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Abstract

Operations to be carried out during Integrated Ocean Drilling Program Expedition 
328 will be devoted to the installation of a new permanent hydrologic observatory at 
Ocean Drilling Program (ODP) Site 889, the location originally chosen for a Circula-
tion Obviation Retrofit Kit (CORK) installation during ODP Leg 146. During that at-
tempt, rapid sediment intrusion into the perforations and bottom of an open-ended 
casing liner prevented proper sealing of the hole, and the objectives for the original 
CORK monitoring were never met. The format of the new installation will follow the 
Advanced CORK (ACORK) design, developed initially for installations at the Nankai 
subduction zone during ODP Leg 196. This configuration will facilitate pressure mon-
itoring at multiple formation levels on the outside of a 10¾ inch casing string. The 
casing will be sealed at the bottom, leaving the inside available for future installation 
of additional monitoring instruments. Although drilling operations will be highly fo-
cused in a short period of time on site, a broad range of objectives will be addressed 
with monitoring over the decades to follow. These will include documenting the av-
erage state of pressure in the frontal part of the Cascadia accretionary prism, the pres-
sure gradients driving flow from the consolidating sediments, the mode of formation 
of gas hydrates, the influence of hydrates and free gas on the mechanical properties 
of their host lithology, the response of the material to seismic ground motion, and 
the magnitude of strain at the site caused by episodic seismic and aseismic slip in this 
subduction setting. Initial instrumentation will include autonomously recorded sea-
floor and formation pressure sensors and seafloor temperature sensors. These, and 
other downhole instruments to measure temperature, tilt, and seismic ground mo-
tion to be deployed at a later date by submersible, will be connected to the NEPTUNE 
fiber-optic cable for power and real-time communications from land.

Background

Previous drilling at Site 889

Ocean Drilling Program (ODP) Leg 146 was devoted to documenting the evolution of 
turbidite sediments as they move from the Cascadia Basin into the adjacent subduc-
tion zone accretionary prism and experience deformation and consolidation (West-
brook et al., 1994). In this process, pore fluids are expelled and gas, primarily biogenic 
methane, is transported upward to form hydrates in the upper few hundred meters of 
the section. An undeformed reference section off Vancouver Island was established 
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seaward of the prism toe at ODP Site 888. ODP Site 889, where Integrated Ocean Drill-
ing Program (IODP) Expedition 328 operations are planned (Fig. F1A), is located land-
ward of the prism toe where the rate of fluid expulsion, estimated on the basis of rates 
of thickening and consolidation, reaches a cross-prism maximum. To understand the 
consolidation, fluid expulsion, and hydrate accumulation and dissociation better, a 
more complete transect across the prism was drilled during IODP Expedition 311 (Rie-
del, Collett, Malone, et al., 2006). This work included additional coring, wireline log-
ging, and logging-while-drilling operations in the vicinity of Site 889 at IODP Sites 
U1327 and U1328 (Fig. F1B). As a result, a total of nine boreholes, along with exten-
sive geophysical site surveys, now provide detailed information about the character-
istics of this area and an excellent geophysical, geochemical, and lithologic context 
for the observatory operations of Expedition 328.

Relevant site characteristics

A simplified schematic cross section in Figure F2 illustrates the way gas hydrates are 
believed to accumulate in accretionary prisms. Pore fluid expulsion, driven by tec-
tonic thickening and consolidation, is rapid near the prism toe (referred to also as the 
deformation front) and diminishes landward. Vertical migration of water from the 
prism delivers small amounts of dissolved methane produced in the sediment by bi-
ological CO2 reduction, to the level of gas hydrate stability (a weak function of pres-
sure and strong function of temperature) where hydrates accumulate primarily in 
permeable fractures and coarse-grained layers. A discrete boundary between sedi-
ments containing free gas and gas hydrate in the sediment pore volume eventually 
develops. This boundary is seen clearly in seismic sections as a bright reflection (the 
bottom-simulating reflector, or BSR) at a generally uniform depth below the seafloor 
(a consequence of its depth being primarily temperature controlled), with a polarity 
opposite to that from the seafloor (Fig. F3).

