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ABSTRACT

Integrated Ocean Drilling Program Expedition 308 is an abbreviated form of Proposal
589-Full 3 entitled “Overpressure and Fluid Flow Processes in the Deepwater Gulf of
Mexico: Slope Stability, Seeps, and Shallow Water Flow.” We will explore the coupling
of overpressure, flow, and deformation in passive margin settings. We will test a mul-
tidimensional flow model by examining how physical properties, pressure, tempera-
ture, and pore fluid composition vary within low-permeability mudstones that
overlie a permeable and overpressured aquifer. Drilling, logging, and in situ measure-
ments will be performed in the Brazos-Trinity #4 minibasin and in the Ursa region of
the northern Gulf of Mexico. These basins are 300 km apart and have experienced
very different Pleistocene sedimentation histories. Brazos-Trinity #4 will serve as a ref-
erence location because its low sedimentation rate generated little overpressure. In
contrast, Ursa experienced extreme sedimentation rates, has high overpressures, and
will serve as a type location to study overpressure and flow. Drilling and consequent
postcruise studies will illuminate controls on slope stability, seafloor seeps, and large-
scale crustal fluid flow.

Two key components of the experimental plan are to take substantial whole-core geo-
technical samples for later shore-based analysis and to deploy a tapered penetrometer,
the T2P probe (developed jointly between the Massachusetts Institute of Technology
[MIT; USA], the Pennsylvania State University [USA], and IODP) to measure in situ
pressure and temperature. Expedition 308 science will meet many of the objectives
proposed in the original IODP Proposal 589-Full3 and will provide the foundation to
implement long-term in situ monitoring experiments in the aquifer and bounding
mudstones in a future expedition to meet the full objectives of IODP Proposal 589-
Full3.
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SCHEDULE FOR EXPEDITION 308

Integrated Ocean Drilling Program Expedition 308 is an abbreviated form of Inte-
grated Ocean Drilling Program (IODP) drilling proposal number 589-Full 3 entitled
“Overpressure and fluid flow processes in the deepwater Gulf of Mexico: slope stabil-
ity, seeps, and shallow water flow” (available at www.iodp-mi-sapporo.org/sched-
uled.html). Following ranking by the IODP Scientific Advisory Structure, the
expedition was scheduled by the IODP Operations Committee for the research vessel
JOIDES Resolution, operating under contract with the U.S. Implementing Organiza-
tion (USIO). The expedition is currently scheduled to begin in Mobile, Alabama (USA)
on 31 May 2005, departing after a 5 day port call (or when ready). The expedition
concludes in Balboa, Panama, on 6 July 2005 (for the current detailed schedule, see
www.iodp.tamu.edu/scienceops). A total of 21 days will be available for the drilling,
coring, and downhole measurements described in this report. Further details on the
JOIDES Resolution can be found at iodp.tamu.edu/publicinfo/drillship.html.

INTRODUCTION
Hydrodynamics of Overpressure

Rapid sediment loading (>1 mm/y) drives overpressure (P*, pressure in excess of hy-
drostatic) in basins around the world (Fertl, 1976; Rubey and Hubbert, 1959). Sedi-
mentation is so rapid that fluids cannot escape, the fluids bear some of the overlying
sediment load, and pore pressures are greater than hydrostatic (Fig. F1).

Recent work has focused on how sedimentation and common stratigraphic architec-
tures couple to produce two- and three-dimensional flow fields. For example, if a per-
meable sand is rapidly loaded by a low-permeability mud of varying thickness, fluids
tflow laterally to regions of low overburden before they are expelled into the overlying
sediment (Fig. F2). This creates characteristic distributions of rock properties, fluid
pressure, effective stress, temperature, and fluid chemistry in the aquifers and bound-
ing mudstones (Fig. F2). This simple process can cause slope instability near the sea-
floor (e.g., Figs. F1, F2, F3) (Dugan and Flemings, 2000; Flemings et al., 2002); in the
deeper subsurface, this process drives fluids through low-permeability strata to ulti-
mately vent the seafloor (Fig. F3) (Boehm and Moore, 2002; Davies et al., 2002; Seldon
and Flemings, 2005).
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Expedition 308 will document the spatial variation in pressure, stress, and rock prop-
erties in a flow-focusing environment. We will compare our observations to the
model predictions. We will first establish rock and fluid properties at a reference loca-
tion (Brazos-Trinity). We will then drill multiple holes along a transect in the over-
pressured Ursa system to characterize spatial variation in rock properties,
temperature, pressure, and chemistry.

BACKGROUND
Geological Overview: The Gulf of Mexico

The Gulf of Mexico is a type location for a shallow drilling campaign aimed at under-
standing how sedimentation drives compaction and fluid flow (Fig. F4). Sedimenta-
tion, deformation, hydrodynamics, slope stability, and biological communities are
interwoven in the Pleistocene strata of the Gulf of Mexico. Rapid sedimentation upon
a mobile salt substrate is the driving force behind many of the active processes present
(Worrall and Snelson, 1989). Bryant et al. (1990) describe the physiographic and
bathymetric characteristics of this continental slope (Fig. F4). In the region of off-
shore Texas and western Louisiana, individual slope minibasins are surrounded by el-
evated salt highs (Pratson and Ryan, 1994) producing a remarkable hummocky
topography. This morphology is obscured in the eastern Gulf, where sedimentation
has been very rapid and more recent than the region of offshore Texas and Louisiana.
To evaluate the impacts of different depositional settings and rates on sediment prop-
erties and fluid flow, Pleistocene sediments will be drilled in the Brazos-Trinity Basin
#4 and the Ursa Basin (Fig. F4).

Geological Setting: Brazos-Trinity Basin #4

The Brazos-Trinity Basin #4 is 200 km due south of Galveston, Texas (USA) in ~1400
m water depth (Figs. F4, FS). The basin is one of a chain of five basins that are con-
nected by interbasinal highs. It is a classic area for analysis of turbidite depositional
environments because it is used as a modern analog to describe the formation of deep-
water turbidite deposits (Anderson and Fillon, 2004; Badalini et al., 2000; Beaubouef
and Friedmann, 2000; Fraticelli, 2003; Morton and Sutter, 1996; Satterfield and Beh-
rens, 1990; Suter and Berryhill, 1985; Winker, 1996; Winker and Booth, 2000).

The primary data set used to evaluate the well locations is a high-resolution two-di-
mensional (2-D) seismic survey shot by Shell Exploration and Production Company
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to image the turbidite stratigraphy (Fig. F6). The line spacing is ~300 m. The four pro-
posed drilling locations are shown on dip seismic Line 3020 (Fig. F7). A strike line
through proposed Site BT4-2A is also illustrated (Fig. F8).

Proposed Site BT4-2A (Figs. FS5, F6, F7, E8) is located where the turbidite deposits are
thickest, whereas proposed Site BT4-4A (Figs. F5, F6, F7) is along the southern flank
of the basin where there are almost no turbidite deposits. Shell drilled the Brazos-Trin-
ity Basin #2 and encountered basinal turbidites composed of interbedded sands and
mudstones and an underlying hemipelagic mudstone. Recovery may be ditficult in
the poorly consolidated turbidite sands at Site BT4-2A. Alternate sites BT4-3A and
BT4-4A will have drilling conditions similar to BT4-1B, as they are located on the ba-
sin flank.

