

Hole 368-U1501B Core 1H, Interval 0.0-9.83 m (CSF-A)

Dark greenish gray CLAY-RICH CALCAREOUS OOZE WITH SILT, CLAY-RICH CALCAREOUS OOZE and minor greenish gray CALCAREOUS OOZE interbeds. Bioturbation is heavy. Some beds are fining upward.

Hole 368-U1501C Core 1H, Interval 0.0-9.24 m (CSF-A)

Dark greenish gray and dark gray CLAY-RICH CALCAREOUS OOZE and CLAY-RICH CALCAREOUS OOZE WITH SILT interbeds. Bioturbation is moderate to heavy. The top 21 cm is light brown CLAY-RICH CALCAREOUS OOZE.

4

Hole 368-U1501C Core 3H, Interval 18.8-28.56 m (CSF-A)

Dark greenish gray and dark gray CLAY-RICH CALCAREOUS OOZE and CLAY-RICH CALCAREOUS OOZE WITH SILT interbeds. Silicic ash pod of 1 cm diameter at 27 cm in Section 1. Bioturbation is moderate to heavy.

Hole 368-U1501C Core 13H, Interval 113.8-123.83 m (CSF-A)

Light brown CLAY-RICH NANNOFOSSIL OOZE WITH FORAMINIFERS and CLAY-RICH NANNOFOSSIL OOZE. Bioturbation is moderate to heavy. Lower part of the core is modified by basal flow-in drilling disturbance.

Hole 368-U1501C Core 40X, Interval 257.0-265.35 m (CSF-A) Greenish gray CLAY-RICH NANNOFOSSIL OOZE. Bioturbation is heavy with occasional Zoophycus trace fossils. Sediment is well consolidated. Biscuits by drilling disturbance throughout the core. Disturbance type Disturbance intensity RGB Depth CSF-A (m) Core length (cm) 6 8 Magnetic susceptibility سيليسليس Natural gamma 6 160 radiation Bioturbation Lith. unit Section (x10⁻⁵ SI) (cps) intensity Shipboard samples Core Graphic Sedimentary Age 140 160 Ash 44 33 29 012345 image lithology structures հավավավ 257 0 2 8 🕅 1 PMAG 258 100 MAD 259 200 2 8 260 300 8 3 Early Miocene 400 261 IE PMAG 262 500 · MAD 8 4 XRD CARB ICP IW CARB HS 263 600 PMAG 5 8 264 700 · 8 MAD 6 265 800 CC PAL DIAT FORAM NANNO

Hole 368-U1501C Core 42X, Interval 273.7-283.46 m (CSF-A) Greenish gray CLAY-RICH NANNOFOSSIL OOZE. Bioturbation is heavy with Zoophycus, Chondrites and Planolites. Sediment is well consolidated. Normally graded laminations at the base of Section 5. Moderate biscuit formation by drilling disturbance throughout the core. Disturbance intensity RGB Depth CSF-A (m) Disturbance type Core length (cm) 126 136 146 Magnetic susceptibility հասհասհաս Natural gamma 26 136 146 156 radiation Lith. unit Bioturbation Section (x10-5 SI) (cps) համասնան intensity Core Shipboard Graphic Sedimentary Age 146 156 Ash 136 5 10 20 20 32 37 42 47 012345 image lithology structures samples hund 0 274 8# 1 MAD PMAG 100 275 200 · SED Early Miocene 8 2 276 300 277 PMAG 3 8 MAD 400 278 IE 500 8 4 279 CARB IW HS 600 280 8 MAD 5 700 Oligocene 281 TkL PMAG 800 8 6 282 ICP XRD CARB 900 8 7 PMAG 283 8 СС NANNO DIAT PAL FORAM

Hole 368-U1501C Core 43X, Interval 283.3-293.15 m (CSF-A)

Greenish gray CLAY-RICH NANNOFOSSIL OOZE. Bioturbation is heavy with Zoophycus, Chondrites and Planolites. Sediment is well consolidated. Moderate biscuit formation by drilling disturbance throughout the core.

