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Abstract

Understanding the evolution and dynamics of the Antarctic cryosphere, from its in-
ception during the Eocene–Oligocene transition (~33 Ma) through the significant pe-
riods of climate change during the Cenozoic, is not only of major scientific interest
but also is of great importance for society. The transition from Greenhouse to Ice-
house Earth conceivably was the most significant step in large-scale planetary change,
impacting global sea level, albedo, and oceanographic and biotic evolution, among
other changes. State-of-the-art climate models combined with paleoclimatic proxy
data suggest that the main triggering mechanism for initial inception and develop-
ment of the Antarctic glaciation was the decreasing levels of CO2 concentration in the
atmosphere. With current rising atmospheric greenhouse gases resulting in rapidly
rising global temperatures, studies of polar climates, and the Antarctic cryosphere be-
havior in particular, are prominent on the research agenda.

Drilling the Antarctic Wilkes Land margin is designed to provide a long-term record,
obtained from sedimentary archives along an inshore to offshore transect, of Antarc-
tic glaciation and its intimate relationships with global climatic and oceanographic
change. Stratigraphic interpretations indicate that the Wilkes Land record will in-
clude the critical periods in Cenozoic Earth climate evolution when the cryosphere
formed, likely in step-wise fashion, and subsequently evolved to assume its present-
day configuration. The principal goals are

1. To obtain the timing and nature of the first arrival of ice at the Wilkes Land mar-
gin (referred to as the “onset of glaciation”) inferred to have occurred during the
earliest Oligocene (Oligocene isotope event-1),

2. To obtain the nature and age of the changes in the geometry of the prograda-
tional wedge interpreted to correspond with large fluctuations in the extent of
the East Antarctic Ice Sheet (EAIS) and possibly coinciding with the transition
from a wet-based to a cold-based glacial regime (late Miocene–Pliocene?),

3. To obtain a high-resolution record of Antarctic climate variability during the late
Neogene and Quaternary, and

4. To obtain an unprecedented, ultrahigh resolution (i.e., annual to decadal) Holo-
cene record of climate variability.

The Wilkes Land drilling program is designed to constrain the age, nature, and pa-
leoenvironment of deposition of the previously only seismically inferred glacial se-
quences. Determining the chronostratigraphy of the Wilkes Land sediments, which
3
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is at present nonexistent, is critical to ground-truth the existing glacial-stratigraphic
and ice sheet volume models for this margin. Ice sheet models suggest that the Wilkes
Land margin became glaciated in the later stages of East Antarctic glaciation, after
Prydz Bay and the Weddell Sea; therefore, it is presumed to be more sensitive to future
temperature changes. Drilling the Wilkes Land margin has a unique advantage in that
Unconformity WL-U3, inferred to separate preglacial strata below from glacial strata
above in the continental shelf, can be traced to the continental rise deposits, allowing
sequences to be linked from shelf to rise. Because strata below and above the “glacial
onset” unconformity can be sampled at relatively shallow penetration depths, the re-
cord of the onset of glaciation can be obtained during a single drilling expedition
from two depositional environments, the shelf foreset (proposed Sites WLSHE-07,
WLSHE-09, WLSHE-10, and WLSHE-11) and the abyssal plain hemipelagic (proposed
Site WLRIS-02A) strata. The shelf foreset section provides a direct record of first occur-
rence of grounded ice but one that is less continuous and harder to date. The rise
hemipelagic section provides an indirect record of glaciation but one that is more
continuous and easier to date. Constraints on the age and nature of the Wilkes Land
glacial sequences is essential to provide age constraints for models of Antarctic ice
sheet development.

The EAIS in the Wilkes subglacial basin is grounded below sea level and therefore may
have been more sensitive to climate changes in the late Neogene. The sedimentary
sections on the Wilkes Land margin may therefore not only hold the record of the
time when the EAIS first reached this margin, but also the record of ice sheet fluctua-
tions during times when the EAIS is thought to be more stable (15 Ma–recent). This
information is critical for developing reliable models of future Antarctic ice sheet be-
havior.

Schedule for Expedition 318

Expedition 318 to the Wilkes Land margin of Antarctica is derived from the original
Integrated Ocean Drilling Program (IODP) drilling Proposal 482 as well as Ancillary
Project Letter 638 (available at iodp.tamu.edu/scienceops/expeditions/
wilkes_land.html) and planned for the JOIDES Resolution, operating under contract
with the U.S. Implementing Organization (USIO). The expedition is currently sched-
uled to begin in Wellington, New Zealand, in January 2009 and end in Wellington in
March 2009. The exact dates of the USIO expedition schedule may be adjusted de-
pending on the completion date of the conversion of the drillship. For the current
4
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JOIDES Resolution schedule, see iodp.tamu.edu/scienceops. Supporting site survey
data for Expedition 318 are archived at the IODP-Management International Site Sur-
vey Data Bank (ssdb.iodp.org). Details on the facilities aboard the JOIDES Resolution
can be found at iodp.tamu.edu/publicinfo/drillship.html.

Introduction

Polar ice is an important component of the modern climate system, affecting global
sea level, ocean circulation and heat transport, marine productivity, and planetary al-
bedo, among other things. The modern semipermanent ice caps are, geologically
speaking, a relatively young phenomenon. Since mid-Permian (~270 Ma) times, parts
of Antarctica became (re)glaciated only ~34 m.y. ago, whereas episodes of major
Northern Hemisphere continental ice began ~3 m.y. ago (e.g., Zachos et al., 2001)
(Fig. F1). In a broad sense, the record of Antarctic glaciation from the time of first ice
sheet inception (around the Eocene/Oligocene boundary; Oligocene isotope event 1
[Oi-1] glaciation) through the significant periods of climate change during the Ceno-
zoic, such as the Oligocene/Miocene boundary, the Miocene isotope event 1 [Mi-1],
the mid-Miocene climatic optimum, late Neogene cooling, early Pliocene warming
events, the Quaternary glacial–interglacial cycles, and the concomitant biotic and pa-
leocenographic evolution, is not only of scientific interest but also is of great impor-
tance for society. State-of-the-art climate models (e.g., DeConto and Pollard, 2003a,
2003b; Huber et al., 2004; DeConto et al., 2007) combined with paleoclimatic proxy
data (e.g., Pagani et al., 2005) suggest that the main triggering mechanism for initial
inception and development of the Antarctic ice sheet were the decreasing levels of
CO2 concentration in the atmosphere (Fig. F2), and that the opening of critical South-
ern Ocean gateways (e.g., Kennett, 1977; DeConto and Pollard, 2003a, 2003b; Huber
et al., 2004; Barker and Thomas, 2004) played only a secondary role. With current ris-
ing atmospheric greenhouse gases resulting in rapidly rising global temperatures (In-
tergovernmental Panel on Climate Change [IPCC], 2007), studies of polar climates are
prominent on the research agenda. Understanding Antarctic ice sheet dynamics and
stability is of special relevance because, based on IPCC 2007 forecasts, CO2 doubling
or 1.8°–4°C equivalent for the end of this century is expected. These conditions were
not experienced in our planet since 10–15 Ma, when only the Antarctic ice sheet ex-
isted (Fig. F3).

Since their inception, like the Northern Hemisphere ice sheets, the Antarctic ice
sheets appear to have been very dynamic; waxing and waning in response to global
5
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climate change over intermediate and even short (orbital) timescales (e.g., Wise et al.,
1991; Zachos et al., 1997; Barker, Camerlenghi, Acton, et al., 1999; DeConto and Pol-
lard, 2003a, 2003b). Yet, not much is known about the nature, cause, timing, and rate
of processes involved, notably of Antarctic glaciation. Past ocean drilling into the
Antarctic continental shelf and basins in Prydz Bay and the Ross Sea (i.e., Ocean Drill-
ing Program [ODP] Legs 119 and 188, Deep Sea Drilling Program [DSDP] Leg 28, and
Cape Roberts Project) indicates two basic states of the Antarctic ice sheet(s): (1) an
early phase lasting ~20 m.y. with a less stable ice cover characterized by strong cyclic
waxing and waning (Zachos et al., 1997; Wade and Pälike, 2004; Pälike et al., 2006),
and (2) a later (from ~14 Ma to recent) phase when deep-sea isotope records (e.g.,
Miller et al., 1985; Flower and Kennett, 1994) indicate that the Antarctic ice sheet(s)
became a quasipermanent, and more stable, feature sustaining polar climates. How-
ever, even the “stable” ice sheets may have varied considerably in size, perhaps by as
much as 25 m of sea level equivalent (SLE) (Kennett and Hodell, 1993). Of the two
main ice sheets, the West Antarctic Ice Sheet (WAIS) (Fig. F4) is mainly marine based
and is considered less stable. The EAIS, which overlies continental terranes that are
largely above sea level, is considered stable and is believed to respond only slowly to
changes in climate. However, reports of beach gravel deposited 20 m above sea level
in Bermuda and the Bahamas from 420 to 360 ka indicate the collapse of not only the
WAIS (6 m of SLE), and the Greenland ice sheet (6 m of SLE), but possibly also 8 m of
SLE from East Antarctic ice sources (Hearty et al., 1999). Therefore, it is indicated that
during episodes of global warmth, with likely elevated atmospheric CO2 conditions,
the EAIS may contribute just as much or more to rising global sea level as the prover-
bial unstable Greenland ice sheet. In the face of rising CO2 levels (IPCC, 2007) a better
understanding of the EAIS dynamics is therefore urgently needed from both an aca-
demic as well as a societal point of view.