Geological Setting: Ursa Basin

Ursa Basin (~150 km due south of New Orleans, Louisiana [USA]) lies in ~1000 m of
water (Figs. F1, F9). The region is of economic interest because of its prolific oilfields
that lie at depths greater than 4,000 meters below seafloor (mbsf). Mahaffie (1994) de-
scribed the geological character of the Mars oilfield. The Ursa field is in Mississippi
Canyon Blocks 855, 897, and 899 and is 11.9 km east of the Mars tension leg platform
(TLP).

We are interested in the sediments from O to 1000 mbsf. Four extraordinary three-di-
mensional (3-D) seismic data sets are available for the Ursa Basin (Fig. F9). Shell and
industry partners shot the Ursa exploration survey for exploration purposes. The
high-resolution surveys were shot by Shell for shallow hazards analysis.

Winker and Booth (2000) described deposition of Pleistocene and Holocene sedi-
ments in the Ursa region. The Mississippi Canyon Blue Unit is a late Pleistocene, sand-
dominated, “ponded fan” that was deposited in a broad topographic low that ex-
tended in an east-west direction for as much as 200 km and a north-south direction
for as much as 100 km. The Blue Unit is overlain by a leveed-channel assemblage that
was mud dominated and had dramatic along-strike variation in thickness. Pulham
(1993) described a similar facies assemblage for this region.

Seismic Line A-A” (Fig. F10) illustrates the proposed boreholes. The sedimentary sec-
tion is composed of a 300 m thick overburden that is predominantly mudstone. Be-
neath the overburden lies the first significant sand: the Blue Unit. The Blue Unit has
a relatively flat base. Its upper boundary has relief, which most likely reflects post-
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depositional erosion. The Blue Unit is composed of interbedded sand and mudstone
(Figs. F10, F11). A leveed-channel facies overlies the Blue Unit: it has a sand-cored
channel that is flanked by mud-prone levee deposits. A mudstone package that thick-
ens to the west overlies this sand assemblage. This mudstone package has numerous
detachment surfaces that record slumping. The overlying mudstone is the eastern
margin of a larger levee channel system formed to the west.

Shell made downhole pressure measurements with a pore-pressure penetrometer (pi-
ezoprobe) at the Ursa platform (Eaton, 1999; Ostermeier et al., 2000; Pelletier et al.,
1999) (Fig. F11). They also acquired whole-core samples and performed consolidation
experiments to evaluate preconsolidation stress and estimated overpressure. Piezo-
probe measurements (circles) and maximum past effective stresses interpreted from
consolidation experiments (triangles) indicate that (1) overpressure begins near the
seafloor and (2) the pore pressure is ~50% of the way between the hydrostatic (Pn) and
the lithostatic (g,) (Fig. F11).

SCIENTIFIC OBJECTIVES

We list six specific scientific objectives of Expedition 308.

1. Document how pressure, stress, and geology couple to control fluid migration on
passive margins.

We hypothesize that flow-focusing is present at Ursa (Fig. F3). This results in a char-
acteristic spatial distribution of fluid pressure and rock properties (e.g., consolidation,
permeability, and shear strength) in the mudstone overlying the Blue Unit. By mea-
suring fluid pressure, logging, and coring in the mudstone above the Blue Unit, we
will establish the vertical and lateral variation in pressure and rock properties above
the Blue Unit. This will provide a first-order test of the flow-focusing model and will
image the flow system within the shale bounding the permeable sand unit.

2. Establish reference properties at Brazos-Trinity.

A critical goal of the research is to establish a reference log and core properties where
overpressure is not present at a range of effective stresses. These data will serve as a
baseline against which the properties measured at Ursa can be compared, allowing us
to establish the deviation in sediment and fluid properties caused by flow-focusing,
fluid overpressure, and low effective stress.
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3. llluminate the controls on slope stability.

Massive paleolandslides are present at Ursa. Determination of pore pressure, rock
properties, and overburden stress will allow prediction of the potential for slope fail-
ure in the present and will allow estimation of the conditions that drove previous
slope failures. The measured geotechnical properties are critical inputs of numerical
models used to estimate what drives slope failure and when slope failure occurs.

4. Understand timing of sedimentation and slumping.

A growing issue of contention is just how rapid the sedimentation rate was in the Ursa
Basin, what the age of slumping was, and how this ties to the sea level cycle. A suc-
cessful drilling campaign integrated with existing well and seismic data will allow
these issues to be evaluated with complete data sets.

5. Establish geotechnical and petrophysical properties of shallow sediments.

We desire to understand the state and evolution of geotechnical and petrophysical
properties of mudstone at effective stresses encountered from the seafloor to 600
mbsf. We will derive a complete logging suite, in situ measurements of permeability
and pressure, and core samples, which will allow us to understand the compaction
process near the seafloor. These data will provide unparalleled insight into mudstone
permeability. Permeability, compressibility, and sedimentation rate are the key pa-
rameters to understand the generation of overpressures. This study will illuminate
how permeability of fine-grained mudstones evolves through time and changes in ef-
fective stress.

6. Provide extraordinary data set to observe ponded and channelized turbidite sys-
tems.

Brazos-Trinity and Ursa are foci of study for turbidite depositional systems.

IODP Expedition 308 is an abbreviated form of Proposal 589-Full3 entitled “Overpres-
sure and Fluid Flow Processes in the Deepwater Gulf of Mexico: Slope Stability, Seeps,
and Shallow Water Flow.” The abbreviated program was originally described in ad-
dendum 589-Add, submitted to IODP on 22 October 2004. Two components of 589-
Full3 will not be accomplished: (1) measurement of in situ pressure within the Blue
Unit and (2) long-term monitoring of pressure using CORKS in the mudstone above
the Blue Unit and in the Blue Unit. Subsequent to submission of 589-Add, the number
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of operational days was reduced to 21 from the 30 days envisioned in the addendum.
As a result, double-coring at each site will not be possible and there will be only lim-
ited wireline logging.

DRILLING STRATEGY

We will complete two primary sites in the Brazos-Trinity Basin (proposed Sites BT4-
2A and BT4-4A) and three primary sites at Ursa (proposed Sites URS-1B, URS-2C, and
URS-3C) (Table T1). The overall strategy is to complete continuous coring, wireline
logging, in situ measurements, and measurement-while-drilling (MWD) operations at
each primary site (Tables T2, T3, T4). Operations will begin with advanced piston
corer (APC) coring and in situ measurements at Site BT4-4A followed by APC coring
and in situ measurement at Site BT4-2A. We will then complete MWD operations at
Sites BT4-2A, BT4-4A, URS-3C, URS-2C, and URS-1B, respectively. MWD operations at
the Ursa sites will include pressure while drilling (PWD) to determine the annulus
pressure in the boreholes. Drilling operations will be completed with APC coring and
in situ measurements at Sites URS-1B, URS-2C, and URS-3C, respectively. Upon com-
pletion of operations, all holes will be filled with heavy mud prior to abandonment.
When moving between the proposed BT4 sites, the ship will move in dynamic posi-
tioning (DP) mode. DP mode will also be used to move between the proposed URS
sites. Detailed operational times are provided in Table TS.

