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Abstract

Integrated Ocean Drilling Program (IODP) Expedition 340T will conduct borehole 
logging in Hole U1309D, on the domal core of Atlantis Massif just west of the spread-
ing axis of the Mid-Atlantic Ridge, 30°N. Seismic imaging shows considerable reflec-
tivity within the footwall of this oceanic core complex. Results from IODP 
Expeditions 304 and 305 suggest two geologic reasons for such impedance contrasts: 
(1) variable alteration between lithologic units or (2) narrow fault zones with signifi-
cant porosity and possibly pore fluids. We will obtain seismic and temperature logs 
throughout the hole. Any change in seismic velocity associated with altered olivine-
rich troctolite intervals would favor the former hypothesis, whereas any temperature 
deviation within three previously mapped fault zones would favor the latter hypoth-
esis. The new borehole data will guide design of a vertical seismic profile (VSP) exper-
iment. If the hole is clear, the first phase of the VSP program (zero-offset shooting) 
will be carried out during this expedition. Ideally, wall rock magnetic susceptibility 
will also be logged to further document the characteristics and distribution of serpen-
tinization in various depth intervals.

During Expedition 305, borehole seismic data were obtained in the 30–800 mbsf in-
terval, but instrument and weather problems precluded velocity measurements at the 
end of the expedition, when the hole had been deepened to 1415 mbsf. Postdrilling 
research has addressed many of the initial questions about average velocity structure 
and magmatic accretion during core complex formation. In the process, new interest 
in hydration and localized deformation processes within slow-spread lithosphere has 
arisen, as reflected at the May 2010 Chapman Conference on Oceanic Detachments. 
Although Expedition 340T work alone cannot answer all questions about what is re-
sponsible for the reflectivity seen, particularly at wide-angle source-receiver offsets, it 
does represent a crucial initial step that is required in order to plan optimal seismic 
experiments (e.g., walk-away VSP and new large-offset or three-dimensional multi-
channel seismic tests) that can fully document the potential pattern of lithospheric 
hydration.

Schedule for Expedition 340T

Integrated Ocean Drilling Program (IODP) Expedition 340T is based on IODP drilling 
proposal number 779-APL (available at iodp.tamu.edu/scienceops/expeditions/
atlantis_massif.html). Following ranking by the IODP Scientific Advisory Structure, 
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the expedition was scheduled for the research vessel JOIDES Resolution, operating un-
der contract with the US Implementing Organization (USIO). At the time of publica-
tion of this Scientific Prospectus, the expedition is scheduled to start in Lisbon, 
Portugal, on 17 January 2012 and to end in St. John’s, Antigua, on 6 February 2012. 
A total of 3 days is scheduled for downhole logging operations on site, with 12 days 
of transit to and from the site, as described in this prospectus (for the current detailed 
schedule, see iodp.tamu.edu/scienceops/). Further details about the facilities aboard 
the JOIDES Resolution and the USIO can be found at www.iodp-usio.org/.

Background

Slow-spread ocean lithosphere accretes and evolves via temporally and spatially vari-
able magmatic and tectonic processes (e.g., Bonatti and Honnorez, 1976; OTTER, 
1984; Dick, 1989; Lin et al., 1990; Sinton and Detrick, 1992; Cannat, 1993; Lagabrielle
et al., 1998). Oceanic core complexes (OCCs), in particular, mark significant periods 
(1–2 m.y.) where a distinct mode of rifting/accretion persists, in contrast to the more 
typical interplay between magma supply and faulting that generates the ubiquitous 
abyssal hills. Long-lived displacement along detachment faults active within the 
~20 km wide axial zone of a spreading center exhume the characteristic domal cores 
of an OCC, often capped by spreading-parallel corrugations (e.g., Cann et al., 1997; 
Tucholke et al., 1998). Beneath this exposed fault zone, gabbroic rocks with lenses, 
and possibly more significant volumes of mantle peridotite, are present, providing 
access to a major component of Earth’s deep lithosphere for detailed chemical and 
physical property investigations. Conditions of OCC development are documented 
by igneous and metamorphic assemblages, as well as by deformation recorded during 
evolution of the footwall.