The seismic reflection profiles crossing Site 889 also provide a clear image of the local 
sediment structure, which comprises a gently deformed sequence of slope basin de-
posits draped over highly deformed accretionary prism sediments. These lithologic 
units have been characterized in detail by coring and logging at the numerous holes 
drilled in the immediate vicinity of Site 889 (Fig. F4) (Westbrook et al., 1994; Riedel, 
Collett, Malone, et al., 2006; Riedel et al., in press). The gas/gas hydrate interface was 
intersected within the deformed prism unit at a depth of 225 meters below seafloor 
(mbsf). Hydrates above the interface appear to be virtually absent in fine-grained ma-
terial; most of the hydrate is concentrated in permeable coarse-grained units and mas-
4
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sive hydrate lenses that mark present or past pathways of focused fluid flow. Minor 
quantities of free gas are inferred to occur in an interval a few tens of meters thick be-
low the interface.

Previous attempt to establish a CORK observatory

During Leg 146, two attempts were made to establish Circulation Obviation Retrofit 
Kit (CORK) hydrologic observatories, one at Site 889 and the other in a similar setting 
at ODP Site 892 off central Oregon (Westbrook et al., 1994; Davis et al., 1995). These 
were equipped with sensors to monitor temperatures at multiple formation levels and 
pressure at the level of perforations in a liner extending below casing. The installation 
at Hole 892B was successful and operational for roughly 2 y before the instrumenta-
tion was removed to facilitate fluid sampling. Owing to unstable formation condi-
tions and deteriorating weather, the installation in Hole 889C did not succeed. 
Instability of the formation caused sediment to be squeezed into the casing through 
the perforations, the open end of the liner, and/or the annulus between the liner and 
the casing (Fig. F5). This prevented the thermistor cable from reaching its intended 
depth, which in turn precluded a pressure-tight seal of the pressure logging system at 
the top of the hole. The total hole depth was 385 mbsf; the bottom of the liner was 
at 323 mbsf; after two aborted attempts to deploy the thermistor cable, a sinker-bar 
run indicated fill had reached 253 mbsf; the failed third attempt with a cable short-
ened to 240 m suggested that sediment had intruded the casing up to this depth. The 
CORK was never refurbished.

Observatory objectives and design

Motivation

As a result of this failure, the objectives of the CORK monitoring planned for Leg 146, 
namely to document the average pressure state of the prism created by tectonic strain 
and gravitational loading, the pressure gradient driving fluid expulsion and gas mi-
gration, and the thermal profile as a constraint on the vertical velocity of interstitial 
fluid flow, have never been met; hence, they continue to provide motivation for an 
observatory installation at Site 889. In addition, many advances have been made with 
monitoring experiments in other settings since the time of Leg 146 nearly 18 y ago, 
and these provide new elements of motivation. From a scientific perspective, long-
term monitoring experiments at a number of sites in tectonically active settings (Juan 
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de Fuca Ridge axis and flank, Mariana forearc prism, Costa Rica forearc prism, and 
Nankai accretionary prism) have revealed that formation pressure variations provide 
a quantitative proxy for volumetric strain. Transient events related to coseismic, post-
seismic, and aseismic deformation have been seen at all of these locations, and the 
observations are leading to a new understanding about the episodic nature of defor-
mation, seismic energy efficiency, and regional interseismic strain accumulation. An 
example from the Nankai Trough (Fig. F6) shows the pressure response to coseismic, 
postseismic, and secular interseismic strain. With the relatively high frequency re-
cording and precise timing possible with a NEPTUNE cable connection and the high 
resolution provided by current sensor technology, it is also possible to observe forma-
tion strain associated with seismic ground motion. This has been documented in nu-
merous instances (Fig. F7).

