volcaniclastic sand. PAL sample from base.
Hemipelagite with several ashfall layers and volcaniclastic sand layers.
Late Pleistocene

28.35 28.30 28.25 28.20 28.15 28.10 28.05 28.00 27.95 27.90 27.85 27.80 27.75 27.70 27.65 27.60 27.55 27.50 27.45 27.40 27.35 27.30 27.25 27.20 27.15 27.10

Shipboard samples

Age

Magnetic susceptibility (SI)

GRA

bulk density (g/cm³)

Cobbles Pebbles Granules Very coarse sand Coarse sand Medium sand Fine medium sand Fine sand Fine mud Silt-fine mud Very fine mud

Grain size of graded layers (top, base)

High Moderate Rare Absent

Matrix alteration intensity

Matrix sorting

Cobbles Pebbles Granules Very coarse sand Coarse sand Medium sand Fine medium sand Fine sand Fine mud Silt-fine mud Very fine mud

MAJ lith and MIN lith grain size

Matrix type %

Pebbles or coarser Granules Very coarse sand Coarse sand Medium sand Fine medium sand Fine sand Very fine sand Silt-fine sand Fine mud

Graphic log - Average grain size matrix sediment

Graphic lithology

Core

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

The top part of thick turbidite unit, overlain by hemipelagite.

Hole 340-U1400A-5H Section 2, Top of Section: 27.08 CSF-A (m)
Part of a thick volcanioclastic sand unit.
Massive volcaniclastic turbidite
Massive volcaniclastics turbidite

Hole 349-U1400A-5H Section CC, Top of Section: 31.55 CSF-A (m)
Hemipelagic mud and top of the thick volcaniclastic turbidite unit.
Part of a thick volcanioclastic sand unit.
Late Pleistocene

Part of thick volcaniclastic turbidite.
Part of a thick volcaniclastic sand unit.
Massive volcanioclastic turbidite
Part of thick volcanioclastic turbidite.
Late Pleistocene

<table>
<thead>
<tr>
<th>Age (m)</th>
<th>Magnetic susceptibility (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>GRA Bulk density (g/cm³)</td>
</tr>
<tr>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grain size of graded layers (top, base)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobbles</td>
</tr>
<tr>
<td>Pebbles</td>
</tr>
<tr>
<td>Granules</td>
</tr>
<tr>
<td>Very coarse sand</td>
</tr>
<tr>
<td>Coarse sand</td>
</tr>
<tr>
<td>Medium sand</td>
</tr>
<tr>
<td>Fine medium sand</td>
</tr>
<tr>
<td>Fine sand</td>
</tr>
<tr>
<td>Fine mud</td>
</tr>
<tr>
<td>Silt-fine mud</td>
</tr>
<tr>
<td>Very fine mud</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAJ lith and MIN lith grain size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix alteration intensity</td>
</tr>
<tr>
<td>Matrix sorting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAJ lith and MIN lith matrix type %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pebbles or coarser</td>
</tr>
<tr>
<td>Granules</td>
</tr>
<tr>
<td>Very coarse sand</td>
</tr>
<tr>
<td>Coarse sand</td>
</tr>
<tr>
<td>Medium sand</td>
</tr>
<tr>
<td>Fine medium sand</td>
</tr>
<tr>
<td>Fine sand</td>
</tr>
<tr>
<td>Fine mud</td>
</tr>
<tr>
<td>Silt-fine sand</td>
</tr>
<tr>
<td>Very fine sand</td>
</tr>
</tbody>
</table>

Graphic log - Average grain size matrix sediment

Core length (cm) | Core image | Graphic log - Average grain size matrix sediment | MAJ lith and MIN lith grain size | Grain size of graded layers (top, base) | MAJ lith and MIN lith matrix type % | Matrix alteration intensity | Matrix sorting | MAJ lith and MIN lith alteration intensity | MAJ lith and MIN lith sorting | GRA Bulk density (g/cm³) | Magnetic susceptibility (SI) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37.00</td>
<td></td>
</tr>
<tr>
<td>37.05</td>
<td></td>
</tr>
<tr>
<td>37.10</td>
<td></td>
</tr>
<tr>
<td>37.15</td>
<td></td>
</tr>
<tr>
<td>37.20</td>
<td></td>
</tr>
<tr>
<td>37.25</td>
<td></td>
</tr>
<tr>
<td>37.30</td>
<td></td>
</tr>
<tr>
<td>37.35</td>
<td></td>
</tr>
<tr>
<td>37.40</td>
<td></td>
</tr>
<tr>
<td>37.45</td>
<td></td>
</tr>
<tr>
<td>37.50</td>
<td></td>
</tr>
<tr>
<td>37.55</td>
<td></td>
</tr>
<tr>
<td>37.60</td>
<td></td>
</tr>
<tr>
<td>37.65</td>
<td></td>
</tr>
<tr>
<td>37.70</td>
<td></td>
</tr>
<tr>
<td>37.75</td>
<td></td>
</tr>
<tr>
<td>37.80</td>
<td></td>
</tr>
<tr>
<td>37.85</td>
<td></td>
</tr>
<tr>
<td>37.90</td>
<td></td>
</tr>
<tr>
<td>37.95</td>
<td></td>
</tr>
<tr>
<td>38.00</td>
<td></td>
</tr>
<tr>
<td>38.05</td>
<td></td>
</tr>
<tr>
<td>38.10</td>
<td></td>
</tr>
<tr>
<td>38.15</td>
<td></td>
</tr>
<tr>
<td>38.20</td>
<td></td>
</tr>
</tbody>
</table>
| Part of a thick volcanioclastic sand unit.