We expect problems with hole stability at Brazos-Trinity Basin #4, where we are drill-
ing interbedded turbidite sands and hemipelagic mudstone. In these locations it is
critical to have a full logging suite, and we will run both MWD and wireline logs. Hole
stability may also be a problem at Ursa when drilling overpressured levee channel
sands (interbedded sands and shales above the Blue Unit). To minimize risks of flow
into the borehole, heavy mud will be used to drill and core portions of Sites URS-1B
and URS-2C. The heavy mud will maintain the borehole pressure. The operational
plan will include decision points and contingency plans detailing procedures to be
followed in the event that unexpected hole conditions are encountered.
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PROPOSED DRILL SITES

Primary Sites

Site BT4-2A

Primary proposed Site BT4-2A is located in the center of the Brazos-Trinity Basin #4
(Fig. F7). The site has 155 m of basinal turbidites underlain by 110 m of hemipelagic
drape. Hole A will be drilled and cored to 340 mbsf with APC drilling with drillover.
Extended core barrel (XCB) coring will be used if APC refusal is reached before 340
mbsf. Hole A will include three APC temperature (APCT) and one Davis-Villinger
Temperature-Pressure Probe (DVTPP) temperature measurements and two tempera-
ture/dual pressure probe (T2P) deployments and will be the wireline logging/vertical
seismic profile (VSP) hole. Hole A will be filled with heavy mud after operations. Site
BT4-2A Hole B will be the dedicated MWD hole. Hole B will be offset 20 m from Hole
A.

Site BT4-4A

Primary proposed Site BT4-4A is near the southern termination of Brazos-Trinity Ba-
sin #4 (Fig. F7). The site has a thin veneer of basin fill sediments (23 m) that is under-
lain by 128 m of hemipelagic mudstone. Site BT4-4A Hole A will be drilled and cored
to 230 mbsf. APC drilling with drillover to refusal will be used. XCB coring will be
used if APC operations do not reach 230 mbsf. Hole A will include three APCT and
one DVTPP temperature measurements and two T2P deployments and will be used
for wireline logging and VSP if time is available. Heavy mud will be used to fill Hole
A. Hole B, the dedicated MWD hole, will be offset 20 m from Hole A.

Site URS-1B

Primary proposed Site URS-1B has the shallowest water depth (1057 m water depth)
and the deepest penetration (612 mbsf) (Fig. F10). The anticipated lithology is hemi-
pelagic mud. Interbedded levee sands may be encountered below 481 mbsf. A total
depth of 612 mbsf completes drilling and operations 20 m above the top of the Blue
Unit (632 mbsf). Hole A will be used for MWD measurements to include PWD (safety
panel requirement). Hole B will be the drilling and coring hole, completed with APC
drilling with drillover; XCB will be used if APC refusal occurs above 612 mbst. Three
APCT and one DVTPP temperature measurements will be made in the hole. Heavy
mud will be used for coring from 481 to 612 mbsf to minimize risk of flow from levee
sands. Wireline logging and VSP will be completed in Hole B. Site URS-1B Hole C will

10



Expedition 308 Scientific Prospectus

be used for five T2P deployments. APC half-cores will be collected before each T2P de-
ployment. No additional coring is planned for Hole C. The hole will be filled with
heavy mud. The offset between the holes will be about 20 m in a direction away from
any channel fill.

Site URS-2C

The hemipelagic mudstones and levee sands at primary proposed Site URS-2C are 378
m thick above the Blue Unit (Fig. F10). We will drill to 358 mbsf, 20 m above the Blue
Unit. Hole A will be used for MWD measurements including PWD (safety panel re-
quirement). Hole B will be cored with APC drilling with drillover; XCB will be used if
APC refusal occurs above 358 mbsf. Three APCT and one DVTPP temperature mea-
surements will be made in the hole. Heavy mud will be used for coring from 328 to
358 mbsf to minimize the risk of sand flow from the levee sands. Wireline logging and
VSP will be completed in Hole B if time is available. Site URS-1B Hole C will be used
for five T2P deployments. APC half-cores will be collected immediately before each
T2P deployment. No other coring is planned for Hole C. The offset between the holes
will be about 20 m in a direction away from any channels.

Site URS-3C

Primary proposed Site URS-3C is located where the hemipelagic mud is thin (258 m)
(Fig. F10). The drilling plan will penetrate to 238 mbsf to prevent any communication
with the Blue Unit. Hole A will be used for MWD measurements. We will core Hole B
with APC drilling with drillover; XCB will be used if APC refusal occurs above 238
mbsf. Three APCT and one DVTPP temperature measurements will be made in the
hole. One deployment of the T2P will be made in Hole B. At 238 mbsf, the hole will
be filled with heavy mud. The offset between the holes will be about 20 m. No wire-
line logging is planned at Site URS-3C.

Alternate Sites

Site BT4-1B

Alternate proposed Site BT4-1B is on the northern flank of the Brazos-Trinity Basin #4
where basin-filling turbidites overlie hemipelagic mudstone (Fig. ¥7). A drilling depth
of 300 mbsf is proposed for this site in 1405 m of water. Hole B will be for MWD op-
erations. Hole A will employ APC drilling with drillover and will include three APCT
and one DVTPP temperature measurements. Two T2P deployments will occur in Hole
B. Hole A and Hole B will be offset by 20 m.

1
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Site BT4-3A

Alternate proposed Site BT4-3A is located on the southern flank of the Brazos-Trinity
Basin #4 (Fig. F7) within a thin section of basin turbidites (87 m) that is underlain by
a thicker section of hemipelagic mud (115 m). The site will be drilled through the
hemipelagic drape to 280 mbst. Hole B will be for MWD operations. Hole A will em-
ploy APC drilling with drillover and include three APCT and one DVTPP temperature
measurements. Two T2P deployments are planned for Hole B. Hole A and Hole B will
be offset by 20 m.

Site URS-4A

Alternate proposed Site URS-4A is similar to Site URS-3C with thin hemipelagic mud-
stone (257 m) above the Blue Unit, and overpressures are expected (Fig. F10). Drilling,
coring, logging, and measurement operations are identical to those designed for Site
URS-3C with a shift in total depth to 237 mbsf to allow 20 m between the base of the
hole and the top of the Blue Unit (257 mbsf).

LOGGING AND DOWNHOLE MEASUREMENTS PLAN

The main objectives of the downhole measurements program will be to assess how
pressure, stress, and geology control fluid migration on a passive margin; establish ref-
erence geotechnical and petrophysical properties at a site where overpressures are not
present as well as in an overpressure zone; learn about factors controlling slope stabil-
ity; determine major depositional events and timing of landslides; and provide infor-
mation about turbiditic processes that occur along the continental slope. In addition,
the downhole measurements plan will attempt to define structural and lithologic
boundaries as a function of depth, establish site-to-site correlations to seismic and lat-
eral lithostratigraphic variations, produce direct correlations with discrete laboratory
data, and identify potential conduits that may serve as pathways for fluid migration.
Finally, downhole measurements will complement core measurements by filling gaps
in downhole stratigraphy, determining the thickness of lithological units in intervals
where poor core recovery is prevalent, and provide the means for potential correla-
tion with the extensive seismic data grid that is available over these areas. Both MWD
and wireline logging tool deployments will be used to obtain the downhole measure-
ments proposed for this expedition; the operational plans are described below.

