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Abstract
Semiquantitative elemental results from X-ray fluorescence (XRF)
scanning of sediment cores from Integrated Ocean Drilling Pro-
gram (IODP) Site U1419 in the Gulf of Alaska are presented. This
site contains varying lithofacies that have been previously cor-
related with glacial–interglacial changes in sedimentation and wa-
ter-column productivity. XRF scanning was conducted to aid in
interpretation of sedimentation during the last glacial period.

Crossplots of elements often interpreted as detrital and biogeni-
cally sourced show positive correlations between Ca and Al, Si, Ti,
Sr, and Si with Al, with no correlation between Ca and Ba. When
detrital elements were compared with volume-corrected ship-
board magnetic susceptibility (MS), Fe and Ti appear to positively
covary, whereas Al inversely covaries. K shows a similar downhole
pattern to Fe and Ti, whereas Si is similar to Al. Zr alternates be-
tween positively and negatively covarying with Fe, Ti, and K. Mn,
Rh, Rb, and Pb intensities show patterns similar to K, Ti, and Fe,
whereas Sr is similar to Ca and Cr is similar to Al and Si. Ni and Zn
intensities are inversely related to Al, Si, and Zr. S roughly mirrors
trends displayed by Ca. Mo, Nb, Y, Ga, Ge, P, Ba, Bi, As, and Cu in-
tensities show little to no downhole variation, and changes in Br
and Cl intensities are most likely related to water content.

Introduction
Site U1419, drilled during Integrated Ocean Drilling Program
(IODP) Expedition 341, is located on the upper continental slope
in the northern Gulf of Alaska (Fig. F1) (see the “Site U1419”
chapter [Jaeger et al., 2014b]). Previous results from the site reveal
a high-resolution, heterolithic, deglacial–modern sedimentary re-
cord (Davies et al., 2011; Addison et al., 2012). The drilling objec-
tives of Site U1419 were to extend this record of glacial dynamics
and paleoceanography into the late Pleistocene. The primary ob-
jectives were to constrain the timing of modern to late Pleisto-
cene glacial events of the northwestern Cordilleran ice sheet. The
secondary objectives were to document the influence of North Pa-
cific sea-surface temperatures as a control on the regional glacial
dynamics and to address the dynamics of productivity and inter-
mediate water circulation on hypoxia in the region.

Previous work done at this site revealed the link between the var-
ied sedimentary lithofacies and the water column and glacima-
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rine processes. Diamicts accumulated from the degla-
cial (~17.5 ka) through to ~14.8 ka, after which
warming coincident with the Bølling Interstate of
northern Europe and Greenland resulted in a litho-
facies transition to laminated mud (Davies et al.,
2011). Periods of enhanced water column productiv-
ity and bottom water hypoxia between 10.7 and 14.8
ka are recognized by this laminated facies (Addison
et al., 2012). The Holocene period of accumulation
consists of massive bioturbated mud (Davies et al.,
2011).

The periodic correspondence of the Gulf of Alaska
paleoclimate with events in the North Atlantic sug-
gests that strata accumulating at Site U1419 prior to
the deglacial could contain stadial and interstadial
periods with varied productivity and glacigenic sedi-
mentation (Praetorius and Mix, 2014). Lithofacies
and sediment composition are expected to follow
these potential changes. To create a high spatial reso-
lution elemental data set to capture these changes,
scanning X-ray fluorescence (XRF) analyses were per-
formed on core sections within the stratigraphically
continuous spliced composite record (see the “Site
U1419” chapter [Jaeger et al., 2014b]). Elements of
interest were those commonly used to identify
changes in lithofacies and paleoproductivity (Roth-
well and Croudace, 2015). In this report, we present
the raw count data for all measured elements of in-
terest. The data are available for all measured sec-
tions as CSV files in XRF in “Supplementary mate-
rial.” Downcore and box and whisker plots of all
elements are provided in DOWNHOLE and BOX-
PLOTS in “Supplementary material.”

Methods
Scanning XRF data were collected at the XRF core fa-
cility located at the International Ocean Discovery
Program Gulf Coast Repository (GCR) at Texas A&M
University, using a third-generation Avaatech XRF
core scanner. The core scanner is able to measure the
surface of half-round core sections for elements be-
tween Mg and U on the periodic table (http://
www.avaatech.com). Only core sections located on
the continuous Site U1419 splice were analyzed (see
Table T10 in the “Site U1419” chapter [Jaeger et al.,
2014b]), rather than every core section collected at
the site. However, some off-splice sections located
near questionable splice tie points (see Figs. F16B
and F17B in the “Site U1419” chapter [Jaeger et al.,
2014b]) were also analyzed in order to help refine
the Site U1419 splice.

Prior to scanning, each core section was warmed up
to room temperature, scraped to clean the core sur-

face, and covered with 4 µm thick Ultralene plastic
film to prevent contamination of the measuring
prism. Cores were warmed up before covering with
the film to prevent condensation underneath the
plastic, which can affect X-ray attenuation (Tjallingii
et al., 2007).

