Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm. Slide \#					
379	1352	C	$2 F$	A	102	$\int S$

Observer	$D R$

LITHOLOGY: \qquad (dominant)

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
C	Radiolarians
	Diatoms
C	Silicoflagellates
N	Sponge spicules
	Others
	Organic Debris
	Plant Debris

Comments:
Diatom + spang spicily fragments.
fou il dodoma wisent. sits size
mineral grains and diatoms spicule proghents.

Leg	Site	Hole	Core	Section	Position (cm) in core	
					Sm.Slide \#	
379	1352	C	2 E	$2 A$	72	$5 S 2$

Observer	$D R$

LITHOLOGY: \qquad (dominant)

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
Tr	Siliceous
A	Radiolarians
	Diatoms
A	Silicoflagellates
\boldsymbol{R}	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:
Fur diations prevent. Texture is
mostly clay so abundances of biogeneses is very relative hadiolarioh fragments present.

Leg	Site	Hole	Core	Section	Position (cm) in core	
		Sm.Slide \#				
379	1352	C	$2 f$	44	50	553

Observer	$D R$

LITHOLOGY: \qquad (dominant) \qquad (minor) ($=100 \%$)
COMPOSITION: \% Terrigenous
 \% Biogenic

Siliciclastic texture (\%)			
$\%$ Sand	$\%$ Silt	$\%$ Clay	
	5	95	

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
7	Siliceous
R	Radiolarians
	Diatoms
7	Silicoflagellates
7	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:

Texture is marty clay so abundapes of biogenic material is very relative. Diatom spicule a radidlanion froguents compose majority of site site fraction.

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm.Slide \#					
379	1352	C	ζF	$2 A$	6	$S S 4$

LITHOLOGY: \qquad (dominant)

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
R	Radiolarians
R	Diatoms
$T r$	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:
fragments of diatoms a sponge spicules.

LITHOLOGY: COMPOSITION: \% Terrigenous 85 (dominant) \qquad (minor)

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
	15	\%5

$$
(=100 \%)
$$

($=100 \%$)

Abundance Code
$\leqq 1 \%=T R$ (trace)
$1 \%-10 \%=R$ (rare)
$10 \%-25 \%=C$ (common)
$25 \%-50 \%=A$ (abundant)
$>50 \%=D$ (dominant)

Comments:

Diatom of sponge spicule fragments.

Comments:

Leg	Site	Hole	Core	Section	Position (cm) in core	
379					Sm. Slide \#	
1352	C	57	$1 A$	40	$\int 57$	

Observer	$O R$

LITHOLOGY: \qquad (dominant) \qquad

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
R	Radiolarians
R	Diatoms
R	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:

LITHOLOGY: \qquad (dominant)

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
	L	人

$(=100 \%)$

Comments:

diatom a sponge spicule frogments.

Leg	Site	Hole	Core	Section	Position (cm) in core	
379	1352	C		$6 F$	1	19

Comments:
Mineral mich.
Siliceous rich!

Leg	Site	Hole	Core	Section	Position (cm) in core	
379	1352	C	Sm. Slide \#			

Observer	CS

LITHOLOGY: $\frac{\text { SILT }}{\text { COMPOSITION: \% Terrigenous }}$
(dominant) CLAY (minor)
COMPOSITION: \% Terrigenous $\quad 60$

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
1	59	40

$\%$ Biogenic $40 \quad(=100 \%)$
Biosiliceons Mich Abundance Code $\frac{\text { Abundance Code }}{} \leqq 1 \%=\mathrm{TR}$ (trace) $1 \%-10 \%=\mathrm{R}$ (rare) $10 \%-25 \%=$ C(common) 25% - 50% = ((abundant) $>50 \%$ = (dominant)

Ab. Code	Component
BIoGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
TR	Radiolarians
C	Diatoms
	Silicoflagellates
C	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris
	I Fish Remains (teeth, bones, scales)

Comments:

Hentative: fungal spore for

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm. Slide \#					
379	1352	C	6 F	1	94	5511

 (dominant)
 (minor) COMPOSITION: \% Terrigenous
 \% Biogenic

($=100 \%$)

Siliciclastic texture (\%)		
$\%$ Sand	$\%$ Silt	$\%$ Clay
1	98	2

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Fish t Remains (teeth, bones, scales)

Comments:

Few coarst-sit sized mineral granites
Sampled white lenses

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm.Slide \#					
379	1352	C	6 F	2	82	5512

Ab. Code	Component
SILICICLASTIC GRAINS/MINERALS	
	Framework minerals
R	Quartz
R	Feldspar
	K-feldspar
	Plagioclase
	Rock Fragments
VOLCANIC/PLUTONIC GRAINS	
	Euhedral crystals
	Vitric grain (glass, pumice)
	Palagonite (altered glass)
ACCESSORY/TRACE MINERALS	
	Sheet Silicates
	Biotite
TR	Muscovite
C	Chlorite
	Fe-Mg silicates
TR	Amphibole (hornblende)
	Garnet
	Pyroxene
	Olivine
	Other indicator minerals
	Glauconite
	Chert
	Zircon
	Apatite
	Titanite (sphene)
	Carbonate
	Authigenic minerals
	Barite
	Manganese Oxide
	Zeolite
	Opaque Minerals
	Pyrite
$T R$	Fe-oxide / Fe-hydroxide

