
McNeill, L.C., Dugan, B., Petronotis, K.E., and the Expedition 362 Scientists
Proceedings of the International Ocean Discovery Program Volume 362
publications.iodp.org

https://doi.org/10.14379/iodp.proc.362.205.2021

Data report: electrical resistivity of sediments 
from Site U1480, IODP Expedition 362, Sumatra 
subduction zone1

Mari Hamahashi2, 3

Keywords: International Ocean Discovery Program, IODP, JOIDES Resolution, Expedition 362, 
Sumatra Subduction Zone, subduction inputs, Indian-Australian plate, Site U1480, Site 
U1481, electrical resistivity, porosity, Archie’s coefficient, sediment consolidation

1 Hamahashi, M., 2021. Data report: electrical resistivity of sediments from Site U1480, IODP Expedition 362, Sumatra subduction zone. In McNeill, L.C., Dugan, B., Petronotis, K.E., and 
the Expedition 362 Scientists. Sumatra Subduction Zone. Proceedings of the International Ocean Discovery Program, 362: College Station, TX (International Ocean Discovery Pro-
gram). https://doi.org/10.14379/iodp.proc.362.205.2021

2 Earth Observatory of Singapore, Nanyang Technological University, Singapore.
3 Present affiliation: Kobe University, Ocean-Bottom Exploration Center, Japan. mhamahashi@aquamarine.kobe-u.ac.jp

MS 362-205: Received 6 August 2020 · Accepted 24 November 2020 · Published 10 March 2021
This work is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. 

Contents

1 Abstract
1 Introduction
4 Methods and materials
4 Results
6 Acknowledgments
6 References

Abstract
Electrical resistivity of sediments was analyzed using samples 

recovered during International Ocean Discovery Program (IODP)
Expedition 362, during which the input materials of the north Su-
matran subduction zone were drilled to investigate the material 
properties linked to shallow seismogenic slip. Electrical resistivity is 
a valuable indicator for sediment consolidation, pore/grain struc-
tures, and distribution of fluid, which can affect the mechanical 
properties of the forearc wedge. Sediments were recovered from the 
seafloor to 1415.35 meters below seafloor (mbsf ) at Site U1480 and 
from 1149.7 to 1500 mbsf at Site U1481. They consist of thick se-
quences of the Bengal-Nicobar Fan (Lithologic Units I–II) underlain 
by a thin pelagic/igneous sequence (Units III–V). In this study, elec-
trical resistivity was measured on 35 sediment samples from Site 
U1480 with an Agilent 4294A component analyzer using the bridge 
method with a two-terminal circuit. Measured resistivity values 
range from 0.20 to 7.45 Ωm and generally increase with depth. Sam-
ple measurements are consistent with the downhole resistivity logs 
acquired during Expedition 362. Formation factor was calculated 
from sediment and seawater resistivities, and Archie’s coefficients 
(cementation [m] and tortuosity [b]) were examined from the rela-
tionship between formation factor and porosity. When plotting the 
sample resistivity in this study together with resistivity logs and 
shipboard porosity from Sites U1480 and U1481, a contrast in Ar-
chie’s coefficients are inferred between the Bengal-Nicobar Fan and 
pelagic sediments, where the former (m = 3.4–3.8) is characterized 
by higher m values compared to the latter (m = 2.2). These coeffi-
cients show differences in consolidation trend in the input sedi-
ments, providing improved equations to estimate porosity from 
resistivity logs.

Introduction
The input materials of the North Sumatran subduction zone 

were drilled during International Ocean Discovery Program (IODP) 
Expedition 362, which was designed to investigate the material 
properties and causes for the shallow seismogenic slip and forearc 
prism structures responsible for the Mw 9.2 earthquake and tsu-
nami that occurred in 2004 (McNeill et al., 2017b) (Figure F1A). 
Sediment consolidation is one of the important factors that can af-
fect the mechanical properties of the forearc wedge, and it is a focus 
of this study. Electrical resistivity is a valuable indicator for sedi-
ment consolidation, pore/grain structures, and distribution of fluid 
(e.g., Kozlov et al., 2012; Cai et al., 2017). The consolidation trend of 
sediments can be illustrated from the correlation between resistivity 
and porosity, known as Archie’s law (Archie, 1942):

F = Reff/Rf = bϕ−m,  (1)

where

F = formation factor,
Reff = resistivity (Ωm) of fluid-saturated sediment,
Rf = resistivity (Ωm) of fluid in the sediment,
ϕ = porosity (ratio) of sediment,
m = cementation coefficient (Archie’s coefficient; empirical pa-

rameter), and
b = tortuosity coefficient (Archie’s coefficient; empirical param-

eter).