12
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Measurement While Drilling

At the conclusion of coring activities at the Brazos-Trinity sites, the operational plan
will shift to logging activities with MWD capabilities at the two main sites, BT4-2A
and BT4-4A (Table T2). These sites will serve as a reference location for physical and
chemical properties. Site BT4-2A is located in the section of greatest overburden thick-
ness above the hemipelagic shales. Site BT4-4A is located along the southern flank of
the basin where there is almost no turbidite overburden above the hemipelagic shales.
MWD operations will then follow at the three Ursa sites (URS-3C, URS-2C, and URS-
1B). At the conclusion of the MWD operations, the tools and the MWD engineer will
be offloaded to a transfer boat (Table T5). Overall, MWD data will provide informa-
tion throughout the drilling depth on physical properties that will be used to test spa-
tial variation in rock properties associated with the flow-focusing model. The MWD
tools and measurements will include Resistivity-at-the-Bit GeoVision resistivity
(GVR), Azimuthal Density Neutron (ADN), and measurements of pressure (annulus
pressure while drilling; APWD). The GVR provides azimuthal resistivity images of the
borehole and gamma ray measurements; the ADN provides azimuthal borehole com-
pensated formation density, neutron porosity, and photoelectric factor measure-
ments; and the APWD will provide measurements of annulus pressure for identifying
potential shallow flow and overpressure conditions.

Wireline Logging and Vertical Seismic Profile

A series of three tool string deployments are planned for the Brazos-Trinity and Ursa
sites. These tool strings include the triple combination (triple combo), the Formation
MicroScanner (FMS)-Dipole Sonic Imager (DSI), and a zero-offset VSP. Detailed de-
scriptions of all wireline tools and applications are provided at iodp.ldeo.colum-
bia.edu/TOOLS_LABS/index.html. A detailed time estimate for the wireline logging
can be seen in Table T3.

The triple combo with caliper measurements will be used to assess the initial postdrill-
ing borehole conditions such as hole size and postdrilling fluid temperatures. In ad-
dition, this tool string will obtain potassium, uranium, and thorium concentrations
as well as formation density, photoelectric effect, electrical resistivity, and porosity in
situ profiles as a function of depth. The FMS will provide high-resolution borehole im-
ages of lithostratigraphic sequences and boundaries, oriented fracture patterns, and
information regarding hole stability. The DSI will produce a full set of compressional
and shear waveforms, cross-dipole shear wave velocities and amplitudes measured at

13
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different azimuths, and Stoneley waveforms. The zero-offset VSP will provide the
shallow sediment velocity gradient information and interval velocity that will be nec-
essary for potential core-log-seismic correlations.

These measurements will be utilized for characterization of stratigraphic sequences;
determination of potential geological factors that may influence fluid migration; es-
tablishing geotechnical and petrophysical properties at these sites; and providing in-
formation about the depositional events, timing of landslides, and turbiditic
processes along the continental slope. These types of measurements can be used to
determine preferred fracture orientations and fracture densities, paleostress direc-
tions, and permeability estimates, all required to accurately model the hydrological
characteristics of this passive margin system. The velocity gradient, sonic velocities,
and densities could be used for the calculation of synthetic seismogram models and
a direct correlation with high-resolution seismic data that have been obtained for
these sites.

In Situ Measurements

Pressure, hydraulic conductivity, and temperature will be measured in the mudstones
with the T2P designed by the Massachusetts Institute of Technology (MIT; USA), the
Pennsylvania State University (USA), and IODP-Texas A&M University (TAMU; USA).
These data will help constrain the rock properties and flow field in the sediments. The
tapered probe measures pressure and temperature at the narrow tip of the probe; a sec-
ond pressure measurement is collected slightly up-probe from the sensors at the tip
(Fig. F12). The design allows for rapid measurement (~190 min total operational time)
(Table T6) of high-quality pressure and temperature in low-permeability sediments.
During penetration of the probe (<5 min), we will not circulate. However, during the
pressure measurement, circulation is possible.

The T2P delivery and drive assembly interfaces with the drill string and is integrated
into the IODP operational protocols. We will use the existing colleted delivery system
(CDS) now used to deploy the DVTPP, to deploy the T2P. The drill string is first raised
several meters off the bottom of the borehole. The probe is then lowered down the
drill string in the extended configuration (stroke = ~3.3 m) and engages the bottom-
hole assembly (BHA). The drill string is then lowered to insert the probe into the foun-
dation. Once the force of penetration exceeds the weight of the telescoping section
of the CDS, the section retracts with little change in force until it engages the collet.
With the section fully retracted, the weight of the drill string is used to force the probe
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into the foundation. The CDS has 53 kN (12,000 1b) driving force capacity controlled
by a safety mechanism. Following penetration (controlled by lowering the string a
specified distance), the drill string is raised 2 m to extend the telescope and decouple
the probe from the drill string. This prevents drill string movement (due to ship
heave) from disturbing the probe during dissipation.

A second component of in situ measurements is routine temperature measurements
at each site. Temperature measurements will be made during APC operations using
the APCT tool. We have allocated time to make three APCT measurements and one
DVTPP measurement per coring hole (Table T5). Each measurement will take ~15
min.

SAMPLING STRATEGY

Shipboard and shore-based researchers should refer to the interim IODP Sample,
Data, and Obligations policy posted on the World Wide Web at iodp.org/
data_samples.html. This document outlines the policy for distributing IODP sam-
ples and data to research scientists, curators, and educators. The document also de-
fines the obligations that sample and data recipients incur. Access to data and core
sampling during Expedition 308, or within the 1 y moratorium, must be approved by
the Sample Allocation Committee (SAC). The SAC (composed of Co-Chief Scientists,
Staff Scientist, the IODP Curator on shore, and the Curatorial Representative on board
ship) will work with the Shipboard Scientific Party to formulate a formal expedition-
specific sampling plan for shipboard and postcruise sampling.

Shipboard scientists are expected to submit sample requests 2 months before the be-
ginning of the expedition. Sample requests may be submitted at iodp.tamu.edu/
curation/samples.html. Based on sample requests (shore-based and shipboard), the
SAC and Shipboard Scientific Party will prepare a working cruise sampling plan. This
plan will be subject to modification depending upon the actual material recovered
and collaborations that may evolve between scientists during the expedition. Modi-
fications to the sampling plan during the expedition require the approval of the SAC.

All sample frequencies and sizes must be justified on a scientific basis and will depend
on core recovery, the full spectrum of other requests, and the cruise objectives. Some
redundancy of measurement is unavoidable, but minimizing the duplication of mea-
surements among the shipboard party and identified shore-based collaborators will
be a factor in evaluating sample requests.
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Cruise-Specific Sampling Needs

One critical component of Expedition 308 is establishing the in situ fluid pressure, ef-
fective stress, and hydrologic properties of the sediments from the seafloor to 1000
mbsf. To accomplish these goals, it is critical that 10-20 cm long whole-round sam-
ples be taken at regular intervals and sealed for shore-based geotechnical measure-
ments. In addition to the routine whole rounds, it is mandatory that whole rounds
be taken at the depth of each T2P measurement.

The whole-round samples are required to calibrate the in situ measurements, to con-
strain sediment properties for hydrogeologic models, and to measure the strength of
the sediments for stability analyses.