A key region for analysis of the long- and short-term behavior of the EAIS is the east-
ern sector of the Wilkes Land margin, located at the seaward termination of the larg-
est East Antarctic subglacial basin, the Wilkes subglacial basin (Figs. F5, F6) (Drewry,
1983; Ferraccioli et al., 2001, 2007). The base of the portion of the EAIS draining
through the Wilkes subglacial basin is largely below sea level, suggesting that this por-
tion of the EAIS is potentially less stable than the rest of the EAIS. Numerical models
of ice sheet behavior (e.g., Huybrechts, 1993; DeConto and Pollard, 2003a, 2003b)
(Fig. F2) provide a basic understanding of the climatic sensitivity of particular Antarc-
tic regions for early ice sheet formation, connection and expansion, and eventual for-
mation of the entire ice sheet. For example, in these models glaciation is shown to
have begun in the East Antarctic interior, discharging mainly through the Lambert
6
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Graben to Prydz Bay. These models imply that the EAIS did not reach sea level in the
Wilkes Land margin until a later stage. These models must now be validated through
drilling and obtaining concrete evidence found in the sedimentary record. Sediments
from Prydz Bay cores drilled during Leg 188 (O’Brien, Cooper, Richter, et al., 2001;
Cooper, O’Brien, and Richter, 2004) contained the record of the first arrival of ice
sheets to that margin. There, the onset of glaciation is dated to the latest Eocene–ear-
liest Oligocene (~34 Ma). The timing and mode of the onset of glaciation at the Wilkes
Land continental margin is still unknown but is essential for providing age con-
straints for the models of EAIS development and changes in its volume. Moreover, de-
tailed portrayal of the subsequent Cenozoic history and dynamics of the Antarctic
glacial cycles at Wilkes Land will provide further constraints for model experiments
and future predictions about EAIS stability.

Conceivably even more important than the history of the Antarctic glaciations are
past lessons of deglaciations. Seismic surveys and pilot studies indicate that the Wil-
kes Land margin also includes sites of ultrahigh accumulation rates of sediments re-
cording the Holocene deglaciation. Recovery and analysis of these unique ~200 m
thick series of “tree ring” type, annually layered sediments predominantly consisting
of phytoplankton remains constituting one of the worlds most expanded archives of
recent environmental change is one of the tasks ahead to ensure palaeoenvironmen-
tal reconstruction with unprecedented detail.

During Expedition 318, we will drill key sites along a shelf-rise-abyssal plain transect
at Wilkes Land, Antarctica (Figs. F5, F6; Table T1), to determine the timing and mode
of the onset of Antarctic glaciation at the Wilkes Land continental margin, to deter-
mine the subsequent Cenozoic history and dynamics of the Antarctic glacial cycles,
and to recover and reconstruct the dynamics of the youngest deglaciation in detail.

Background

Physiographic and geologic setting

The Adélie and George V Coasts of the eastern Wilkes Land margin drain the EAIS
with a mostly divergent flow pattern (Fig. F4). Ice cliffs and two prominent outlet gla-
ciers, the Mertz and the Ninnis, characterize the present coastline (Figs. F5, F6). These
outlet glaciers extend seaward as ice tongues and have an important role in ice drain-
age and sediment delivery to the ocean (Anderson et al., 1980; Drewry and Cooper,
1981). Drainage velocities in outlet glaciers range from >0.5 km/y to ~3.7 km/y (Fig.
7
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F4) (Lindstrom and Tyler, 1984; MacDonald et al., 1989), whereas drainage in the ar-
eas between outlet glaciers, occupied by sea cliffs, may range from a few meters to tens
of meters every year (Anderson, 1999).

The eastern Wilkes Land continental margin formed during the Cretaceous separa-
tion of Australia and Antarctica (Cande and Mutter, 1982; Sayers et al., 2001; Veevers,
1987; Colwell et al., 2006; O’Brien and Stagg, 2007; Leitchenkov et al., 2007). The
acoustic basement across the margin consists of block-faulted continental crust,
thinned and intruded transitional crust, and oceanic crust (Eittreim and Smith, 1987;
Eittreim, 1994). Deep marginal rift basins generally characterize the transition zone
from continental to oceanic crust (Eittreim, 1994). Maximum sedimentary thickness
(~8 km) has been reported from these marginal rift basins.

The stratigraphy of the eastern Wilkes Land margin is known mainly from the seismic
stratigraphic analyses of numerous multichannel seismic reflection surveys in the
eastern Wilkes Land margin (Sato et al., 1984; Wannesson et al., 1985; Tsumuraya et
al., 1985; Eittreim and Hampton, 1987; Ishihara et al., 1996; Tanahashi et al., 1997;
Brancolini et al., 2000; Stagg et al., 2004) (Fig. F5) complemented by gravity and pis-
ton sediment cores (Payne and Conolly, 1972; Hampton et al., 1987; Domack et al.,
1980; Domack, 1982; Tsumuraya et al., 1985; Ishihara et al., 1996; Tanahashi et al.,
1997; Brancolini et al., 2000; Escutia et al., 2003; Michel et al., 2006), dredging (Maw-
son 1940, 1942; Domack et al., 1980; Sato et al., 1984; Leventer et al., 2001), and lim-
ited deep geological sampling recovery at DSDP Site 269 (Hayes, Frakes, et al., 1975).

Pre–ice sheet stratigraphy

Presumed pre-Oligocene synrift strata are ~3 km thick and are highly variable in seis-
mic character, with discontinuous, faulted, and tilted strata onlapping the flanks of
the acoustic basement (Eittreim and Smith, 1987; Eittreim, 1994; De Santis et al.,
2003; Stagg et al., 2004; Leitchenkov et al., 2007). Postrift strata across the eastern
Wilkes Land margin are as thick as 5 km, well layered on the continental rise, and less
stratified and discontinuous landward (Eittreim and Smith, 1987; Wannesson, 1990;
Tanahashi et al., 1994; Eittreim, 1994; De Santis et al., 2003). On the continental
shelf, a prominent regional unconformity (WL-U3) within the Cenozoic postrift sec-
tion (Fig. F7) is believed to be due to erosional processes related to the first advance
of grounded ice sheets onto the continental shelf (Eittreim and Smith, 1987; Tana-
hashi et al., 1994; Eittreim et al., 1995; Escutia et al., 1997). Pre–ice sheet strata below
Unconformity WL-U3, where resolvable, are flat-lying and less stratified than glacial
strata above the unconformity.
8
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The only pre–ice sheet strata sampled from this margin include a series of dredges
from the inner continental shelf and slope. Erosion by late Cenozoic glaciers near the
Mertz ice tongue exposed Mesozoic sediments at the seafloor, which allowed recovery
of lignite (Mawson, 1940, 1942) and lower Cretaceous brecciated carbonaceous silt-
stone (Domack et al., 1980). Dredges collected in the area by Leventer et al. (2001)
also recovered Paleogene lignites with reworked Early Cretaceous flora. Dredging of
the upper continental slope off Terre Adélie, sampled Oligocene and Miocene lime-
stones and undated sedimentary, metamorphic, and igneous rocks of mostly ice-
rafted origin (Sato et al., 1984).

Continental shelf glacial stratigraphy

Glacial sequences on the shelf form prograding wedges (Fig. F7) that are deeply
eroded by broad troughs that cross the shelf. The erosional troughs are interpreted to
be the paths of rapidly moving ice streams during times of glacial advances into the
shelf (Eittreim et al., 1995). Foreset strata are commonly truncated at or near the
seafloor beneath the troughs (Fig. F7). Topset strata form the banks adjacent to the
troughs, where the ice is inferred to have moved slowly.

Two main unconformities of regional character, Unconformities WL-U3 and WL-U8,
are identified as truncating the glacial seismic sequences on the shelf (Wannesson et
al., 1985; Eittreim and Smith, 1987; Hampton et al., 1987; Escutia et al., 1997; De San-
tis et al., 2003) (Fig. F7). The erosional events represented by these unconformities are
interpreted to result from grounded ice sheets moving across the continental shelf
(Tanahashi et al., 1994; Eittreim et al., 1995, Escutia et al., 1997). Eittreim et al. (1995)
calculated an erosion of 300 to 600 m of strata below Unconformity WL-U3 and of
350 to 700 m of strata below Unconformity WL-U8. Unconformity WL-U3 marks the
start of progradation in this sector of the Wilkes Land margin. Across Unconformity
WL-U8, a change in the geometry of the outer shelf progradational wedge, from shal-
lower dips below Unconformity WL-U8 to steeper dips above (foreset slopes as much
as ~10°), can be seen.

During the interglacial open-marine Holocene, thick laminated diatom mud and
oozes were deposited in deep (>1000 m) inner shelf basins, including the Adélie Drift
(see IODP Proposal 638 available at iodp.tamu.edu/scienceops/expeditions/
wilkes_land.html) (Costa et al., 2007) (Figs. F5, F8). Based on accelerator mass spec-
trometry radiocarbon dates on a 50 m long sediment core, this drift has unusually
high accumulation rates, as much as 20–21 m/k.y. Opal, Ti, and Ba time series show
decadal to century variance suggestive of solar forcing and El Niño Southern Oscilla-
9
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tion (ENSO) forcing (Dunbar et al., 1985; Crosta et al., 2005; Denis et al. 2005; Leven-
ter et al., 2006; Maddison et al., 2006; Costa et al., 2007).

Continental rise and abyssal plain glacial stratigraphy

Seismic units have been correlated from shelf to rise and abyssal plain based largely
on tracing and projecting unconformities and seismic units. Seismic units above Un-
conformity WL-U8 downlap and pinch out at the base of the continental slope, but
deeper units (i.e., between Unconformities WL-U8 and WL-U3) continue across the
margin (Hampton et al., 1987; Eittreim et al., 1995; Escutia et al., 1997; De Santis et
al., 2003) (Fig. F7). The principal marker is Unconformity WL-U3, which in Wilkes
Land can be traced from the shelf, where it marks the onset of progradation on the
Wilkes Land margin (Eittreim and Smith, 1987), to the rise, where it correlates with
an upsection increase in turbidite and contourite deposition (Escutia et al., 1997;
2000; Donda et al., 2003) (Fig. F9).

On the eastern Wilkes Land continental rise, strata above Unconformity WL-U3 in-
clude six glacial-related seismic units (WL-S4–WL-S9) (De Santis et al., 2003; Donda
et al., 2003) (Fig. F9). The two deepest units, WL-S4 and WL-S5, consist of stratified
and continuous reflectors that onlap at the base of the slope (seismic Units WL1c and
WL1b of Escutia et al., 1997; Donda et al., 2003). Acoustic signatures of isolated chan-
nel-levee complexes that characterize turbidite deposition are first observed during
deposition of Unit WL-S5 (Escutia et al., 1997; Donda et al., 2003). Channel-levee
complexes became widespread during deposition of Units WL-S6 and WL-S7, and tur-
bidity flows were the dominant process building the large sedimentary ridges on the
rise. Wavy reflectors that are characteristic of bottom contour-current deposition oc-
cur on the lower rise in Unit WL-S6 and on the upper rise in Unit WL-S7. Unit WL-S8
mostly fills previous depressions, although there is evidence for bottom contour-cur-
rent and turbidite flows (Escutia et al., 1997; Donda et al., 2003). Unit WL-S9 is a dis-
continuous unit on the rise, and, where present, is composed of channel and levee
complexes and layered reflectors (Donda et al., 2003).

