Massive volcanlastic turbidite with mixed hemipelagite and volcanlastics during drilling at the top.
Massive volcanioclastic turbidite
Two volcanioclastic sands (one containing large chunk of wood) overlying hemipelagic clay unit.
Thin hemipelagic unit overlying a thick volcaniclastic sand with large mud clasts.
Volcaniclastic turbidite with pumice, could be partly disturbed by extruding water from the core. Top 10 cm thick, could be of hemipelagite strata or a mud clast.
Late Pleistocene

Mixture of hemipelagite and volcaniclastic sand in core catcher
Hemipelagic sediments with several thin ashfall layers. Top 45 cm thick of the section is disturbed by drilling (probably fallen material from wall of the hole.)
Inclined mottled hemipelagic sediment

highly deformed sediment interpreted as 70°
greenish grey hemipelagic mud
highly deformed but between different hemipelagic deeply inclined 70° to vertical

base
Late Pleistocene

Age

0
10
20
30
40
50

28.15
28.10
28.05
28.00
27.95
27.90
27.85
27.80
27.75
27.70
27.65

Shipboard samples

Magnetic susceptibility (SI)

GRA

bulk density (g/cm³)

3
2
1
0

Cobbles
Pebbles
Granules
Very coarse sand
Coarse sand
Medium sand
Fine medium sand
Fine sand
Fine mud
Silt-fine mud
Very fine mud

Grain size of graded layers (top, base)

High
Moderate
Rare
Absent

Matrix alteration intensity

Matrix sorting

Cobbles
Pebbles
Granules
Very coarse sand
Coarse sand
Medium sand
Fine medium sand
Fine sand
Fine mud
Silt-fine sand
Fine mud

Matrix type %

Pebbles or coarser
Granules
Very coarse sand
Coarse sand
Medium sand
Fine medium sand
Fine sand
Very fine sand
Silt-fine sand

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Depth CSF-A (m)

Hole 340-U1400C-3H, Section 5, Top of Section: 27.61 CSF-A (m)

Graphic log - Average grain size matrix sediment

Graphic lithology

Mottled hemipelagic sediment, inclined

Mort Horizons: 5

MAJ lith and MIN lith grain size

Intensity & Matrix sorting

Grading type

bulk density (g/cm³)
Late Pleistocene

<table>
<thead>
<tr>
<th>Age</th>
<th>Magnetic susceptibility (SI)</th>
<th>GRA bulk density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>4000</td>
<td>2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRA Bulk Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grain size of graded layers (top, base)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobbles</td>
</tr>
<tr>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matrix alteration intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix sorting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core length (cm)</th>
<th>Depth CSF-A (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.35</td>
<td>29.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 340-U1400C-3H Section CC, Top of Section: 29.23 CSF-A (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcaniclastic sand</td>
</tr>
</tbody>
</table>

Graphic log - Average grain size matrix sediment

Matrix type %

Pebbles or coarser | Granules | Very coarse sand | Coarse sand | Medium sand | Fine medium sand | Fine sand | Very fine sand | Silt-fine sand | Fine mud |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphic lithology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core image

Drilling disturbance

Core length (cm) Depth CSF-A (m)
Late Pleistocene

Age

Magnetic susceptibility (SI)

GRA bulk density (g/cm³)

Cobbles Pebbles Granules Very coarse sand Coarse sand Medium sand Fine medium sand Fine sand Fine mud Silt-fine mud Very fine mud

Grain size of graded layers (top, base)

Matrix alteration intensity

Matrix sorting

Matrix type %

Mix of hemipelagic clays and pumice-rich volcaniclastic sands.

Hole 340-U1400C-4H Section 1, Top of Section: 29.3 CSF-A (m)

Matrix type %

Mix of hemipelagic clays and pumice-rich volcaniclastic sands.

Hole 340-U1400C-4H Section 1, Top of Section: 29.3 CSF-A (m)
Pumice-rich volcanoclastic sand overlying hemipelagic clay
Hemipelagite with 2 layers of volcaniclastic sand

- Greenish brownish grey hemipelagic mud weakly deformed (green laminae inclined at 10-15° maximum)
- Light grey volcanic lapilli: 60% pumice, 30% most. pumice, 5% crystal
- Small grey lapilli: 5% most. pumice, 35% crystal
- Rotted grey-grey hemipelagic mud (not deformed)
Hemipelagic mud with a lot of green laminae weakly to non-deformed at the top of the core.
Late Pleistocene

- Magnetic susceptibility (SI): 6000, 4000, 2000, 0
- GRA: bulk density (g/cm³): 3, 2, 1, 0
- Cobbles, Pebbles, Granules, Very coarse sand, Coarse sand, Medium sand, Fine medium sand, Fine sand, Fine mud, Silt-fine mud, Very fine mud
- Grain size of graded layers: High, Moderate, Rare, Absent
- Matrix alteration intensity: Matrix sorting: Cobbles, Pebbles, Granules, Very coarse sand, Coarse sand, Medium sand, Fine medium sand, Fine sand, Fine mud, Silt-fine sand, Fine mud
- MAJ lith and MIN lith grain size
- Matrix type %: Pebbles or coarser, Granules, Very coarse sand, Coarse sand, Medium sand, Fine medium sand, Fine sand, Very fine sand, Silt-fine sand, Fine mud

Graphic log - Average grain size matrix sediment

Core length (cm)
Core image
Graphic lithology

Hemipelagic mud in CC
Volcaniclastic sand (part of a turbidite) overlying a hemipelagic clay.