Core length (cm) | Core image | Graphic log - Average grain size matrix sediment | MAJ lith and MIN lith grain size | Grain size of graded layers (top, base) | MAJ lith and MIN lith matrix type % | Matrix alteration intensity | Matrix sorting | MAJ lith and MIN lith alteration intensity | MAJ lith and MIN lith sorting | GRA Bulk density (g/cm³) | Magnetic susceptibility (SI) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37.00</td>
<td></td>
</tr>
<tr>
<td>37.05</td>
<td></td>
</tr>
<tr>
<td>37.10</td>
<td></td>
</tr>
<tr>
<td>37.15</td>
<td></td>
</tr>
<tr>
<td>37.20</td>
<td></td>
</tr>
<tr>
<td>37.25</td>
<td></td>
</tr>
<tr>
<td>37.30</td>
<td></td>
</tr>
<tr>
<td>37.35</td>
<td></td>
</tr>
<tr>
<td>37.40</td>
<td></td>
</tr>
<tr>
<td>37.45</td>
<td></td>
</tr>
<tr>
<td>37.50</td>
<td></td>
</tr>
<tr>
<td>37.55</td>
<td></td>
</tr>
<tr>
<td>37.60</td>
<td></td>
</tr>
<tr>
<td>37.65</td>
<td></td>
</tr>
<tr>
<td>37.70</td>
<td></td>
</tr>
<tr>
<td>37.75</td>
<td></td>
</tr>
<tr>
<td>37.80</td>
<td></td>
</tr>
<tr>
<td>37.85</td>
<td></td>
</tr>
<tr>
<td>37.90</td>
<td></td>
</tr>
<tr>
<td>37.95</td>
<td></td>
</tr>
<tr>
<td>38.00</td>
<td></td>
</tr>
<tr>
<td>38.05</td>
<td></td>
</tr>
<tr>
<td>38.10</td>
<td></td>
</tr>
<tr>
<td>38.15</td>
<td></td>
</tr>
<tr>
<td>38.20</td>
<td></td>
</tr>
</tbody>
</table>
Massive volcanioclastic turbidite
Massive volcaniclastic turbidite with mud clasts
Massive volcaniclastic turbidite
Part of thick volcaniclastic sand

Hole 340-U1400A-8H Section 1, Top of Section: 41.4 CSF-A (m)
Part of thick volcanioclastic sand
Part of thick volcaniclastic sand

Hole 340-U1400A-8H Section 3, Top of Section: 43.1 CSF-A (m)
Part of thick volcanioclastic sand
Part of thick volcaniclastic sand
Late Pleistocene

<table>
<thead>
<tr>
<th>Age (m)</th>
<th>Magnetic susceptibility (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.84</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRA</th>
<th>bulk density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAJ lith and MIN lith grain size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pebbles or coarser</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAJ lith and MIN lith matrix type %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pebbles or coarser</td>
</tr>
</tbody>
</table>

Part of thick volcaniclastic sand
Massive volcanioclastic turbidite

- Hold 340-U1400A-9H Section 2, Top of Section: 48.4 CSF-A (m)

Dark grey coarse-grained volcanioclastic turbidite
- 80% pumice
- 5% basalt
- 5% altered basalt
- 5% epidiorite

Graphic log - average grain size matrix sediment
- Graphic lithology
- Matrix type %
- Pebbles or coarser
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine mud
- Very fine mud

Magnetic susceptibility (SI)
- GRA bulk density (g/cm³)
- Matrix alteration intensity
- Matrix sorting
- Core image
- Core length (cm)
- Core drilling disturbance
- Depth CSF-A (m)
- Grid of graded layers (top, base)
- MAJ lith and MIN lith grain size
- MAJ lith and MIN lith matrix sediment
- MAJ lith and MIN lith graphic lithology
- MAJ lith and MIN lith matrix type %
Part of thick volcanioclastic sand
Part of thick volcaniclastic sand