16



Expedition 308 Scientific Prospectus

REFERENCES

Anderson, R.N., and Fillon, R.H. (Ed.), 2004. Late Quaternary Stratigraphic Evolution of the
Northern Gulf of Mexico Margin. Spec. Publ.—SEPM (Soc. Sediment. Geol.), 79.

Badalini, G., Kneller, B., and Winker, C.D., 2000. Architecture and processes in the late Pleis-
tocene Brazos-Trinity turbidite system, Gulf of Mexico continental slope. Deep-Water Res-
ervoirs of the World: Proc. GCSSEPM 20th Annu. Res. Conf., 16-34.

Beaubouef, R.T., and Friedmann, S.J., 2000. High resolution seismic/sequence stratigraphic
framework for the evolution of Pleistocene intra slope basins, western Gulf of Mexico:
depositional models and reservoir analogs. Deep-Water Reservoirs of the World: Proc.
GCSSEPM 20th Annu. Res. Conf., 40-60.

Bethke, C.M., 1986. Inverse hydrologic analysis of the distribution and origin of Gulf Coast-
type geopressured zones. J. Geophys. Res., 91(B6):6535-654S5.

Boehm, A., and Moore, J.C., 2002. Fluidized sandstone intrusions as an indicator of paleo-
stress orientation, Santa Cruz, California. Geofluids, 2(2):147-161.

Bredehoeft, J.D., and Hanshaw, B.B., 1968. On the maintenance of anomalous fluid pres-
sures: 1. Thick sedimentary sequences. Geol. Soc. Am. Bull., 79:1097-1106.

Bryant, W.R,, Bryant, J.R., Feeley, M.H., and Simmons, G.R., 1990. Physiographic and bathy-
metric characteristics of the continental slope, northwest Gulf of Mexico. Geo-Mar. Lett.,
10:182-199.

Davies, R., Bell, B.R., Cartwright, J.A., and Shoulders, S., 2002. Three-dimensional seismic
imaging of Paleogene dike-fed submarine volcanoes from the northeast Atlantic margin.
Geology, 30:223-226.

Dugan, B., and Flemings, P.B., 2000. Overpressure and fluid flow in the New Jersey continen-
tal slope: implications for slope failure and cold seeps. Science, 289:288-291.

Eaton, L.F, 1999. Drilling through deepwater shallow water flow zones at Ursa. Proc.—SPE/
IADC Middle East Drill. Conf., 153-164.

Fertl, W.H., 1976. Abnormal Formation Pressures: Implications to Exploration, Drilling, and Pro-
duction of Oil and Gas Resources: Amsterdam (Elsevier).

Flemings, P.B., Stump, B.B., Finkbeiner, T., and Zoback, M., 2002. Flow focusing in overpres-
sured sandstones: theory, observations, and applications. Am. J. Sci., 302:827-855.

Fraticelli, C.M., 2003. Linking climate, sea level, and sedimentary response on the Texas shelf
and upper slope: examples from the Brazos and Colorado fluvial-deltaic system [Ph.D.
dissert.]. Rice Univ., Houston, TX.

Gibson, R.E., 1958. The progress of consolidation in a clay layer increasing in thickness with
time. Geotechnique, 8:171-182.

Koppula, S.D., and Morgenstern, N.R., 1982. On the consolidation of sedimenting clays. Can.
Geotech. J., 19:260-268.

Mahaffie, M.J., 1994. Reservoir classification for turbidite intervals at the Mars discovery,
Mississippi Canyon Block 807, Gulf of Mexico. In Bouma, A.H., and Perkins, B.G. (Eds.),
Submarine Fans and Turbidite Systems: Proc. GCSSEPM 15th Annu. Res. Conf., 233-244.

Morton, R.A., and Suter, R.J., 1996. Sequence stratigraphy and composition of late Quater-
nary shelf-margin deltas, northern Gulf of Mexico. AAPG Bull., 80:505-530.

Osborne, MJ., and Swarbrick, R.E., 1997. Mechanisms for generating overpressures in sedi-
mentary basins: a reevaluation. AAPG Bull., 81:1023-1041.

Ostermeier, R.M., Pelletier, J.H., Winker, C.D., Nicholson, J.W., Rambow, EH., and Cowan,
K.M., 2000. Dealing with shallow-water flow in the deepwater Gulf of Mexico. Proc. Off-
shore Tech. Conf., 32(1):75-86.

17



Expedition 308 Scientific Prospectus

Pelletier, J.H., Ostermeier, R.M., Winker, C.D., Nicholson, J.W., and Rambow, F.H., 1999. Shal-
low water flow sands in the deepwater Gulf of Mexico: some recent Shell experience
[International Forum on Shallow Water Flows, League City, TX, 6-8 Oct., 1999].

Pratson, L.E, and Ryan, W.B.E, 1994. Pliocene to Recent infilling and subsidence of intras-
lope basins offshore Louisiana. AAPG Bull., 78:1483-1506.

Pulham, A.J., 1993. Variations in slope deposition, Pliocene-Pleistocene, offshore Louisiana,
northeast Gulf of Mexico. In Posamentier, H., and Weimer, P. (Eds.), Siliclastic Sequence
Stratigraphy: Recent Developments and Applications. AAPG Mem., 58:199-233.

Rubey, W.W., and Hubbert, M.K., 1959. Role of fluid pressure in mechanics of overthrust
faulting, Part 2. Overthrust belt in geosynclinal area of western Wyoming in light of
fluid-pressure hypothesis. Geol. Soc. Am. Bull., 70:167-205.

Satterfield, W.M., and Behrens, E.W., 1990. A late Quaternary canyon channel system, north-
west Gulf of Mexico continental slope. Mar. Geol., 92:51-67.

Seldon, BJ., and Flemings, P.B., 2005. Reservoir pressure and sea floor venting: predicting
trap integrity in a Gulf of Mexico deepwater turbidite minibasin. AAPG Bull.

Suter, J.R., and Berryhill, H.L., Jr., 1985. Late Quaternary shelf-margin deltas, northwest Gulf
of Mexico. AAPG Bull., 69:77-91.

Swarbrick, R.E., and Osborne, M.J., 1996. The nature and diversity of pressure transition
zones. Pet. Geosci., 2:111-115.

Winker, C.D., 1996. High-resolution seismic stratigraphy of a late Pleistocene submarine fan
ponded by salt-withdrawal minibasins on the Gulf of Mexico continental slope. Proc.—
Annu. Offshore Technol. Conf., 28(1):619-628.

Winker, C.D., and Booth, J.R., 2000. Sedimentary dynamics of the salt-dominated continen-
tal slope, Gulf of Mexico: integration of observations from the seafloor, near-surface, and
deep subsurface. Deep-Water Reservoirs of the World: Proc. GCSSEPM 20th Annu. Res. Conf.,
1059-1086.

Worrall, D.M., and Snelson, S., 1989. Evolution of the northern Gulf of Mexico, with empha-
sis on Cenozoic growth faulting and the role of salt. In Bally, A.W., and Paler, A.R. (Eds.),
The Geology of North America—An Overview (Vol. A): Boulder, CO (Geol. Soc. Am.), 97-137.

18



Expedition 308 Scientific Prospectus

Table T1. Site locations for IODP Expedition 308, Gulf of Mexico hydrogeology.