Geological setting

Atlantis Massif is a young OCC where contextual data from regional geophysical sur-
veys, as well as seafloor mapping and sampling, is good and major structural blocks 
within the faulted lithosphere have been identified (Fig. F1). The domal core of At-
lantis Massif was unroofed via detachment faulting that occurred within the rift zone 
of the Mid-Atlantic Ridge at ~1.1–0.5 Ma (Blackman et al., 2011; Grimes et al., 2008). 
Atlantis Massif was initially hypothesized to be an OCC on the basis of morphologic 
and backscatter mapping and dredging results that documented the shallow, corru-
gated, and striated domal core underlain by intrusive mafic and ultramafic rocks 
4
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(Cann et al., 1997). The spreading-parallel corrugations are equated with similar-scale 
features mapped on continental detachment faults (John, 1987) and suggest it was a 
slip surface associated with the detachment fault that unroofed the dome. Schroeder 
and John (2004) and Karson et al. (2006) document deformation within a zone that 
confirms the existence of a long-lived normal fault at the top of the Southern Ridge, 
with at least a few kilometers extent. The juxtaposition of volcanic eastern blocks 
against the corrugated dome, where southern ridge samples include gabbroic rocks 
(~30%) and serpentinized peridotite (~70%), supports the OCC model. Gravity and 
seismic data indicate that significant portions of the footwall to the detachment con-
tain rocks with anomalously high density (200–400 kg/m3 greater than surrounding 
rock; Blackman et al., 2008; Nooner et al., 2003) and velocities (4–6 km/s in the upper 
kilometer, compared to average Atlantic upper crust at ~3–5 km/s) (Canales et al., 
2008; Collins et al., 2009). The active serpentinite-hosted Lost City hydrothermal 
vent field (Kelley et al., 2001; Früh-Green et al., 2003) is located just below the peak 
of the massif, the apex of the Southern Ridge. The Central Dome extending smoothly 
to the north is several hundred meters deeper, and it is against only this part of the 
footwall that the juxtaposed volcanic hanging wall exists. It is assumed to overlie the 
detachment where it extends at depth.

Differences between the Central Dome and the domal Southern Ridge (Karson et al., 
2006; Boschi et al., 2006; Blackman et al., 2006, 2011; Ildefonse et al., 2007; Canales 
et al., 2008) raise questions about how axial magmatism, the detachment system, and 
subseafloor alteration may have progressed in space and time as this core complex 
formed. If we can determine the geologic cause(s?) of reflectivity within the uplifted 
footwall to the detachment, future seismic imaging could provide definitive tests of 
models for along- and across-strike variation in the structure/development of oceanic 
core complexes. The availability of the 1415 m deep borehole at IODP Site U1309 pro-
vides a unique opportunity to groundtruth properties measured at seismic wave-
lengths.

Seismic studies/Site survey data

Multichannel seismic (MCS) data (Canales et al., 2004; Singh et al., 2004) shows sig-
nificant reflectivity throughout the Central Dome and Southern Ridge (Fig. F2), but 
its cause is difficult to explain based on what is known about the dominantly gabbroic 
primary lithology at Site U1309. Results from Hole U1309D indicate that alteration 
varies quite rapidly downhole and there are a number of sharp changes in borehole 
resistivity, two of which coincide with the boundaries of tens-of-meters thick, highly 
5



Expedition 340T Scientific Prospectus
altered olivine-rich units (Fig. F3). The strong D reflection, noted by Canales et al. 
(2004) to be pervasive throughout the dome and apparently an isolated event at 0.2–
0.5 s two-way traveltime (TWTT) using initial processing, has been shown via a wide-
angle reflection processing method (Masoomzadeh et al., 2005; Jones et al., 2007) to 
most likely be the first in a series of reflections (Fig. F2; Singh et al., 2004). This reflec-
tive zone may be associated with altered olivine-rich units (Fig. F2C). However, this 
needs to be investigated more carefully using a better in situ velocity model and the 
best-possible ties to the core/borehole data.