Generally, m ranges from 1.0 to 3.0 for natural rocks (e.g., Cai et al., 
2017), representing the slope of the porosity-resistivity curve on a 
logarithmic scale, where larger m values (larger slope) represent 
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higher resistivity for a given porosity, implying higher consolida-
tion. Previous studies have documented the relationships between 
m, porosity, and grain geometry (e.g., Mendelson and Cohen, 1982; 
Daigle and Reece, 2015). For example, Mendelson and Cohen (1982) 
showed in their numerical model that m increases with increases in 
the grain aspect ratio, which could be caused by the presence of 
high–aspect ratio clay mineral grains. It is noted, however, that Ar-
chie’s law (Equation E1) is only strictly valid in the limit of zero sur-
face conductivity on the grains (e.g., Revil et al., 1998), and the 
prefactor b should not take any value except b = 1 because any other 
value would imply that the resistivity of the porous medium does 
not approach the water resistivity as porosity reaches 100% (e.g., 
Glover, 2009). Indeed, b values that are not equal to 1 are typically 
the result of not considering surface conductivity or the presence of 
a percolation threshold (Winsauer et al., 1952; Sen et al., 1981; 
Ghanbarian et al., 2014). Nonetheless, Archie’s law is widely applied 
in various geophysical observations and is useful and practical for 
comparing resistivity and porosity, particularly from downhole logs. 
One of the important applications of Archie’s law is to estimate in 
situ porosity from resistivity logs.

This paper reports on the data and analysis of electrical resistiv-
ity measured on discrete sediment samples from Site U1480 in com-
parison with downhole resistivity logs and shipboard porosity data 
from Sites U1480 and U1481 acquired during Expedition 362. To in-

vestigate the consolidation trend of the input sediments, the rela-
tionship between formation factor, porosity, and Archie’s 
coefficients were examined.

Study sites
Coring at Site U1480 (3°2.04ʹN, 91°36.35ʹE; 4148 m water depth; 

~250 km southwest of the subduction zone) reached 1431.6 meters 
below seafloor (mbsf), penetrating ~17 m into igneous basement 
(Figure F1A, F1B) (McNeill et al., 2017c). The full sedimentary 
succession was recovered from the seafloor to 1415.35 mbsf and 
consists of predominantly siliciclastic sediments deposited from 
various sediment gravity flows (Lithologic Units I–II), interpreted 
to be the Nicobar Fan, underlain by mixed tuffaceous and pelagic 
sediment (Unit III) and thin intervals of intercalated pelagic and ig-
neous material overlying oceanic crust (Units IV and V) (McNeill 
et al., 2017c) (Figure F1C). The composition of the Nicobar Fan is 
similar to the Bengal Fan and is sourced mainly from the Hima-
layan-derived Ganges-Brahmaputra river system and the Indo-Bur-
man range/West Burma (McNeill et al., 2017a). The sediment 
section encompasses the Late Cretaceous to recent, marked by an 
increase in deposition rate of the Nicobar Fan since the late Mio-
cene (McNeill et al., 2017c; McNeill et al., 2017a; Backman et al., 
2019). At Site U1481 (2°45.29ʹN, 91°45.58ʹE; 4178 m water depth; 35 
km southeast of Site U1480), cores were recovered from 1149 to 

Figure F1. A. Regional map of study area modified from McNeill et al. (2017a) showing Sunda subduction zone and surrounding eastern Himalayan provinces, 
Bengal-Nicobar submarine fan system, rupture area of 2004 Mw 9.2 earthquake (black outline), and location of Sites U1480 and U1481 (red dots). BB = Bengal 
Basin, SP = Shillong Plateau, SB = Surma Basin, IBR = Indo-Burman range, R = river. Blue lines = major river systems, yellow line = location of seismic profiles in 
B. Relative plate velocities are from Shearer and Bürgmann (2010). Inset = summarized lithostratigraphy, Site U1480. B. Seismic Profiles BGR06-101 and BGR06-
102 with location of Site U1480 (see location in A) (McNeill et al., 2017b; data from McNeill et al., 2016). Blue line = unconformable boundary between trench 
wedge and underlying Nicobar Fan sediments, green line = transition from reflective to less reflective stratigraphy, dashed red line = high-amplitude reflector 
having negative polarity toward subduction zone, overlying oceanic basement. CDP = common depth point, TWT = two-way traveltime. C. Lithology, strati-
graphic ages, and sample P-wave velocity and porosity data obtained during Expedition 362 (McNeill et al., 2017b), Site U1480. Seismic panel is based on time-
depth tie at the seafloor and at 1431 mbsf (McNeill et al., 2017b).
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1499 mbsf in Hole U1481A, which correlates to Subunits IIC and 
IIIA at Site U1480.