Latitude, Water
Site longitude UTM X (zone) UTMY (zone) Seismic lines Shotpoint depth (m)
BT4-1B 2T 0TI, 1199872.75(15)  9933466.00(15)  eer 2D dip 3020, 284.00 1405
BT4-2A 2793?;:7652;’685;’;\,\, 1189937.75 (15)  9909458.00 (15) R‘g‘f dedrezr'zD_ S“&iﬂﬁ‘?o 15 220.76 1476
BT4-3A 27942‘_73::’9688;1177 ;g‘;w 1186138.00 (15)  9900166.00 (15) R‘;gf dedrezr-g)- Sini(s)ioc;oss 196.36 1459
BT4-4A 27é421?46()23?105288(;g‘°\/v 1184722.38 (15)  9896764.00 (15)  Rudder 2-D dip 3020 187.27 1435
URs-tg 2807974007 Ny 95072560 (16)  10195883.60 (16) M‘,\’,{g;‘gsu':i;"}falioj 100 1057
URS-2C 2833?017224:2416;’;'0\,\, 972332.69 (16)  10199693.00 (16) M‘Jg:‘gsug'ﬁ'};iq‘:alioz; 170 1262
URS-3C 2853?092357276‘10;2';\,\, 087639.20 (16)  10202393.10 (16) Mﬂg:j;ugiléiﬁalzoz;gzs 1321
URS-4A  28.10025610°N; 989295.00 (16)  10202685.10 (16)  “orgus HR Line 150; 1325

89.02008217°W

Morgus HR Trace 3010

Notes: UTM = universal transverse Mercator. Conversion to/from UTM and latitude/longitude use NAD27 and Clarke 1866 ellipsoid. UTM coordinates are in U.S.

survey feet.

Table T2. Stage 1 measurement-while-drilling operations summary for primary sites.

Proposed Water MWD depth Operational Total time
site depth (m) (mbsf) time (days)  (days)
BT4-2A 1476 340 1.2 1.2
BT4-4A 1435 230 1.0 1.0
Transit 2 2.0
URS-3C 1321 238 1.0 1.0
URS-2C 1262 358 1.2 1.2
URS-1B 1057 612 1.9 1.9
Total: 8.3

Notes: MWD = measurement while drilling. The time estimates include rig-up through rig-down and stow.
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Table T3. Wireline logging measurements and time estimates.

Water depth  Logged

Site* (m) interval (m) Measurements Time (h)*
Temperature; caliper; spectral gamma ray; electrical resistivity; density;
BT4-2A 1476 260 photoelectric effect; porosity; compressional-, shear-, and stoneley-wave 22.8
velocities; borehole resistivity imaging; and vertical seismic profile
BT4-4A 1435 150 Same as Site BT4-2A. 19.8
URS-1B 1057 532 Same as Site BT4-2A 26.2
URS-2C 1262 278 Same as Site BT4-2A 21.3

Notes: * = Prioritization of sites for wireline logging operations may depend on overall expedition time constraints. T = Time estimates assume setting drill pipe at
80 mbsf, 20 m station spacing for vertical seismic profile, and compliance with the IODP marine mammal guidelines.

Table T4. Depth to critical surfaces at each Expedition 308 site.

Proposed Water depth Drilled depth Top hemipelagic depth  Bottom hemipelagic depth
site (m) TWT (ms) (mbsf) TWT (ms) (mbsf) TWT (ms) (mbsf) TWT (ms)
BT4-1B 1405 1.907 300 2.264 118 2.051 310 2.276
BT4-2A 1476 1.972 340 2.374 185 2.196 434 2.476
BT4-3A 1459 1.949 280 2.284 101 2.072 338 2.350
BT4-4A 1435 1.918 230 2.195 37 1.962 275 2.247
Top Blue Base Blue
URS-1B 1057 1.419 612 2.122 632 2.168 722 2.264
URS-2C 1262 1.695 300 2.071 358 2.161 558 2.363
URS-3C 1321 1.773 240 2.079 238 2.101 483 2.359
URS-4A 1325 1.780 240 2.085 237 2.106 474 2.355

Note: TWT = two-way traveltime.
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Table T5. Operations plan and time estimate.

Water
Primary Location depth Transit | Drilling | Logging
site (lat/long) (mbrf) Operations description (mbsf) (days) | (days) | (days)
Mobile, Alabama Transit 448 nmi at 10.5 kt to Site BT4-4A 1.8
BT4-4A  27.26628°N, 1435 Hole A: APC/XCB core to 230 mbsf; fill hole with heavy mud (includes 3 1.6
94.40316°W APCT and 1 DVTPP measurements, plus 2 T2P deployments).
Normal Pressure
Brazos-Trinity Basin flank
E. Breaks Blk. 735
Move 2.5 nmi at 1.5 kt in DP mode to Site BT4-2A 0.1
BT4-2A  27.30136°N, 1476 Hole A: APC/XCB core to 340 mbsf; fill hole with heavy mud (includes 3 1.8
94.38754°W APCT and 1 DVTPP measurements, plus 2 T2P deployments).
Normal Pressure Wireline logging (including hole preparation): 1.5
Brazos-Trinity Basin center - Triple combo/FMS-sonic/VSP (20 m stations/5 min per station)
E. Breaks Blk. 692 Hole B: MWD at 25 m/h ROP to 340 mbs; fill hole with heavy mud. 1.1
Move 2.5 nmi at 1.5 kt in DP mode to Site BT4-4A 0.1
BT4-4A  27.26628°N, 1435 Hole B: MWD at 25 m/h ROP to 230 mbsf; fill hole with heavy mud. 0.9
94.40316°W
Transit 283 nmi at 10.5 kt to Site URS-3C 1.1
URS-3C  28.09938°N, 1321 Hole A: MWD at 25 m/h ROP to 238 mbsf; fill hole with heavy mud. 0.9
89.02520°W Top of “Blue” sand projected at 258 mbsf
Move 3.4 nmi at 1.5 kt in DP mode to Site URS-2C 0.1
URS-2C  28.09124°N, 1262 Hole A: MWD at 25 m/h ROP to 358 mbsf; fill hole with heavy mud. 1.1
89.07252°W Top of “Blue” sand projected at 378 mbsf
Move 3.4 nmi at 1.5 kt in DP mode to Site URS-1B 0.1
URS-1B  28.07974°N, 1057 Hole A: MWD at 25 m/h ROP to 612 mbsf; fill hole with heavy mud. 1.1
89.13931°W Top of “Blue” sand projected at 632 mbsf
Abnormal Pressure Rendezvous with work boat to offload MWD tools 0.1
Mars-Ursa Basin
Miss.Canyon Blk. 897 Hole B: APC/XCB core to 612 mbsf; fill hole with heavy mud (includes 3 3.2
APCT and 1 DVTPP measurements)
- Wireline logging (including hole preparation): Triple combo/FMS-sonic/ 1.5
VSP (20 m stations/5 min per station)
Hole C: Drill; 5 T2P deployments plus allowance for 5 APC half-cores. 1.7
Fill hole with heavy mud.
Note: Core with heavy mud from 481 mbsfto TD (last 130 m).
Top of “Blue” sand projected at 632 mbsf
Move 3.4 nmi at 1.5 kt in DP mode to Site URS-2C 0.1
URS-2C  28.09124°N, 1262 Hole B: APC/XCB core to 358 mbsf; fill hole with heavy mud (includes 3 15
89.07252°W APCT and 1 DVTPP measurements)
Abnormal Pressure Hole C: Drill; 5 T2P deployments plus allowance for 5 APC half-cores. 1.6
Mars-Ursa Basin Fill hole with heavy mud.
Miss.Canyon Blk. 899 Note: Core with heavy mud from 328 mbsf to TD (last 30 m).
Top of “Blue” sand projected at 378 mbsf
Move 3.4 nmi at 1.5 kt in DP mode to Site URS-3C 0.1
URS-3C  28.09938°N, 1321 Hole B: APC/XCB core to 238 mbsf; fill hole with heavy mud (includes 3 1.4
89.02520°W APCT and 1 DVTPP measurements, plus 1 T2P deployment).
Abnormal Pressure Top of “Blue” sand projected at 258 mbsf
Mars-Ursa Basin
Miss.Canyon Blk. 855
Balboa, Panama Transit 1374 nmi T 10.5 kt to Balboa, Panama thorough Canal 6.5
Subtotal:  10.1 12.8 8.1
Total operating days: 31.0