Ab. Code	Component
BIOGENiC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
R	Radiolarians
	Diatoms
(R	flifoflagellates
R	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris
	Fish Remains (teeth, bones, scales)

Comments:

Leg	Site	Hole	Core	Section	Position (cm) in core Sm. Slide \#		
379	1352	C	$6 F$	3	51.5	55	13

Comments:
diatom" spicule fragments
chlorite may be retrograde nim. phase

For werles hes aby:
roundish impurity-filled Brownish grains, mod. low binefriggace nab. NOT glauconite

$$
\rightarrow \text { (anomalous blue cetinction) }
$$

| Leg | Site | Hole | Core | Section | Position (cm)
 in core | | Sm.Slide \# |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad| Observer | CS | | | |
| :---: | :---: | :---: | :---: | :---: |
| 379 | 1352 | C | $6 F$ | 4 |
| 28 | $55(4$ | | | |

Ab. Code	Component
BIOENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
C	Radiolarians
	Diatoms
C	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris
	Fish Remains (teeth, bones, scales)

Comments:

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm. Slide \#					
379	1352	C	7	1	70	55

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms $\quad \times R$
R	Silicoflagellates
	Sponge spicules \times
	Others
	Organic Debris
	Plant Debris

Comments:
biog. tiny fragments mineral: $v=$ fine silt size

Leg	Site	Hole	Core	Section	Position (cm) in core	
379	1352	C	7	3	47	5516

Comments:
very fine silt = mineral grains

Leg	Site	Hole	Core	Section	Position (cm)	
	Sm. Slide \#					
379	1352	C	7	3	106	55

Observer	$C S$

lithology:

(dominant)
 (minor) COMPOSITION: \% Terrigenous 90
\% Biogenic
 I ($=100 \%$)

Siliciclastic texture (\%)		
\% Sand	$\%$ Silt	$\%$ Clay
	20	80

Ab. Code	Component

Ab. Code	Component

Comments:

Min unknown ("woven" texture) persists

Leg	Site	Hole	Core	Section	Position (cm) in core	
379	1352	C	7	3	64	55

LITHOLOGY:

(dominant)

COMPOSITION: \% Terrigenous $65 \quad \%$ Biogenic 35 ($=100 \%$)

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
	40	60

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
A	Radiolarians
	Diatoms
A	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:

biog = all broken fragments
minute : very fires sit t size

Leg	Site	Hole	Core	Section	Position (cm) in core	
379					832	C

LITHOLOGY: \qquad (dominant)

COMPOSITION: \% Terrigenous

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
	15	85

(minor)

Abundance Code
$\leqq 1 \%=\operatorname{TR}$ (trace)
$1 \%-10 \%=R$ (rare)
$10 \%-25 \%=C$ (common)
$25 \%-50 \%=$ A (abundant)
$>50 \%=$ D (dominant)

Comments:
blosiliceous-beaing
say day

- diatom fragments

Leg	Site	Hole	Core	Section	Position (cm) in core	
349		532	C	$9 F$	4	20

Observer	Ruthie

LITHOLOGY: \qquad (dominant) $\frac{\text { (minor) }}{(=100 \%)}$ COMPOSITION: \% Terrigenous $\quad \underline{q}$

$$
\begin{aligned}
& \% \text { Bio } \\
& \text { (= } 100 \%)
\end{aligned}
$$

\qquad

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
90	10	

$$
\begin{aligned}
& \frac{\text { Abundance Code }}{\leqq 1 \%=T R} \text { (trace) } \\
& 1 \%-10 \%=R \text { (rare) } \\
& 10 \%-25 \%=C \text { (common) } \\
& 25 \%-50 \%=A \text { (abundant) } \\
& >50 \%=D \text { (dominant) }
\end{aligned}
$$

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
C	
C	Radiolarians
A	Diatoms
	Silicoflagellates
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:

$$
\begin{aligned}
& \text { opal: (cD .says so!) } \\
& \text { varthol centric diatoms } \\
& \text { very small high-reliet spheres }
\end{aligned}
$$ (2 д um diameter)

transparent, dent show up in cross'polars (isotropic) garnet? (Sandra)

Comments:
serp/tak "fish-scale"
complex present
whole diatoms!

$$
\begin{aligned}
& \text { possible garnet spheres } \\
& \text { (hi-heliet, isotropic) }
\end{aligned}
$$

\square
lithology: biosilic. bear, silty clay (dominant)_ (minor)

COMPOSITION: \% Terrigenous
Siliciclastic texture (\%) \% Sand $\%$ Silt $\%$ Clay 5 20 75

Comments:

talc (?) filaments

COMPOSITION: \% Terrigenous

(dominant)
\% Biogenic
 (minor) ($=100 \%$)

Siliciclastic texture (\%)			
\% Sand	\% Silt	\% Clay	
2	2	96	

Abundance Code $\leqq 1 \%=\mathrm{TR}$ (trace) $1 \%-10 \%=$ R (rare) $10 \%-25 \%=$ C (common) $25 \%-50 \%=$ A (abundant) $>50 \%=$ D (dominant)