Graphic log -
Average grain size
matrix sediment

Matrix alteration intensity

Matrix sorting

MAJ lith and MIN lith grain size

Grain size of graded layers (top, base)

MAJ lith %

Matrix type %

Pebbles or coarser
Granules
Very coarse sand
Coarse sand
Medium sand
Fine medium sand
Fine sand
Very fine sand
Silt-fine sand
Fine mud

Graphic lithology

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Core height (cm)

Graphite log -

Average grain size

Matrix alteration intensity

Matrix sorting

MAJ lith and MIN lith grain size

Grain size of graded layers (top, base)

MAJ lith %

Matrix type %

Pebbles or coarser
Granules
Very coarse sand
Coarse sand
Medium sand
Fine medium sand
Fine sand
Very fine sand
Silt-fine sand
Fine mud

Graphic lithology

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Core height (cm)
Mottled hemipelagic sediment with intercalated volcaniclastic sand layers

Dark grey mixed mud and ash

Dark grey volcanic tephra layers

(10% mafic lava, 55% crystals, 5% oxidized lava, 30% carbon)

Hemipelagic mud with highly inclined laminae (15°)

Green mud

Inclined volcanic layers - tephra (30°)

Mottled tephra layer

Mottled hemipelagic mud
Hemipelagic clays with a single, graded ash layer.

Hole 345U-901C-48H Section 4, Top of Section: 43.19 CSF-A (m)
Late Pleistocene

46.15
46.10
46.05
46.00
45.95
45.90
45.85
45.80
45.75
45.70
45.65
45.60
45.55
45.50
45.45
45.40
45.35
45.30
45.25
45.20
45.15
45.10
45.05
45.00
44.95
44.90
44.85
44.80
44.75
44.70

Shipboard samples

Age

Magnetic susceptibility (SI)

GRA

bulk density (g/cm³)

3
2
1
0

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

Grain size of graded layers (top, base)

High

Moderate

Rare

Absent

Matrix alteration intensity

Matrix sorting

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine sand

Fine mud

MAJ lith and MIN lith grain size

Matrix type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Very fine sand

Silt-fine sand

Fine mud

Graphic log - Average grain size

Matrix sediment

Graphic lithology

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Depth CSF-A (m)

Hemipelagic clay with a single ash layer.

Hole 340-U1400C-5, Top of Section: 44.66 CSF-A (m)

Grading type

26
Inclined mottled hemipelagic sediment with intercalated dark mixed silty sediment

Graphic lithology

- Core image
- Core length (cm)
- Depth CSF-A (m)
- Driling disturbance
- Core length (cm)
- Depth CSF-A (m)
- Magnetic susceptibility (SI)
- GRA bulk density (g/cm³)
- MAJ lith and MIN lith grain size
- Grain size of graded layers (g/cm³)
- Matrix alteration intensity
- Matrix sorting
- Graphic log - Average grain size matrix sediment
- MAJ lith and MIN lith grain size
- Graphic log - Average grain size matrix sediment
- MAJ lith and MIN lith grain size

Shoeboard samples

- Age
- Magnetic susceptibility (SI)
- GRA bulk density (g/cm³)
- MAJ lith and MIN lith grain size
- Grain size of graded layers (g/cm³)
- Matrix alteration intensity
- Matrix sorting
- Graphic log - Average grain size matrix sediment
- MAJ lith and MIN lith grain size
- Graphic log - Average grain size matrix sediment
- MAJ lith and MIN lith grain size

Core image

- Core image
- Core length (cm)
- Depth CSF-A (m)
- Driling disturbance
- Core length (cm)
- Depth CSF-A (m)
- Magnetic susceptibility (SI)
- GRA bulk density (g/cm³)
- MAJ lith and MIN lith grain size
- Grain size of graded layers (g/cm³)
- Matrix alteration intensity
- Matrix sorting
- Graphic log - Average grain size matrix sediment
- MAJ lith and MIN lith grain size
- Graphic log - Average grain size matrix sediment
- MAJ lith and MIN lith grain size

Inclined mottled hemipelagic sediment with intercalated dark mixed silty sediment

- Core image
- Core length (cm)
- Depth CSF-A (m)
- Driling disturbance
- Core length (cm)
- Depth CSF-A (m)
- Magnetic susceptibility (SI)
- GRA bulk density (g/cm³)
- MAJ lith and MIN lith grain size
- Grain size of graded layers (g/cm³)
- Matrix alteration intensity
- Matrix sorting
- Graphic log - Average grain size matrix sediment
- MAJ lith and MIN lith grain size
- Graphic log - Average grain size matrix sediment
- MAJ lith and MIN lith grain size