Porosity values determined from moisture and density analyses 
at Site U1480 generally increase with depth from ~80% near the sea-
floor to ~31% at 1320 mbsf (see Physical properties in McNeill et 
al. [2017c]; Figure F1C). Reported P-wave velocity values gradually 
increase with depth (~1500–2000 m/s) and show a distinct increase 
deeper than 1300 mbsf (~2000–5000 m/s) (Figure F1C). Thermal 
conductivity values are reported to increase slightly with depth 
from ~1.0 to ~2.3 W/(m·K). Subsets of both higher and lower po-
rosity values and variable P-wave velocity values are observed 
deeper than ~1300 mbsf, deviating from the overall consolidation 
trend, likely due to the lithologic heterogeneity and diagenesis (Mc-
Neill et al., 2017c; Hüpers et al., 2017; Moreau et al., 2020). The 
most significant changes are reported at 1305–1361 mbsf, where an 
increase in both porosity and P-wave velocity occurs (McNeill et 
al., 2017c). The relationship between P-wave velocity and porosity 
generally shows a normal consolidation curve for terrigenous sedi-

ments, whereas the low-porosity calcareous sediments from Units 
III and V plot in a slightly different curve (McNeill et al., 2017c).

Electrical resistivity measurement on discrete samples was not 
conducted during Expedition 362. Downhole resistivity logs were 
recorded at 742–805 mbsf in Hole U1480G during the expedition 
and yielded values ranging from 1.27 to 2.53 Ωm (see Downhole 
measurements in McNeill et al. [2017c]). In Hole U1481A, resistiv-
ity logs were acquired at 730–1484 mbsf, and values ranged from 
1.06 to 3.62 Ωm, showing a general increase with depth and a sharp 
decrease in resistivity across the boundary between Subunits IIC 
and IIIA consistent with the local increase in sample porosity (see 
Downhole measurements in McNeill et al. [2017d]). For 750–1149 
mbsf where no coring occurred in Hole U1481A, McNeill et al.
(2017d) estimated the porosity from the resistivity logs, assuming 
(1) Archie’s parameters (m = 2.2; b = 1) that best fit the shipboard 
porosity data and (2) Rf computed from temperature and salinity. 
Their estimated porosity fit well for Unit III but exhibited devia-
tions in Subunit IIC (Figure F2A), indicating a contrast in consoli-
dation trend between the Nicobar Fan and pelagic sediments.

Figure F2. Porosity estimated from Hole U1481A downhole resistivity logs (McNeill et al., 2017d) using resistivity-porosity relationships and Archie’s coefficients 
derived in this study. Dotted line = Lithologic Subunit IIC/IIIA boundary (1360.12 mbsf ). A. Porosity estimated by McNeill et al. (2017d) using Archie’s coeffi-
cients (m = 2.2; b = 1). B. Calculated porosity using Archie’s coefficients (m = 2.26; b = 0.73) based on Model 1. C. Calculated porosity using direct resistivity-
porosity relationship shown in Figure F4A. D. Calculated porosity using Archie’s coefficients (m = 3.40; b = 0.31) based on Model 2. E. Calculated porosity using 
Archie’s coefficients (above 1360.12 mbsf [Units I–II]: m = 3.80, b = 0.20; below 1360.12 mbsf [Unit III] m = 2.2, b = 1).
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Methods and materials
Electrical resistivity of sediments was measured with an Agilent 