Comments:

Leg	Site	Hole	Core	Section	$\|l\|$ Position (cm) in core	
379	U_{1532}	C	11 F	3	15	5525

| Observer | Sandra |
| :--- | :--- | lithology: biosilioou-beany(dominant) COMPOSITION: \% Teirrigenous $844 \quad$ Biogenic

 (minor)
 $(=100 \%)$

Ab. Code	Component
SILICICLASTIC GRAINS/MINERALS	
	Framework minerals
	Quartz
	Feldspar
	K-feldspar
	Plagioclase
	Rock Fragments
VOLCANIC/PLUTONIC GRAINS	
	Euhedral crystals
	Vitric grain (glass, pumice)
	Palagonite (altered glass)
ACCESSORY/TRACE MINERALS	
	Sheet Silicates
	Biotite
	Muscovite
	Chlorite
	Fe-Mg silicates
	Amphibole (hornblende)
	Garnet
	Pyroxene
	Olivine
	Other indicator minerals
	Glauconite
	Chert
	Zircon
	Apatite
	Titanite (sphene)
	Carbonate
	Authigenic minerals
	Barite
	Manganese Oxide
	Zeolite
	Opaque Minerals
	Pyrite
	Fe-oxide / Fe-hydroxide

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
$1 \% \%$	Radiolarians
10%	Diatoms
3%	Silicoflagellates
2%	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris
	Fish Remains (teeth, bones, scales)

Comments:

Leg	Site	Hole	Core	Section	Position (cm) in core	
34^{9}		53^{2}	C Slide \#			

LITHOLOGY: $\frac{\mathrm{ClQ} y}{0}$ (dominant)
COMPOSITION: \% Terrigenous $96 \quad$ \% Biogenic

\[

\]

Siliciclastic texture (\%)			
\% Sand	\% Silt	\% Clay	
2	2	96	

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
3%	Radiolarians
	Diatoms
	Silicoflagellates
$1 / 0$	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:
high-relief rounded and pitted sand grain, isotropic:

Leg	Site	Hole	Core	Section	Position (cm)	
					in core	Sm.Slide \#
3×9	53^{2}	C	12 F	1	50	5528

Observer Ruthie
 (dominant)

Ab. Code	Component
BIOGENIC GRAINS	
,	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
TR	Diatoms
	Silicoflagellates
Th	Sponge spicules
8	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris
	Fish Remains (teeth, bones, scales)

Comments:

Ab. Code	Component
Biogenic GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Silicoflagellates
	Sponge spicules
R	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Ab. Code	Component
SILICICLASTIC GRAINS/MINERALS	
	Framework minerals
	Quartz
	Feldspar
	K-feldspar
	Plagioclase
	Rock Fragments
VOLCANIC/PLUTONIC GRAINS	
	Euhedral crystals
	Vitric grain (glass, pumice)
	Palagonite (altered glass)
ACCESSORY/TRACE MINERALS	
	Sheet Silicates
	Biotite
	Muscovite
	Chlorite
	Fe-Mg silicates
	Amphibole (hornblende)
	Garnet
	Pyroxene
	Olivine
	Other indicator minerals
	Glauconite
	Chert
	Zircon
	Apatite
	Titanite (sphene)
	Carbonate
	Authigenic minerals
	Barite
	Manganese Oxide
	Zeolite
	Opaque Minerals
	Pyrite
	Fe-oxide / Fe-hydroxide

Comments:

Leg	Site	Hole	Core	Section	Position (cm) in core Sm. Slide \#	
379	1532	C	14	1	125.5	$S S 31$

COMPOSITION: \% Terrigenous 90
(dominant) biosiliceous - beur(min)

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
	12	88

Ab. Code	Component
BioGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
L	Silicoflagellates
	Sponge spicules
	Others
	Organic Debris
	Plant Debris
	Fish Remains (teeth, bones, scales)

Comments:

Comments:

Ab. Code	Component
SILICICLASTIC GRAINS/MINERALS	
	Framework minerals
A	Framework minerals
A	Feldspar
	K-feldspar
R	Plagioclase
	Rock Fragments
VOLCANIC/PLUTONIC GRAINS	
	Euhedral crystals
	Vitric grain (glass, pumice)
	Palagonite (altered glass)
ACC	SSORY/TRACE MINERALS
	Sheet Silicates
TR	Biotite
C	Muscovite
	Chlorite
	Fe-Mg silicates
	Amphibole (hornblende)
TR	Garnet
TR	Pyroxene
	Olivine
	Other indicator minerals
	Glauconite
	Chert
TR	Zircon
	Apatite
	Titanite (sphene)
	Carbonate
	Authigenic minerals
	Barite
	Manganese Oxide
	Zeolite
	Opaque Minerals
	Pyrite
R	Fe-oxide / Fe-hydroxide

Leg	Site	Hole	Core	Section	Position (cm) in core	
379	1531	C	15 F	2	72	5533

Observer	Benedict

LITHOLOGY: \qquad (dominant)

Ab. Code	
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:
Clay component chomped into dark aggregations
(slide prep)

Comments:
No biogtric componcat, Graies are coarse sitt sige \checkmark diverse mimalogy.