We anticipate that signals similar to these examples will be present at Cascadia. An 
illustration of the likelihood of their presence is provided by the combination of Fig-
ures F8, F9, F10, and F11. Figure F8 shows Site 889 to be surrounded by high seismic 
activity. To the northwest of the site, strike-slip events are concentrated along the 
Nootka fault, the strike-slip boundary between the Juan de Fuca and Explorer oceanic 
plates. Along the continental margin, intraplate events occur in the overriding conti-
nental crust and in the oceanic crust of the subducting Juan de Fuca and Explorer 
plates (Fig. F8A). Further landward, seismic tremor occurs episodically along and 
above the top of the subducting plate, downdip of the thrust seismogenic zone (Fig. 
F8B). No events have yet been identified on the currently “locked” part of the sub-
duction thrust interface, although in other subduction zone settings (Nankai and 
Costa Rica), slow slip crossing the “locked zone” has been documented (Davis and Vil-
linger, 2006; Heesemann and Davis, submitted). Figure F9 demonstrates the utility of 
using pressure as a proxy for strain by way of the reaction at a CORKed site on the 
nearby Juan de Fuca Ridge flank to two seismogenic strain events 100 to 150 km away. 
The recurrence statistics of intraplate and Nootka fault earthquakes within 150 km of 
Hole 889C (Fig. F10) and the regular occurrence of slip events downdip of the locked 
portion of the subduction thrust (Fig. F11) show that strain-related signals and in-
stances of formation pressure response to seismic ground motion should be plentiful 
in a relatively short period of time.

Beyond these scientific considerations, a number of technical factors fortify the justi-
fication for a geophysical observatory at this site. The high reliability of CORK instru-
mentation has been demonstrated through successful long-term operations at many 
sites. Instruments deployed during ODP Leg 196 (Nankai Trough) have been operat-
6
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ing for >7 y, and those deployed during ODP Legs 168 and 169 have been in operation 
for >13 y. Improvements in power consumption, memory capacity, and resolution 
now permit detection of much subtler signals than were previously possible. And in 
this instance, connection to the NEPTUNE observatory cable infrastructure will open 
up great opportunities. Much higher sampling frequency will be achieved, allowing 
observations to reach into the seismic frequency band (Fig. F7) and to be placed in 
context of colocated seismic and hydrologic records that are being collected with a 
broadband seismometer and a variety of seafloor vent monitoring instruments 
roughly 3.5 km from the Site 889 Advanced CORK (ACORK) borehole observatory.

Observatory configuration

Most CORK installations to date have been configured to meet a broad suite of re-
quirements, including passive geophysical monitoring, active hydrologic testing, and 
formation-fluid chemical and microbiological sampling (see reviews by Kastner et al., 
2006; Becker and Davis, 2005; Fisher et al., 2005). Unfortunately, large perturbations 
can occur when fluids are allowed to be produced from the formation, particularly 
when monitoring screens are situated in low-permeability material. Direct effects 
arise from any pressure drop associated with production, and indirect effects arise 
from thermal perturbations caused by flow (see discussion in Davis and Becker, 2007). 
The latter can be caused by the anomalous buoyancy of the water in the umbilical 
screens that connect to the seafloor sensors and from transient thermal expansion of 
the fluid in the umbilical and screens that is confined by the low-permeability mate-
rial surrounding the screens. To avoid these problems, this observatory will be 
devoted to passive geophysical monitoring exclusively; fluid sampling and active ex-
periments, specifically those proposed in Proposal 553-Full2 (www.iodp.org/597/), 
will be carried out at a later date in separate holes. It is our hope that justification for 
paired monitoring and sampling holes will be provided by the early results of this ex-
pedition’s passive monitoring effort; we anticipate that the Expedition 328 efforts will 
be neither redundant nor conflicting but fully complementary with those of a more 
extensive future program.