4294A component analyzer (Agilent Technologies, USA) equipped 
at Kochi Core Center, Japan, using the bridge method with a two-
terminal circuit (Table T1) (see Expedition 322 Scientists, 2010). A 
total of 35 discrete sediment samples from Site U1480 were cut par-
allel to the depth (z-) direction of the borehole, and the horizontal 
planes (x-y) perpendicular to the z-direction were polished for mea-
surement. Because of limitation of sample remodeling, the samples 
were cut in a wedge or hexahedral shape of 3–4 cm × 3–4 cm × 1–3 
cm instead of in cubes of equal faces. Parafilm was wrapped around 
the oriented samples to avoid breakage during polishing and sea-
water saturation. Samples were impregnated with laboratory sea-
water (35‰ NaCl solution) for more than 10 h for consolidated 
sediments (Subunits IIB and IIC and Units III and IV) and for 3–4 h 
for less-consolidated sediments (Unit I and Subunit IIA) using a 
vacuum pump, depending on sample lithification. Sample mass was 
measured as the index for the degree of seawater immersion. Sam-
ples were carefully examined after saturation, and measurements 
were excluded for samples that exhibited fractures typically parallel 
to foliation.

For calibration of the inductance, capacitance, and resistance 
meters prior to measurement, infinite and zero impedance were ap-
plied using a nonconductor rubber tube and metal conductor, re-
spectively. Samples were then placed between two brass electrodes 
covered with filter papers saturated in seawater and sandwiched be-
tween two insulated rubber pads as the outer layer. A 0.3 kg weight 
was placed on top of the rubber pad to ensure that the electrode and 
sample were in complete contact. The magnitude (|Zz|) and phase 
(θz) of the complex impedance were measured at 100 kHz and 1000 
mV between opposite sample faces in the z-direction at room tem-
perature (22.5°–25°C). The area of sample faces were measured us-
ing Image J software. Electrical resistivity in the z-direction (Rz) was 
computed from the measured complex impedance and sample di-
mension defined by face lengths (L):

Rz = |Zz|cos(θz)(LxLy/Lz), (2)

where LxLy is the averaged area of upper and lower sample faces and 
Lz is sample thickness.

Measured resistivity data were plotted with shipboard sample 
porosity data and downhole resistivity logs acquired during Expedi-
tion 362 (see Physical properties and Downhole measurements in 
McNeill et al. [2017c] and McNeill et al. [2017d]) for comparison. 
The crossplot between resistivity and porosity (Equation E1) was 
used to determine m and b and to evaluate the consolidation state of 
sediments across the lithologic units. In this study, F was first calcu-
lated using measured 35‰ NaCl seawater resistivity at room tem-
perature (Rf = 0.225 Ωm), assuming Rf to be constant with depth 
(“Model 1”). Note that F derived by Model 1 is purely based on a 
laboratory setting. In the second model, F was calculated by com-
puting Rf as a function of temperature, depth, and salinity, referring 
to Fofonoff and Millard (1983) and Fofonoff (1985) (“Model 2”), us-
ing more realistic parameters. In this model, temperature was as-
sumed to follow a linear gradient of 44°C/km, as constrained by in 
situ measurements at Site U1480 (see Downhole measurements in 
McNeill et al. [2017c]), and seawater salinity was assumed to be 

35‰ (constant). The two models were compared for the purpose of 
observing the sensitivity of in situ temperatures and pore fluid com-
position on F.

Results
Measured resistivity values range from 0.20 to 7.45 Ωm across 

the lithologic units (Figure F3A; Table T1). Resistivity values 
yielded 0.52–0.63 Ωm in Unit I, 0.37–1.46 Ωm in Subunit IIA, 0.20–
1.75 Ωm in Subunit IIB, 1.69–3.29 Ωm in Subunit IIC, 2.48–2.89 
Ωm in Unit III, and 1.36–7.45 Ωm in Unit IV. A general increase in 
resistivity with depth is observed, and occasional excursions are 
present. The results of F calculated from two end-member models 
show fairly similar values above Subunit IIB, whereas the deviation 
from the two models are enhanced below Subunit IIB, in which 
Model 2 yields larger F compared to Model 1 at greater depth be-
cause of the difference in estimated Rf at depth (Figure F3A–F3C).

When comparing with shipboard porosity data from Expedition 
362 (see Physical properties in McNeill et al. [2017c]) (Figure 
F3D), a general inverse relationship between measured resistivity 
and porosity is observed, reflecting the effect of compaction. The 
decrease in resistivity (1.36 Ωm) at 1319.52 mbsf coincides with the 
abrupt increase in porosity (57.9%) in the pelagic sediments, which 
is a distinct interval observed at 1305–1361 mbsf (McNeill et al., 
2017c). Below this interval, a notable increase in resistivity (7.45 
Ωm) is observed at 1406.6 mbsf, which is consistent with the de-
crease in porosity (20.5%).