Small siphrin layer

- Core image
- Core length (cm)
- Depth CSF-A (m)
- Driling disturbance
- Core length (cm)
- Depth CSF-A (m)
- Magnetic susceptibility (SI)
- GRA bulk density (g/cm³)
- MAJ lith and MIN lith grain size
- Grain size of graded layers (g/cm³)
- Matrix alteration intensity
- Matrix sorting
- Graphic log - Average grain size matrix sediment
- MAJ lith and MIN lith grain size
- Graphic log - Average grain size matrix sediment
- MAJ lith and MIN lith grain size
Hemipelagic mud with very thin 4 ashfall? layers bioturbated.
Hemipelagic sediments with thin ash layers.

- A patch of volcanic sand
- Tephra layer
 - normally graded
 - 50% silt+mud
 - 50% silt+crystals
- Highly mottled grey-green hemipelagic mud
- Tephra layer
 - 25% pumice
 - 75% crystals
Hemipelagic sediment intercalated with volcanic ash layer
Silty mottled hemipelagic sediment

Grain size of graded layers (top, base):
- Cobbles
- Pebbles
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine mud
- Very fine mud

Matrix alteration intensity:
- High
- Moderate
- Rare
- Absent

Matrix sorting:
- Cobbles
- Pebbles
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine mud

MAJ and MIN lith grain size:
- MAJ lith
- MIN lith

Graphic log - Average grain size matrix sediment

Graphic lithology

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Core height (cm)

Date

Silty mottled hemipelagic mud
Green-grey-brown
not deformed -
the whole section.
Hemipelagic mud with several volcaniclastic sand layers bioturbated.

- Hemipelagic mud
- Weakly deformed
- Tephra layers:
 - 1 Reddish grey
 - 2 Grey with pumice
 - 3 Dark grey

- GRA:
 - 50% pumice
 - 30% ash
 - 20% altered lava

- Core length (cm)
- Depth CSF-A (m)
- Graphic log - Average grain size matrix sediment
- MAJ lith and MIN lith grain size
- Grain size of graded layers
- Matrix sorting
- Matrix alteration intensity
- Core image
- Drilling disturbance
- Hole 340-U1400C-6H Section 4, Top of Section: 52.74 CSF-A (m)
Hemipelagic mud with several thin volcaniclastic sand layers (ashfall?) bioturbated.
Hemipelagic sediment with intercalated volcanic ash layers

Graphic log - Average grain size of matrix sediment

Matrix alteration intensity

Grain size of graded layers (top, base)

Matrix sorting

GRA bulk density (g/cm³)

Magnetic susceptibility (SI)

MAJ lith and MIN lith grain size

Matrix type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

Graphic lithology

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Depth CSF-A (m)

Hemipelagic sediment with intercalated volcanic ash layers

Graphic log - Average grain size of matrix sediment

Matrix alteration intensity

Grain size of graded layers (top, base)

Matrix sorting

GRA bulk density (g/cm³)

Magnetic susceptibility (SI)

MAJ lith and MIN lith grain size

Matrix type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

Graphic lithology

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)
Hemipelagic sediments with thin ash layer.
Late Pleistocene

Shipboard samples

Magnetic susceptibility (SI)

6000 4000 2000 0

GRA

bulk density (g/cm³)

3 2 1 0

Cobbles Pebbles Granules Very coarse sand Coarse sand Medium sand Fine medium sand Fine sand Fine mud Silt-fine mud Very fine mud

Grain size of graded layers (top, base)

High Moderate Rare Absent

Matrix alteration intensity

Matrix sorting

Cobbles Pebbles Granules Very coarse sand Coarse sand Medium sand Fine medium sand Fine sand Fine mud Silt-fine sand Fine mud

Matrix type %

Pebbles or coarser Granules Very coarse sand Coarse sand Medium sand Fine medium sand Fine sand Very fine sand Silt-fine sand Fine mud

Graphic log - Average grain size matrix sediment

Lithology

Core image

Drilling disturbance

Depth CSF-A (m)

Core length (cm)

Massive coarse pumiceous turbidite with normal grading.

Hole 340-U1400C-7H Section 1, Top of Section: 57.8 CSF-A (m)
Deformed hemipelagic clay with a bioturbated ash layer.