Comments:

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm.Slide \#					
379	1532	C	16	2	103	$5 s 36$

Observer	$C S$

Lithology: \qquad (dominant) \qquad COMPOSITION: \% Terrigenous $100 \quad \%$ Biogenic $<1 \quad(=100 \%)$

Siliciclastic texture (\%)		
$\%$ Sand	$\%$ Silt	$\%$ Clay
2	97	1

Abundance Code
$\leqq 1 \%=$ TR (trace)
$1 \%-10 \%=R$ (rare)
$10 \%-25 \%=C$ (common)
$25 \%-50 \%=A$ (abundant)
$>50 \%=\mathrm{D}$ (dominant)

Ab. Code	Component
BIOGENIC GRAINS	
	$\underline{\text { Calcareous }}$
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris
	Fish Remains (teeth, bones, scales)

Comments:

$$
\begin{aligned}
& \text { Subhedral pyroxene } \\
& \text { Some vitric grains }
\end{aligned}
$$

Leg	Site	Hole	Core	Section	Position (cm) in core Sm. Slide \#	
379	1532	C	$7 F$	$2 A$	72	$d \int 37$

Observer	$D R$

LITHOLOGY: \qquad (dominant)

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:
very small mineral grains and difficult to identify specific conaponent.

Original is missing?

Comments:

Quartz gains extrencely angulan: Shand

Epidote, subhednal

Plag, Qz
Tnace: Oliv, Amphib, Apatite

Comments:
$01, P 1$

Lange quout2, possib hy dnothen mol tased on abindance of fheid inclusions ohe $400 \times 600 \mathrm{~mm}$ grain

Abindance $P I$
Q2
Hbl
01
opaques (oxides, presumaby)

Comments:

Original is missing?

Leg	Site	Hole	Core	Section	Position (emt in core depth			Sm.Slide \#
379	1352	C	18	1	253.78	5538		

Comments:

Quartz quins extremely angular: Shane'

Epidote, subhednal
Flag, QL

Trace: Oliv, Amphib, Apatite

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm. Slide \#					
374	1352	c	18	2	77	<10

LITHOLOGY: \qquad (dominant) \qquad (minor)

COMPOSITION: \% Terrigenous \qquad
\qquad

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
	30	70

$$
(=100 \%)
$$

$$
\begin{aligned}
& \text { Abundance Code } \\
& \leqq 1 \%=T R \text { (trace) } \\
& 1 \%-10 \%=R \text { (rare) } \\
& 10 \%-25 \%=C \text { (common) } \\
& 25 \%-50 \%=A \text { (abundant) } \\
& >50 \%=D \text { (dominant) }
\end{aligned}
$$

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Spilicoflagellates
	Siliceous debris (undifferentiated)

Comments:

$$
y \text { fine sit t } \Rightarrow \text { min grains }
$$

TR: Epidote, subhedral

Leg	Site	Hole	Core	Section	Position (cm)	
	Sm. Slide \#					
379	1352	C	18	2	6	$5 s 41$

LITHOLOGY: \qquad (dominant)
COMPOSITION: \% Terrigenous $\quad 100$

Siliciclastic texture (\%)		
\% Sand	$\%$ Silt	$\%$ Clay
	15	85

$(=100 \%)$

Ab. Code	Component

SILICICLASTIC GRAINS/MINERALS

	Framework minerals
C	Quartz
C	Feldspar
	Kfeldspar
	Plagioclase
	Rock Fragments
	VOLCANIC/PLUTONIC GRAINS

	Euh
	Vitric
	Pala

Euhedral crystals
Vitric grain (glass, pumice)
Palagonite (altered glass)
ACCESSORY/TRACE MINERALS

	Sheet Silicates
	Biotite
C	Muscovite
	Chlorite
	Fe-Mg silicates
	Amphibole (hornblende)
	Garnet
	Pyroxene
	Olivine
	Other indicator minerals
	Glauconite
	Chert
	Zircon
	Apatite
	Titanite (sphene)
	Carbonate
	Authigenic minerals
	Barite
	Manganese Oxide
	Zeolite
	Opaque Minerals
R	Pyrite
R	Fe-oxide / Fe-hydroxide

\qquad (minor)

| (minor) |
| :---: | :---: | :---: |

($=100 \%$)

Abundance Code

 $\leqq 1 \%$ = TR (trace) $1 \%-10 \%=R$ (rare) $10 \%-25 \%=$ C (common) 25\%-50\% = A (abundant) $>50 \%=$ D (dominant)| Ab. Code | Component |
| :--- | :--- |
| BIOGENIC GRAINS | |
| | |
| | Calcareous |
| | |
| | Foraminifers |
| | Nannofossils |
| | |
| | Calcareous debris (undifferentiated) |
| | |
| | Siliceous |
| | Radiolarians |
| | Diatoms |
| | Silicoflagellates |
| | |
| | Siliceous debris (undifferentiated) |
| | |
| | |
| | |
| | Others |

Comments:

win quarts \underline{x} fine sill size Mu - lar ge silt singe one glass spew le

Leg	Site	Hole	Core	Section	Position (cm)		Observer	CS
					in core	Sm.Slide \#		
379	1532	C	19	2	73	5542		

LITHOLOGY: \qquad (dominant) \qquad
COMPOSITION: \% Terrigenous $100 \quad$ \% Biogenic

($=100 \%$)

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
	15	85

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Silicoflagellates
	Sponge spicules
	Others
	Organic Debris
	Plant Debris

Comments:

Comments:

$$
\begin{aligned}
& \text { minculzfaction, } y \text { free sit } \\
& (\text { grain })
\end{aligned}
$$

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm. Slide \#					
379	1332	C	$22 X$	$2 A$	104	5144

LITHOLOGY: \qquad (dominant)
\qquad (minor) COMPOSITION: \% Terrigenous \qquad -

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
	10	90

$$
(=100 \%)
$$

Comments:
cay clumps with silt siam meal grains, fiafom a sponge sifalle fragments.