The primary components of the ACORK system to be deployed are shown in Fig. F12.
Four screens will be centered at depths of 155, 205, 245, and 295 mbsf; two are above 
and two are below the gas/gas hydrate boundary at 225 mbsf, and all are within the 
accretionary prism lithologic unit (Fig. F4). Screens will be virtually identical to those 
used for Leg 196, with 7.6 m long sections of filter screens built on standard 11.24 m 
long 10¾ inch diameter solid casing joints. Carbolite (aluminum oxide ceramic) 
7
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“sand” is packed in the ~2 cm annulus between the casing and a screen formed of wire 
wrapped around and welded to radial webs.

Formation pressure signals are transmitted to seafloor sensors via ¼ inch outer diam-
eter 0.035 inch wall 316 stainless steel umbilical tubing. Packers between screens will 
not be used at Site 889; based on results from the ACORK at ODP Site 808 and previ-
ous experience at Site 889, we are confident that hole collapse will provide a good seal 
between the ACORK casing and the formation.

Pressure monitoring instruments will be installed in the wellhead frame on the ship 
and deployed with the ACORK casing string. Underwater-mateable hydraulic connec-
tors will allow the instrument package to be removed and replaced in the event that 
repairs or service are ever required. Gas will be purged from the umbilical tubing 
through lockable check valves at the highest point of the wellhead plumbing. Three-
way valves will connect the umbilical lines to the instrumentation: in the “forma-
tion” position, these will connect the formation to the sensors; in the “hydrostatic” 
position, the formation lines will be closed and the sensors will be connected to the 
local ocean. The logging instrumentation will include individual sensors (Paroscien-
tific 8B 4000-2 quartz transducers) to monitor pressures at the seafloor and at each of 
the formation screens. Frequency output from these will be digitized with high-reso-
lution (~10 ppb full scale = 0.4 Pa) low-power “Precision Period Counter” cards (Ben-
nest Enterprises, Ltd.), and stored in MT-01 flash memory (Minerva Technologies, 
Ltd.). The records shown in Figure F7 were recorded by an identical unit. Bottom wa-
ter temperature will be determined from a temperature-sensitive frequency channel 
of the Paroscientific sensors and with a highly stable platinum thermometer. Battery 
capacity will be sufficient to power the system for roughly 10 y at a sampling period 
of 10 s. An onboard voltage detection circuit will switch the system into a high-rate 
(1 Hz) sampling mode and idle the batteries when external power from a NEPTUNE 
connection is made (anticipated within the first year of operation).

At the top of the ACORK wellhead structure will be a ~30 inch diameter reentry cone, 
needed for installation of the bridge plug in the 10¾ inch casing. This will later facil-
itate submersible-controlled wireline installation of deep instrument packages, in-
cluding a thermistor cable, tilt sensors, and a seismometer for low-frequency 
seismology.
8
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Screen spacing

The rationale for the ACORK screen configuration deserves some discussion. At the 
simplest level, multiple monitoring points will allow determinations of the average 
vertical pressure gradient generated by prism thickening and driving vertical fluid 
flow and the contrast in gradient between the section above and below the level of 
gas hydrate stability associated with a contrast in permeability if one exists. The com-
bination of the 7.6 m length of the screens and their ~50 m separation should make 
such gradient determinations relatively insensitive to localized heterogeneities asso-
ciated with fractures, turbidite layering, and lenses of massive hydrate accumulation.