- Highly mottled greenish grey hemipelagic mud
Deformed hemipelagic mud inclined at 40°.
Disturbed hemipelagic clay interlayered with volcaniclastic units. All contacts are inclined.
Late Pleistocene

<table>
<thead>
<tr>
<th>Magnetic susceptibility (SI)</th>
<th>GRA bulk density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>4</td>
</tr>
<tr>
<td>4000</td>
<td>2</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grain size of graded layers (top, base)</th>
<th>MAJ lith and MIN lith grain size</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Pebbles or coarser</td>
</tr>
<tr>
<td>Moderate</td>
<td>Granules</td>
</tr>
<tr>
<td>Rare</td>
<td>Very coarse sand</td>
</tr>
<tr>
<td>Absent</td>
<td>Coarse sand</td>
</tr>
<tr>
<td></td>
<td>Medium sand</td>
</tr>
<tr>
<td></td>
<td>Fine medium sand</td>
</tr>
<tr>
<td></td>
<td>Fine sand</td>
</tr>
<tr>
<td></td>
<td>Fine mud</td>
</tr>
<tr>
<td></td>
<td>Silt-fine mud</td>
</tr>
<tr>
<td></td>
<td>Very fine mud</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matrix type %</th>
<th>Pebbles or coarser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Granules</td>
</tr>
<tr>
<td></td>
<td>Very coarse sand</td>
</tr>
<tr>
<td></td>
<td>Coarse sand</td>
</tr>
<tr>
<td></td>
<td>Medium sand</td>
</tr>
<tr>
<td></td>
<td>Fine medium sand</td>
</tr>
<tr>
<td></td>
<td>Fine sand</td>
</tr>
<tr>
<td></td>
<td>Fine mud</td>
</tr>
<tr>
<td></td>
<td>Silt-fine mud</td>
</tr>
<tr>
<td></td>
<td>Very fine mud</td>
</tr>
</tbody>
</table>

Graphic log - Average grain size matrix sediment

Core length (cm) | Core image | Graphic lithology | Graphic log - Average grain size matrix sediment | MAJ lith and MIN lith grain size | Magnetic susceptibility (SI) | GRA bulk density (g/cm³) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drilling disturbance

Core length (cm) | Depth CSF-A (m) | Core image | Graphic lithology | Graphic log - Average grain size matrix sediment | MAJ lith and MIN lith grain size | Magnetic susceptibility (SI) | GRA bulk density (g/cm³) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>66.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hemipelagic clay. PAL sample from section base.
Deformed hemipelagic clay interlayered with a tephra layer.
Deformed hemipelagic clay interlayered with a volcaniclastic sand layer.
Deformed hemipelagic clay interlayered with thin tephra layers which are strongly deformed and churned by reverse fault.
Hemipelagic clay interlayered with volcaniclastic units. Contacts are inclined and faulted.

Hole 340-U1400C-8H Section 4, Top of Section: 71.03 CSF-A (m)
Hemipelagic mud interlayered with abundant volcaniclastic units. All contacts are inclined.
Late Pleistocene

- Shipboard samples
- Age
- Magnetic susceptibility (SI)
- GRA
- Bulk density (g/cm³)
- Cobble
- Pebble
- Granule
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine mud
- Very fine mud
- Grain size of graded layers (top, base)
- High
- Moderate
- Rare
- Absent
- Matrix alteration intensity
- Matrix sorting
- Cobbles
- Pebbles
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine sand
- Very fine sand
- MAJ lith.
- and MIN lith.
- Grain size
- Matrix type %
- Pebbles or coarser
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine sand
- Very fine sand
- Graphic log - Average grain size
- Graphic lithology
- Core
- Image
- Drilling disturbance
- Core length (cm)
- Depth CSF-A (m)
- Hole: 34U-U1400C-8H Section 6, Top of Section: 74.05 CSF-A (m)

Hemipelagic clay interlayered with abundant volcaniclastic material. All contacts are inclined.
Abundant volcaniclastic material interlayered with deformed hemipelagic clay. All contacts are inclined.
Heavily deformed hemipelagic clay/volcaniclastic mixture overlying interlayered volcaniclastic and hemipelagic units.
Volcaniclastic sand with normal grading overlying deformed hemipelagic clay interlayered with thin volcanic sand units.
Late Pleistocene

0

10

20

30

40

50

60

70

80

90

100

78.60

78.55

78.50

78.45

78.40

78.35

78.30

78.25

78.20

78.15

78.10

78.05

78.00

77.95

77.90

77.85

77.80

77.75

77.70

77.65

Shipboard samples

Age

Magnetic susceptibility (SI)

6000

4000

2000

0

GRA

bulk density (g/cm³)

3

2

1

0

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

Grain size of graded layers (top, base)

High

Moderate

Absent

Matrix alteration intensity

Matrix sorting

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine sand

Very fine sand

MAJ lith and MIN lith grain size

Matrix type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Very fine sand

Silt-fine sand

Fine mud

Graphite log -

Average grain size matrix sediment

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Hole 340-U1400C-9H Section 2, Top of Section: 77.6 CSF-A (m)

Highly deformed mixtures of hemipelagic clay and volcaniclastic material overlying coarse-grained volcaniclastic sand unit with interlayered hemipelagic clay.

Core length (cm)

Depth CSF-A (m)

Drilling disturbance

Core image

Matrix type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Very fine sand

Silt-fine sand

Fine mud

Graphic lithology

Core

Image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Grading type

Hole 340-U1400C-9H Section 2, Top of Section: 77.6 CSF-A (m)

Highly deformed mixtures of hemipelagic clay and volcaniclastic material overlying coarse-grained volcaniclastic sand unit with interlayered hemipelagic clay.

