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Abstract
During International Ocean Discovery Program Expeditions 390C, 395E, 390, and 393 (the South
Atlantic Transect), seven sites were drilled on the western flank of the southern Mid-Atlantic
Ridge. Among these sites, Sites U1557 and U1558 recovered Eocene and Oligocene sediments.
Such sediments will allow a better understanding of how ocean ecosystems, as well as ocean circu-
lation and chemistry, responded to the paleoceanographic and paleoclimatic changes leading to
the Eocene–Oligocene transition. In this study, we present early Eocene through early Oligocene
carbon and oxygen stable isotope data (δ13C and δ18O) of bulk carbonates from sediment samples
collected in Holes U1557B, U1558A, and U1558F. The data show that the western South Atlantic,
a relatively understudied region for the Eocene, recorded some global geochemical features, such
as the relatively low δ13C and δ18O values typical of hyperthermal events characterizing the onset
of the Early Eocene Climatic Optimum and the rapid shift toward high δ18O and δ13C values at the
Eocene/Oligocene boundary.

1. Introduction
The South Atlantic Transect (SAT) comprises a series of sites along the western flank of the south-
ern Mid-Atlantic Ridge (~31°S) cored during International Ocean Discovery Program (IODP)
engineering Expeditions 390C and 395E and Expeditions 390 and 393 conducted between
October 2020 and August 2022 (Estes et al., 2021; Williams et al., 2021; Coggon et al., 2022; Teagle
et al., 2023). This region was previously spot cored between December 1968 and January 1969
during Deep Sea Drilling Project Leg 3 (Maxwell et al., 1970) and had not been revisited since.

Seven sites were drilled along the SAT on crust ranging around 61 Ma. These new cores offer the
opportunity to investigate the evolution of a bipolar ocean circulation in connection with the
opening of the Drake Passage and the history of the deep western boundary current, changes in
carbonate surface productivity and carbonate burial in the western South Atlantic throughout the
Cenozoic, and the development of a modern-like subtropical gyre and its impact on planktonic
assemblages.

During the Eocene (~56–33.9 Ma), Earth transitioned from a climate characterized by high
temperatures and the absence of permanent ice sheets to a climate characterized by cooler tem-
peratures, lower atmospheric CO2 concentrations, and the build-up of permanent ice sheets on
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Antarctica at the Eocene–Oligocene transition, with possible episodic Northern Hemisphere 
glaciations, as well (i.e., hothouse–coolhouse transition; Westerhold et al., 2020) (e.g., Zachos et 
al., 2001; Cramer et al., 2011; Anagnostou et al., 2016; Tripati and Darby, 2018; Miller et al., 2020).

Sediments recovered at Site U1557 during engineering Expedition 390C (October–December 
2020) and Site U1558 during engineering Expedition 390C and Expedition 393 (June–August 
2022) (Coggon et al., 2024a; Teagle et al., 2024) are promising archives of ocean circulation 
and chemistry changes during the Eocene and Oligocene. Here, we report carbon and oxygen 
stable isotope data (δ13C and δ18O) of bulk carbonates from sediment samples collected at these 
sites. Data were combined to build a stable isotope curve spanning the entire Eocene and early 
Oligocene. These data can be used to refine the age models at Sites U1557 and U1558 and for 
chemostratigraphic correlation with sites located in the Atlantic and other ocean basins. This data 
set could also facilitate further sampling efforts of cores from these sites for high-resolution 
paleoceanography-relevant Eocene research.

2. Methods and materials

2.1. Site description
Site U1557 (30°56.4547′S, 26°37.7775′W; Figure F1) is located in a downthrown fault-bounded 
basin ~1250 km west of the Mid-Atlantic Ridge, at a water depth of 5012 m (Coggon et al., 2024b). 
This site is located on oceanic crust of ~61 Ma and, together with Sites U1556 and U1561, is one 
of the oldest sites drilled along the SAT. For this study, we utilized cores collected from Hole 
U1557B (Cores 31X–51X; 277.38–469.86 m core depth below seafloor, Method A [CSF-A]). This 
hole was drilled during engineering Expedition 390C (Estes et al., 2021), but the cores were 
described during Expedition 390 (Coggon et al., 2024b). The cores analyzed for this study were 
cored using the extended core barrel (XCB) system, and recovery was 31%–95%. Sediments in the 
Eocene/early Oligocene study interval are mostly composed of nannofossil and/or calcareous 
chalk (Coggon et al., 2024a).