Previous drilling on the Wilkes Land margin

Operations during Leg 28 drilled Site 269 on the eastern Wilkes Land abyssal plain to
determine the geologic and climate history of Antarctica and the Southern Ocean
(Hayes, Frakes, et al., 1975). Site 269 was drilled and intermittently cored to a subbot-
tom depth of 958 m in a water depth of 4285 m, with 42% recovery of Eocene–Holo-
cene rocks (Hayes, Frakes, et al., 1975). The cored sections consist predominantly of
10
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silts and clays with variable amounts of microfossils. Diatom oozes and diatom mud
dominate the upper half of the section, which is dated as Quaternary to late Miocene
in age (Hayes, Frakes, et al., 1975). In the lower half, which is late Miocene to early
Miocene and Oligocene to ?late Eocene in age, diatoms are absent but calcareous nan-
nofossils are found in trace amounts, with abundant palynomorphs including dino-
flagellate cysts and sporomorphs (Kemp et al., 1975). There is a transition in facies
from more distal facies in the lower part of the hole to more proximal facies near the
surface. Piper and Brisco (1975) interpret this facies change as a result of substantial
increased supply of sand, coarse silt, and clay from the Antarctic continent, possibly
in response to prograding of the continental margin. The cores document extensive
Antarctic glaciation beginning at least by Oligocene to early Miocene time and indi-
cate that water temperatures were cool to temperate in the late Oligocene and early
Miocene then cooled during the Neogene, presumably as glaciation intensified.

Inferred long-term record of glaciation

Unconformity WL-U3 is interpreted to mark the first preserved grounding of an ice
sheet across the Wilkes Land, eroding the continental shelf (Tanahashi et al., 1994;
Eittreim et al., 1995; Escutia et al., 1997; 2005), ~40 m.y. ago (Eittreim et al., 1995) to
33.5 to 30 Ma (Escutia et al., 2005) (Fig. F10). Early glacial strata (e.g., likely glacial
outwash deposits) above Unconformity WL-U3 were delivered by fluctuating temper-
ate glaciers and deposited as low dip–angle prograding foresets. The increase in stratal
dips across Unconformity WL-U8 in the prograding wedge at the shelf edge is inter-
preted to record a change in the glacier regime inferred to correspond with the tran-
sition from intermittent fluctuating glaciers to persistent oscillatory ice sheets during
the late Miocene–early Pliocene (Escutia et al., 2005), or ~3 Ma (Rebesco et al., 2006)
(Fig. F10). The steep foresets above Unconformity WL-U8 likely consist of ice proxi-
mal (i.e., waterlain till and debris flows) and open-water sediments deposited as
grounded ice sheets extended intermittently onto the outer shelf, similar to sedi-
ments recovered from ODP Site 1167 on the Prydz Trough fan (O’Brien, Cooper, Rich-
ter, et al., 2001).

On the continental rise, the upsection response to shelf progradation (i.e., seismic fa-
cies indicative of distal turbidites to large channel-levee systems modified by bottom
contour current deposition) likely resulted from enhanced shelf progradation. Maxi-
mum rates of sediment delivery to the rise are reported during the development of
seismic Units WL-S6 and WL-S7 during the Miocene (Hayes, Frakes, et al., 1975; Es-
cutia et al., 1997, 2000, 2005; De Santis et al., 2003) (Fig. F10). During deposition of
seismic Units WL-S8 and WL-S9, sediment supply to the lower continental rise de-
11
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creased and depocenters shifted landward to the base of the slope and outer shelf (Es-
cutia et al., 2002, 2005; De Santis et al., 2003; Donda et al., 2003). Inferred age for
Units WL-S8 and WL-S9 is Pliocene to Holocene (De Santis et al., 2003). Unit WL-S9
is inferred to be deposited under a polar regime with a persistent ice sheet during the
Pliocene–Pleistocene. At that time, most sediment delivered to the margin was
trapped on the outer shelf and slope, forming steep prograding wedges, with some
sediment bypassing the slope in channelized turbidity currents (Escutia et al., 2002,
2005; De Santis, 2003) (Fig. F10).

During the Holocene thick open-water interglacial sections of diatom mud and oozes
are deposited in deep inner shelf basins (Domack, 1982; Dunbar et al., 1985; Crosta
et al., 2005; Denis et al., 2006; Leventer et al., 2006; Maddison et al., 2006; Costa et
al., 2007). These sediments hold an ultrahigh resolution record of climate variability
and provide a means of tracking interannual- to centennial-scale variability in the re-
sponse of the ocean to forcing by solar processes, ENSO, and Southern Annular Mode
(SAM).

Scientific objectives

The overall aim of drilling the Wilkes Land margin is to obtain a long-term record of
Antarctic glaciation and its relationships with global paleoclimatic and paleoceno-
graphic changes along the inshore–offshore transect. Of particular interest are testing
the sensitivity of the EAIS toward episodes of global warming and the detailed analy-
sis of climatically critical periods in Earth climatic evolution coupled to the Antarctic
cryosphere (i.e., the Eocene–Oligocene and Oligocene–Miocene glaciations, upper
Miocene, Pliocene, and the last deglaciation) when the Antarctic cryosphere formed
in a step-wise fashion, and while waxing and waning evolved to assume its present
day configuration, characterized by a relatively stable EAIS.

To attain these objectives we will drill and analyze sedimentary records along the in-
shore–offshore gradient to constrain the age, nature, and environments of deposition
of the previously only seismically inferred glacial sequences in the Wilkes Land con-
tinental shelf rise and abyssal plain (Fig. F10). Of particular note are stratigraphic in-
tervals that have the potential of preserving records of the key phases of the evolution
of the Antarctic cryosphere in general, and the EAIS in particular, like the Eocene–Oli-
gocene and Oligocene–Miocene transitions, the middle and late Miocene, warm early
Pliocene events, and Holocene climate variability (Fig. F11). The expected improved
12
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chronostratigraphy and integrated multidisciplinary climatic proxy record-based re-
constructions are essential to provide accurate constrains for models of the dynamic
development of the Antarctic ice sheet and sensitivity to global climate change (Fig.
F2).

Specific scientific objectives

1. Timing and nature of the onset of glaciation at the Wilkes Land margin.

The timing and nature of the first arrival of the ice sheet at the Wilkes Land margin,
the so-called “onset” of glaciation, is presently inferred to have occurred during the
earliest Oligocene (Fig. F10). The late middle Eocene to early Oligocene is universally
regarded to represent a long-term episode of global climatic cooling, some time dur-
ing which the Antarctic ice sheet developed. Ice sheet development is presumed to
have been a response to decreasing atmospheric CO2 values rather than the opening
of Southern Ocean conduits like the Drake and Tasman gateways (e.g., Pagani et al.,
2005; DeConto and Pollard, 2003a, 2003b; Huber et al., 2004). For example, earlier
ODP drilling around Tasmania (ODP Leg 189) indicated that the opening and deep-
ening of the Tasmanian Gateway are much older than the Eocene/Oligocene bound-
ary (Brinkhuis et al., 2003a, 2003b; Sluijs et al., 2003; Huber et al., 2004; Stickley et
al., 2004). The pronounced deep-sea benthic foraminifer oxygen earliest Oi-1 (Miller
et al., 1985; Zachos et al., 1997; Coxall et al., 2005; Pälike et al., 2006) is widely re-
garded to mark the strongest step of rapid continental ice growth on Antarctica with
concomitant strong sea level response (Fig. F11). However, recent studies (e.g., Coxall
et al., 2005) indicate that this onset was in fact a two-step phased event, in line with
model predictions of DeConto and Pollard (2003a, 2003b) that the EAIS was estab-
lished somewhat later than the WAIS (Fig. F2). Following the initiation of a significant
Antarctic cryosphere, indications that it was relatively unstable with cyclic alterna-
tions of waxing and waning that show strong orbital forcing components (e.g.,
O’Brien, Cooper, Richter, et al., 2001; Barrett et al., 2003; Pälike et al., 2006; DeConto
et al., 2007) are present. The mid-Oligocene transition (Rupelian/Chattian boundary;
~30 Ma), likely reflected by the Oi-2b isotope event (Van Simaeys et al., 2005; Pälike
et al., 2006) represents another strong cooling phase associated with a major eustatic
fall that likely represents a large Antarctic ice sheet expansion. Cape Roberts drilling
in the Ross Sea and during ODP Leg 188 in Prydz Bay suggests the onset of glaciation
at these margins occurred at 34–33 Ma and 35 Ma, respectively (e.g., Macphail and
Truswell, 2004; Barrett, 2003; Cooper, O’Brien, and Richter, 2004). Ice sheet develop-
ment models (Huybrechts, 1993; DeConto and Pollard, 2003a, 2003b; DeConto el al.,
13
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2007) suggest that the arrival of the first ice sheet to the Wilkes Land margin should
have taken place at a somewhat later time (Fig. F2). Constraints on the age and nature
of the onset of glaciation in the Wilkes Land margin expected from continental shelf
sites (proposed Site WLSHE-09B or alternates) and abyssal plain proposed Site WLRIS-
02A (Fig. F12) are therefore essential to providing age constraints for models of Ant-
arctic ice sheet development.

2. Fluctuations in the glacial regime during the Miocene (?) and transition from wet-based to cold-based 
glacier regimes (late Miocene–Pliocene?).

The latest Oligocene to middle Miocene was characterized by a wet-based dynamic ice
sheet that fluctuated in size. The Oligocene/Miocene boundary (~23 Ma) is marked by
a major excursion in benthic isotopes (Mi-1 glaciation) (e.g., Miller et al., 1985; Za-
chos et al., 2001) (Figs. F1, F11), In the early Miocene, a general trend towards mod-
erately larger ice sheets, tracking global cooling, was interrupted by the middle
Miocene “climatic optimum” from ~17 to 14 Ma (Zachos et al., 2001) (Figs. F1, F11).
At the mid-Miocene transition (~14 Ma) and shortly afterwards, again tracking appar-
ent renewed global cooling, the benthic oxygen isotopic records imply that the EAIS
evolved from a wet-based and dynamic setting into a cold-based semipermanent ice
sheet. However, even this aspect is highly controversial because some records from
the Antarctic continent and margin indicate the presence of a highly dynamic ice
sheet from late Miocene into early Pliocene times (e.g., Hambrey and McKelvey,
2000a, 2000b; Webb et al., 1996; Hambrey et al., 2003; Whitehead and Bohaty, 2003;
Whitehead et al., 2003, 2004). The glaciomarine continental shelf deposits expected
to be recovered from proposed Site WLSHE-08A or alternate should provide the re-
quired chronostratigraphic and paleoenvironmental records to help solve this contro-
versy (Fig. F11).