Core length (cm)

Depth CSF-A (m)

Drilling disturbance

Core image

Matrix type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Very fine sand

Silt-fine sand

Fine mud

Graphic lithology

Core

Image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Grading type

Hole 340-U1400C-9H Section 2, Top of Section: 77.6 CSF-A (m)

Highly deformed mixtures of hemipelagic clay and volcaniclastic material overlying coarse-grained volcaniclastic sand unit with interlayered hemipelagic clay.

Core length (cm)

Depth CSF-A (m)

Drilling disturbance

Core image

Matrix type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Very fine sand

Silt-fine sand

Fine mud

Graphic lithology

Core

Image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Grading type

Hole 340-U1400C-9H Section 2, Top of Section: 77.6 CSF-A (m)

Highly deformed mixtures of hemipelagic clay and volcaniclastic material overlying coarse-grained volcaniclastic sand unit with interlayered hemipelagic clay.

Core length (cm)

Depth CSF-A (m)

Drilling disturbance

Core image

Matrix type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Very fine sand

Silt-fine sand

Fine mud

Graphic lithology

Core

Image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Grading type
Deformed hemipelagic clay interlayered with bioturbated thin volcaniclastic sand units.

Hole 340-U1400C-10H Section 1, Top of Section: 78.7 CSF-A (m)

Matrix type %
- Pebbles or coarser
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Very fine sand
- Silt-fine sand
- Fine mud

Matrix sorting
- Absent
- Rare
- Moderate
- High

Matrix alteration intensity

Core length (cm)

Depth CSF-A (m)

Drilling disturbance

Core image

Graphic log - Average grain size

Graphic lithology

Core

Lithology

Drilling disturbance

Matrix %

Grading type
- Bridged
- Grain
- Mud
- Silt
- Clay
- Sand
- Cobble
- Pebble

Core length (cm)

Matrix sorting

Lithology

Grading type
- Bridged
- Grain
- Mud
- Silt
- Clay
- Sand
- Cobble
- Pebble

Core length (cm)

Depth CSF-A (m)

Drilling disturbance

Core image

Graphic log - Average grain size

Graphic lithology

Core

Lithology

Drilling disturbance

Matrix %

Grading type
- Bridged
- Grain
- Mud
- Silt
- Clay
- Sand
- Cobble
- Pebble

Core length (cm)

Depth CSF-A (m)

Drilling disturbance

Core image

Graphic log - Average grain size

Graphic lithology

Core

Lithology

Drilling disturbance

Matrix %

Grading type
- Bridged
- Grain
- Mud
- Silt
- Clay
- Sand
- Cobble
- Pebble

Core length (cm)

Depth CSF-A (m)

Drilling disturbance

Core image

Graphic log - Average grain size

Graphic lithology

Core

Lithology

Drilling disturbance

Matrix %

Grading type
- Bridged
- Grain
- Mud
- Silt
- Clay
- Sand
- Cobble
- Pebble
Deformed hemipelagic clay interlayered with abundant volcaniclastic sand layers.
Intercalated hemipelagic clay and volcaniclastic sand overlying a thick pink ash deposit.
Heavily deformed complex mixture of hemipelagic clay and volcaniclastic sand.
Hemipelagic clay interlayered with massive turbidites and several tephra layers.
Massive volcanlastic turbidite interlayered with hemipelagic clay.
Hemipelagic clay interlayered with volcaniclastic sand units.
Late Pleistocene

Age (m) vs. Depth (m)

- Shipboard samples

Magnetic susceptibility (SI)

- GRA bulk density (g/cm³)

- Cobbles, Pebbles, Granules, Very coarse sand, Coarse sand, Medium sand, Fine medium sand, Fine sand, Fine mud, Silt-fine mud, Very fine mud

Grain size of graded layers (top, base)

- High, Moderate, Rare, Absent

Matrix alteration intensity

- Matrix sorting

- Matrix type:
 - Pebbles or coarser, Granules, Very coarse sand, Coarse sand, Medium sand, Fine medium sand, Fine sand, Very fine sand, Silt-fine sand, Fine mud

Graphic log - Average grain size matrix sediment

Graphic lithology

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Hemipelagic clay interlayered with abundant volcaniclastic units.

Hole 340-U1400C-11H Section 4, Top of Section: 89.3 CSF-A (m)
Hemipelagic clay interlayered with volcaniclastic units. Diffuse ash layer at section base.
Volcaniclastic sand-ash units overlying hemipelagic clay.

Hole 340-U1400C-11H Section 6, Top of Section: 91.89 CSF-A (m)
Volcaniclastic units interlayered with hemipelagic clay.
Deformed and bioturbated hemipelagic clay interlayered with multiple thin volcaniclastic sand-mud layers.
Deformed and bioturbated hemipelagic clay interlayered with several volcaniclastic sand units.
Deformed and bioturbated hemipelagic clay interlayered with multiple thin volcaniclastic sand layers. Thick volcaniclastic sand at the bottom of the section.
Hemipelagic clay overlying medium-grained volcaniclastic sand.
Volcaniclastic sand overlying hemipelagic mud interlayered with fine-grained volcaniclastic units.
Hemipelagic clay interlayered with volcaniclastic units.