The crossplot between resistivity and porosity and between for-
mation factor and porosity can be fit with approximate power-law 
curves across the lithologic units (Figure F4A–F4C). The approxi-
mate curve between formation factor and porosity (Archie’s law) for 
all units is derived as F = 0.73ϕ−2.26 (R2 = 0.56) from Model 1 and F = 
0.31ϕ−3.40 (R2 = 0.65) from Model 2, where the Archie’s curve from 
Model 2 fits the data better than Model 1, with m values of 2.26 and 
3.40 for Models 1 and 2, respectively (Figure F4B, F4C). The cor-
relation for Units I–II alone improves with Model 2, where the ap-
proximate curve yields F = 0.62ϕ−2.37 (R2 = 0.52) from Model 1 and F
= 0.20ϕ−3.80 (R2 = 0.70) from Model 2, with m values of 2.37 and 3.80 
for Models 1 and 2, respectively.

Downhole resistivity logs acquired in Hole U1480G (see Down-
hole measurements in McNeill et al. [2017c]) are within a consis-
tent range with the sample measurements at the vicinity of the 
logged depth in the current study (Figure F3A). The resistivity logs 
can be plotted together on the same resistivity-porosity curve (Fig-
ure F4A). Although resistivity measurements were not conducted 
for samples from Site U1481, resistivity log data from Hole U1481A 
(see Downhole measurements in McNeill et al. [2017d]) are also 
comparable with the values measured for Subunit IIC and Unit III 
in Hole U1480G in this study. The crossplot between resistivity logs 
and shipboard porosity from Hole U1481A alone do not yield a 
clear curve because of the limited range of data, but these proper-
ties can be plotted with the crossplot in this study (Figure F4A).

Estimation of porosity from resistivity logs for 750–1149 mbsf at 
Site U1481 was reexamined from the resistivity-porosity relation-
ships derived in this study, in comparison with McNeill et al.
(2017d) (Figure F2A). When using the Archie’s coefficients from 
Model 1 (m = 2.26; b = 0.73), the estimated porosity fits relatively 
well for Subunit IIC but matches poorly for Unit III (Figure F2B). A 
similar trend with Model 1 is obtained from the estimation of po-
rosity using the direct approximate curve between resistivity and 
porosity (Figures F2C, F4A). In contrast, when using Archie’s pa-

Table T1. Sample information and resistivity data measured in this study, Site 
U1480. Download table in CSV format.
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rameters from Model 2 (m = 3.40; b = 0.31), the correlation im-
proves, especially for Units I and II, but some deviations in Unit III 
remain (Figure F2D). These observations show that m values of 
3.4–3.8 (this study) and 2.2 (McNeill et al., 2017d) best characterize 
Lithologic Units I–II and Unit III, respectively (Figure F2E), sug-
gesting that Units I–II (Nicobar Fan sediments) exhibit a higher 
slope in the consolidation curve compared to Unit III (pelagic sedi-
ments).

The total clay content is reported to be higher in Unit III (70%–
82%) than in Units I–II (27%–64%) (see Sedimentology and Pe-

trology in McNeill et al. [2017c]), suggesting an inverse relationship 
between m and clay content, which is contrary to the trend modeled 
by Mendelson and Cohen (1982). Rosenberger et al. (2020) studied 
the clay composition across the lithologic units and identified 19–
33 wt% smectite and 49–59 wt% illite in Units I–II and 73 wt% 
smectite and 19 wt% illite in Unit III, revealing a higher abundance 
of illite in Units I–II and higher abundance of smectite in Unit III. 
Further microscopic study in relation to sediment composition is 
necessary to investigate the causes for the variation in m.

Figure F3. A. Results of sample electrical resistivity measured in this study plotted with downhole resistivity logs acquired during Expedition 362, Site U1480. 
Squares = Unit I, white circles = Subunit IIA, gray circles = Subunit IIB, black circles = Subunit IIC, triangles = Unit III, diamonds = Unit IV. Hole U1480G downhole 
resistivity log data are from main run. Model 1 (0.225 Ωm) and Model 2 seawater resistivity values were used to calculate formation factor in this study. Dotted 
lines = lithologic unit boundaries (Units I–IV). B. Calculated formation factor based on Model 1 (assuming constant seawater resistivity with depth). C. Calcu-
lated formation factor based on Model 2 (computing seawater resistivity as a function of temperature). D. Shipboard porosity data (McNeill et al., 2017c) at the 
vicinity of samples measured in this study.
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