Site U1558 (30°53.7814′S, 24°50.4822′W; Figure F1) is located ~1067 km west of the Mid-Atlantic 
Ridge, at a water depth of 4337 m (Estes et al., 2021; Coggon et al., 2024b). It sits on oceanic crust 
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Figure F1. SAT study region, Expeditions 390/393, 390C, and 395C. A. Bathymetry of the South Atlantic Ocean (Ryan et al., 
2009). Inset: regional settings. RGR = Rio Grande Rise, ERGR = eastern Rio Grande Rise, MAR = Mid-Atlantic Ridge, TdC = 
Tristan de Cunha. B. SAT drilled sites shown above seafloor bathymetry measured during CREST cruise (Reece and Estep, 
2019). The sites used in this study are in red.
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of ~49 Ma. For this study, we measured samples collected from Holes U1558A (Cores 12X–18X; 
121.54–190.20 m core composite depth below seafloor [CCSF]) and U1558F (Cores 12F–24X; 
120.22–207.10 m CCSF). Hole U1558A was drilled during engineering Expedition 390C; the cores 
analyzed here were cored with the XCB system and recovery varied between 58% and 80% (Estes 
et al., 2021). Hole U1558F was drilled during Expedition 393. Cores 12F–19F were cored using the 
half-length advanced piston corer (HLAPC) system, which resulted in significantly better recov-
ery, whereas Cores 20X–24X were XCB cored. Overall, recovery for the cores used in this study 
ranged 77%–109% (Coggon et al., 2024b). The sediment analyzed consists of nannofossil 
ooze/chalk with clay (Teagle et al., 2024).

2.2. Sample preparation and stable isotope analyses
We analyzed a total of 250 sediment samples from Holes U1557B (n = 96), U1558A (n = 57), and 
U1558F (n = 97). Sampling resolution was driven by the goal to obtain a (relatively) high resolution 
record for the early Eocene hyperthermals (~54–52 Ma) and the late Eocene through early Oligo-
cene interval (~34.5–32 Ma) and a lower resolution record for the rest of the Eocene. Core sam-
pling was guided by the preliminary age models for these sites (Coggon et al., 2024a; Teagle et al., 
2024) and the need to accommodate for core gaps or disturbances. Sampling resolution ranged 
~20 cm to several meters.

Samples were prepared for analysis at the University of Rochester (USA). Samples were dried over-
night at 50°C and homogenized afterward by grinding a small aliquot of sediment with a mortar 
and pestle. Bulk δ13C and δ18O were measured using a Nu Carb device attached to a Nu Instru-
ments Perspective isotope ratio–mass spectrometer (IR-MS) at the Department of Earth and Plan-
etary Sciences at Rutgers University (USA). Samples were reacted in phosphoric acid at 70°C, and 
the evolved CO2 was collected in a liquid nitrogen cold finger. Stable isotope values were reported 
relative to Vienna Peedee belemnite (VPDB) through the analysis of an in-house laboratory refer-
ence material (RGF1). The 1σ standard deviation of RGF1 made during daily runs (typically 8 
RGF1 analyses for every 24 samples) was 0.03‰ (δ13C) and 0.06‰ (δ18O). RGF1 is routinely cali-
brated to NBS-19 to ensure consistency using 1.95‰ for δ13C and −2.20‰ for δ18O, as reported by 
Coplen (1994). The internal laboratory reference material differs from NBS-19 by +0.10‰ for δ13C 
and +0.04‰ for δ18O. The laboratory analyzes NBS-18 to monitor for changes in source linearity 
for δ18O for comparison to the value of 23.01‰ reported by Coplen (1994).

Data are displayed against depth; the CSF-A scale is used for Site U1557, which does not have a 
splice (Figure F2), and the CCSF scale is used for Site U1558 (Figure F3). For Site U1558, the CCSF 
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Figure F2. Carbon and oxygen stable isotope (δ13C and δ18O) bulk carbonate data, Site U1557.
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depth scale was calculated using the shipboard correlator’s affine table. Data are also displayed 
against age (Figure F4). Sample ages were calculated based on the preliminary age models for these 
sites (Coggon et al., 2024a; Teagle et al., 2024). For Site U1558, we used the Hole U1558F age 
model to calculate sample ages along the splice because it is better constrained than the age model 
for Hole U1558A.
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Figure F3. Carbon and oxygen stable isotope (δ13C and δ18O) bulk carbonate data, Site U1558. The data set was obtained by 
combining data from Holes U1558A and U1558F.
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3. Results