Hole 340-U1400C-12H Section 6, Top of Section: 101.01 CSF-A (m)
Hemipelagic clay interlayered with volcanioclastic units. All contacts are inclined.
Hemipelagic clay interlayered with a complex mixture of hemipelagic clay and volcaniclastic sand. PAL sample from section base.
Deformed and bioturbated hemipelagic clay interlayered with multiple volcaniclastic sand units.
Deformed and bioturbated hemipelagic clay interlayered with two volcaniclastic sand units.
Late Pleistocene

Shipboard samples

Age

Magnetic susceptibility (SI)

GRA
bulk density (g/cm³)

Cobbles
Pebbles
Granules
Very coarse sand
Coarse sand
Medium sand
Fine medium sand
Fine sand
Fine mud
Silt-fine mud
Very fine mud

Grain size of graded layers (top, base)

High
Moderate
Rare
Absent

Matrix alteration intensity

Matrix sorting

Cobble
Pebble
Granules
Very coarse sand
Coarse sand
Medium sand
Fine medium sand
Fine sand
Fine mud
Silt-fine mud
Very fine mud

Matrix type %

Pebbles or coarser
Granules
Very coarse sand
Coarse sand
Medium sand
Fine medium sand
Fine sand
Very fine sand
Silt-fine sand
Fine mud

Graphic log - Average grain size matrix sediment

Graphic lithology

Core

Image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Deformed and bioturbated hemipelagic clay interbedded with thin volcaniclastic sand units.

Hole 340-U1400C-13H Section 3, Top of Section: 106.32 CSF-A (m)
Hemipelagic clay interlayered with volcaniclastic units. All contacts are inclined.
Hemipelagic clay interlayered with volcaniclastic units.

Hemipelagic clay interlayered with volcaniclastic units.
Hemipelagic clay overlying volcaniclastic sand.
Volcaniclastic sand overlying hemipelagic mud.

Hole 340-U1400C-13H Section CC, Top of Section: 111.31 CSF-A (m)
Hemipelagic clay interlayered with a volcaniclastic sand layer.

Hole 340-U1400C-14H Section 1, Top of Section: 111.5 CSF-A (m)
Heavily deformed hemipelagic clay interlayered with volcaniclastic sand units.
Volcaniclastic sand overlying hemipelagic clay.
Complex mixture of hemipelagic mud and coarse-grained volcaniclastic sand. PAL sample from section base.

Grain size of graded layers (top, base)
- Cobbles
- Pebbles
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Fine mud
- Silt-fine mud
- Very fine mud

MAJ lith and MIN lith grain size

Matrix alteration intensity
- High
- Moderate
- Rare
- Absent

Matrix type %
- Pebbles or coarser
- Granules
- Very coarse sand
- Coarse sand
- Medium sand
- Fine medium sand
- Fine sand
- Very fine sand

Core image

Note:
- "mud clasts in coarse black sand deformed... by coring?"
Deformed and bioturbated hemipelagic clay interlayered with volcaniclastic sand units.
Deformed and bioturbated hemipelagic clay interlayered with multiple thin volcaniclastic sand units.
Deformed and bioturbated hemipelagic clay interlayered with thin volcaniclastic sand units.
Deformed and bioturbated hemipelagic clay interlayered with volcaniclastic sand units.
Hemipelagic clay interlayered with an absurd amount of volcaniclastic units. All contacts are inclined.
Hemipelagic clay interlayered with abundant volcaniclastic units. All contacts are inclined.
Hemipelagic clay. PAL sample from section top.
Deformed and bioturbated hemipelagic clay interlayered with volcaniclastic sand units.
Deformed and bioturbated hemipelagic clay interlayered with abundant volcanoclastic sand units.

Hole 340-U1400C-16H Section 2, Top of Section: 126.1 CSF-A (m)
Late Pleistocene

0 10 20 30 40 50 60 70 80 90 100 110 120

129.05 129.00 128.95 128.90 128.85 128.80 128.75 128.70 128.65 128.60 128.55 128.50 128.45 128.40 128.35 128.30 128.25 128.20 128.15 128.10 128.05 128.00 127.95 127.90 127.85 127.80 127.75 127.70 127.65

Shipboard samples

Age

Magnetic susceptibility (SI)

GRA

bulk density (g/cm³)

3 2 1 0

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

Grain size of graded layers (top, base)

High

Moderate

Rare

Absent

Matrix alteration intensity

Matrix sorting

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

MAJ lith

and MIN lith

grain size

Matrix type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine sand

Fine mud

Silt-fine mud

Very fine mud

Deformed and bioturbated hemipelagic clay interlayered with abundant thin volcaniclastic units displaying normal grading.