Data from below and above the gas/gas hydrate boundary will also constrain the con-
trast in mechanical properties of gas and gas hydrate–bearing sediments and provide 
independent information about the effective permeabilities of the sections above and 
below the boundary. The way this can be done is summarized in Figure F13, which 
begins with a schematic illustration of how variable loading either at the seafloor 
(e.g., tides and ocean waves) or within the formation (tectonic strain and seismic 
waves) is transmitted to formation pore water and how local contrasts in loading re-
sponse causes transient pressure gradients to be established (Fig. F13A). The instanta-
neous (elastic) response to seafloor loading = γ (referred to as the loading efficiency) 
(Fig. F13B) depends on porosity, Poisson’s ratio, the compressibility of the solid grain 
constituents, the compressibility of the sediment or rock framework, and the com-
pressibility of the interstitial fluid or fluid + gas mixture. With the first three of these 
being well known, absolute values and contrasts in observed loading efficiency can 
be used to constrain the effects of gas on the elastic properties of the fluid (and hence 
gas content) and the effect of hydrates on the elastic properties of the matrix (and 
hence average hydrate content).

In simple cases where a sharp mechanical properties contrast is present (e.g., at the 
seafloor or at the gas/gas hydrate boundary), a transient pressure gradient will be es-
tablished and interstitial water will flow (Fig. F13A). A damped diffusional wave will 
propagate away from the boundary, adding a component to the signal (Fig. F13B) that 
decays with distance (Fig. F13C). At large distances, the response is purely elastic (γ) 
and constrains such things as the matrix compressibility, the gas content (Fig. F13D), 
and the coefficient that defines how tectonic deformation loads the interstitial water 
(Fig. F13E). At intermediate distances, the characteristic diffusion scale length, l, (Fig. 
F13C) depends on the hydraulic diffusivity of the formation, η, and the period of the 
loading signal, P, as l = (π η P)½. The broad bandwidth of ocean wave and tidal load-
9
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ing, for which periods range from seconds to weeks, combined with the distribution 
of the screens around the gas/gas hydrate boundary, should allow much to be learned 
about the formation elastic and hydrologic properties.

Schedule for Expedition 328

Expedition 328 is based on Integrated Ocean Drilling Program drilling proposal num-
ber 734-APL (available at iodp.tamu.edu/scienceops/expeditions/cascadia.html). 
Following ranking by the IODP Scientific Advisory Structure, the expedition was 
scheduled for the research vessel JOIDES Resolution, operating under contract with the 
U.S. Implementing Organization. At the time of publication of this Scientific Prospec-
tus, the expedition is scheduled to start in Victoria, Canada, on 4 September 2010 and 
to end in Victoria, Canada, on 18 September 2010. A total of 6 days is scheduled for 
activities on site, with 0.6 day transits from and to Victoria (for the current detailed 
schedule, see iodp.tamu.edu/scienceops/). Further details about the facilities aboard 
the JOIDES Resolution and at the USIO can be found at www.iodp-usio.org/.

Operations plan

Up to five pipe trips will be required to complete the following steps of the ACORK 
installation:

1. A jet-in test to determine the depth to set load-bearing conductor casing (tenta-
tive), 

2. Conductor casing and reentry-cone installation, 

3. Drilling to a total depth of 315 mbsf, 

4. Installation of the ACORK casing string with operational wellhead pressure mon-
itoring instrumentation, 

5. Installation of a bridge plug, and 

6. Deployment of a remotely operated vehicle (ROV)/submersible landing plat-
form.

Details of the operations plan and a breakdown of time estimates are provided in Ta-
ble T1.

Based on previous drilling experience at this location, it is anticipated that four joints 
of 16 inch conductor casing will be required. The 10¾ inch ACORK casing and its 
10
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screens will be deployed in the open hole below this with the help of an underreamer, 
which will have been used during the previous expedition. The ACORK casing will 
hang in the 16 inch conductor casing from a landing flange at the base of the reentry 
cone. To maximize the hydraulic resistance between the uppermost screen and the 
seafloor, a swellable packer will be employed at the top of the ACORK casing string to 
seal the anulus between the 10¾ inch and 16 inch casings. The bottom-hole seal for 
the 10¾ inch ACORK casing has not yet been selected. Two possibilities are a mechan-
ical-set bridge plug (rotationally or hydraulically activated) and a swellable packer 
(positively latched to withstand formation overpressure). Use of cement is also being 
considered to augment this critical seal.