3.1. Bulk carbon stable isotopes
At Site U1557, δ13C values range ~1‰–3.64‰ from the early to early middle Eocene (Figures F2, 
F4). The lower part of the record (470–345 m CSF-A) indicates a shift in δ13C from 2.94‰ to 
~1.73‰. In particular, a negative shift from 2.94‰ to 0.96‰ is recorded in two samples between 
~470 and 460 m CSF-A and occurs in the earliest Eocene (Figure F4). The Paleocene/Eocene 
Thermal Maximum (PETM) was identified at Site U1557 based on the occurrence of the calcare-
ous nannoplankton excursion taxon Rhomboaster spp., one of the classic PETM markers (Bown, 
2005), at 461.33 m CSF-A in a ~50 cm thick dark red pelagic clay that was not sampled for this data 
report (Coggon et al., 2024a). Therefore, this initial negative isotope excursion is likely one of the 
earliest Eocene hyperthermal events, but more detailed chemostratigraphic and biostratigraphic 
analyses are required to properly confirm this hypothesis. Average δ13C values ~1.4‰ character-
izes the record from 345 to 325 m CSF-A and are tentatively interpreted as the carbon isotope 
excursions of the hyperthermal events (Galeotti et al., 2010; Kirtland Turner et al., 2014) charac-
terizing the onset of the Early Eocene Climatic Optimum (~54–48.2 Ma) (Westerhold et al., 2018). 
This interpretation agrees with the shipboard age model for this site (Figure F4) (Coggon et al., 
2024a). Between ~325 and 315 m CSF-A, the record shows a well-constrained positive excursion 
in δ13C (with values as high as ~3.6‰ and as low as ~2‰), which is followed by values from ~1.7‰ 
to 2‰ toward the upper part of the section (315–277 m CSF-A).

At Site U1558, δ13C values range ~1.7‰–2.8‰ (Figure F3). In the lower part of the record (207–
157 m CCSF), values vary between 2‰ and 2.7‰. A well-constrained δ13C shift from ~1.9‰ to 
~2.6‰ is recorded by samples located between 140 and 135 m CCSF and accompanies the 
increase in δ18O values that we interpret as the Eocene/Oligocene boundary (see below). A steady 
decrease to ~2‰ is shown in the upper analyzed sediments (~134–120 m CCSF). According to the 
shipboard age model (Teagle et al., 2024), the Site U1558 samples measured are of middle 
Eocene–early Oligocene age (Figure F4).

3.2. Bulk oxygen stable isotopes
At Site U1557, δ18O values range ~0.2‰ to approximately −0.9‰ (Figures F2, F4). The lower part 
of the record (470–460 m CSF-A) shows a negative shift in δ18O of ~0.7‰, which supports the 
possibility of this part of the record recording a hyperthermal event. This negative excursion is 
followed by a partial recovery to approximately −0.2‰. Values ranging ~0.2 to −0.7‰ characterize 
the rest of the samples analyzed (354–277 m CSF-A). A transient shift of ~0.2‰ toward slightly 
more negative values (345–325 m CSF-A) supports the preliminary interpretation of this interval 
capturing some the early Eocene hyperthermals (cf. Kirtland Turner et al., 2014).

At Site U1558, δ18O values range ~1.8‰–0‰ (Figures F3, F4). From 207 to 140 m CCSF, δ18O 
oscillates between 0‰ and ~0.8‰. A large shift of ~1.6‰ toward more positive values is recorded 
by samples located between ~140 and ~135 m CCSF. Based on the similarity of this signal with 
other bulk carbonate δ18O records (e.g., Shackleton, 1986) and the preliminary age model for this 
site (Teagle et al., 2024), this shift is interpreted as the global Eocene/Oligocene increase in δ18O 
(Oi-1 event; e.g., Miller et al., 1991). Values slowly decrease to ~1‰ in the upper samples analyzed 
(135–120 m CCSF).

4. Data availability
Stable isotope data are included here in Table T1 and permanently archived at PANGAEA 
(https://doi.pangaea.de/10.1594/PANGAEA.964943 and https://doi.pangaea.de/ 10.1594/ 
PANGAEA.965000).

Table T1. Carbon and oxygen stable isotope (δ13C and δ18O) bulk carbonate data, Holes U1557B, U1558A, and U1558F.
Download table in CSV format.
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