Hole 340-U1400C-16H Section 3, Top of Section: 127.6 CSF-A (m)
Hemipelagic clay interlayered with volcaniclastic units. All contacts are inclined.
Hemipelagic clay interlayered with abundant volcaniclastic units, several of which are ash. All contacts are inclined.
Complex mixtures of hemipelagic clay and volcaniclastic material. Units are heavily deformed.
Hemipelagic clay interlayered with normally graded volcaniclastic unit.
Hemipelagic clay. PAL sample from section top.
Massive hemipelagic sediments

The whole section: Greyish grey hemipelagic mud

No trace of deformation.
Hemipelagic sediment with thin ash layers.

- Marked greenish grey hemipelagic mud weakly deformed
- 2 volcanic sand layers highly bioturbated

Graphic log - Average grain size matrix sediment

- MAJ lith and MIN lith grain size
- Matrix alteration intensity
- Matrix sorting
- Grain size of graded layers (top, base)
- MAJ lith and MIN lith matrix size
- Matrix type %

Hole 349-U1400C-17H Section 2, Top of Section: 135.6 CSF-A (m)
Late Pleistocene

Shipboard samples

Age

Magnetic susceptibility (SI)

GRA

bulk density (g/cm³)

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

Grain size of graded layers (top, base)

High

Moderate

Rare

Absent

Matrix alteration intensity

Matrix sorting

Core length (cm)

Depth CSF-A (m)

Drilling disturbance

Core image

Graphic lithology

Mottled hemipelagite with intercalated volcanic ash layers

5% mass fine sand; 16% coarse sand; 45% sand; 16% mud; 5% very fine sand

Hole 340-U1400C-17H Section 3, Top of Section: 137.1 CSF-A (m)

[Graphic log - Average grain size of matrix sediment

[Core

[Drilling disturbance

[Core length (cm)

[Depth CSF-A (m)]
Hemipelagic mud with several thin ashfall or turbidite layers.
Late Pleistocene

<table>
<thead>
<tr>
<th>Magnetic susceptibility (SI)</th>
<th>GRA bulk density (g/cm³)</th>
<th>Grain size of graded layers (top, base)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>4000</td>
<td>2000</td>
</tr>
<tr>
<td>4000</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Core depth (cm)

Graphic lithology

- Mottled hemipelagic sediment with intercalated volcanic ash layers

- Graded layers

- Mottled green

- Grey hemipelagic mud

- Grey mud

- Very coarse sand

- Coarse sand

- Medium sand

- Fine medium sand

- Fine sand

- Fine mud

- Silt-fine mud

- Very fine mud

Matrix alteration intensity

- High

- Moderate

- Rare

- Absent

Matrix sorting

- Cobbles

- Pebbles

- Granules

- Very coarse sand

- Coarse sand

- Medium sand

- Fine medium sand

- Fine sand

- Fine mud

- Silt-fine mud

- Very fine mud

MAJ lith and MIN lith grain size

Matrix type %

- Pebbles or coarser

- Granules

- Very coarse sand

- Coarse sand

- Medium sand

- Fine medium sand

- Fine sand

- Fine mud

- Silt-fine sand

- Fine mud

Graphic log - Average grain size matrix sediment

Magnetic susceptibility

- Undeformed

- Deformed
Hemipelagic sediment with thin ash layers.

Top: 142.98 CSF-A (m)

- Laminated
- Greenish-light grey hemipelagic mud
- Tephra layer (bedded)
 - 65% pumice
 - 35% mass. ash
 - 5% oxidized
 - 0% carbonated
Hole 340-U1400C-17H Section CC, Top of Section: 143.81 CSF-A (m)

Muddy sand in core catcher
Volcaniclastic sand with thin hemipelagic sediment below.
Late Pleistocene

Magnetic susceptibility (SI)

GRA

bulk density (g/cm³)

Hemipelagic sediment with intercalated volcanic ash layers

Hole 340-U1400C-18H Section 2, Top of Section: 145.1 CSF-A (m)

Matrix type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Very fine sand

Silt-fine sand

Fine mud

Grain size of graded layers (top, base)

High

Moderate

Rare

Absent

Matrix alteration intensity

Core image

Drilling disturbance

Depth CSF-A (m)

Core length (cm)

Average grain size

Matrix sorting

Hole length:

CSF-A (m)
Hemipelagic mud with several thin ashfall or turbidite layers (bioturbated) and bioclastic/volcaniclastic mixed turbidite at the bottom of the section.