Risks and contingencies strategy

We hope that previous drilling experience at this site will allow risks to be anticipated 
and planned for. Difficulties arising from hole instability are considered unlikely, but 
if encountered they can be overcome with aggressive use of the underreamer. Diffi-
culties were encountered with reaching target depths with ACORK installations in 
ODP Holes 808I and 1173B, but they appear to have been due in large part to failure 
of the undereamer bit used. Similar problems for Expedition 328 are not anticipated; 
a more robust bit will be used, and the casing completion depth is much less (300 
mbsf at Site 889 versus 750 and 930 mbsf at Sites 808 and 1173, respectively). Integ-
rity of the internal seal in the 10¾ inch casing is crucial for the success of the pressure 
monitoring experiment, and placement of the seal at the bottom of the casing string 
is of utmost importance for later experiments that require instruments to be installed 
deep inside the sealed casing. Correct choice of the hardware to achieve a tight seal 
at depth is critical.
11
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Expedition 328 Scientific Prospectus
Table T1. Expedition 328 operations plan. (See table notes.)

Notes: Seafloor depth is prospectus water depth plus 11.0 m adjustment from water line to rig floor (i.e. drillers depth). RIH = run in hole, RT = 
running tool, POOH = pull out of hole, UR = underreamer.

Site Transit

No. (days)

Start Expedition in Victoria, B.C., Canada 4-Sep-10

0.6

CAS-01CORK 48° 41.9964' N 0.00.6)m65~( gnisac "61 fo stj 4 htiw enoc yrtneer wen ni-tej & HIR1326

126° 52.3302' W RT pipe, reenter, drill 14-3/4" hole to 315 mbsf,

Displace hole w/heavy mud & POOH,

Make-up ACORK, RIH w A-CORK, bit, & UR asbly, reenter & land ACORK,

(ACORK consists of 4ea screened joints w/10-3/4" csg)

Displace hole with heavy mud & set cement plug at base of 10-3/4" ACORK

POOH, deploy CORK platform, POOH

Sub-Total Days On-Site: 6.0

0.6

End Expedition in Victoria, B.C., Canada 18-Sep-10

Total Expedition Including (5.0 day) Port Call: 12.2

6.0
Total Operating Days: 7.2

Transit ~148 nmi to Victoria, B.C. @ 10.5 kt

Subtotal On-Site Time:

Operations Description

Transit ~141 nmi to Site TBD (close to Site 889) @ 10.5 kt

Location

(Latitude

Longitude)

Sea Floor

Depth

(mbrf)

Ops

(days)

Log

(days)

1.2 6.0 0.0

In Port (5 Days)
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Expedition 328 Scientific Prospectus
Figure F1. Maps showing (A) regional and (B) local context of ODP Site 889 and IODP Expedition 
328 operations. The ACORK observatory will be located 200 m northwest of Hole 889C along Inline 
35. (Continued on next page.)
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Figure F1 (continued). 
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Figure F2. Schematic showing basic processes thought to be important in the formation of gas hy-
drates in accretionary prism sediments above the predominantly temperature-sensitive limit of hy-
drate stability (from Hyndman and Davis, 1992). BSR = bottom-simulating reflector.
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) across the accretionary prism in the vicinity of ODP 
rmed accretionary prism sediments and the bottom-
iedel, Collett, Malone, et al., 2006). SP = shotpoint. 
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Figure F3 (continued). (Continued on next page.) 
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Figure F3 (continued).
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6), with screen positions shown as green symbols 
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Figure F5. Schematic diagram of CORK installed in Hole 889C during ODP Leg 146. Even after 
shortening the cable by folding, rapidly accumulating fill in the lower part of the hole prevented 
the cable from being pulled in completely by its sinker bar, which in turn prevented the data logger 
from fully seating and sealing in the CORK body.
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Figure F6. Strain at the time of and following magnitude 7.2 and 7.5 earthquakes beneath the Nan-
kai Trough off Kii Peninsula, Japan (star), reflected in aftershocks in the near vicinity of the earth-
quake (filled circles in A and B) and in a rise in formation-fluid pressure observed at an ACORK 
located 220 km from the epicentral area (red line in B). Far-field strain estimated from the seismic 
moment (volumetric strain shown as contours in A) is far less than inferred from either the coseis-
mic or postseismic pressure increase (secondary axis in B). A smaller but similar signal was observed 
at the time of a very low frequency earthquake cluster off Cape Muroto (open circles in A) (from Da-
vis et al., 2009). A secular trend of roughly 1.7 kPa/y (0.3 µstrain/y) is also present but has been re-
moved in this plot.