- spherical glass balls?
"Spherule" - splosh of ash yon a meteror impact. twit?

Leg	Site	Hole	Core	Section	Position (cm) in core	
379				32	C	$22 \times$
A	3	3	8145			

(dominant)

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
\quad ($=100 \%$)		

Abundance Code

 $\leqq 1 \%=\operatorname{TR}$ (trace) $1 \%-10 \%=R$ (rare) $10 \%-25 \%=$ C (common) $25 \%-50 \%=$ A (abundant) $>50 \%=$ D (dominant)

Comments:
Diatom of Jialle Fragments

Leg Site Hole Core Section Position (cm) in core Sm.Slide \#
379
1352

| Ab. Code | Component |
| :--- | :--- | SILICICLASTIC GRAINS/MINERALS

	Framework minerals
R	Quartz
	Feldspar
	K-feldspar
	Plagioclase
	Rock Fragments
VOLCANIC/PLUTONIC GRAINS	

	Euhedral crystals
	Vitric grain (glass, pumice)
	Palagonite (altered glass)
ACCESSORY/TRACE MINERALS	

	Sheet Silicates
Tr	Biotite
T	Muscovite
	Chlorite
	Fe-Mg silicates
Tr	Amphibole (hornblende)
	Garnet
Tr	Pyroxene
	Olivine
	Other indicator minerals
	Glauconite
	Chert
	Zircon
	Apatite
	Titanite (sphene)
	Carbonate
	Authigenic minerals
	Barite
	Manganese Oxide
	Zeolite
	Opaque Minerals
	Pyrite
Tr	Fe-oxide / Fe-hydroxide

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
7	Diatoms
	Silicoflagellates
	Sponge spicules
	Others
	Organice Debris
	Plant Debris
	Fish Remains (teeth, bones, scales)

Comments:

Leg	Site	Hole	Core	Section	Position (cm) in core	
379					Sm.Slide \#	

Lithology: \qquad (dominant)

COMPOSITION: \% Terrigenous 97 \% Biogenic 3 ($=100 \%$)

Ab. Code	Component

SILICICLASTIC GRAINS/MINERALS

	Framework minerals
σ	Quartz
σr	Feldspar
	K-feldspar
	Plagioclase
	Rock Fragments

VOLCANIC/PLUTONIC GRAINS	
	Euhedral crystals
	Vitric grain (glass, pumice)
	Palagonite (altered glass)

ACCESSORY/TRACE MINERALS	
	Sheet Silicates
T	Biotite
	Muscovite
	Chlorite
	Fe-Mg silicates
	Amphibole (hornblende)
	Garnet
	Pyroxene
	Olivine
	Other indicator minerals
	Glauconite
	Chert
	Zircon
	Apatite
	Titanite (sphene)
	Carbonate
	Authigenic minerals
	Barite
	Manganese Oxide
	Zeolite
	Opaque Minerals
	Pyrite
7	Fe -oxide / Fe-hydroxide

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
91	Diatoms
II	Silicoflagellates
$7{ }^{2}$	Sponge spicules
II	Siliceous debris (undifferentiated)
I!	
	Others
	Organic Debris
1	Plant Debris
	Fish Remains (teeth, bones, scales)

Comments:

Leg	Site	Hole	Core	Section	Position (cm)	
	Sm.Slide \#					
379						

COMPOSITION: \% Terrigenous

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
	15	\%5

Ab. Code	Component
Biogenic GRAINs	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris
	Fish Remains (teeth, bones, scales)

Comments:
taken from dark lamination removed 3 lg sand grains to make 55 lie flat
glauconite:
talc

Leg	Site	Hole	Core	Section	Position (cm) in core	
379	1352	C	$23 \times$	4	74	559

LITHOLOGY: silty clay

Observer	Ruthie

COMPOSITION: \% Terrigenous 160

Siliciclastic texture (\%)		
\% Sand	\% Silt	$\%$ Clay
	70	80

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris

Comments:
taken right before onset of gremilRD"-nich whit
contains TR glauce still

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm. Slide \#					
379						

LITHOLOGY: clay
COMPOSITION: \% Terrigenous

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
5	10	85

$$
(=100 \%)
$$

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
R	Diatoms
	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:
taken from top of green clastrich unit
lots of clumped algae-looking aggregations; glauconite?
talc多

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:
taken midway the green cast rich wa
fecal pellets
common gave /algee-aggregates (grown) \rightarrow compose sand-size fac...