3. Distal record of climate variability during the late Neogene and the Quaternary.

The record of the middle Miocene climatic optimum and the transition from a dy-
namic to a persistent ice sheet, inferred to have occurred at the Wilkes Land margin
during the late Miocene–Pliocene (Fig. F10), is planned to also be sampled at the con-
tinental rise proposed Site WLRIS-04A (or alternate) (Fig. F11). Additionally, at this
site we expect to test the stability of the ice sheet during the late Miocene and the ex-
treme warm early Pliocene events, which has been the subject of almost continuous
debate for more than two decades (e.g., Hardwood and Webb, 1998; Stroeven et al.,
1998). A key question is whether relatively short warm intervals can cause a loss in
ice sheet volume once a stable ice sheet is thought to be in place (i.e., since the mid-
14
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dle–late Miocene). The marine oxygen isotope record suggests warming in the earliest
Pliocene, culminating at ~3 Ma during the mid-Pliocene climate optimum (e.g., Ken-
nett and Hodell, 1995; Zachos et al., 2001). Marine sediments exposed on land show
evidence for a dynamic ice sheet during the late Miocene–early Pliocene as well as for
early Pliocene warming. The marine record from drilling in Prydz Bay, the Ross Sea,
and the Antarctic Peninsula also shows evidence for repeated advances and retreats of
the Antarctic ice sheet during the late Miocene and early Pliocene. For example, the
silicoflagellate assemblages at Site 1165 in Prydz Bay pinpoint three intervals within
the Pliocene (3.7, 4.3–4.4, and 4.6–4.8 Ma) with sea surface temperatures in the
Southern Ocean roughly 5°C warmer than today (Whitehead and Bohaty, 2003). In
the Antarctic Peninsula a strong decrease in sea ice coverage starting at 5.3 Ma and
maintained during the early Pliocene is indicated by opal deposition (Grützner et al.,
2005; Hillenbrand and Ehrmann, 2005). Diatom stratigraphic analyses in these sedi-
ments show three warming events between 3.5 and 3.7 Ma, which can be also recog-
nized in cores from the Antarctic Peninsula, implying that these events were of
continent-wide significance (Escutia et al., 2007)

Indirect evidence (i.e., sea level changes and ocean floor sediments) also suggests that
ice volume during the Pliocene was subject to cyclical variability. Because Northern
Hemisphere ice sheets were not fully developed, it is thought that sea level changes
were driven by fluctuations of the Antarctic ice sheet. Many scientists believe that the
relatively unstable WAIS, grounded below sea level and thus thought to be less stable,
was responsible for these changes. The role of the much larger and presumed more
stable EAIS remains controversial. The timing of the transition of the EAIS from a
polythermal dynamic condition to a predominantly cold stable state is critical to this
argument. The eastern Wilkes Land margin receives sediment delivered through the
Wilkes subglacial basin, where the EAIS is partly grounded below sea level and thus
may have been more sensitive to climate changes in the late Neogene. The record of
ice sheet fluctuations during the times that the EAIS is thought to be more stable (af-
ter 15 Ma–Holocene) is critical for developing reliable models of ice sheet behavior,
which may be the basis for future predictions of Antarctic ice sheet stability as a re-
sponse to global climate change.

4. Ultrahigh resolution Holocene record.

Addressing questions of the circum-Antarctic and global response to climate forcing
will advance our understanding of the relative roles of the Pacific, Atlantic, and In-
dian Oceans in influencing decadal- to millennial-scale climate variation during the
15
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Holocene. In addition, these data will help the assessment of the forcing factors (solar,
ocean-atmosphere interaction, and volcanic) responsible for climate change over the
past 10,000 y. A continuous Holocene section from the Indian Ocean sector of the
East Antarctic margin is desirable as it will provide a comparison to existing Pacific
Ocean records, such as those from the Palmer Deep (Antarctic Peninsula-ODP Leg
178) and Ross Sea. In particular we note that modern East Antarctic margin climate is
not strongly influenced by ENSO, as is the case for the Arctic Peninsula (Domack et
al., 1993, 2001, 2003, 2005; Shevenell et al., 1996; Shevenell and Kennet, 2002; Lev-
enter et al., 1996, 2002; Domack and Mayewski, 1999) and Ross Sea (Leventer and
Dunbar, 1988; Leventer et al., 1993; Cunningham et al., 1999; Domack et al., 1999).
Rather, this region responds to variability in the SAM, drainage from the East Antarc-
tic ice sheet, and the relative strength of the polar easterlies. Variability in these sig-
nals over interannual to millennial timescales needs to be established if we are to
understand how forcing factors, such as solar variability, ocean-atmosphere interac-
tions, orbital parameters, and volcanic activity, influence climate and oceanographic
processes in the Southern Ocean. Development of high-quality, high-resolution Ho-
locene climate records from the East Antarctic margin is a necessary step toward un-
derstanding the circum-Antarctic response to climate forcing and addressing
similarities, differences, and possible links to the global record (as in Domack and
Mayewski, 1999, for example). These data will help us evaluate the response of the
EAIS and margin to global warming. Scientific questions specific to the Adélie Drift
proposed drilling are:

1. What was the response of a cold-based glacial system to global and regional Ho-
locene climate fluctuations? Was the response similar to and/or synchronous
with marine records obtained from the Antarctic Peninsula and Ross Sea?

2. Was East Antarctica substantially influenced in a substantial way by solar cycle
variability? Are the 90, 200, and 400 y cycles of paleoproductivity, as seen in the
Palmer Deep, recorded here as well?

3. Are global climatic events such as the Little Ice Age, Holocene climatic optimum,
and Younger Dryas preserved in the Eastern Antarctic margin record? More
broadly, does the paleoclimatic record from the Eastern Antarctic margin dem-
onstrate synchroneity with Northern Hemisphere records (see Domack and
Mayewski, 1999) and, during deglaciation, with other parts of the Antarctic Mar-
gin (Siegert et al., 2008)?

4. With annual resolution through at least part of the Holocene, can we observe
clear interannual variability in the sea ice extent and/or wind regime (an estab-
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lished fact at the Palmer long-term ecological research location in the Antarctic
Peninsula, where this is linked to ENSO)?

Additional objectives

Drilling in the Wilkes Land margin will help assess the main controls on sediment
transport and deposition on ice-dominated continental shelves and rises in order to
test present architectural models of glacial processes and facies for high-latitude mar-
gins. Efforts should be made to understand the controlling factors in continental rise
deposition in order to make more informed interpretation about their significance in
terms of Antarctica’s glacial evolution. For example, what is the influence of ice sheet
development and evolution that result on the development of the large mounded de-
posits (i.e., up to 700 m relief) and large upper-fan channel-levee complexes (i.e., 900
m relief) on the continental rise? What caused the shift in depocenters landward caus-
ing a decrease in sediment supply to the continental rise deposits? In these mixed tur-
bidite and contourite systems, how we can differentiate the glacial advances and
retreats signal of the gravity flow deposits from the paleoceanographic signal repre-
sented in the bottom-contour current deposits?

Drilling strategy

To obtain the most complete record of the history of Antarctic glaciation, the drilling
strategy is to sample sediments from this margin in a shelf-rise-abyssal plain transect.
The continental shelf strata (Fig. F7) contain the direct (i.e., presence or no presence
of ice), albeit low, resolution record of glaciation. The corresponding continental rise
and abyssal plain strata (Figs. F9, F12) contain the distal (i.e., cooler versus warmer)
but more continuous and easier to date record of glaciation. The Wilkes Land margin
has the advantage in that the unconformity presumably reflecting the “onset” of gla-
ciation (Unconformity WL-U3) can be traced from the shelf to the abyssal plain, al-
lowing the links between the proximal and the distal records to be established.

Our plan is to conduct coring and wireline logging operations at five sites: one on in-
ner shelf continental shelf deep basins (proposed Site ADEL-1B or alternates), two on
the continental shelf (proposed Sites WLSHE-09B and WLSHE-08A or alternates), one
on the continental rise (proposed Site WlRIS-04A-or alternate), and one on the abyssal
plain (proposed Site WLRIS-02A or alternate) (Fig. F5).
17
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Timing and nature of the onset of glaciation

The timing and nature of the onset of glaciation in this segment of the eastern Wilkes
Land margin is targeted in two depositional environments: (1) the continental shelf
and (2) the abyssal plain.

Continental shelf proposed Sites WLSHE-09A, WLSHE-09B, WLSHE-07A, WLSHE-
07B, WLSHE-10A, and WLSHE-11A (Figs. F7 and “Appendix figures”) are designed
to obtain a low-resolution but direct record allowing the reconstruction of the timing
and nature of first glacial strata preserved at the Wilkes Land margin. Our first priority
site is proposed Site WLSHE-09B, where we can sample preglacial and glacial strata
separated by a regional unconformity (WL-U3) at relatively shallow depth (165 m).
Additionally, we have five alternate sites (proposed Sites WLSHE-09A, WLSHE-07A,
WLSHE-07B, WLSHE-10A, and WLSHE-11A) designed as contingency sites for unfa-
vorable ice conditions and/or to account for the possibility that our interpretations
are wrong (i.e., strata below and above Unconformity WL-U3 are of glacial origin or
they are preglacial, respectively). These alternate sites will allow us to either target
older strata by drilling deeper at proposed Site WLSHE-09B or younger strata at alter-
nate sites (proposed Sites WLSHE-09A, WLSHE-07A, WLSHE-07B, WLSHE-10A, and
WLSHE-11A) in order to accomplish our main objective, which is to date the onset of
glaciation in this segment of the East Antarctic margin.