B

0.5

0.4

0.3

0.2

0.1

In
fe

rr
ed

 s
tr

ai
n 

(m
ic

ro
st

ra
in

)

P
re

ss
ur

e 
an

om
al

y 
(k

P
a)

Year

M
ag

ni
tu

de
 (

JM
A

)

0.0

7

6

5

4

3

0
2005 2006

1

22

3

A

134°E

Cape Muroto

Kii P
eninsula

Site
808

Site
1173

35°
N

135° 136° 137°

34°

33°

32°

31°

-10-7

-10 -8

-1
0

-6

-10-9

-10 -8

10 -7

10 -6

10 -7
23



Expedition 328 Scientific Prospectus

24

z sampling using the NEPTUNE cable 
tenuated in the formation relative to 
ves produce large pressure signals in 
y broad-band seismometer (blue and 

E connection, allowing both high-fre-
tudied.

G
ro

un
d 

ve
lo

ci
ty

 (
un

ca
lib

ra
te

d)

ime (h)

35

-1e+55

-5e+54

5e+54

0

3

Teleseism, Sumatra
earthquake, 

26 December 2004

y 2010
w = 6.5
Figure F7. Hydroseismograms for (A, B) distant (10 s sampling) and (C) local earthquakes (1 H
connection). Comparison of borehole and seafloor signals in A and B shows P-waves to be at
the seafloor by the same amount as the tidal loading signal, whereas the seismic Rayleigh wa
the formation. The remarkable match of the seafloor pressure record in C with that of a nearb
red traces, respectively) demonstrates the high fidelity of recording afforded with the NEPTUN
quency oceanographic (e.g., before the earthquake) and low-frequency seismic loading to be s

C

BA

0

27025

27030

27035

P
re

ss
ur

e 
(k

P
a)

P
re

ss
ur

e 
(k

P
a)

Time (h)

Time (min)

-d
P

/d
t (

kP
a/

s)

T

27040

27045

27050

0.02

0.01

0.00

-0.01

-0.02

3

2

1

0

25 26 27 28 29 30 31 32 33 34

1 2 3
1 2

4 5

Seafloor
Borehole

Seafloor

Formation

Teleseism, Sumatra
earthquake, 26 December 2004

CORKed ODP Hole 1026B

6 7 8 9 10

BPR
BBS

Site 889

N. California, 10 Januar
M



Expedition 328 Scientific Prospectus
Figure F8. Seismicity along the northern Cascadia region in the vicinity of Site 889 (red circle). 
Earthquakes in oceanic and continental crust are shown as black and blue symbols in A, and tremor 
events at and above the subduction thrust boundary are shown as red symbols in B. Stars = large 
continental crustal events. No events have been detected with the land-based seismic network on 
the subduction thrust seaward of the band of tremor events (i.e., where the thrust is believed to be 
locked during the current phase of a several-hundred-year-long interseismic interval) (from Kao et 
al., 2006). ETS = episodic tremor and slip.
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Figure F9. Strain, reflected in formation pressure changes in Hole 1027C on the flank of the Juan de 
Fuca Ridge, following two seismogenic slip events (red stars) near the ridge axis. The sense of strain 
(expansive in A, contractional in B) is in each case consistent with that predicted on the basis of the 
earthquake moment tensors. The CORK observatory in this hole is completed in highly permeable 
oceanic crust; lateral drainage from beneath the low-permeability sediment cover causes eventual 
drainage of the anomalous pressure. (After Davis et al., 2001.)