Modeling of near-bottom explosive source (NOBEL) (Collins et al., 2009) and MCS 
streamer refraction traveltimes (Canales et al., 2008; Henig et al., 2009, 2010) indi-
cates that at least parts of the dome are capped by a 100–200 m thick low-velocity 
layer (< 4 km/s; Fig. F2D). Obtaining reliable first arrival times for VSP stations in the 
50–200 m depth interval would provide groundtruth in this crucial interval, where 
imprints of detachment zone processes may extend beyond the very narrow, high de-
formation documented by talc-schist fault rock sampled only in the upper few meters 
at Site U1309 (Blackman et al., 2006, 2011; McCaig et al., 2010). Sonic logging in the 
800–1415 mbsf interval will provide velocity constraints on the 1080–1200 mbsf 
highly altered olivine-rich troctolite interval (Fig. F3A). The VP/VS ratio of the 
~350 mbsf olivine-rich units appears to be higher (~2.0) than average (~1.8) and the 
new data will show whether this is characteristic of these units. Also, the velocity of 
the 1100 mbsf fault zone, which is marked by a density low (Fig. F3C), will be mea-
sured for the first time.

Previous drilling at Site U1309

IODP Expeditions 304 and 305 cored and logged a 1.4 km, dominantly gabbroic sec-
tion at Site U1309 (Fig. F3A). The presence of many thin interfingered petrologic 
units (Blackman et al., 2006; John et al., 2009), together with age dating (Grimes et 
al., 2008), indicates that the intrusions forming the domal core were emplaced over 
a minimum of 100–220 k.y. and not as a single magma pulse. Isotopic and mineral-
ogical alteration is intense in the uppermost 100 m but decreases in intensity with 
depth (Blackman et al., 2006; Nozaka et al., 2008; McCaig et al., 2010). Below 800 m, 
alteration is restricted to narrow zones surrounding faults, veins, and igneous con-
tacts and to an interval of locally intense serpentinization in olivine-rich troctolite 
(Beard et al., 2009; Nozaka and Fryer, 2011). Hydration of the lithosphere occurred 
over the complete range of temperature conditions from granulite to zeolite facies but 
was predominantly in the amphibolite and greenschist range. Deformation of the 
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sequence was remarkably localized (Blackman et al., 2006; Michibayashi et al., 2008; 
Hirose and Hayman, 2008), despite paleomagnetic indications that the dome has un-
dergone at least 45° rotation (Morris et al., 2009), presumably during unroofing via 
detachment faulting.

The main geochemical characteristics of Site U1309 rocks are consistent with forma-
tion as a cumulate sequence built from a series of parental mid-ocean-ridge basaltic 
(MORB) melt injections (Godard et al., 2009). Self-intrusion of cooling, partially 
crystallized magma likely occurred, and infiltration of evolved melt from a given 
intrusion into preexisting mafic cumulate rock certainly occurred. The age of zircon-
bearing core samples (Grimes et al., 2008) is consistent with formation in the axial 
zone and a period of asymmetric spreading, with the footwall to a detachment fault 
moving at or near the full spreading rate for the segment. The few thin peridotite in-
tervals transected at Site U1309 are residual, but petrographic and geochemical evi-
dence indicate that later-formed or injected melts fluxed the residuum (Godard et al., 
2009) or infiltrated it as dikelets (Tamura et al., 2008). Olivine-rich troctolites are the 
product of intense melt-rock interactions between an olivine-rich protolith (either 
ultramafic cumulate or mantle peridotite) and basaltic melt (Suhr et al., 2008; Drouin 
et al., 2009, 2010). They cannot simply be the primitive, first-crystallized cumulate 
within cooling magma. Such melt-rock interaction processes are expected to play a 
significant role in crustal accretion at slow-spreading ridges and to contribute 
through melt-rock interactions to MORB chemistry (Lissenberg and Dick, 2008; 
Drouin et al., 2010).

Alteration, via reaction with seawater, is pervasive in the upper few hundred meters 
of the core, but the lower part of the section, particularly at depths below 800 meters 
below seafloor (mbsf), has several intervals with very little alteration (Fig. F3B). In-
stances of alteration of the recovered core being 50% or greater are very rare below 
750 mbsf (except in the 1080–1200 mbsf interval) but are common at shallower 
depths. By depths of 800 mbsf, instances of 40% or higher overall alteration are un-
common. By 850 mbsf, many instances of <10% alteration are reported (although less 
commonly in the 1080–1200 mbsf interval). Throughout, intervals with higher oliv-
ine content (e.g., olivine-rich troctolites) show greater overall alteration than sur-
rounding lithologies (gabbro and less common diabase).