Abyssal plain proposed Site WLRIS-02A (Fig. F12 and “Appendix figures”) is de-
signed to provide the more continuous but distal (cooler versus warmer) record of the
timing and nature of the onset of glaciation. Because the onset of glaciation uncon-
formity (WL-U3) can be traced from the continental shelf to the abyssal plain we ex-
pect for the first time to be able to link the response of the margin sedimentation and
biota to the first arrival of the ice to the shelf.

Fluctuations and transition of glacier regimes

Drilling at proposed Sites WLSHE-08A or alternate Sites WLSHE-08B, WLSHE-10A,
and WLSHE-11A (Fig. F7 and “Appendix figures”) is designed to sample strata below
and above the regional erosional Unconformity WL-U8, which marks an important
change in the geometry of the progradational wedge. The transition across this un-
conformity from low-dipping to steeply dipping foreset strata is inferred to corre-
spond with large fluctuations in the glacial regime during the late Miocene and
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possibly to reflect the transition from a wet-based dynamic to a cold-based persistent
ice sheet glacier regime.

Distal record of climate variability

Proposed Site WLRIS-04A (Fig. F13) or alternate proposed Site WLRIS-03A (Fig. F14)
are designed to sample the mixed turbidite-contourite continental rise ridges (Figs.
F9, F13). These ridges are expected to contain a high-resolution section of inferred
late Neogene to Quaternary age and to provide a history of climate and paleoceano-
graphic variability from the middle Miocene to the Quaternary. The record from this
site should be similar to that obtained from drilling similar depositional environ-
ments during ODP Leg 178 in the Antarctic Peninsula (Barker, Camerlenghi, Acton,
et al., 1999) and ODP Leg 188 in Prydz Bay (O’Brien, Cooper, Richter, et al., 2001).

Ultrahigh resolution Holocene record

Proposed Site ADEL-01B and alternate proposed Site ADEL-01C (Figs. F8, F15, F16,
F17) are designed to sample the 200–230 m of relatively transparent Holocene sedi-
mentary drape (the drift unit) overlying a hard reflector that is interpreted as a glacial
diamict.

Operations plan

The overall operations plan and time estimates are summarized in Table T1. After de-
parting Wellington (New Zealand), we will transit for ~8 days to the Wilkes Land drill-
ing area and prepare for drilling operations.

Our plan is to conduct operations at the near-shore shelf (proposed Sites WLSHE-09B
and WLSHE-08A) and Adélie Drift (proposed Site ADEL-01B) sites followed by the
deeper rise sites (proposed Sites WLRIS-02A and WLRIS-04A). However, the sequence
of operations will depend on ice, weather, and formation conditions.

The operations plan and time estimates are based on formations and depths inferred
from seismic and regional geological interpretations without benefit of prior drilling
in this area. We have, however, based our plans on information from previous DSDP
and ODP sites located on other portions of the Antarctic margin.
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Shelf sites

Proposed Sites WLSHE-09B and WLSHE-08A

Prior to starting drilling operations at proposed Site WLSHE-09B, we will conduct a
short seismic reflection survey to provide a cross-line and confirm the regional geom-
etry of the sequences to be penetrated.

The first hole at both shelf sites (proposed Sites WLSHE-09B and WLSHE-08A) will be
cored with the advanced piston corer (APC) to refusal. Given the potential for coarse
glacial deposits, this may have very limited penetration.

The second hole at these sites will be drilled without coring to depth of the prior hole.
Rotary core barrel (RCB) coring will extend from this depth to 200 (proposed Site
WLSHE-09B) and 220 (proposed Site WLSHE-08A) meters below seafloor (mbsf).

After coring is completed, the hole will be conditioned and loaded with mud and the
bit released in the hole. We will run a series of wireline logs including a check shot
vertical seismic profile (VSP) in open hole. Once operations at the two shelf sites re
finished, we will transit ~150 nmi to begin operations at proposed Site ADEL-01B.

Proposed Site ADEL-01B

Three holes will be cored with the APC to total depth at proposed Site ADEL-01B. We
will attempt to recover a short core of the uppermost diamict with the extended core
barrel (XCB) system at one of the three holes.

After coring is completed in the last hole, we will conduct two wireline logging runs.
Following operations, we will transit ~145 nmi to begin operations at proposed Site
WLRIS-02A.

Rise sites

Proposed Sites WLRIS-02A and WLRIS-04A

The first hole at each of the two rise sites (proposed Sites WLRIS-02A and WLRIS-04A)
will be APC/XCB cored to ~500 mbsf. RCB coring will extend from this depth to 1050
(proposed Site WLRIS-02A) and 1000 (proposed Site WLRIS-04A) mbsf.

After coring is completed, the hole will be conditioned and loaded with mud and the
bit released in the hole. We will run a series of wireline logs including a check shot
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VSP in open hole. After the operations are finished at proposed Site WLRIS-04A, the
ship will start the ~8 day transit back to Wellington.

In addition to the logistical hurdles presented by operating in such a remote area,
there are environmental threats unique to the region. Floating ice can be a hazard to
the vessel and to coring operations. Free-fall funnels can be deployed at designated
sites as a means to “bookmark” depth should a hole have to be temporarily aban-
doned because of the proximity of floating ice.

Although the expedition has been scheduled to take place during the optimum
weather window, erratic and katabatic winds can disrupt operations and force land-
locked ice over the site. In the Antarctic region, there are prominent cold katabatic
winds that blow for most of the year. Our current plan includes participation of an
onboard ice/weather specialist to assist in managing weather and ice threats.

Ice-rafted debris can negatively impact core recovery and rate of penetration and can
destroy APC shoes and XCB cutting heads. Unconsolidated sediment can create un-
stable hole conditions and result in lost time because of stuck drill strings and/or core
barrels. We anticipate that this may be especially problematic for the shelf sites. We
will sail with sufficient bulk material to optimize the management of hole problems.

Downhole measurements

Downhole measurements during Expedition 318 will focus on characterizing in situ
formation properties and establishing the link between core, log, and seismic data.

Wireline logging

Wireline logging is planned for the deepest hole at each of the five sites of Expedition
318. Standard IODP tool string configurations will be deployed at each site. Details of
the tool strings are available at iodp.ldeo.columbia.edu/TOOLS_LABS/tools.html.
The first run will be the triple combination (triple combo) tool string, which logs for-
mation resistivity, density, porosity, natural gamma radiation, and borehole diameter.
If available, we intend to include the Schlumberger inline check shot tool on this first
run. The second run will utilize the Formation MicroScanner (FMS)-sonic tool string,
which provides an oriented 360° resistivity image of the borehole wall and logs of for-
mation acoustic velocity, natural gamma radiation, and borehole diameter. At all sites
21
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except proposed Site ADEL-01B, an additional logging run will conduct a check shot
survey that will require the use of a seismic sound source.

Downhole logging data provide the link between the borehole and the seismic sec-
tion, and enable lithostratigraphy to be tied to seismic stratigraphy. The check shot
surveys give depth to traveltime conversion, and sonic velocity and density data will
be used to generate a synthetic seismic profile at each site.

Downhole log data provide the only in situ formation characterization and the only
data where core recovery is incomplete, as is likely to be the case at the two Wilkes
Land shelf sites (proposed Sites WLSHE-09B and WLSHE-08A). For example, individ-
ual clasts in diamict will be apparent in the FMS resistivity images, and silica-ce-
mented layers will be clear in the resistivity and density logs.

The wireline logging plan may be modified in the following cases:

1. To reduce the risk of incomplete logging resulting from bad hole conditions in
the deep-penetration sites (proposed Sites WLRIS-02A and WLRIS-04A), we may
elect to log in two stages: the upper 500 m of the section in the first APC/XCB
hole and the lower part in the second RCB hole. This, however, would only be
practical if extra time became available.

2. The seismic sound source used during the check shot survey will be subject to the
IODP marine mammal policy and may have to be postponed or cancelled if cer-
tain policy conditions are not met.

Formation temperature measurements

The downhole measurement plan includes reconnaissance temperature measure-
ments at one hole per site on the continental rise and the abyssal plain (proposed
Sites WLRIS-02A and WLRIS- 04A) principally using the advanced piston corer tem-
perature tool, supplemented by the Davis-Villinger Temperature Probe or new SET
tool (if available) if necessary where sediments are more consolidated. The scientific
objective of the temperature measurement plan is to provide sufficient data to recon-
struct the thermal gradient at each site. This information will help constrain the his-
tory of burial diagenesis of the sediments encountered.
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Risks and contingency strategy

The planned Wilkes Land and Adélie Basin drill sites are situated in an area of pro-
nounced latitudinal gradients in wind because of the effects of the off-the-continent
katabatic winds as well as the location of the frontal zone between polar easterlies and
westerlies. Average January–March wind speeds can be from 6.4 to 7.7 m/s, but may
reach up to 23 m/s at the shelf sites. The sea ice conditions, based on analysis on sat-
ellites, ships, continental stations, and synoptic modeling, may vary strongly from
year to year. While the most offshore sites may be presumed to be ice free in the Aus-
tral summer, the shelf sites may not. The open-water period at the Adélie site begins
about 29 January and extends through 7 March, on average. However, the late sum-
mer return of sea ice can begin as early as 20 February or as late as 16 March at this
site. The open-water period at proposed shelf sites begins in mid-January and extends
through 3 March, on average. However, the late summer return of sea ice can begin
as early as 22 February or as late as 16 March at this site. The shelf sites may likely
have <10%–0% ice cover between the end of January until the beginning of March.

Based on this information we have developed the following contingency strategies to
help us maximize our possibilities of achieving the scientific objectives listed above:

1. If the shelf is covered with ice at the beginning of our drilling operations, we en-
vision two possibilities, both starting with coring and logging the continental
rise deposits at proposed Site WLRIS-02A.

• Proposed Site WLRIS-02A to WLSHE-09B to WLSHE-08A to ADEL-01A to
WLRIS-04A. This scenario considers that by the time drilling at proposed Site
WLRIS-02A is concluded, the shelf is free of ice. In this case we would move to
the shelf to core and log shelf proposed Sites WLSHE-09B, WLSHE-08A, and
ADEL-01B (or alternates) and conclude our drilling operations at proposed Site
WLRIS-04A (or alternate).

• Proposed Site WLRIS-02A to WLRIS-04A to WLSHE-09B to WLSHE-08A to
ADEL-01B to WLRIS-04A. This scenario considers that at the end of drilling
proposed Site WLRIS-02A the shelf is not free of ice. We would then core and
log proposed Site WLRIS-04A until shelf drilling is possible. We would move to
drill proposed Sites WLSHE-09B, WLSHE-08A, and ADEL-01B. After comple-
tion of drilling the shelf sites we would transit to reoccupy proposed Site WL-
RIS-04A and core until the end of time allotted for this expedition.

To account for the possibility that some sectors of the shelf may open while oth-
ers may remain inaccessible, additional alternate sites with objectives similar to
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proposed Sites WLSHE-09 and WLRIS-08 on the shelf have been identified (pro-
posed Sites WLSHE-10A, WLSHE-11A, and WLSHE-12A) and submitted for ap-
proval.

2. If the shelf is free of ice upon beginning of drilling operations, our strategy would
be to start coring and logging the shelf proposed Sites WLSHE-09B, WLSHE-08A,
and ADEL-01A then move to the abyssal plain to drill proposed Site WLRIS-02A
and finalize with drilling operations at proposed Site WLRIS-04A.

3. If the coast and shelf remains ice covered, we will concentrate our drilling oper-
ation on the continental abyssal plain by drilling a third hole at proposed Site
WLRIS-02A before proceeding to proposed Site WLRIS-04A. Because the drilling
will rely only on these two sites, an alternate site for proposed Site WLRIS-02A
will be submitted for approval.

Research plan proposals (sample and data requests)

Shipboard and shore-based researchers should refer to the IODP Sample, Data, and
Obligations Policy (www.iodp.org/program-policies). This documents the policy
for distributing IODP samples and data and defines the obligations that sample and
data recipients incur. A primary obligation is that all members of the scientific party
must conduct expedition-related scientific research and publish their results by the
determined deadline.

Scientists are required to submit their research plans using the Sample/Data Request
form available at smcs.iodp.org ~3 months prior to the expedition. Access to data
and core samples for specific research purposes during the expedition and the subse-
quent 1 y moratorium must be approved by the Sample Allocation Committee (SAC).
The moratorium for Expedition 318 will extend 12 months from the completion of
the expedition or from the completion of a significant postcruise sampling party.

The SAC is composed of the Co-Chief Scientists, Staff Scientist, and IODP curator.
Based on research requests (sample and data) submitted, the SAC will work with the
scientific party to formulate a formal expedition-specific sampling and data-sharing
plan for shipboard and postcruise activities. This plan will be subject to modification
depending upon the actual material/data recovered and collaborations that may
evolve between scientists before and during the expedition. Modifications to the sam-
pling plan (i.e., new plans, research objectives, new collaborations, etc.), during the
expedition and postcruise moratorium require the approval of the SAC.
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All sample frequencies and sizes must be justified on a scientific basis and will depend
on core recovery, the full spectrum of other requests, and the expedition objectives
and priorities. Substantial degrees of collaboration will be required. When submitting
their research plans (sample and data request), scientists must clearly document the
exact role of any proposed co-investigators.

When critical intervals are recovered, there may be considerable demand for samples
from a limited amount of cored material. These intervals may require special han-
dling, a higher sampling density, reduced sample size, or continuous core sampling
for a set of particular high-priority research objectives. The SAC may require an addi-
tional formal sampling plan before critical intervals are sampled.

Sampling to acquire essential ephemeral data types, to describe and characterize the
recovered section, and to achieve essential sample preservation will be conducted
during the expedition. Although some sampling for individual scientist’s postcruise
research may be conducted during the expedition, the majority of sampling may be
deferred to a postcruise sampling party.

To ensure that the best quality samples are preserved for postcruise research from pro-
posed Site ADEL-1B, our initial plan is to split and describe on the ship only the cores
from the first of the three holes acquired at this site. Splitting of the cores from the
other two holes and the majority of their description and characterization will likely
be accomplished postcruise after the cores arrive at the IODP Gulf Coast Repository
(College Station, Texas USA).
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Table T1. Operations, Expedition 318.

Note: APC = advanced piston corer, RCB = rotary core barrel, MBR = mechanical bit release, triple combo = triple combination, FMS = Formation
MicroScanner, VSP = vertical seismic profile, WST = Well Seismic Tool, XCB = extended core barrel, FFF = free-fall funnel.

Site

Location
(latitude, 

longitude)
Seafloor depth 

(mbsl) Operations description

Duration (days)

Task Transit
Drilling/
coring Logging

Wellington, NZ Begin expedition

Transit from Wellington, NZ, to WLSHE-09B; ~1907 nmi @ 10.0 kt 8.0

WLSHE-09B 66°22.03835′S
142°44.70833′E

525 Hole A: Seismic survey, APC to refusal (~50 mbsf) 0.9
Hole B: Drilling with RCB center bit to 50 mbsf, RCB to 200 mbsf 1.4

- Drop bit with MBR, wiper trip, displace hole with logging mud
- Log: triple combo and FMS-sonic (12.3 h)
- Log: VSP with WST, plug hole (4.1 h) 1.2

Subtotal days on site: 3.5

Transit to WLSHE-08A; 22 nmi @ 10.0 kt 0.1

WLSHE-08A 66°5.42394′S
143°18.7707′E

525 Hole A: APC to refusal (~50 mbsf) 0.9
Hole B: Drilling with RCB center bit to 50 mbsf, RCB 50–220 mbsf 1.4

- Drop bit with MBR, wiper trip, displace hole with logging mud
- Log: triple combo and FMS-sonic (12.6 h)
- Log: VSP with WST, plug hole (4.4 h) 1.2

Subtotal days on site: 3.5

Transit to ADEL-01B; 150 nmi @ 10.0 kt 0.6

ADEL-01B
Adélie Drift

66°24.8′S
140°25.5′E

1010 Hole A: APC core sediment to refusal ~200 m, XCB diamict ~2 m 1.4
Hole B: APC core sediment to refusal ~200 m 0.9
Hole C: APC core sediment to refusal ~200 m 0.9

- Log: triple combo and FMS-sonic (13.0 h) 1.1
Subtotal days on site: 4.3

Transit to WLRIS-02A; 145 nmi @ 10.0 kt 0.6

WLRIS-02A 64°1.09973′S
139°48.28302′E

3705 Hole A: APC/XCB to refusal ~500 mbsf, plug with cement 4.5
Hole B: Drill with RCB center bit to 500 mbsf, RCB 500–1050 mbsf 8.4

- Contingency FFF assumes interruption by iceberg (12 h) 0.5
- Drop bit with MBR, displace hole with logging mud
- Log: triple combo and FMS-sonic (28.2 h)
- Log: VSP with WST, plug hole (12.8 h) 2.8

Subtotal days on site: 16.2

Transit to WLRIS-04A; 121 nmi @ 10.0 kt 0.5

WLRIS-04A 64°54.23754′S
143°57.68046′E

3075 Hole A: APC/XCB to refusal ~500 mbsf, plug with cement 4.1
Hole B: Drill with RCB center bit to 500 mbsf, RCB 500–1000 mbsf

- Contingency FFF assumes interruption by iceberg (12 h) 0.5
- Drop bit with MBR, displace hole with logging mud 6.5
- Log: triple combo and FMS-sonic (27.3 h)
- Log: VSP with WST, plug hole (12.0 h) 2.4

Subtotal days on site: 13.5

Transit from WLRIS-04A to Wellington; 1997 nmi @ 10.0 kt 8.2

Wellington, NZ End expedition 18.0 32.3 8.7

Subtotal time on site: 41.0
Total operating days: 59.0

Total expedition (including 5 port call days) 64.0
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Figure F1. Global deep-sea oxygen and carbon isotope records from the last 65 m.y. (Zachos et al.,
2001). The δ18O record exhibits a number of steps and peaks that reflect on episodes of global warm-
ing and cooling and ice sheet growth and decay. The general cooling trend from 50 m.y. ago and the
abrupt “climatic threshold events” are shown. Note the event 34 m.y. ago when abrupt global cool-
ing led to the first ice sheets developing on Antarctica. Plio. = Pliocene, Pleist. = Pleistocene, Mi-1 =
Miocene isotope event 1, Oi-1 = Oligocene isotope event 1.
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Figure F2. Simulated initiation of East Antarctic glaciation in the earliest Oligocene, using a coupled
GCM-ice sheet model (from DeConto and Pollard, 2003a). This model shows the main triggering
mechanism for initial inception and development of the East Antarctic Ice Sheet were the decreas-
ing levels of CO2 concentration in the atmosphere. Note these models show the initiation of glacia-
tion to take place in a “two-step” cooling trend. The first step resulting in glaciation in the Antarctic
continental interior, discharging mainly through the Lambert Graben to Prydz Bay, and the second
step resulting in the connection an expansion of the ice sheet, reaching sea level in the Wilkes Land
at a later stage.
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Figure F3. Earth's temperature variability during the last 80 m.y. based on reconstructions from
deep-marine oxygen isotope records. Future atmospheric temperature scenarios, based on Intergov-
ernmental Panel on Climate Change 2001 greenhouse trace gas forecasts, are shown at top of dia-
gram.
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Figure F4. Map of Antarctica showing drainage patterns of the West Antarctic Ice Sheet (WAIS) and
the East Antarctic Ice Sheet (EAIS) from the interior to the coast. Red = areas of fast flowing ice
streams. Also shown is the drilling area, which partly drains the Wilkes Subglacial Basin, where the
EAIS is partly grounded below sea level.
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Figure F5. Drilling sites and profile locations (see Figs. F6, F7, F9). Primary sites (red) and all alter-
nate sites (blue) are shown in more detail in Figure F6.
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Figure F6. Bathymetry of a sector of the drilling area. Irregular morphology of the continental shelf
is characterized by >1000 inner-shelf basins at the mouth of the Mertz Glacier, erosional troughs ex-
tending from these basins (proposed Site WLSHE-08) to the shelf edge and shallow banks (proposed
Sites WLSH-07 and WLSH-09) adjacent to the trough. The slope is incised by numerous canyons
that in the continental rise evolve to channel-levee complexes targeted by proposed Sites WLRIS-
03A and WLRIS-04A.
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Figure F7. Uninterpreted and interpreted multichannel seismic reflection Profile IFP-107 across the
Wilkes Land shelf and continental slope and base of slope. The profile crosses one of the Wilkes
Land shelf banks (where Sites WLSHE-09A,-09B, -07A and -07B are located) and an erosional shelf
trough (where sites WLSHE-08A and -08B are located). Topset strata form the banks adjacent to the
troughs filled with foreset strata. The two main regional erosional unconformities in this margin are
shown in the interpreted profile. Unconformity WL-U3 (Unconformity WL2 in IODP proposal) is
interpreted to separate preglacial strata below from glacial strata above. Unconformity WL-U8 (Un-
conformity WL1 in IODP proposal) is interpreted to mark a change in the glacier regime possibly co-
inciding with the transition from wet-based to a cold-based more persistent ice sheet. Also shown
are the locations of proposed priority sites (red) and alternate sites (blue). See Figure F5 for location
of profile. SP = shotpoint. (Figure shown on next page.)
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Expedition 318 Scientific Prospectus
Figure F8. ODEC2000 subbottom profile collected across proposed Site ADEL-01B and the Adélie
Drift deposit during February 2003. The profile enters the drift from the northeast and runs south-
west going from left to right (Z, X, and Y waypoints in inset). Drift deposits in this cross-section are
as thick as 200 m. Four piston cores from the drift, ranging in length from 20 to 60 m, were col-
lected. The inset shows Box A from the swath map in Figure F7 as well as the location of the
Bathy2000 profile shown in Figure F16 (blue line). See Figure F15 for location of inset box.
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above Unconformity WL-U3 as a response to margin progradation. Note that the high-volume of sed
tal rise takes place between Unconformities WL-U5 and WL-U7. Above Unconformity WL-U7, a decre
the continental rise corresponding with a shift in depocenters to the base of the slope is apparent. See
file.
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Figure F10. East Antarctic Ice Sheet evolution in the Wilkes Land margin and timing of events
(modified from Escutia et al., 2005) inferred from continental shelf and rise stratigraphy (i.e., seis-
mic regional unconformities and units).
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Expedition 318 Scientific Prospectus
Figure F12. Multichannel seismic reflection Profile IFP-104 across proposed Site WLRIS-02A on the
abyssal plain. Unconformity WL-U3, the “onset” of glaciation, has been traced through the grid of
seismic profiles to this location, where it can be sampled at relatively shallow depths. See Figure F5
for location of profile. SP = shotpoint.
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Figure F13. Uninterpreted and interpreted high-resolution multichannel seismic Profile WEGA 26
across the continental rise (proposed Site WLRIS-04A). Profile shows the drilling target to obtain a
high-resolution Neogene record that should provide insights to the age and the nature of the onset
of the large sediment supply to the continental rise (i.e., strata below and above Unconformity WL-
U5) and the response of continental rise sedimentation to the transition from a wet-based to a cold-
based and more persistent ice sheet. See Figure F5 for location of profile. SP = shotpoint.
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Expedition 318 Scientific Prospectus
Figure F15. Swath bathymetry of the Adélie Basin showing the region of the Adélie Drift (Box A) as
well as three crossing chirp lines. Blue = Bathy 2000 line collected from the NB Palmer in 2001 (Fig.
F16), gray = ODEC chirp line collected on the CADO cruise of the Marion DuFresne in 2003 (Fig. F8),
black = ODEC chirp line collected on the CADO cruise of the Marion DuFresne in 2003 (Figure F17).
Black circle = location of proposed Site ADEL-01B, blue circle = alternate proposed Site ADEL-01C.
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Figure F16. Chirp line across proposed Sites ADEL-01B and ADEL-01C collected with a Bathy2000
system. See Figure F15 for location of profile. Previous coring sites are also shown. Distance between
dashed depth scale lines = 125 m. Estimated sediment thickness at proposed Site ADEL-01B is
200 m; at proposed Site ADEL-01C it is 230 m.
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Figure F17. ODEC2000 chirp line across proposed Site ADEL-01B extending from the CADO2 core
site to the western edge of the Adélie Basin. The location of this profile is the black line in Figure
F15. Labeled positions are plus symbols in Box A in Figure F15.
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Site summaries

Proposed Site ADEL-01A 

Priority: Alternate

Position: 66°24.8′S, 140°25.7′E
Water depth (m): 1010

Target drilling depth (mbsf): 190

Approved maximum 
penetration (mbsf):

• 250 (approved by TAMU safety panels based on EPSP Dec 2005 recom-
mendation)

• Limit penetration to Holocene drift
• Terminate when drilling encounters glacial diamict but no more than 250 

mbsf

Survey coverage: • Site survey data outlined in Proposal 638-APL2 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html)

• Track map (Fig. AF1)
• Seismic profile (Fig. AF2)

Objective 
(see text for full details):

Ultrahigh resolution of Holocene climate

Drilling, coring, and 
downhole measurement 
program:

See “Proposed Site ADEL-01B”

Anticipated lithology: • 0–200 mbsf: very soft Holocene diatom ooze
• >200 mbsf: glacial diamict
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Site summaries (continued)

Proposed Site ADEL-01B 

Priority: Primary

Position: 66°24.8′S, 140°25.5′E
Water depth (m): 1010

Target drilling depth (mbsf): 190

Approved maximum 
penetration (mbsf):

• 250 (approved by TAMU safety panels based on EPSP Dec 2005 recom-
mendation)

• Limit penetration to Holocene drift
• Terminate when drilling encounters glacial diamict but no more than 250 

mbsf

Survey coverage: • Site survey data outlined in Proposal 638-APL2 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html)

• Track map (Fig. F15)
• Seismic profile (Figs. F8, F16, F17)

Objective 
(see text for full details):

Ultrahigh resolution of Holocene climate

Drilling, coring, and 
downhole measurement 
program:

• Hole A: APC to total depth; XCB one core of diamict; APC core orientation 
and formation temperature measurements

• Hole B: APC to total depth; APC core orientation
• Hole C: APC to total depth; APC core orientation; possibly wireline log (tri-

ple combo, FMS-sonic)

Anticipated lithology: • 0–200 mbsf: very soft Holocene diatom ooze
• >200 mbsf: glacial diamict
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Site summaries (continued)

Proposed Site ADEL-01C

Priority: Alternate

Position: 66°24.2′S, 140°26.0′E
Water depth (m): 1010

Target drilling depth (mbsf): 200

Approved maximum 
penetration (mbsf):

• 275 (approved by TAMU safety panels based on EPSP Dec 2005 recom-
mendation)

• Limit penetration to Holocene drift
• Terminate when drilling encounters glacial diamict but no more than 250 

mbsf

Survey coverage: • Site survey data outlined in Proposal 638-APL2 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html)

• Track map (Fig. F15)
• Seismic profile (Fig. F16)

Objective 
(see text for full details):

Ultrahigh resolution of Holocene climate

Drilling, coring, and 
downhole measurement 
program:

See “Proposed Site ADEL-01B”

Anticipated lithology: • 0–200 mbsf: very soft Holocene diatom ooze
• >200 mbsf: glacial diamict
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Site summaries (continued)

Proposed Site WLRIS-02A

Priority: Primary

Position: 64°1.09973′S, 139°48.28302′E
Water depth (m): 3705

Target drilling depth (mbsf): 1050

Approved maximum 
penetration (mbsf):

1050 (approved by TAMU safety panel based on EPSP Dec 2005 
recommendation)

Survey coverage: • Site survey data outlined in Proposal 482-Full3 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html)

• Track map (Fig. AF3)
• Seismic profile (Fig. AF4), crossing seismic profile (Fig. AF5).

Objective 
(see text for full details):

Timing and nature of onset of glaciation

Drilling, coring, and 
downhole measurement 
program:

• Hole A: APC/XCB to refusal (~500 mbsf); APC core orientation and forma-
tion temperature measurements

• Hole B: RCB to total depth; formation temperature measurements, wire-
line log (triple combo, FMS-sonic), and check shot

Anticipated lithology: Fine-grained hemipelagites, turbidites, and contourites
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Site summaries (continued)

Proposed Site WLRIS-03A

Priority: Alternate

Position: 64°47.47817′S, 143°55.83114′E
Water depth (m): 3140

Target drilling depth (mbsf): 950

Approved maximum 
penetration (mbsf):

1000 (approved by TAMU safety panels based on EPSP Dec 2005 
recommendation)

Survey coverage: • Site survey data outlined in Proposal 482-Full3 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html)

• Track map (Fig. AF6)
• Seismic profile (Fig. F13), crossing seismic profile (Fig. AF7)

Objective 
(see text for full details):

Climate variability during late Neogene–Quaternary

Drilling, coring, and 
downhole measurement 
program:

See “Proposed Site WLRIS-04A”

Anticipated lithology: Fine-grained hemipelagites, turbidites, and contourites
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Site summaries (continued)

Proposed Site WLRIS-04A

Priority: Primary

Position: 64°54.23754′S, 143°57.68046′E
Water depth (m): 3075

Target drilling depth (mbsf): 1000

Approved maximum 
penetration (mbsf):

1050 (approved by TAMU safety panels based on EPSP Dec 2005 
recommendation)

Survey coverage: • Site survey data outlined in Proposal 482-Full3 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html)

• Track map (Fig. AF6)
• Seismic profile (Fig. F14), crossing seismic profile (Fig. AF8)

Objective
(see text for full details):

Climate variability during late Neogene–Quaternary

Drilling, coring, and 
downhole measurement 
program:

• Hole A: APC/XCB to refusal; APC core orientation and formation temper-
ature measurements

• Hole B: RCB to total depth; formation temperature measurements, wire-
line log (triple combo, FMS-sonic), and check shot

Anticipated lithology: Fine-grained hemipelagites, turbidites, and contourites
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Site summaries (continued)

Proposed Site WLSHE-07A

Priority: Alternate

Position: 66°08.82761′S, 143°08.76300′E
Water depth (m): 563

Target drilling depth (mbsf): 770

Approved maximum 
penetration (mbsf):

875 (approved by TAMU safety panels based on EPSP Dec 2005 
recommendation)

Survey coverage: • Site survey data outlined in Proposal 482-Full3 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html)

• Track map (Fig. AF9)
• Seismic profile (Fig. AF10), crossing seismic profile (Fig. AF11)

Objective
(see text for full details):

Timing and nature of onset of glaciation

Drilling, coring, and 
downhole measurement 
program:

See “Proposed Site WLSHE-08A”

Anticipated lithology: Diamicton and thin diatomaceous mud
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Site summaries (continued)

Proposed Site WLSHE-07B

Priority: Alternate

Position: 66°8.74002′S, 143°8.99334′E
Water depth (m): 570

Target drilling depth (mbsf): 715

Approved maximum 
penetration (mbsf):

1595 (approved by TAMU safety panels based on EPSP Dec 2005 
recommendation)

Survey coverage: • Site survey data outlined in Proposal 482-Full3 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html)

• Track map (Fig. AF9)
• Seismic profile (Fig. AF10), crossing seismic profile (Fig. AF11)

Objective
(see text for full details):

Timing and nature of onset of glaciation

Drilling, coring, and 
downhole measurement 
program:

See “Proposed Site WLSHE-08A”

Anticipated lithology: Diamicton and thin diatomaceous mud
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Site summaries (continued)

Proposed Site WLSHE-08A

Priority: Primary

Position: 66°5.42394′S, 143°18.7707′E
Water depth (m): 525

Target drilling depth (mbsf): 220

Approved maximum 
penetration (mbsf):

270 (approved by TAMU safety panels based on EPSP Dec 2005 
recommendation)

Survey coverage: • Site survey data outlined in Proposal 482-Full3 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html)

• Track map (Fig. AF9)
• Seismic profile (Fig. AF10), crossing seismic profile (Fig. AF12)

Objective 
(see text for full details):

Timing and nature of large changes in the glacial regime during the late 
Miocene–Pliocene

Drilling, coring, and 
downhole measurement 
program:

• Hole A: APC to refusal; APC core orientation and formation temperature 
measurements (see Table T1)

• Hole B: RCB to total depth; formation temperature measurements, wire-
line log (triple combo, FMS-sonic), and check shot

Anticipated lithology: Diamicton and thin diatomaceous mud
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Site summaries (continued)

Proposed Site WLSHE-08B

Priority: Alternate

Position: 66°06.8334′S, 143°19.12013′E
Water depth (m): 525

Target drilling depth (mbsf): 170

Approved maximum 
penetration (mbsf):

220 (approved by TAMU safety panels based on EPSP Dec 2005 
recommendation)

Survey coverage: • Site survey data outlined in Proposal 482-Full3 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html)

• Track map (Fig. AF9)
• Seismic profile (Fig. AF10, crossing seismic profile (Fig. AF12)

Objective
(see text for full details):

Timing and nature of large changes in the glacial regime during the late 
Miocene–Pliocene

Drilling, coring, and 
downhole measurement 
program:

See “Proposed Site WLSHE-08A”

Anticipated lithology: Diamicton and thin diatomaceous mud
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Site summaries (continued)

Proposed Site WLSHE-09A

Priority: Alternate

Position: 66°20.22546′S, 142°46.27926′E
Water depth (m): 469

Target drilling depth (mbsf): 380

Approved maximum 
penetration (mbsf):

380 (approved by TAMU safety panels based on EPSP Dec 2005 
recommendation

Survey coverage: • Site survey data outlined in Proposal 482-Full3 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html)

• Track map (Fig. AF9)
• Seismic profile (Fig. AF10), crossing seismic profile (Fig. AF13)

Objective
(see text for full details):

Timing and nature of onset of glaciation

Drilling, coring, and 
downhole measurement 
program:

See “Proposed Site WLSHE-09B”

Anticipated lithology: Diamicton and thin diatomaceous mud
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Site summaries (continued)

Proposed Site WLSHE-09B

Priority: Primary

Position: 66°22.03835′S, 142°44.70833′E
Water depth (m): 525

Target drilling depth (mbsf): 200

Approved maximum 
penetration (mbsf):

770 (approved by TAMU safety panels based on EPSP Dec 2005 
recommendation)

Survey coverage: • Site survey data outlined in Proposal 482-Full3 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html)

• Track map (Fig. AF9)
• Seismic profile (Fig. AF10)

Objective 
(see text for full details):

Timing and nature of onset of glaciation

Drilling, coring, and 
downhole measurement 
program:

• Hole A: seismic survey on approach; APC to refusal; APC core orientation 
and formation temperature measurements

• Hole B: RCB to total depth; formation temperature measurements, wire-
line log (triple combo, FMS-sonic), and check shot

Anticipated lithology: Diamicton and thin diatomaceous mud
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Site summaries (continued)

Proposed Site WLSHE-10A

Priority: Alternate

Position: 66°6.8223′S, 143°54.3437′E
Water depth (m): 450

Target drilling depth (mbsf): 1150

Approved maximum 
penetration (mbsf):

1150; pending review and approval by EPSP and TAMU Safety Panel

Survey coverage: • Site survey data outlined in Proposal 482-Full3 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html):

• Track map (Fig. AF14)
• Seismic profiles (Figs. AF15, AF16)

Objective
(see text for full details):

Timing and nature of onset of glaciation

Drilling, coring, and 
downhole measurement 
program:

See “Proposed Site WLSHE-09B”

Anticpated lithology: Diamicton and thin diatomaceous mud
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Site summaries (continued)

Proposed Site WLSHE-11A

Priority: Alternate

Position: 66°15.0745′S, 145°0.0252′E
Water depth (m) 435

Target drilling depth (mbsf): 1125

Approved maximum 
penetration (mbsf):

1125; pending review and approval by EPSP and TAMU Safety Panel

Survey coverage: • Site survey data outlined in Proposal 482-Full3 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html):

• Track map (Fig. AF14)
• Seismic profiles (Figs. AF17, AF18)

Objective
(see text for full details)

Timing and nature of onset of glaciation

Drilling, coring, and 
downhole measurement 
program:

See “Proposed Site WLSHE-09B”

Anticpated lithology: Diamicton and thin diatomaceous mud
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Site summaries (continued)

Proposed Site WLSHE-12A

Priority: Alternate

Position: 65°58.0413′S, 143°31.0848′E
Water depth (m): 424

Target drilling depth (mbsf): 860

Approved maximum 
penetration (mbsf):

990; pending review and approval by EPSP and TAMU Safety Panel

Survey coverage: • Site survey data outlined in Proposal 482-Full3 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html):

• Track map (Fig. AF14)
• Seismic profiles (Fig. AF19)

Objective
(see text for full details):

Timing and nature of onset of glaciation

Drilling, coring, and 
downhole measurement 
program:

See “Proposed Site WLSHE-08A”

Anticpated lithology: Diamicton and thin diatomaceous mud
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Site summaries (continued)

Proposed Site WLSHE-13A

Priority: Alternate for WLRIS-02A

Position: 64°0.04083′S, 139°49.14′E
Water depth (m): 3675

Target drilling depth (mbsf): 1000

Approved maximum 
penetration (mbsf):

1000; pending review and approval by EPSP and TAMU Safety Panel

Survey coverage: • Site survey data outlined in Proposal 482-Full3 (available at 
iodp.tamu.edu/scienceops/expeditions/wilkes_land.html):

• Track map (Fig. AF20)
• Seismic profiles (Figs. AF21, AF22)

Objective
(see text for full details):

Distal record of the timing and nature of onset of glaciation and East Antarctic 
ice sheet evolution

Drilling, coring, and 
downhole measurement 
program:

See “Proposed Site WLRIS-02A”

Anticpated lithology: Fine-grained hemipelagites, turbidites, and contourites
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Figure AF1. Track map for proposed Site ADEL-01A.

Site ADEL-01A
CADO2

Z

Y

X
Line 1

66°25.5'

66°25'

66°24.5'

66°24'
S

140°24.5'E 140°26.5' 140°27'140°26'140°25.5'140°25'
69



Expedition 318 Scientific Prospectus

70

D
ep

th
 (

m
)

190 m ponded sediment

01000

00900

01950

01050

01100

01150

01200

01250

01300

Site ADEL-01B
Figure AF2. Seismic profile at proposed Site ADEL-01B.



Expedition 318 Scientific Prospectus
Figure AF3. Track map for proposed Site WLRIS-02A.
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Figure AF4. Seismic profile at proposed Site WLRIS-02A. SP = shotpoint.
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Figure AF5. Crossing seismic profile at proposed Site WLRIS-02A. SP = shotpoint.
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Figure AF6. Track map for proposed Site WLRIS-04A (red) and alternate proposed Site WLRIS-03A
(blue).
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Figure AF7. Crossing seismic profile at proposed Site WLRIS-03A. SP = shotpoint.
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Figure AF8. Crossing seismic profile at proposed Site WLRIS-04A. SP = shotpoint.
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Figure AF9. Track map for proposed Sites WLSHE-07A, WLSHE-07B, WLSHE-08A, WLSHE-08B,
WLSHE-09A, and WLSHE-09B. Red stars = primary sites, blue stars = alternate sites.
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Figure AF11. Crossing seismic profile at alternate proposed Site WLSHE-07A. SP = shotpoint.
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Figure AF12. Crossing seismic profile at proposed Site WLSHE-08A. SP = shotpoint.
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Figure AF13. Crossing seismic profile at alternate proposed Site WLSHE-09A. SP = shotpoint.
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Figure AF14. Track maps of alternate proposed Sites WLSHE-10A, WLSHE-11A, and WLSHE-12A.
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Figure AF15. Profile of seismic Line TH92-09 at alternate proposed Site WLSHE-10A. SP = shotpoint.
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Figure AF16. Profile of seismic Line TH93-17 at alternate proposed Site WLSHE-10A. SP = shotpoint.
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Figure AF17. Profile of seismic Line TH92-09 at alternate proposed Site WLSHE-11A. SP = shotpoint.
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Figure AF18. Profile of seismic Line TH92-10 at alternate proposed Site WLSHE-11A. SP = shotpoint.
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Figure AF19. Crossing seismic line at alternate proposed Site WLSHE-12A. SP = shotpoint.
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Figure AF20. Track map of alternate proposed Site WLSHE-13A.
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Figure AF21. Crossing seismic profile line at alternate proposed Site WLSHE-13A. SP = shotpoint.
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Figure AF22. Profile of seismic Line TH95-3SMG at alternate proposed Site WLSHE-13A. SP = shot-
point.

IFP103
SP 4655

JNOC TH95-3SMG

4600

5000

5400

5800

7400

7800

8200

6200

6600

7000

Shotpoint

2324 23902357229022572224219021572124209019901957192418901890 2057

Site WLRIS-13A

1857
90



Expedition 318 Scientific Prospectus
Scientific participants

The current list of participants for Expedition 318 can be found at iodp.tamu.edu/scien-
ceops/precruise/wilkesland/participants.html.
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