Grading type

Highly defined inclined V 60°

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

Grain size of graded layers (top, base)

Matrix Alteration

Intensity

Absent

Rare

Moderate

High

Matrix Sorting

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine sand

Fine mud

MAJ lith and MIN lith grain size

Matrix Type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Very fine sand

Silt-fine sand

Fine mud

Graphic lithology

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)

Dating disturbance

Graphic log - Average grain size matrix sediment

Magnetic susceptibility (SI)

GRA bulk density (g/cm³)

Magnetic susceptibility (SI)

Grain size of graded layers (top, base)

Matrix Alteration intensity

Matrix Sorting

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

MAJ lith and MIN lith grain size

Matrix Type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Very fine sand

Silt-fine sand

Fine mud

Graphic lithology

Core image

Drilling disturbance

Core length (cm)

Depth CSF-A (m)
Mottled fine hemipelagic sediment with intercalated fine volcanic sand layers

Core image:
- Brown hemipelagic mud mixed with ash

Linnaea A:
- 50% prisms
- 25% acicular
- 25% carbonate

Linnaea B:
- 40% prisms
- 40% acicular
- 20% carbonate

**Deformed hemipelagic mud including: Linnaea and green laminae within brown calcite 55°
Hemipelagic sediments with multiple ash layers.
Hemipelagic sediment
Hemipelagic mud with several thin ashfall or turbidite layers.
Contorted mottled hemipelagic sediment with intercalated volcanic ash layers

Hole 340-U1400C-19H Section 3, Top of Section: 156.1 CSF-A (m)
Hemipelagic sediments with multiple ash layers
Late Pleistocene

Helix 340-U1400C-19H Section 5, Top of Section: 159.11 CSF-A (m)

Hemipelagic mud with several thin ashfall or turbidite layers.

Core image

Drilling disturbance

Depth CSF-A (m)

Core length (cm)

Matrix type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Very fine sand

Silt-fine sand

Fine mud

Graphic log - Average grain size matrix sediment

Drilling disturbance

Matrix sorting

Matrix alteration intensity

MAJ lith and MIN lith grain size

Graphic lithology

Core

Depth CSF-A (m)

Age

Shipboard samples

Late Pleistocene
Late Pleistocene

Age

Magnetic susceptibility (SI)

GRA

bulk density (g/cm³)

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

Grain size of graded layers (top, base)

High

Moderate

Rare

Absent

Matrix alteration intensity

Matrix sorting

Core length (cm)

Depth CSF-A (m)

Drilling disturbance

Hemipelagic mud with a thin vitric ashfall layer.

Hole 340-U1400C-19H Section 7, Top of Section: 162.14 CSF-A (m)
Hemipelagic sediment
Hemipelagic mud with several thin ashfall or turbidite layers.

<table>
<thead>
<tr>
<th>Grain size of graded layers (top, base)</th>
<th>Matrix alteration intensity</th>
<th>Matrix sorting</th>
<th>MAJ lith and MIN lith grain size</th>
<th>Core length (cm)</th>
<th>Depth (CSF-A) (m)</th>
<th>Core image</th>
<th>Graphic lithology</th>
<th>Graphic log - Average grain size matrix sediment</th>
<th>Grain size</th>
<th>Magnetic susceptibility (SI)</th>
<th>Core image</th>
<th>Graphic log - Average grain size matrix sediment</th>
<th>Core image</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>MAJOR LITH and MINOR LITH GRAIN SIZE</td>
<td></td>
</tr>
<tr>
<td>Grading type</td>
<td></td>
</tr>
<tr>
<td>Hole 340-U1400C-20H Section 1</td>
<td>Bottom</td>
<td></td>
</tr>
<tr>
<td>Top of Section: 162.6 CSF-A (m)</td>
<td></td>
</tr>
</tbody>
</table>

- Weakly deformed hemipelagic mud
- Grey - green hemipelagic mud
- Top bed
- Greenish grey mud
- 2 thin tephrula layers
- Late Pleistocene
Late Pleistocene

Age

Shipboard samples

Magnetic susceptibility (SI)

GRA

bulk density (g/cm³)

Cobbles

Pebbles

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine mud

Very fine mud

Grain size of graded layers (top, base)

High

Moderate

Rare

Absent

Matrix alteration intensity

Matrix sorting

Matrix type %

Pebbles or coarser

Granules

Very coarse sand

Coarse sand

Medium sand

Fine medium sand

Fine sand

Fine mud

Silt-fine sand

Fine mud

Hemipelagic mud with several thin ashfall or turbidite layers.

Hole 340-U1400C-20H Section 2, Top of Section: 164.06 CSF-A (m)
Mottled hemipelagite intercalated with bedded fine volcanic sand layers
Hemipelagic mud

Deformed hemipelagic mud, green laminar, inclined at 50%
Late Pleistocene

<table>
<thead>
<tr>
<th>Age</th>
<th>Magnetic susceptibility (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>4000</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
</tr>
</tbody>
</table>

Magnetic susceptibility (SI)

<table>
<thead>
<tr>
<th>GRA</th>
<th>bulk density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

bulk density (g/cm³)

Grain size of graded layers (top, base)

Matrix alteration intensity

High: Moderate: Rare: Absent

Matrix sorting

MAJ lith and MIN lith grain size

Matrix type %

Pebbles or coarser: Granules: Very coarse sand: Coarse sand: Medium sand: Fine medium sand: Fine sand: Very fine sand: Silt-fine sand: Fine mud

Hemipelagic sediments with multiple ash layers.

Hole 340-U1400C-20H Section 7, Top of Section: 171.41 CSF-A (m)