P
re

ss
ur

e 
an

om
al

y 
(k

P
a)

0.0

-0.5

1996

Elastic response

Diffusion
from region of
greater contraction

Nootka fault
Mw = 6.3

Regional
drainage

Site 1027

240 260 280 300 320 340 360 380

Time (days)

A

0.3

0.2

0.1

0.0

Endeavour Ridge
Mw = 4.6

1999

Elastic
response

Diffusion from region
of larger response

Regional
drainage

120 140 160 180 200 220 240 260

Time (Julian days)

B

Site 857

Sites
1026/1027

Site
1025

Site
1024

1996

100 km

1999

50°
N

49°

48°

47°
129° W 128° 127° 

P
re

ss
ur

e 
an

om
al

y 
(k

P
a)
26



Expedition 328 Scientific Prospectus
Figure F10. Recurrence statistics for earthquakes within 150 km of Site 889. With the detection 
threshold experienced with CORK observatories to date we expect resolvable seismic signals (like 
those in Fig. F7) several times per year and strain signals (like those in Figs. F6 and F9) once every 
few years.
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Figure F11. Global Positioning System (GPS) observations (blue circles and fitted saw-tooth func-
tion) showing slow eastward displacement above the Cascadia subduction zone and periodic rever-
sals concurrent with increased seismic tremor levels at and above the subduction thrust interface 
(Fig. F8B). Reversals are caused by slow slip on the subduction plate interface downdip from the cur-
rently locked portion of the subduction fault (from Rogers and Dragert, 2003). Slip events like these 
have been observed to initiate slow rupture that propagates through the seismogenic part of the 
subduction fault (Heesemann and Davis, submitted).
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Figure F12. Schematic illustration of ACORK being constructed for deployment during Expedition 
328 at Site 889. ROV = remotely operated vehicle, CSG = casing.
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Figure F13. A. Illustration of effects of oceanographic and tectonic loading on formation fluid pres-
sure and flow. B. Response to loading can be broken into elastic (instantaneous) and diffusive com-
ponents. C. Transients propagate away from boundaries between regions of contrasting elastic 
properties as a damped diffusive wave with a characteristic scale that depends on permeability. 
(Continued on next page.)
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Figure F13 (continued). D. Elastic response expressed as loading efficiency (γ in B) depends on the 
compressibility of the sediment framework and the compressibility of the interstitial water that may 
contain free gas. E. Response of pressure to volumetric strain in sediment depends primarily on po-
rosity because the compressibility of the matrix is greater than that of water (dotted lines = grain 
and water compressibilities). (Figures after Wang and Davis, 1996; Wang et al., 1998; and Davis et 
al., 2000.)
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Site summary

Proposed Site CAS-01CORK

Priority: Primary

Position: 48°41.9964′N, 126°52.3302′W
Water Depth (m): 1315

Target drilling depth (mbsf): New borehole; penetration ~315 mbsf

Approved maximum 
penetration (mbsf):

Pending approval

Survey coverage: Lines 89-08, XL-03 XL-04, IL 33, 35, 37 (Track map Fig. F1B, Seismic profiles 
Fig. F3)

Objective 
(see text for full details):

Install long-term borehole observatory (pressure, tilt, temperature, broadband 
seismology)

Drilling, coring, and 
downhole measurement 
program:

Install new long-term borehole observatory

Anticipated lithology: Sediment
32
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Scientific participants

The current list of participants for Expedition 328 can be found at iodp.tamu.edu/scien-
ceops/precruise/cascadia/participants.html.
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