Wall rock density and resistivity were logged throughout the hole, and seismic data 
(check shot with ~50 m station spacing and sonic logging) were obtained in the up-
permost 800 m of the borehole (Fig. F3C–F3E). Compressional velocity averages 
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5.62 ± 0.03 km/s in the 272–477 mbsf interval and 6.01 km/s in the 522–792 mbsf 
interval, with check shot–determined velocities tracking the average logged wall rock
and core sample velocities (Collins et al., 2009).

A temperature log at the end of Expedition 305 shows small dips (a few degrees) in 
each of the 170, 750, and 1100 mbsf fault zones (Blackman et al., 2006), but given the 
disturbed condition immediately following drilling, these dips could simply reflect 
pooling of cool flushing fluid in local breakouts. Obtaining a (relatively) undisturbed 
temperature log will allow confident interpretation of any such dips near fault zones 
that are measured and provide a reliable indication of general borehole temperature 
at depth (previous maximum of 119°C was measured by the Temperature/Acceleration/
Pressure [TAP] tool at 1400 mbsf).

Supporting site survey data for Expedition 340T are archived at the IODP Site Survey 
Data Bank and at the Marine Geoscience Data Center (www.marine-geo.org/tools/
search/entry.php?id=MAR:30N_Blackman) and the Academic Seismic Portal at the 
University of Texas at Austin’s Institute for Geophysics (www.ig.utexas.edu/sdc/
cruise.php?cruiseIn=ew0102; www.ig.utexas.edu/sdc/cruise.php?cruiseIn=ew9704).

Scientific objectives

Two observations will be valuable for ocean lithosphere studies in general, and these 
must be made with minimum possible disturbance:

1. Visual observation of whether the well is “producing” (flow out of the hole) or 
not: addresses fluid flow within the crust and chemical exchange with seawater 
in maturing lithosphere.

2. Measurement of temperature throughout the borehole: assesses conditions that 
may be encountered by future ultradeep drilling/logging of an intrusive oceanic 
section; tests for possible fluid flow (temperature dips) within fault zones of At-
lantis Massif’s footwall.

Focusing on our main objectives, obtaining new caliper measurements throughout 
the hole is necessary so that we can select VSP station depths where borehole diame-
ter/condition is optimum for instrument coupling. The aim is for station spacing of 
25 m throughout the hole, including depths as shallow as ~50 m if hole conditions 
warrant. The VSP data should increase our knowledge of local reflectivity for near-
vertical waves, thereby improving core-log integration. Information on the condition 
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of the borehole is crucial for determining whether a future single-ship, wireline reen-
try experiment is viable or whether the drillship and a second vessel will be needed 
to complete the VSP experiment by conducting a walk-away component. Ultimately, 
this full data set will enable core-log-survey integration at as high a level as possible 
with current geophysical data.

Sonic logs will be extended to cover the full hole. The upper part of the hole 
(<800 mbsf) will be relogged, including Stoneley wave measurements, which can pro-
vide additional information on permeability/fracturing and any contrast thereof, 
between lithologic/alteration intervals.

Magnetic susceptibility logs will target downhole variation in magnetite that is a 
product of serpentinization, so providing constraint on extents/style of alteration 
that may have been missed with the finite (although very good) core recovery (non-
white portion of Fig. F3A).

Logging/Downhole measurements strategy

Downhole logging will be the primary operation to achieve the scientific objectives 
of Expedition 340T by providing continuous, in situ geophysical measurements of 
the drilled basement at Site U1309. The logging program will establish the current 
temperature profile in the borehole fluid, which will provide information on active 
fluid flow in previously observed faulted intervals and temperature gradient changes 
that may be associated with lithologic variations. In addition, sonic logging and a 
zero-offset VSP will extend into the deeper interval (>800 mbsf) of the borehole, 
where no such data were previously recorded because of weather and instrument 
problems encountered during Expedition 305. These new velocity data will allow for 
direct, high-resolution correlation of wireline measurements with core measurements 
made during Expeditions 304 and 305.

The operations schedule for Expedition 340T is limited to 3 days on site (Table T1), 
based on ancillary project letter (APL) guidelines. As a result of the time limitation, 
the logging program is designed to be flexible and to include as many as four different 
tool strings:

1. Triple combination (triple combo) tool string with Modular Temperature Tool 
(MTT),

2. Sonic tool string,
9
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3. Versatile Seismic Imager (VSI) tool string for VSP, and

4. Magnetic Susceptibility Sonde (MSS) tool string.

Following two phases of drilling during Expeditions 304 and 305, Hole U1309D pen-
etrated to a total depth of 1415.5 mbsf, with 133⁄8 inch casing to 20.5 mbsf to provide 
stable reentry. The hole was left in good condition at the end of Expedition 305, so 
we anticipate reasonably good hole conditions for logging operations. We will reenter 
the hole with a logging bit and maintain the pipe within the casing, if possible. The 
first logging run will be the triple combo tool string with the MTT in order to recover 
an equilibrium temperature profile of the hole, which has been undisturbed since Ex-
pedition 305 logging operations concluded on 26 February 2005. The caliper on the 
triple combo will be used to assess hole size and condition and to identify favorable 
intervals for anchoring the VSI during the VSP. The logging bit will allow for rotation, 
if a need for minor clean-up of the hole is indicated by the caliper log. The order of 
the other tool strings will be adjusted to (1) ensure that the VSP is acquired during 
daylight operations to accommodate marine mammal observations while using the 
seismic source and (2) optimize time on site to collect the full suite of logging data 
within the 3 days available for operations.

Characteristics of the tools are described briefly below. For more information on spe-
cific logging tools, please refer to iodp.ldeo.columbia.edu/TOOLS_LABS/.

Triple combo tool string

The triple combo consists of five main tools:

1. The Accelerator Porosity Sonde (APS) uses an electronic neutron source to 
measure the porosity of the formation.

2. The Hostile Environment Litho-Density Sonde (HLDS) measures bulk density. It 
includes a caliper that will provide hole diameter and an assessment of hole 
quality.

3. The Hostile Environment Gamma Ray Sonde (HNGS) measures the natural radio-
activity of the formation and provides estimates of Th, U, and K concentrations.

4. The High-Resolution Laterolog Array (HRLA) measures electrical resistivity of the 
formation at five different penetration depths.

5. The Lamont-Doherty Earth Observatory (LDEO) MTT measures borehole temper-
ature. It is attached at the bottom of the triple combo.
10
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Sonic tool string

The main component of the sonic tool string is the Dipole Shear Sonic Imager (DSI), 
which records a full set of acoustic waveforms to measure the compressional (VP) and 
shear velocity (VS) of the formation. In addition to VP and VS, the DSI will be run with 
different modes to allow the estimation of properties such as anisotropy and perme-
ability. VP can also be combined with the density log from the triple combo to gener-
ate synthetic seismograms and provide high-resolution seismic/well integration. A 
gamma ray tool will be run in the sonic tool string in order to depth match the dif-
ferent logging runs, as well as potentially the MTT, to record temperature rebound in 
the borehole.

Versatile Seismic Imager tool string

The VSI will be used to acquire a zero-offset vertical seismic profile (VSP) for high-
resolution integration of borehole and seismic data. The tool string will be lowered 
into the hole and anchored at specified intervals against the borehole wall to record 
the waves emitted by the seismic source. The survey is planned with 25 m spacing of 
stations over the entire open hole interval (~20 mbsf to total depth of ~1415 mbsf). 
Spacing may be adjusted based on hole condition/size determined from the caliper 
log. If a full period of daylight is available, under optimal conditions the entire open 
hole VSP may be acquired during a single run. However, given the uncertainty of 
arrival time on site, VSP operations may require two daylight phases of logging. Phase 
1 would capture the deeper interval (~800–1415 mbsf) where no VSP has been ac-
quired, and Phase 2 would investigate the shallow interval (~20–800 mbsf) with closer 
station spacing than obtained during the Expedition 305 VSP. If time is limited, the 
deeper interval below ~800 mbsf is the higher priority. The seismic source for the VSP 
will be a parallel cluster of two 250 in3 Sercel G guns (Table T2), positioned 2–7 m 
below sea level and offset by ~50 m from the side of the ship. VSP operations are sub-
ject to the IODP marine mammal policy and may be postponed or cancelled if policy 
conditions are not met.

Magnetic Susceptibility Sonde tool string

The MSS measures magnetic susceptibility, which would provide an assessment of for-
mation alteration (serpentinization) and could be correlated with magnetic suscepti-
bility measurements from Expedition 304/305 cores. LDEO is currently building a 
replacement for the MSS that was deployed and lost during IODP Expedition 320. 
11
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Current production and testing timelines indicate that the MSS will be available for 
Expedition 340T. The MSS will be run in a modified triple combo (MSS replaces HRLA) 
or in a condensed tool string (MSS with HNGS and/or HLDS). Temperature consider-
ations may prevent or limit the deployment of the MSS (rated up to 80°C); measure-
ments at the end of Expedition 305 indicate a temperature of at least 119°C at 
~1400 mbsf. Magnetic susceptibility data are lower priority than temperature and ve-
locity data from the other tool strings; therefore, temperature and time constraints 
will be used to determine whether the MSS tool string is run. Even a partial run of the 
MSS tool string in the shallower, presumably cooler interval (e.g., ~20–800 mbsf) 
would likely provide scientifically valuable data.

Risks and contingency strategy

Three principal factors could affect the implementation of the logging plan:

1. Adverse hole conditions at Site U1309 (e.g., encountering collapsed intervals 
where basement rock has blocked the hole or extremely high borehole tempera-
tures);

2. Weather conditions that limit the ability to conduct logging operations; and

3. Time delays arising from equipment breakdowns, measures taken to respond to 
hole conditions, or weather conditions.

Hole conditions

Narrow bridges indicated by the caliper log or high borehole temperatures (>175°C) 
indicated by the temperature log on the first logging run may be addressed by minor 
remediation. Minor remediation activities include rotation of the logging bit to clear 
bridges and circulation of seawater to cool the hole, both of which require lowering 
the pipe into the open hole to be effective. Prohibitively poor hole conditions would 
require a bit change to the rotary core barrel (RCB) system to remediate and would 
lead to a significant time penalty that would severely reduce the planned logging pro-
gram. The advantages and disadvantages of this remediation strategy will have to be 
evaluated at sea should the need arise.
12
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Weather conditions

Expedition 305 to Site U1309 experienced favorable weather conditions up until the 
last day of operations. Expedition 340T is scheduled in the same weather window as 
Expedition 305, so we expect weather-related risks to be minimal.

Timing

Any time gained during the transit from Lisbon to Site U1309 will be used to augment 
the 3 days allotted to Expedition 340T operations. Once on site, time spent on hole 
remediation, marine mammal observation activities, or weather-related delays will be 
considered part of the time allotted to operations and may result in reducing the log-
ging program. Expedition 340T operations should be concluded in order to allow a 
timely departure for Antigua by midnight on 31 January 2012.

Data sharing strategy

Shipboard and shore-based researchers should refer to the IODP Sample, Data, and 
Obligations policy posted on the Web at www.iodp.org/program-policies/. This 
document outlines the policy for distributing IODP samples and data to research sci-
entists, curators, and educators. The document also defines the obligations that sam-
ple and data recipients incur. The Sample Allocation Committee (SAC; composed of 
the Chief Scientist, Staff Scientist, and IODP Curator on shore and the curatorial rep-
resentative on board ship) will work with the entire scientific party to formulate a 
formal expedition-specific plan for shipboard and postcruise data use.

This expedition involves downhole logging in an existing borehole with no new 
coring; therefore, no samples will be collected during this expedition.
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Table T1. Operations and time estimates, Expedition 340T. 

VSP = vertical seismic profile, triple combo = triple combination, MTT = Modular Temperature Tool, DSI = Dipole Sonic Imager, VSI = Vertical 
Seismic Imager, MSS = Magnetic Susceptibility Sonde.

Table T2. Air gun source levels for zero-offset vertical seismic profile, Expedition 340T. 