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm.Slide \#					
379	1352	C	$23 \times$	4	129	5552

LITHOLOGY: silty clay
COMPOSITION: \% Terrigenous

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
	30	70

(dominant)
(minor)
(= 100\%)

Ab. Code	Component
BiOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:
taken Rom transitional unit blew green-clast-rich unit and dark gray laminated whit
serp/talc complex
glave/aggregate (rare)
dark suff-artifacts?

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm.Slide \#					
379	1352	C	$23 \times$	5	19	5553

observer	Ruthie

LITHOLOGY: silty clay (dominant) (minor) COMPOSITION: \% Terrigenous

Siliciclastic texture (\%)			
\% Sand	\% Silt	\% Clay	
	20	80	

$$
(=100 \%)
$$

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:
in transinonal wit
glaue-nch

Leg	Site	Hole	Core	Section	Position (cm)	
	Sm.Slide \#					
379						

Observer	Ruthie

Lithology: _situ dan (dominant) (minor)

COMPOSITION: \% Terrigenous
100

$$
\begin{gathered}
\% \text { Bi } \\
(=100 \%)
\end{gathered}
$$

Ab. Code	Component
BioGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:
in dark-gray laminated unit
glauc-nch

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm.Slide \#					
379	1352	C	$23 \times$	2	138	5555

observer	Ruthie

LITHOLOGY: silty clay	(dominant)	(minor)
COMPOSITION: \% Terrigenous 100	$\%$ Biogenic \quad O	$(=100 \%)$

Siliciclastic texture (\%)		
\% Sand	$\%$ Silt	$\%$ Clay
	25	75

Abundance Code
$\leqq 1 \%=$ TR (trace)
$1 \%-10 \%=\mathrm{R}$ (rare)
$10 \%-25 \%=\mathrm{C}$ (common)
$25 \%-50 \%=\mathrm{A}$ (abundant)
$>50 \%=\mathrm{D}$ (dominant)

Ab. Code Component SILICICLASTIC GRAINS/MINERALS

SILICICLASIIC GRAINS/MINERALS	
	Framework minerals
	Quartz
	Feldspar
	K-feldspar
	Plagioclase
	Rock Fragments
VOLCANIC/PLUTONIC GRAINS	

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Organic Debris
	Plant Debris

Comments:

glauc-nch

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm. Slide \#					
379	1352	C	$24 \times$	4	80	5556

lithology: silty clay.
COMPOSITION: \% Terrigenous

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
	36	70

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Silicoflagellates
	Sponge spicules
	Others
	Organic Debris
	Fish Remains (teeth, bones, scales)

Comments:

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm.Slide \#					
378	1352	C	$25 \times$	2	75	5557

LITHOLOGY: Silty clay (dominant) COMPOSITION: \% Terrigenous \qquad \% Biogenic

Siliciclastic texture (\%)		
$\%$ Sand	$\%$ silt	$\%$ Clay
	10	90

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Silicoflagellates
	Sponge spicules
	Others
	Organic Debris
	Plant Debris

Comments:

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm. Slide \#					
379					2	C
$26 \times$	2	40	5558			

| LITHOLOGY: biosi-beaning clay | (dominant) | | (minor) |
| :--- | :--- | :--- | :--- | :--- |
| COMPOSITION: $\%$ Terrigenous 90 | $\%$ Biogenic 10 | 10 | $(=100 \%)$ |

Siliciclastic texture (\%)			
\% Sand	$\%$ Silt	$\%$ Clay	
1	4	95	

Comments:

diatom fragments

Leg	Site	Hole	Core	Section	Position (cm)	
					in core	Sm.Slide \#
349	. 532	C	$26 x$	2	110	5s 59

LITHOLOGY: \qquad (dominant) \qquad COMPOSITION: \% Terrigenous $\quad 97$ \% Biogenic

($=100 \%$)

Siliciclastic texture (\%)			
\% Sand	\% Silt	\% Clay	
	20	80	

Ab. Code	Component
SILICICLASTIC GRAINS/MINERALS	
	Framework minerals
	Quartz
TR	Feldspar
	K-feldspar
	Plagioclase
	Rock Fragments
VOLCANIC/PLUTONIC GRAINS	
	Euhedral crystals
	Vitric grain (glass, pumice)
	Palagonite (altered glass)
ACCESSORY/TRACE MINERALS	
	Sheet Silicates
	Biotite
	Muscovite
	Chlorite
	Fe-Mg silicates
	Amphibole (hornblende)
	Garnet
	Pyroxene
	Olivine
	Other indicator minerals
C	Glauconite
	Chert
	Zircon
	Apatite
	Titanite (sphene)
	Carbonate
	Authigenic minerals
	Barite
	Manganese Oxide
	Zeolite
	Opaque Minerals
	Pyrite
	Fe-oxide / Fe-hydroxide

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:

Comments:

talc

$\left.\begin{array}{c}\text { large olivine grain! } \\ \text { hornblende! }\end{array}\right\}$ sandra

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm. Slide \#					
$3+9$	1532	0	$26 \times$	2	145	5560

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
1%	4%	95%

$$
(=100 \%)
$$

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
$7 /$	Diatoms
	Sponge spicules
	Siliceous debris (undifferentiated)

Comments:
diatom fragments?