Hole 368-U1501C Core 44X, Interval 292.9-302.56 m (CSF-A) Alternating beds of gray and light greenish gray NANNOFOSSIL OOZE WITH CLAY AND FORAMINIFERS. Patches of pyrite in light greenish beds. Bioturbation is heavy. Moderate biscuit formation by drilling disturbance throughout the core. Disturbance intensity RGB Depth CSF-A (m) Disturbance type Core length (cm) 84 168 88 88 128 Magnetic susceptibility համաման Natural gamma 28 18 168 188 radiation Lith. unit Bioturbation Section (x10-5 SI) (cps) فلتسلقط intensity Core Shipboard Graphic Sedimentary Age 148 168 128 88 6 2 6 6 4 0 7 Ash 35 25 36 30 012345 image lithology structures samples 0 32 293 MAD PMAG CARB 1 8 Amon Manana 100 -294 200 · 295 2 1 wann www. 300 SED 296 PMAG CARB MAD 3 1 400 297 Oligocene ICP 500 -298 1 4 IF CARB IW HS 600 299 5 8 MAD 700 300 XRD PMAG 6 8 800 -301 PMAG 7 8 900 302 "/, сс NANNO CARB SED FORAM DIAT FORAM PAL SED FORAM

Hole 368-U1501C Core 46X, Interval 312.1-321.81 m (CSF-A)

Dark greenish gray NANNOFOSSIL-RICH CLAY, very dark greenish gray CLAY WITH NANNOFOSSILS and greenish SILTY CLAY. There is an increase of pebble-sized clasts in Section 5. Bioturbation is heavy. Moderate biscuit formation by drilling disturbance throughout the core.

Depth CSF-A (m)	Core length (cm)	Section	Lith. unit	Core image	Graphic lithology	Ash	Age	RGB 88 88 88 110 111	Natural gamma radiation (cps) 祭 等 路 路	Magnetic susceptibility (x10 ⁻⁵ SI) + 75 + 75 hundrondumb	Sedimentary structures	Bioturbation intensity 0 1 2 3 4 5	Disturbance type Disturbance intensity	Shipboard samples
-	0							the second s	ł	5				- XRD
313 -	100 -	1						CANNAN CAN					8 /	MAD -
-					·				Ę				н	-
314 -	200 -	2							Ì,				e /	SED - SED - SED
-		2						and and and					0,	
315	300 -							and the second se	7				Ш	-
- - 316 –	400 -	3			······································			ALL CAR	\mathbf{r}				8 /	ICP PMAG MAD -
-	400						0	All and a second	5				Ш	-
- 317 –	500 -		IIA				Oligocene	and the second se	Ł				. /	-
-		4						A started	J.				9,	SED -
318	600 -							TT	Ę.		6000		ii.	W – CARB HS –
		5						and the second s	7				8 /	CARB - SED - PMAG -
-	700 -				- <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>-</u> - <u>+</u> - <u>+</u> - <u>+</u> - <u>+</u>				Ę				Ш	SED -
320 —	800 -	6						And Aller	Į				≩ ¦	-
-		Ŭ			, , , , , , , , , , , , , , , , , , ,				<u>}</u>				* 1	- SED -
321	900 -	7							Ł				8 /	SED - SED - PMAG SED SED - MAD -
-		сс)					₹ (- NANNO PAL DIAT
														FORAM

Hole 368-U1501C Core 47X, Interval 321.7-331.18 m (CSF-A)

Very dark greenish gray NANNOFOSSIL-RICH CLAY. Sediment is well consolidated. Coarse sand-sized pyrite concretion in Section CC, 15-24 cm. Bioturbation is heavy. Moderate biscuit formation by drilling disturbance throughout the core.

Depth CSF-A (m)	Core length (cm)	Section	Lith. unit	Core image	Graphic lithology	Ash	Age	RGB 911 202 202 202 202 202 202 202 202 202 2	Natural gamma radiation (cps) 육 윦 윦	Magnetic susceptibility (x10 ⁻⁵ SI)	Sedimentary structures	Bioturbation intensity 0 1 2 3 4 5	Disturbance type Disturbance intensity	Shipboard samples
322 -	0							- And		M				DIAT . PMAG CARB
	100 -	1						the manual of the second se	}	Murring			8 /	MAD
	200 -	2						and and a start of the					82 <i> </i> #1	SED -
	300 -				ZZ 			and the second		$\mathbb{A}_{\mathcal{M}}$			Ш	- - -
325 -	400 -	3					٥				222		8 /	XRD PMAG
- - - 327 – -	500 -	4	IIA				Oligocen	the state of the s					× / × /	-
	600 -									Mr. marine				CARB · WW HS · PMAG · ICP DIAT
	700 -	5								Mannam			8	MAD SED -
330 -	800 -	6						MULANIMAN	<pre>}</pre>	Mr. M. M. Marken			8	- -
331 –	900 -	сс						A Contraction of the Contraction	}				9	- NANNO FORAM DIAT PAL

Hole 368-U1501C Core 48X, Interval 331.3-340.46 m (CSF-A)

Dark greenish gray NANNOFOSSIL-RICH CLAY and NANNOFOSSIL-RICH CLAY WITH GLAUCONITE. Sediment is well consolidated. Pebble-sized pyrite concretions in Section 5, 28-30 cm and 111-113 cm. Bioturbation is heavy. Moderate biscuit formation by drilling disturbance throughout the core.

Depth CSF-A (m)	Core length (cm)	Section	Lith. unit	Core image	Graphic lithology	Ash	Age	RGB 92 92 92 94 92 94 94 94 94 94	Natural gamma radiation (cps) 4 8 8	Magnetic susceptibility (x10 ⁻⁵ SI)	Sedimentary structures	Bioturbation intensity 0 1 2 3 4 5	Disturbance type Disturbance intensity	Shipboard samples
-	0								}				П	-
332 -	100 –	1						APUL-Apple March					8	PMAG CARB MAD
333	200 -							WICH WWW	ž					- SED
- - 334 - -	300 -	2						All hand	<pre></pre>		aaaa 		8	SED SED
335 -		3							Z				8	- - - MAD _
	400 -		IIA				igocene	A A A A A A A A A A A A A A A A A A A	Z		¶ 1000			TSB SED - PMAG
-	500 -	4					ō		\$	****			8	-
337 -	600 -			2					{					CARB
338 -	700 -	5						Mary Mary		- Arrive			8	XRD - CARB ICP - MAD -
								and the second	5					SED -
340 -	800 -	6						When the second s	3	ment of the second seco			8	PMAG - - SED _
	900 -	сс		PPS				A Comment					%	PAL – FORAM NANNO DIAT

Hole 368-U1501C Core 49X, Interval 340.8-350.49 m (CSF-A) Very dark greenish gray NANNOFOSSIL-RICH CLAY and NANNOFOSSIL-RICH CLAY WITH GLAUCONITE. Pyrite concretions in Section 6, 105 cm. Sediment is well consolidated. Bioturbation is heavy. Moderate biscuit formation by drilling disturbance throughout the core. Disturbance intensity RGB Depth CSF-A (m) Disturbance type Core length (cm) -52 -72 -72 -92 112 132 Magnetic susceptibility . Tuninninninni Natural gamma 52 72 92 112 132 radiation Lith. unit Bioturbation Section (x10-5 SI) (cps) ليتتبلين intensity Core Shipboard Graphic Sedimentary Age 112 132 Ash 52 72 92 46 51 61 66 14 24 012345 image lithology structures samples . L. 0 341 PMAG 1 MAD 100 342 200 · 343 SED 2 DIAT 300 344 monorman PMAG 3 MAD 400 345 Oligocene IIA 8 500 346 4 IW CARB HS 600 347 MAD SED 5 700 XRD PMAG ICP CARB 348 1 monte and the second second 800 6 349 7 MAD PMAG 900 350 СС DIAT PAL FORAM NANNO

Hole 368-U1501C Core 50X, Interval 350.4-359.68 m (CSF-A)

Dark greenish gray SILTY CLAY WITH NANNOFOSSILS. Sediment is well consolidated. Whitish ash pods in Section 2, 0-65 cm. Pyrite throughout the core. Bioturbation is heavy. Moderate biscuit formation by drilling disturbance throughout the core.

Hole 368-U1501C Core 51X, Interval 360.0-369.98 m (CSF-A)

Very dark greenish gray SILTY CLAY WITH NANNOFOSSILS. Sediment is well consolidated. Pyrite, organic material and sand-sized grains (sometimes glauconite) distributed in the sediment. Bioturbation is heavy. Moderate biscuit formation by drilling disturbance throughout the core.

Depth CSF-A (m)	Core length (cm)	Section	Lith. unit	Core image	Graphic lithology	Ash Age	RGB 96 91 92 94 94 96 96 96 96 96	Natural gamma radiation (cps) 8 8 8 8	Magnetic susceptibility (x10 ⁻⁵ SI) ⁹ ² ⁸	Sedimentary structures	Bioturbation intensity 0 1 2 3 4 5	Disturbance type Disturbance intensity	Shipboard samples
360	0							}				П	
361 -	100 -	1							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			8	SED MAD PMAG CARB
362	200 -	2						3				8 	-
363 -	300 -							5	m				SED
- 364 — -	400 -	3					AND CONTRACTOR	$\sum_{i=1}^{n}$	www.www			8	MAD - SED - - PMAG -
- 365 — -	500 -	4	IIA			Oligocene		5	mun			8 †	- -
- 366 - -	600 -							5					HS
367 -	700 -	5							mult			8	PMAG - MAD -
	800 -						NN ANA	A A A A A A A A A A A A A A A A A A A				lİ	-
360	900 -	6						2	w www			8 †	-
	500 -	7							Source of the second			8	PMAG CARB -
		сс										8 †	NANNO FORAM PAL

Hole 368-U1501C Core 52X, Interval 369.6-379.64 m (CSF-A)

Very dark greenish gray SILTY CLAY WITH SAND. Moderately sorted. Foraminifers and other larger shell fragments are common. Pyrite, organic material and sand-sized grains (sometimes glauconite). Sediment is well-consolidated. Bioturbation is moderate. Moderate biscuit formation by drilling disturbance throughout the core.

Hole 368-U1501C Core 53X, Interval 379.2-385.33 m (CSF-A) Glauconite-rich CLAYEY SILT, SILTY SAND and SAND. Moderately to poorly sorted. Foraminifers and other shell fragments are common. Sediment is well-consolidated. Bioturbation is moderate. Biscuit formation by drilling disturbance throughout the core. Disturbance intensity RGB Depth CSF-A (m) Disturbance type Core length (cm) 40 84 64 Magnetic susceptibility مأستأت Natural gamma 104 radiation 84 64 Bioturbation Lith. unit Section (x10-5 SI) (cps) بتليتينك intensity Core Graphic Shipboard Sedimentary Age 104 Ash 58 68 78 2 20 8 7 8 铃 012345 image lithology structures samples 11 . . . 0 PMAG XRD MAD 1 8 380 100 381 200 · 8 Ħ 2 382 SED CARB IW HS Oligocene 300 IIA 8 3 383 ICP 400 America CARB PMAG 384 MAD 500 -4 8 385 8 ₹ cc 600 SED FORAM NANNO PAL

Hole 368-U1501C Core 54X, Interval 388.8-398.79 m (CSF-A) Glauconite-rich CLAYEY SILT with SAND. Moderately sorted. Foraminifers and other shell fragments are common. Sediment is well-consolidated. Bioturbation is moderate. Three claystone (?) pebbles. Normal faulting. Biscuit formation by drilling disturbance throughout the core. Disturbance intensity RGB Depth CSF-A (m) Disturbance type Core length (cm) 64 84 104 124 Magnetic susceptibility ົ້ແມ່ມີແມ່ແມ່ມມີ Natural gamma 64 84 104 124 radiation Lith. unit Bioturbation Section (x10-5 SI) (cps) ليتتبليتنان intensity Core Shipboard Graphic Sedimentary Age 84 104 124 144 Ash 50 70 8 48 8 68 48 8 8 012345 image lithology structures samples hundundu 0 77 389 PMAG 1 8 A MAD 100 390 Oligocene 200 · 391 8 2 300 392 CARB PMAG MAD 8 3 A 400 393 IΙΒ 500 ICP 8 394 4 CARB IW HS 600 395 Eocene 8 MAD 5 700 396 PMAG XRD 800 397 6 8 900 398 7 8 PMAG CARB 8 СС NANNO PAL FORAM

Hole 368-U1501C Core 55X, Interval 398.4-408.3 m (CSF-A) Glauconite-rich CLAYEY SILT with SAND. Moderately sorted. Foraminifers and other shell fragments are common. Pods of shell-rich glauconite sand. Sediment is well-consolidated. Bioturbation is moderate. Concretions of pyrite and clay. Biscuit formation by drilling disturbance throughout the core. Disturbance intensity RGB Depth CSF-A (m) Disturbance type Core length (cm) 1110 135 160 85 Magnetic susceptibility minimum Natural gamma 85 110 135 160 radiation Lith. unit Bioturbation Section (x10-5 SI) (cps) ամասհասհամ intensity Core Shipboard Graphic 85 110 135 160 Sedimentary Age Ash 62 2 22 42 32 42 2 52 012345 image lithology structures samples հավավավա 0 399 8 1 Ĥ PMAG MAD 100 400 · m 200 · 2 8 Ħ 401 300 CARB PMAG MAD 402 8 3 A 400 403 Eocene ICP IΙΒ 500 · 4 8 Ħ 404 · 600 HS 405 PMAG MAD 8 5 A 700 406 800 -8 6 A 407 · { } } 900 MMUUMMAL 8 7 - AH PMAG XRD 408 сс 8# FORAM PAL NANNO

Hole 368-U1501C Core 56X, Interval 408.0-417.85 m (CSF-A) Alternating beds of glauconite-rich CLAYEY SILT, SILTY SAND and SAND. Foraminifers and other shell fragments are common, often together with glauconite sand. Sediment is well-consolidated. Bioturbation is moderate. Biscuit formation by significant drilling disturbance throughout the core. Disturbance intensity RGB Depth CSF-A (m) Disturbance type Core length (cm) 84 104 124 64 Magnetic susceptibility նումումում Natural gamma 84 104 124 radiation 64 Lith. unit Bioturbation Section (x10-5 SI) (cps) بآبيتيآ intensity Core Shipboard Graphic Sedimentary Age 104 Ash ³ ⁸ ² 84 54 44 74 54 8 012345 image lithology structures samples hundrudin 408 0 8 # MAD 1 409 100 PMAG 410 -200 2 8 h SED 411 300 Here of the second of the second of the PMAG CARB MAD 8 3 Ħ 412 400 Eocene IIΒ 413 500 · 8 4 ICP h CARB IW HS 414 600 8 5 A MAD 415 700 · XRD PMAG 416 800 8 6 A 417 900 PMAG CARB 8 7 R СС 8 # FORAM NANNO PAL

Hole 368-U1501C Core 58X, Interval 427.2-437.12 m (CSF-A)

Very dark greenish gray SILT SAND, CLAYEY SILT AND SANDY SILT. Well consolidated. Moderate bioturbated. Cross-bedding structure (Section 4,5,6,7 and CC). Common shell fragments. Two pebble size concretions (Section 2 at 60.5-61.5 cm and CC at 16-18 cm).

61

Hole 368-U1501C Core 61X, Interval 448.3-453.02 m (CSF-A)

Dark greenish gray sand and dark gray, very dark gray SANDSTONE. Sediment is moderately consolidated to lithified. Bioturbation is slight. Pyrite patches. Granule to small pebble size shell fragments.

				Hole	368-U1501D (Core 11, Interva	l 0.0-433.5 m	(CSF-A)			
DRILI	ED INTERVA	L									
(E)	Ê				RGB %; <u>v</u> ; %;					rpe itensity	
SF-A	ngth (c t					Natural gamma radiation	Magnetic susceptibility		Pioturbation	ance ty ance ir	
epth C	ore ler ection ith. uni	Core	Graphic	ge ge	о 0.25 ПС 0.55 ПС 0.75 ПС 1 1	0 0.25 0.75 (90)	0.25 0.25 0.75 0.75	Sedimentary	intensity	iisturba	Shipboard
	L N O	Image	lithology		huduuluul		- Innfundund	structures			samples
-											-
425											-
											-
426 -											-
-											-
- 427 -											-
-											
-											-
428 -											-
											-
429 -											-
-											-
430 -											-
-											-
											-
431 -											-
-											-
432 -											-
-											
433 -											-
-											-

Hole 368-U1501D Core 2R, Interval 433.5-441.12 m (CSF-A)

Very thick beds of dark greenish gray CLAYEY SILT WITH SAND alternating with dark greenish gray SAND-RICH SILT WITH CLAY. Abundant sand-sized glauconite grains and shell fragments distributed throughout the core. Glauconite forms thin lens-shaped beds in Section 5. Centimeter-sized pyritised burrows in Section 5. Slight bioturbation and moderate drilling disturbance.

Hole 368-U1501D Core 3R, Interval 443.1-448.29 m (CSF-A)

Dark greenish gray SAND-RICH SILT WITH CLAY with coarse sand in Sections 1 and 2. Abundant sand-sized glauconite and quartz grains and few small shell fragments distributed throughout the core. Glauconite and quartz may be enriched in thin lens-shaped beds. Centimeter-sized pyritised burrows in Sections 1 and 2. Slight bioturbation and moderate to high drilling disturbance.

Hole 368-U1501D Core 4R, Interval 452.6-454.44 m (CSF-A)

Alternating thick beds of fine and coarse-grained, gray SANDSTONE. Angular cobble-sized clasts of fine-grained sandstone embedded in coarse-grained sandstone in Section 1. Quartz and other felsic minerals dominate; shell fragments abundant and glauconite common. Wood fragment and claystone pebble in Section 1.

Hole 368-U1501D Core 6R, Interval 471.8-471.95 m (CSF-A) Fine-grained, gray SANDSTONE. Bioturbation is moderate. Disturbance intensity RGB Depth CSF-A (m) Disturbance type Core length (cm) 112 132 152 92 Magnetic susceptibility Natural gamma radiation rindniquitin 92 112 132 152 (x10⁻⁵ SI) Lith. unit (cps) Bioturbation Section համասնան intensity Graphic lithology - 0 - 0.25 - 0.5 - 0.75 - 1 0 0.25 0.25 0.75 Shipboard samples Sedimentary Core 92 112 152 Age Ash 012345 image structures 0 CC IIC ≥ } HS PMAG PAL Т

Hole 368-U1501D Core 16R, Interval 567.8-573.88 m (CSF-A)

Alternating beds of greenish gray SILTY SANDSTONE and well-consolidated SAND with glauconite. Massive and upward fining bedding. Pyritized burrows in Section 2. Silty sandstone has reddish and brownish discolored intervals (Sections 3 and 4).

Hole 368-U1501D Core 17R, Interval 577.4-582.75 m (CSF-A)

Alternating beds of massive greenish-gray SILTY SANDSTONE and upward fining well-consolidated SAND with glauconite. Reddish to brownish discoloration common throughout core and strong in lower Section 1 and upper Section 2.

Hole 368-U1501D Core 18R, Interval 586.9-591.41 m (CSF-A)

Alternating thick beds of massive greenish-gray SILTY SANDSTONE and upward fining well-consolidated SAND with glauconite. Reddish to brownish patchy discoloration in upper part of the core. Clay-filled burrows (?) in lower part of Section 2.

Hole 368-U1501D Core 19R, Interval 596.5-599.95 m (CSF-A)

Weakly graded, thick beds of well-consolidated glauconite SAND overlying thick beds of well-sorted, gray SANDSTONE of slightly variable color. Horizon with 2-5 cm sized rounded, very coarse-grained SANDSTONE cobbles in Section 3, 8-22 cm.

Hole 368-U1501D Core 20R, Interval 606.1-610.21 m (CSF-A) Poorly-sorted, feldspar-rich very coarse-grained gray SANDSTONE with pebbles and cobbles. Parallel laminations. Rounded granite cobble in Section 2, 37-44 cm. Claystone pebbles common. Disturbance intensity RGB Depth CSF-A (m) Disturbance type Core length (cm) 4 \$ 06 Magnetic فالتسابي Natural gamma susceptibility 4 radiation (x10⁻⁵ SI) 6 4 Bioturbation Lith. unit Section (cps) تتليتينا intensity Shipboard samples 1000 Core Graphic Sedimentary Ash Age 140 500 8 8 74 8 0 012345 image lithology structures hundrudu 0 TS TSB ≡ % 1 607 100 608 200 · 2 IIIA ≡ 1 MAD HS 609 300 -≡ 3 1 ICP PMAG 610 400

Hole 368-U1501D Core 22R, Interval 615.7-619.68 m (CSF-A)

Poorly-sorted, feldspar-rich, coarse-grained SANDSTONE with pebble-size calcite clasts. Well-sorted very dark gray SILTSTONE in Section 3, 81-101 cm. Extremely poorly-sorted CONGLOMERATE in Section 3, 101-104 cm and CC, 1-15 cm.

Hole 368-U1501D Core 24R, Interval 625.2-629.43 m (CSF-A) Gray, poorly-sorted, feldspar-rich, coarse and very coarse-grained SANDSTONE with frequent pebble and cobbles. Cobble of possibly igneous origin in Section 2, 33-37 cm. Disturbance type Disturbance intensity RGB Depth CSF-A (m) 75 100 125 150 Core length (cm) Magnetic հատհատհատհա Natural gamma susceptibility 75 100 125 150 radiation (x10⁻⁵ SI) Bioturbation Lith. unit Section (cps) համակություն intensity 1000 Shipboard samples Core Graphic 1500 Sedimentary 75 100 125 150 Ash Age 500 32 52 72 0 012345 image lithology structures ահահամ 0 5 Μ MAD 1. 1 Μ 626 100 ≡ Μ ≡ 627 200 -2 ₽ 1 IIIA ≡ 628 300 3 ≡ 1 XRD PMAG MAD HS 629 400 cc 1, ≡

Hole 368-U1501D Core 26R, Interval 634.7-638.16 m (CSF-A)

Alternating beds of gray, feldspar-rich coarse to very coarse-grained SANDSTONE with medium and fine grained, and finely laminated SANDSTONE. Fine and/or convolution laminations in fine to medium SANDSTONE.