Notes: APC = advanced piston coring, XCB = extended core barrel. APCT = APC temperature tool, DVTPP = Davis-Villinger Temperature-Pressure tool, T2P =
temperature/dual pressure tool. FMS = Formation MicroScanner, VSP = vertical seismic profile. MWD = measurement while drilling. ROP = rate of penetra-
tion. TD = total depth.
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Table T6. T2P tapered probe measurement times.

Event time |Cumulative

Event (min) time (min)
Tool in pipe 0 0
Lower tool to 1 m above base of hole 45 45
Take hydrostatic pressure 5 50
Lower tool to base of hole 5 55
Stop pumping 5 60
Push tool into formation 5 65
Start pumping 5 70
Measure pressure 90 160
Pull tool from formation 5 165
Pull tool to top of pipe 25 190
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Figure F1. A. Overpressure (P*) results when sedimentation occurs more rapidly than fluids can be ex-
pelled by compaction. B. This is recorded by an “undercompacted” porosity profile. C. Overpressure is of-
ten interpreted from the undercompacted profile. A suite of models describes how overpressure is
generated during rapid deposition (Bethke, 1986; Bredehoeft and Hanshaw, 1968; Gibson, 1958; Koppula

and Morgenstern, 1982; Osborne and Swarbrick, 1997; Swarbrick and Osborne, 1996).
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Figure F2. A. Low-permeability sediments are rapidly deposited on a high-permeability aquifer (outlined
in white). The sedimentation rate decreases from left to right, resulting in the final wedge-shaped geome-
try. Rapid sedimentation generates overpressures (P*, color contours) that are greatest on the left (red).
Flow is driven laterally (left to right) along the aquifer and expelled at the toe of the slope where the aqui-
fer ends (white arrows). The vertical effective stress (black contours) is a minimum on the right end of the
aquifer. B. Model predictions for URS-1B (dashed line in A and B) and URS-3C (solid line in A and B); drill-
ing and measurement will provide direct tests of these predictions. (1) Predicted overpressure profiles
where overburden is thick (dashed = URS-1B) and thin (solid = URS-3C). Overpressure at URS-3C is greater
at the same depth than overpressures at URS-1B. (2) The effective stress (g,’) is much lower at URS-3C than
at URS-1B. (3) Porosities are much higher at URS-3C than URS-1B at equivalent depths. (4) Pore pressures
(P) equal the overburden stress (g,) at URS-3C. (5) Infinite slope analyses (FS; relates the failure-driving
stress to the available shear strength for shallow failures) predict unstable conditions (FS < 1) for URS-3C.
(6) Simulated vertical fluid velocity is higher at URS-3C than at URS-1B. At URS-1B we predict upward flow
for most of the section but downward flow (velocity < 0) just above the aquifer. Model parameters: low
permeability ky < 5 x 10-18 m2 and k, < 5 x 10-16 m2; aquifer permeability ky, = ky 5 x 10-14 m2; maximum
sedimentation rate = 3.5 mm/y; minimum sedimentation rate = 0.8 mm/y.
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Figure F3. Flow focusing drives (A) slope instability and (B) fluid migration.
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Figure F4. Bathymetric image of the continental slope of the Gulf of Mexico. The Brazos-Trinity Basin
contains four proposed sites (BT4-1B to BT4-4A) and the Ursa Basin also contains four proposed sites (URS-
1B to URS-4A). Pleistocene sedimentation rates are low at the BT4 sites and high at the URS sites.
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Figure F5. Brazos-Trinity Basin #4. Infrastructure (wells and pipelines), salt distribution (green and gray),
locations of steep bathymetry (yellow), and East Breaks block numbers are shown.
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Figure F6. Two-dimensional high-resolution seismic data basemap. Proposed Sites BT4-1B to BT4-4A are
shown on the map along Line 3020.
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Figure F7. Dip seismic section 3020. Specific sites are located at the cross-tie with strike Lines 3019 (BT4-
1B), 3045 (BT4-2A), and 3055 (Site BT4-3A) and at the southern limit of Line 3020 (Site BT4-4A). Primary
sites for Brazos-Trinity include BT4-2A and BT4-4A. Secondary sites include BT4-1B and BT4-3A. Seismic
reproduced with permission of Shell Exploration and Production Company.
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Figure F8. Strike seismic Line 3045. Primary Site BT4-2A is located at the intersection of Line 3020 and
3045. Seismic reproduced with permission of Shell Exploration and Production Company.
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Figure F9. A. Ursa Basin is located 200 km south of New Orleans, Louisiana (USA). B. Bathymetry in the
Ursa region (m). Open circles = proposed IODP boreholes, solid circles = logging data are available, solid
rectangles = geotechnical wells where whole core was taken and pressure was directly measured. “MARS”
and “URSA” delineate locations of the tension leg platforms producing oil from these fields. The square
grid and associated numbers delineate Mississippi Canyon lease blocks that are 3 miles x 3 miles (e.g., the
Ursa TLP is in Block M.C. 809).
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Figure F10. A. Seismic cross section A-A” . B. Interpreted cross section A—A’ . The sand-prone Blue Unit has
been incised by a channel-levee complex and then overlain by a thick and heavily slumped hemipelagic
mudstone wedge that thickens to the west (left). The Blue Unit sands are correlated to a distinct seismic fa-
cies. Seismic reproduced with permission of Shell Exploration and Production Company.
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Figure F11. Gamma ray and resistivity logs, core and logging porosities, and in situ pressures at M.C. 810
Ursa geotechnical well #1 (located in Fig. F9). The Blue Unit (light gray bars) lies between 300 and 550
mbsf and is composed of interbedded sandstone and mudstone layers. Core porosity (¢ core) declines rap-
idly with depth to 200 mbsf and thereafter is constant. Overpressure (P* = P — P}) is plotted; thus the verti-
cal axis is hydrostatic pressure (Pn) and the right boundary of the plot is the reduced lithostatic pressure
(6,* = o, — Ph). Circles = piezoprobe pressures, triangles = preconsolidation pressures from uniaxial consoli-
dation tests of core, stars = pressure measurements inferred from pressure while drilling (PWD) in the Blue
Unit. Ostermeier et al. (2000) and Eaton (1999) further describe these data.
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Figure F12. The T2P penetrometer is being co-developed at MIT, Penn State, and IODP-TAMU. It is de-
signed to measure pore pressure and hydraulic conductivity in mudstones. The plot illustrates the dissipa-
tion at both the tip and the shaft after penetration in a December 2004 land deployment in Boston Blue
Clay in Newburyport, Massachusetts (USA). Excess pore pressure ratio = (1 — un)/(1i —up). U = pore pressure,
up = hydrostatic pressure, u; = peak insertion pressure.
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SITE SUMMARIES