XRF data were collected every 2 cm, with sample lo-
cations occasionally being shifted to avoid protrud-
ing clasts, cracks, and depressions along the core sur-
face. Two scans were completed for each core section
at different voltages: 10 and 30 kV. The 10 kV scan
was for the elements Al, Si, P, Cl, Ar, K, Ca, Ti, Cr,
Mn, Fe, Rh, and Ba and the 30 kV scan was for Fe, Ni,
Cu, Zn, Ga, Ge, As, Br, Rb, Sr, Y, Zr, Nb, Mo, Pb, and
Bi. Settings used for the 10 kV scan were a tube cur-
rent of 0.5 mA and detection time of 20 s. For the 30
kV scan a tube current of 1 mA and a detection time
of 30 s were used. The sample irradiation area was 10
mm in the downcore direction and 15 mm in the
crosscore direction. All XRF data are presented as
counts per second in XRF in “Supplementary mate-
rial.”

Results
The scanning XRF data in this report provide a high-
resolution record of the geochemistry at Site U1419.
Crossplots of elements often associated with detrital
and biogenic sources in marine sediments are shown
in Figure F2 (Rothwell and Croudace, 2015). Weak
positive covariance is seen for Ca and Al and for Ca
and Si, with the increased amount of scatter most
likely due to increased effects of water content on
the low atomic mass and weakly fluorescing Al and
Si atoms (Tjallingii et al., 2007). Positive covariance
is observed between Ca and Ti, Ca and Sr, and Si and
Al. However, a slight negative relationship is ob-
served at extremely high Ca counts between Ca and
Ti. There appears to be no relationship between Ca
and Ba.

Downhole element distributions of Al, Ca, Fe, K, Si,
Ti, and Zr are plotted along with volume-corrected
magnetic susceptibility (MS) in Figure F3 (Walczak et
al., 2015). All plots are on a core composite depth be-
low seafloor (CCSF-B) depth scale in meters, which is
the composite depth scale corrected for compaction
(see the “Methods” chapter [Jaeger et al., 2014a]).
When comparing detrital elements Al, Fe, and Ti
with MS, Al appears to inversely covary, whereas Ti
and Fe appear to positively covary. Si exhibits similar
downhole variability to Al, and K appears to covary
with Fe and Ti. Zr inversely covaries with Ti, Fe, and
K shallower than 27 m CCSF-B and deeper than 65 m
CCSF-B but positively covaries between 27 and 65 m
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CCSF-B. Ca displays the strongest downhole variabil-
ity, with the degree of variation increasing down-
hole.

Downhole plots of measured elements not shown in
Figure F3 along with box and whisker plots of all
measured elements are available in DOWNHOLE
and BOXPLOTS in “Supplementary material.” Of
these elements, Mn, Rh, Rb, and Pb show patterns
similar to K, Ti, and Fe, whereas Sr is similar to Ca,
and Cr is similar to Al and Si. Ni and Zn are inversely
related to Al, Si, and Zr. S roughly mirrors trends dis-
played by Ca and is characterized by a large peak at
36 m CCSF-B. Mo, Nb, Y, Ga, Ge, P, Ba, Bi, As, and Cu
show little to no downhole variation. Mo, Nb, Y, Ga,
As, and Cu have been previously measured in the
Gulf of Alaska by inductively coupled plasma–mass
spectrometry (ICP-MS) at concentrations of a few
parts per million (Barron et al., 2009), which most
likely falls below the detection limit of the XRF scan-
ner at the GCR, and thus their downhole values
likely represent noise. Ba and P have been measured
via ICP-MS at concentrations higher than the
AVAATECH XRF scanner detection limit (Richter et
al., 2006). Bi and Ge are typically found in extremely
low concentrations of <2 ppm in continental crust
(Rudnick and Gao, 2003) and are assumed to be be-
low the detection limit of the GCR XRF scanner.
Changes in Br and Cl intensities are most likely re-
lated to water content (Tjallingii et al., 2007). Posi-
tive Ar values indicate measurements where X-rays
were transmitted through air due core disturbance
(i.e., cracks) or bubbles underneath the plastic film.
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Figure F1. The Gulf of Alaska region: geography and location of Expedition 341 sites. DSDP = Deep Sea Drilling
Project, ODP = Ocean Drilling Program.
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Figure F2. Crossplots of elements typically associated with detrital and biogenic inputs to marine sediments:
Ca vs. Al, Ca vs. Si, Ca vs. Ti, Ca vs. Ba, Ca vs. Sr, and Si vs. Al.
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Figure F3. XRF scanner counts for Al, Ca, K, Fe, Si, Ti, and Zr with volume-corrected magnetic susceptibility
(MS) (Walczak et al., 2015). Gray shaded band is assumed to represent glacimarine diamict to hypoxic lami-
nated facies transition that is observed at ~14.8 ka in EW0408 85JC (Davies et al., 2011). Gray horizontal lines
highlight points of major variations in MS as it relates to variability in detrital elements (i.e., Al, Fe, and Ti).
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