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm.Slide \#					
549	1532	C	$27 \times$	4	84	c 562

Lithology:
 (dominant)
 COMPOSITION: \% Terrigenous
 \% Biogenic

Siliciclastic texture (\%)		
\% Sand	$\%$ Silt	$\%$ Clay
	20	80

Ab. Code Component
SILICICLASTIC GRAINS/MINERALS

	Framework minerals
	Quartz
	Feldspar
	K-feldspar
	Plagioclase
	Rock Fragments
VOLCANIC/PLUTONIC GRAINS	
	Euhedral crystals
	Vitric grain (glass, pumice)
	Palagonite (altered glass)
ACCESSORY/TRACE MINERALS	

	Sheet Silicates
	Biotite
	Muscovite
	Chlorite
	Fe-Mg silicates
	Amphibole (hornblende)
	Garnet
	Pyroxene
	Olivine
	Other indicator minerals
C	Glauconite
	Chert
	Zircon
	Apatite
	Titanite (sphene)
	Carbonate
	Authigenic minerals
	Barite
	Manganese Oxide
	Zeolite
	Opaque Minerals
	Pyrite
	Fe-oxide / Fe-hydroxide

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Silicoflagellates
	Sponge spicules
	Others
	Organic Debris

Comments:
 s.

Abundance Code $\leqq 1 \%=T R$ (trace)
$1 \%-10 \%=R$ (rare)
$10 \%-25 \%=$ C (common)
$25 \%-50 \%=$ A (abundant)
$>50 \%=$ (dominant)

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm. Slide \#					
379	1532	C	$29 \times$	5	137	5563

Observer Ruthie
(dominant)

	0	(minor)

Siliciclastic texture (\%)		
$\%$ Sand	$\%$ Silt	$\%$ Clay
3	20	77

Abundance Code

 $\leqq 1 \%=\operatorname{TR}$ (trace)$1 \%-10 \%=R$ (rare) $10 \%-25 \%=$ C (common) $25 \%-50 \%=$ A (abundant) $>50 \%=$ D (dominant)

Comments:

talc

taken from green splotch!

Leg	Site	Hole	Core	Section	Position (cm) in core	
39	1.32	C	$29 \times$	6	$56-57$	ssC1 \#

Siliciclastic texture (\%)			
$\%$ Sand	$\%$ Silt	$\%$ Clay	
0	20	80	

Ab. Code	Component
SILICICLASTIC GRAINS/MINERALS	
	Framework minerals
	Quartz
	Feldspar
	K-feldspar
	Plagioclase
	Rock Fragments
VOLCANIC/PLUTONIC GRAINS	
	Euhedral crystals
	Vitric grain (glass, pumice)
	Palagonite (altered glass)
ACCESSORY/TRACE MINERALS	
	Sheet Silicates
	Biotite
	Muscovite
	Chlorite
	Fe-Mg silicates
	Amphibole (hornblende)
	Garnet
	Pyroxene
	Olivine
	Other indicator minerals
	Glauconite
	Chert
	Zircon
	Apatite
	Titanite (sphene)
R	Carbonate
	Authigenic minerals
	Barite
	Manganese Oxide
	Zeolite
	Opaque Minerals
	Pyrite
	Fe-oxide / Fe-hydroxide

Abundance Code $\leqq 1 \%$ = TR (trace) $1 \%-10 \%=\mathrm{R}$ (rare) $10 \%-25 \%=$ C (common) $25 \%-50 \%=$ A (abundant) $>50 \%=$ D (dominant)

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Silicoflagellates
	Sponge spicules
	Others
	Prganic Debris

Comments:

Leg	Site	Hole	Core	Section	Position (cm) in core	
599	1532	C	$29 \times$	6	120	5564

LITHOLOGY: $\operatorname{sil}(t y)(6 y)$ (dominant)

	(minor)	
mic	0	$(=100 \%)$

Abundance Code $\leqq 1 \%=$ TR (trace)
$1 \%-10 \%=R$ (rare)
$10 \%-25 \%=C$ (common)
$25 \%-50 \%=A$ (abundant)
$>50 \%=$ (dominant)

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris

Comments:
Lots of tak/tak fiber completed very fine silt

Comments:

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm.Slide \#					
379	1572	C	$30 \times$	$6 A$	67	$\int J 67$

Observer $O R$

Ab. Code Component

Comments:

LITHOLOGY: \qquad (dominant)

Ab. Code Component

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Silicoflagellates
	Sponge spicules
	Others
	Organic Debris
	Plant Debris

Comments:

Thin Silt laminae.
Grains are very angular.
COMPOSITION: \% Terrigenous 100

Siliciclastic texture (\%)		
$\%$ Sand	$\%$ Silt	$\%$ Clay
	40	60

| Leg | Site | Hole | Core | Section | Position (cm)
 in core | | Sm. Slide \# |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |\quad| Observer | OR | | |
| :---: | :---: | :---: | :---: |
| 379 | 1532 | C | 31 X |

Comments:

very puesilt groins.