* = The source level is a measure of the effective sound pressure at a given distance from the source array, relative to a reference value. It is com-
monly expressed in decibels at 1 m from the source relative to µPascal-m, or dB re 1 µPa·m. 0-pk = peak energy. pk-pk = peak-to-peak energy.

Source Specification

Energy source One or two 250 in3 G air guns
Source output (downward) (1 × 250 in3) 0-pk is 3.1 bar·m (229.8 dB re 1 µPa·mp)*

pk-pk is 6.4 bar·m (236.2 dB re 1 µPa·mp-p)
Source output (downward) (2 × 250 in3) 0-pk is 5.2 bar·m (234.3 dB re 1 µPa·mp)

pk-pk is 10.8 bar·m (240.7 dB re 1 µPa·mp-p)
Deployment depth of energy source (m) 2–7
Air discharge volume (in3) 250 or 500
Dominant frequency components (Hz) 0–256
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Figure F1. Atlantis Massif on the western Mid-Atlantic Ridge flank of the ridge-transform intersec-
tion. Main tectonic features and locations of Hole U1309D (black circle) and seismic lines are indi-
cated: white = multichannel seismic, dark gray = refraction from NOBEL deep source/OBS, light gray 
= refraction from traditional air gun/OBS. Corrugations on domal core mark exposed detachment 
fault, well-mapped along the southern edge of the Southern Ridge and inferred from morphology 
and talc schist fragments recovered in upper few meters (only) on Central Dome. Volcanic hanging 
wall block(s) are also shown.
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Figure F2. MCS data at Atlantis Massif. A. Migrated stack of Meg 10 across Central Dome (Canales et 
al., 2004). TWTT = two-way traveltime. B. Unmigrated section (Singh et al., 2004) reveals a more 
complex band of wide-angle reflectivity starting at the D reflector and extending ~0.5 s. Tomogra-
phy model (Blackman et al., 2009) is overlain. C. Snapshots from Fledermaus scene show Singh 
wide-angle record sections and Hole U1309D lithology (depth converted to time using average 
check shot velocity). D. Velocity depth profiles for NOBEL (Collins et al., 2009) and MCS refraction 
traveltime inversions (Canales et al., 2008) overlain on envelope (gray) of average young Atlantic 
crust (White et al., 1992). CD = Central Dome, SR = Southern Ridge.
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Figure F3. Downhole data, Hole U1309D. A. Lithology is dominantly gabbroic with intervals of 
greater olivine content. B. Alteration of core pieces determined by shipboard description. C. Density: 
red line = logged, black dots = shipboard core samples. D. Logs of wall rock resistivity. E. P-wave 
velocity: red line = logged, black dots = core sample at room temperature/pressure. F. Expanded 
lithology in uppermost 800 m where seismic data currently exist.
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Site summary

Site U1309

Priority: 1

Position: 30°10.12′N, 42°7.11′W
Water depth (m): 1645

Target drilling depth (mbsf): Not applicable, reoccupy existing hole, no new penetration

Approved maximum 
penetration (mbsf):

Not applicable, reoccupy existing hole, no new penetration

Survey coverage (track map; 
seismic profile):

Primary line: Meg 4, CMP 4145 closest, ~400 m to east
Crossing line: Meg 10, ~1.8 km north
(Track map Fig. F1, Seismic profiles Fig. F2)

Objective(s): Borehole logging in existing Hole U1309D:
Undisturbed temperature profile
Assess condition of hole for future wireline reentry and seismic work
Sonic logging and zero-offset VSP
Magnetic susceptibility logging

Drilling program: Not applicable, reoccupy existing hole, no new penetration

Logging/downhole 
measurements program:

Triple combo including MTT to determine borehole condition and 
temperature, and to identify intervals for positioning VSI.

Order of following tool strings to be determined by timing of operations, so 
that VSP is conducted during daylight hours.

Sonic tool string
VSI tool string for zero-offset VSP
MSS tool string, time and temp permitting

Nature of rock anticipated: Not applicable, reoccupy existing hole, no new penetration
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Expedition scientists and scientific participants

The current list of participants for Expedition 340T can be found at iodp.tamu.edu/
scienceops/precruise/atlantismassif/participants.html.
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