Site: BT4-2A

Priority: Primary

Position: 27.30136298°N, 94.38753682°W
Water depth (m): 1476

Target drilling depth (mbsf): 340

Approved maximum penetration (mbsf): | 340

Survey coverage:

¢ Rudder 2-D dipline 3020
e Shotpoint 220.76
e Rudder 2-D crossline 3045

Objectives:

Hydrodynamic analysis of a passive margin. Brazos-Trinity
Basin #4 sites are to serve as a reference location to
establish basic rock and fluid properties over a range of
effective stresses in a normally pressured section.

Drilling program:

APC to refusal with drillover and XCB

Wireline logging program:

Triple combo, FMS-sonic, VSP

MWD program:

GVR, ADN, APWD

Nature of rock anticipated:

Hemipelagic mudstone with some unconsolidated
turbidite sand

Site: BT4-4A

Priority: Primary

Position: 27.26628028°N, 94.40315809°W
Water depth (m): 1435

Target drilling depth (mbsf): 230

Approved maximum penetration (mbsf): 230

Survey coverage:

e Rudder 2-D dipline 3020
¢ Shotpoint 187.27

Objectives:

Hydrodynamic analysis of a passive margin. Brazos-Trinity
Basin #4 sites are to serve as a reference location to
establish basic rock and fluid properties over a range of
effective stresses in a normally pressured section.

Drilling program:

APC to refusal with drillover and XCB

Wireline logging program:

Triple combo, FMS-sonic, VSP

MWD program:

GVR, ADN, APWD

Nature of rock anticipated:

Hemipelagic mudstone with some unconsolidated
turbidite sand
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SITE SUMMARIES (CONTINUED)

Site: BT4-1B

Priority: Secondary

Position: 27.36771232°N, 94.35774732°W
Water depth (m): 1405

Target drilling depth (mbsf): 300

Approved maximum penetration (mbsf): 300

Survey coverage:

¢ Rudder 2-D dipline 3020
¢ Shotpoint 284.00
e Rudder 2-D crossline 3019

Objectives:

Hydrodynamic analysis of a passive margin. Brazos-Trinity
Basin #4 sites are to serve as a reference location to
establish basic rock and fluid properties over a range of
effective stresses in a normally pressured section.

Drilling program:

APC to refusal with drillover and XCB

Wireline logging program:

Triple combo, FMS-sonic, VSP

MWD program:

GVR, ADN, APWD

Nature of rock anticipated:

Hemipelagic mudstone with some unconsolidated
turbidite sand

Site: BT4-3A

Proposed Site BT4-3A

Priority: Secondary

Position: 27.27568317°N, 94.39891740°W
Water depth (m): 1459

Target drilling depth (mbsf): 280

Approved maximum penetration (mbsf); 280

Survey coverage:

¢ Rudder 2-D dipline 3020
* Shotpoint 196.36
e Rudder 2-D crossline 3055

Objectives:

Hydrodynamic analysis of a passive margin. Brazos-Trinity
Basin #4 sites are to serve as a reference location to
establish basic rock and fluid properties over a range of
effective stresses in a normally pressured section.

Drilling program:

APC to refusal with drillover and XCB

Wireline logging program:

Triple combo, FMS-sonic, VSP

MWD program:

GVR, ADN, APWD

Nature of rock anticipated:

Hemipelagic mudstone with some unconsolidated
turbidite sand
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SITE SUMMARIES (CONTINUED)

Site: URS-1B

Priority: Primary

Position: 28.07974007°N, 89.13930517°W
Water depth (m): 1057

Target drilling depth (mbsf): 612

Approved maximum penetration (mbsf); 612

Survey coverage:

* Morgus HR line 150
* Morgus HR trace 1100

Objectives:

Hydrodynamic analysis of a passive margin. Ursa sites will
test the flow-focusing model by drilling to 612 mbsf (20
m above the predicted top of the Blue Unit) in an
overpressured region where overburden is thick (URS-
1B) and where it is thinner (URS-2C, URS-3C).

Drilling program:

APC to refusal with drillover and XCB

Wireline logging program:

Triple combo, FMS-sonic, VSP

MWD program:

GVR, ADN, APWD

Nature of rock anticipated:

Hemipelagic mudstone with some interbedded levee
sands

Site: URS-2C

Priority: Primary

Position: 28.09124346°N, 89.07252124°W
Water depth (m): 1262

Target drilling depth (mbsf): 358

Approved maximum penetration (mbsf); 358

Survey coverage:

e Morgus HR line 150
* Morgus HR trace 2170

Objectives:

Hydrodynamic analysis of a passive margin. Ursa sites will
test the flow focusing model by drilling to 358 mbsf (20
m above the predicted top of the Blue Unit) in an
overpressured region where overburden is thick (URS-
1B) and where it is thinner (URS-2C, URS-3C).

Drilling program:

APC to refusal with drillover and XCB

Wireline logging program:

Triple combo, FMS-sonic, VSP

MWD program:

GVR, ADN, APWD

Nature of rock anticipated:

Hemipelagic mudstone with some interbedded levee
sands

37




Expedition 308 Scientific Prospectus

SITE SUMMARIES (CONTINUED)

Site: URS-3C

Priority: Primary

Position: 28.09937740°N, 89.02520153°W
Water depth (m): 1321

Target drilling depth (mbsf): 238

Approved maximum penetration (mbsf); 238

Survey coverage:

* Morgus HR line 150
* Morgus HR trace 2928

Objectives:

Hydrodynamic analysis of a passive margin. Ursa sites will
test the flow focusing model by drilling to 238 mbsf (20
m above the predicted top of the Blue Unit) in an
overpressured region where overburden is thick (URS-
1B) and where it is thinner (URS-2C, URS-3C).

Drilling program:

APC to refusal with drillover and XCB

Wireline logging program:

None

MLWD program:

GVR, ADN, APWD

Nature of rock anticipated:

Hemipelagic mudstone

Site: URS-4A

Priority: Secondary

Position: 28.10025610°N, 89.02008217°W
Water depth (m): 1325

Target drilling depth (mbsf): 237

Approved maximum penetration (mbsf); 237

Survey coverage:

* Morgus HR line 150
* Morgus HR trace 3010

Objectives:

Hydrodynamic analysis of a passive margin. Ursa Sites will
test the flow focusing model by drilling to 237 mbsf (20
m above the predicted top of the Blue Unit) in an
overpressured region where overburden is thick (URS-
1B) and where it is thinner (URS-2C, URS-3C, URS-4A).

Drilling program:

APC to refusal with drillover and XCB

Wireline logging program:

None

MWD program:

GVR, ADN, APWD

Nature of rock anticipated:

Hemipelagic mudstone
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