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm.Slide \#					
379	1532	C	$31 \times$	$2 A$	121.5	5570

Observer	$D R$

LITHOLOGY:			
COMPOSITION: \% Terrigenous			
Siliciclastic texture (\%)			($=100 \%$)
\% Sand	\% Silt	\% Clay	
	20	80	

(minor)
(=100\%)

Ab. Code	Component

SILICICLASTIC GRAINS/MINERALS

	Framework minerals
R	Quartz
R	Feldspar
	K-feldspar
	Plagioclase
	Rock Fragments

VOLCANIC/PLUTONIC GRAINS	
	Euhedral crystals
	Vitric grain (glass, pumice)
	Palagonite (altered glass)
ACCESSORY/TRACE MINERALS	

	Sheet Silicates
7 r	Biotite
Tr	Muscovite
T	Chlorite
	Fe-Mg silicates
V1	Amphibole (hornblende)
	Garnet
	Pyroxene
	Olivine
	Other indicator minerals
	Glauconite
	Chert
	Zircon
	Apatite
	Titanite (sphene)
	Carbonate
	Authigenic minerals
	Barite
	Manganese Oxide
	Zeolite
	Opaque Minerals
	Pyrite
Tr	Fe-oxide / Fe-hydroxide

> Abundance Code $\leq 1 \%=T R$ (trace) $1 \%-10 \%=R$ (rare) $10 \%-25 \%=$ C (common) $25 \%-50 \%=A$ (abundant) $>50 \%=D$ (dominant)

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Silicoflagellates
	Sponge spicules
	Others
	Prganic Debris

Comments:

Leg	Site	Hole	Core	Section	Position (cm)	
		Sm.Slide \#				
379	1532	C	$31 \times$	$3 A$	28	$\delta \int 71$

Observer $\quad \rho R$

LITHOLOGY: \qquad (dominant)

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
2	23	75

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)
	Siliceous
	Radiolarians
	Diatoms
	Silicoflagellates
	Sponge spicules
	Siliceous debris (undifferentiated)
	Others
	Organic Debris
	Plant Debris
	Fish Remains (teeth, bones, scales)

Comments:

Leg	Site	Hole	Core	Section	Position (cm)	
	Sm.Slide \#					
379	1532	C	$32 \times$	$2 A$	70	$5 \int 72$

Observer	$b R$

(dominant)
LITHOLOGY: \qquad

Siliciclastic texture (\%)		
\% Sand	$\%$ Silt	\% Clay
	10	90

(= 100\%)

Ab. Code Component
SILICICLASTIC GRAINS/MINERALS

	Framework minerals
R	Quartz
$\boldsymbol{T r}$	Feldspar
	K-feldspar
	Plagioclase
	Rock Fragments
VOLCANIC/PLUTONIC GRAINS	

Comments:

Leg	Site	Hole	Core	Section	Position (cm) in core	
379	1532	C	$32 \times$	$6 A$	122.5	8574

\qquad
LITHOLOGY: \qquad (dominant) (minor)
COMPOSITION: \% Terrigenous $\quad 98$

Siliciclastic texture (\%)		
\% Sand	\% Silt	$\%$ Clay
1	10	89

($=100 \%$)
Abundance Code
$\leqq 1 \%=$ TR (trace)
$1 \%-10 \%=R$ (rare)
$10 \%-25 \%=$ C (common)
$25 \%-50 \%=A$ (abundant)
$>50 \%=\mathrm{D}$ (dominant)

Ab. Code	Component

BIOGENIC GRAINS

	Calcareous
	Foraminifers
	Nannofossils
	Calcareous debris (undifferentiated)

		Siliceous
		Radiolarians
T		Diatoms
T		Silicoflagellates
		Sponge spicules
		Siliceous debris (undifferentiated)
		Others
		Organic Debris
		Fish Remains (teeth, bones, scales)

Comments:

$$
\begin{aligned}
& \text { Tr siliceow delis, sponge spicule o diatom } \\
& \text { Gictive bonded) fragments }
\end{aligned}
$$

Leg	Site	Hole	Core	Section	Position (cm) in core	
379					Sm. Slide \#	
32	C	$33 \times$	$1 A$	116	5575	

LITHOLOGY: (dominant)

Siliciclastic texture (\%)			
\% Sand	$\%$ Silt	$\%$ Clay	
	12	88	

$$
(=100 \%)
$$

Ab. Code	Component

Comments:

pyrite needs to be confirmed. fragments of diatoms δ Sponge spicules

Leg	Site	Hole	Core	Section	Position (cm)	
in core	Sm.Slide \#					
379	1532	C	$33 \times$	$2 A$	40	5577

Observer	$\cap Q$

LITHOLOGY: \qquad (dominant) \qquad COMPOSITION: \% Terrigenous
 \% Biogenic

($=100 \%$)

Siliciclastic texture (\%)		
\% Sand	\% Silt	\% Clay
	10	90

Ab. Code	Component
BIOGENIC GRAINS	
	Calcareous
	Foraminifers
	Nannofossils
11	Calcareous debris (undifferentiated)
,	Siliceous
1	Radiolarians
Tll	Diatoms
,	Silicoflagellates
tr	Sponge spicules
Tir	Siliceous debris (undifferentiated)
+	
	Others
	Organic Debris
	Plant Debris
	Fish Remains (teeth, bones, scales)

Comments:

