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Abstract
Observations from the past several decades indicate that the 

Southern Ocean is warming significantly and that Southern Hemi-
sphere westerly winds have migrated southward and strengthened 
due to increasing atmospheric CO2 concentrations and/or ozone 
depletion. These changes have been linked to thinning of Antarctic 
ice shelves and marine terminating glaciers. Results from geologic 
drilling on Antarctica’s continental margins show late Neogene ma-
rine-based ice sheet variability, and numerical models indicate a 
fundamental role for oceanic heat in controlling this variability over 
at least the past 20 My. Although evidence for past ice sheet vari-
ability has been observed in marginal settings, sedimentological se-
quences from the outer continental shelf are required to evaluate 
the extent of past ice sheet variability and the role of oceanic heat 
flux in controlling ice sheet mass balance.

International Ocean Discovery Program (IODP) Expedition 374 
proposes a latitudinal and depth transect of six drill sites from the 
outer continental shelf and rise in the eastern Ross Sea to resolve 
the relationship between climatic/oceanic change and West Antarc-
tic Ice Sheet (WAIS) evolution through the Neogene and Quater-
nary. This location was selected because numerical ice sheet models 
indicate that it is highly sensitive to changes in ocean heat flux and 
sea level. The proposed drilling is designed for optimal data-model 
integration, which will enable an improved understanding of the 
sensitivity of Antarctic Ice Sheet mass balance during warmer-than-
present climates (e.g., the early Pliocene and middle Miocene). Ad-
ditionally, the proposed transect links ice-proximal records from 
the inner Ross Sea continental shelf (e.g., ANDRILL sites) to deep-
water Southwest Pacific drilling sites/targets to obtain an ice-proxi-
mal to far-field view of Neogene climate and Antarctic cryosphere 
evolution. The proposed scientific objectives directly address 
Ocean and Climate Challenges 1 and 2 of the 2013–2023 IODP Sci-
ence Plan.

Drilling Neogene and Quaternary strata from the Ross Sea con-
tinental shelf-to-rise sedimentary sequence is designed to achieve 
five scientific objectives:

1. Evaluate the contribution of West Antarctica to far-field ice vol-
ume and sea level estimates.

2. Reconstruct ice-proximal atmospheric and oceanic tempera-
tures to identify past polar amplification and assess its forc-
ings/feedbacks.

3. Assess the role of oceanic forcing (e.g., sea level and tempera-
ture) on Antarctic Ice Sheet stability/instability.

4. Identify the sensitivity of the AIS to Earth’s orbital configuration 
under a variety of climate boundary conditions.

5. Reconstruct eastern Ross Sea bathymetry to examine relation-
ships between seafloor geometry, ice sheet stability/instability, 
and global climate.

To achieve these objectives, we will (1) use data and models to 
reconcile intervals of maximum Neogene and Quaternary Antarctic 
ice advance with far-field records of eustatic sea level change; (2) re-
construct past changes in oceanic and atmospheric temperatures 
using a multiproxy approach; (3) reconstruct Neogene and Quater-
nary ice margin fluctuations in datable marine continental slope 
and rise records and correlate these records to existing inner conti-
nental shelf records; (4) examine relationships among WAIS stabil-
ity/instability, Earth’s orbital configuration, oceanic temperature 
and circulation, and atmospheric pCO2; and (5) constrain the tim-

ing of Ross Sea continental shelf overdeepening and assess its im-
pact on Neogene and Quaternary ice dynamics.

Schedule for Expedition 374
International Ocean Discovery Program (IODP) Expedition 374 

is based on IODP drilling Proposals 751-Full2, 751-Add, and 751-
Add2 (available at http://iodp.tamu.edu/scienceops/expedi-
tions/ross_sea_ice_sheet_history.html). Following evaluation by 
the IODP Scientific Advisory Structure, the expedition was sched-
uled for the research vessel (R/V) JOIDES Resolution, operating un-
der contract with the JOIDES Resolution Science Operator (JRSO). 
At the time of publication of this Scientific Prospectus, the expedi-
tion is scheduled to start in Wellington, New Zealand, on 4 January 
2018 and to end in Wellington, New Zealand, on 8 March. A total of 
63 days will be available for the transit, drilling, coring, and down-
hole measurements described in this report (for the current de-
tailed schedule, see http://iodp.tamu.edu/scienceops). Further 
details about the facilities aboard the JOIDES Resolution can be 
found at http://iodp.tamu.edu/publicinfo/drillship.html.

Introduction
Drilling eastern Ross Sea outer continental shelf-to-rise sedi-

mentary sequences will provide a direct record of Neogene to Qua-
ternary West Antarctic Ice Sheet (WAIS) evolution and improve 
understanding of associated climate forcings/feedbacks. In combi-
nation with model sensitivity tests, tectonic considerations, and the 
well-developed seismic stratigraphic framework of the Ross Sea, 
proposed drilling will enable researchers to determine if the large 
far-field Neogene sea level estimates (20–60 m) (cf. Miller et al., 
2005, 2012; Naish and Wilson, 2009) reflect changes in Antarctic ice 
volume (Figure F1). The proposed continental shelf-to-rise transect 
in an area of demonstrated climate sensitivity (Figures F2, F3, F4) 
allows for improved understanding of ocean–ice sheet interactions 
on orbital to million year timescales.

The onset of the Neogene (23 Ma; Oligocene/Miocene [O/M] 
boundary) is characterized by an abrupt increase in Antarctic ice 
volume attributed to changes in Earth’s orbital parameters (Naish et 
al., 2001; Zachos et al., 1997) and declining atmospheric CO2 (Fig-
ure F1) (Pagani et al., 2005). Following the O/M glaciation, both 
near- and far-field proxy records indicate a period of sustained 
(~3°C warmer than present) (You et al., 2009) warmth and carbon 
cycle reorganization (e.g., Foster et al., 2012; Vincent and Berger, 
1985), referred to as the Middle Miocene Climatic Optimum 
(MMCO; ~17–15 Ma) (Flower and Kennett, 1994; Shevenell et al., 
2004). During the MMCO, polar amplification of temperature is 
suggested (Feakins et al., 2012; Lewis et al., 2008; Shevenell et al., 
2004; Warny et al., 2009) but not yet successfully modeled (e.g., You 
et al., 2009). The MMCO was immediately followed by an interval 
of Antarctic ice growth and cooling, termed the Middle Miocene 
Climate Transition (MMCT; 14.2–13.8 Ma), as observed in both 
far-field benthic foraminifer δ18O records and ice-proximal data 
(Figure F1) (Cramer et al., 2009; Flower and Kennett, 1994; Hol-
bourn et al., 2007; Kennett, 1977; Shevenell et al., 2008, 2004; 
Zachos et al., 2001) and is believed to have resulted in the extinction 
of the Antarctic tundra vegetation (Lewis et al., 2008). Although ice 
expansion has traditionally been inferred in East Antarctica, Ross 
Sea seismic evidence also suggests WAIS expansion (Bart, 2003). 
However, the timing of the Ross Sea event, WAIS development, and 
3
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forcings and feedbacks involved in the MMCT remain enigmatic 
(De Santis et al., 1995). During the mid-Pliocene, global sea levels 
were ~20 ± 10 m above present-day levels, indicating a reduc-
tion/collapse of both the Greenland Ice Sheet and the WAIS (Miller 
et al., 2012). Ice-proximal sedimentary facies indicate orbitally 
paced advances and retreats of the WAIS from the early Pliocene 
(Figures F4, F5, F6) until at least 1.0 Ma, although equivocal evi-
dence exists for collapse as recently as the last interglacial (Kopp et 
al., 2009; McKay et al., 2012b; Naish et al., 2009; Dahl-Jensen et al., 
2013; Scherer et al., 1998).

Background
Oceanographic setting

Most of the abyssal ocean is presently filled with cold dense wa-
ters produced within the large polynyas of the Weddell and Ross 
Seas and mixed with ambient waters. Thus, changes in temperature 
and/or meltwater input to the Ross Sea could disrupt global meridi-
onal overturning circulation (MOC) (Jacobs et al., 2002; Orsi and 
Wiederwohl, 2009; Purkey and Johnson, 2010). Over the past 40 y, 
Ross Sea–derived Antarctic Bottom Water (AABW) has freshened 
as a result of increased meltwater input to the Amundsen and Bell-
ingshausen Seas from melting ice shelves/glacial systems (Jacobs et 
al., 2002, 2011).

Unlike in the Amundsen and Bellingshausen Seas, where the 
Antarctic Circumpolar Current (ACC) impinges the continental 
shelf and cross-shelf bathymetry encourages the presence of rela-
tively warm Circumpolar Deep Water (CDW) on the inner shelf, the 
eastern limb of the Ross Gyre brings cooler Modified CDW 
(MCDW) to the Ross Sea along the lower continental slope (Orsi 
and Wiederwohl, 2009; Whitworth et al., 1995). The strong west-
ward-flowing Antarctic Slope Current (ASC), with a sharp subsur-
face front (Antarctic Slope Front [ASF]), separates Antarctic 
Surface Water (AASW) on the shelf from CDW on the lower conti-
nental slope (Figure F7). This front serves as a dynamical barrier 
that limits the transfer of CDW and MCDW onto the Ross Sea con-
tinental shelf (Ainley and Jacobs, 1981). Thus, ASC vigor and the 
formation of fresh AASWs regulate the volume of MCDW on the 
Ross Sea continental shelf.

Geological setting and previous drilling
The break-up of Gondwana during the Middle Jurassic began 

with the initiation of the West Antarctic Rift, which led to the open-
ing of the Ross Sea (Behrendt et al., 1991) and the development of 
three sedimentary basins (Figures F2, F3; Cooper et al., 1991). The 
westernmost Victoria Land Basin (VLB) has been the focus of previ-
ous regional geological drilling (e.g., Dry Valley Drilling Project 
[DVDP], MSSTS-1, CIROS-1 and CIROS-2, Cape Roberts Project 
[CRP], and ANDRILL). This proposal focuses on the Eastern Basin, 
which contains up to 6 km of Cenozoic sediment infill.

The basement geology of the Central High adjacent to the East-
ern Basin was penetrated at Deep Sea Drilling Project (DSDP) Site 
270 and consists of high-grade Paleozoic calcareous metamorphics 
(Ford and Barrett, 1975) that were mylonitized during Late Creta-
ceous uplift (Siddoway et al., 2004). Upper Cretaceous mylonites 
were also recovered from the eastern part of the Eastern Basin (Luy-
endyk et al., 2001). The lack of basement younger than Devonian at 
CRP-3 and Site 270 suggests that younger Permian–Triassic Beacon 
Supergroup strata are likely absent in the western (and eastern) 
Ross Sea. This suggestion is supported by paleogeographic maps 

from Barrett (1981), which suggest that the western (and eastern) 
Ross Sea was likely an area of uplift and erosion through much of 
the Permian–Triassic, although these maps are poorly constrained. 
The Devonian lower part of the Beacon Supergroup is dominated 
by coarse clastics (Barrett, 1981). The tectonic models for the for-
mation of the Ross Sea, through the thinning of thickened (~40 km) 
crust that covered the entire Transantarctic Mountain (TAM)–Ross 
Sea–Marie Byrd Land region (Decesari et al., 2007; Karner et al., 
2005), would also tend to argue against the preservation of younger 
Beacon strata because uplift and erosion of large amounts of strata 
would be predicted during early rifting, and this rifting would likely 
include the removal of any upper Beacon Supergroup strata even if 
they had been present.

The ANTOSTRAT seismic stratigraphic scheme defines eight 
seismic units (RSS-1 to RSS-8) within the sediment infill lying 
above the basement, bounded by six major shelf-wide unconformi-
ties (RSU1 to RSU6) (Table T1; Figure F6) (Brancolini et al., 1995; 
De Santis et al., 1995), but their ages are only partially constrained 
by drilling (see synthesis by Bart and De Santis, 2012). In the west-
ern Ross Sea, CIROS-1 and CRP-3 indicate marine-terminating gla-
ciation in the TAM by the earliest Oligocene (Barrett, 2007, 1989). 
In the central Ross Sea, seismic-based reconstructions suggest ice 
caps nucleated on the subaerially elevated basement highs in the 
central Ross Sea during the Oligocene. The adjacent deep-water ba-
sins in the outer Ross Sea appear to have remained free of grounded 
ice to the late Oligocene, although they were probably influenced by 
voluminous sediment-laden meltwater discharge under a more 
temperate style of glacial sedimentation, resulting in progressive 
shoaling of the Eastern Basin as accommodation space was filled 
(Hayes et al., 1975). Expedition 374 seeks to constrain the ages of 
Unconformities RSU4 to RSU1 to understand how these unconfor-
mities relate to the evolution of the marine-based WAIS.

Seismic Unit RSS-1 (underlying seismic Unconformity RSU6) is 
the oldest and deepest basin infill sedimentary package in the cen-
tral Ross Sea. It is divided into a lower and upper package. The 
lower part of Unit RSS-1 has not been drilled in any holes, whereas 
the upper part has been drilled in the western Ross Sea (CRP and 
CIROS-1) and consists of upper Eocene to Oligocene high-energy 
fluvial and deltatic/shelfal rift-fill strata, with a glacial influence in 
its upper parts (Fielding et al., 2000; Galeotti et al., 2016). The litho-
logy and age of lowermost Unit RSS-1 is uncertain because it has 
not been sampled, but it likely consists of high-energy, coarse-
grained fluvial facies deposited in the initial phases of Late Cretae-
cous to Paleocene rifting in the central Ross Sea (Wilson and Luy-
endyk, 2009).

Units overlying Unconformity RSU6 (Units RSS-2 to RSS-8) 
have all been partially sampled by drilling, and the stratigraphic ar-
chitecture in the Ross Sea is relatively well constrained, although 
most drill holes are located in isolated basins in the western Ross 
Sea (Figure F2) and basin-to-basin correlations remain uncertain. It 
is difficult to make a direct correlation of Unconformity RSU6 from 
across the various Ross Sea basins because it onlaps the basement 
flanks (Figures F3, F6). However, an inferred correlation can be 
made due to the distinctive acoustic character of the underlying 
seismic facies.

Upper Oligocene (28 Ma) to lower Miocene (23 Ma) strata 
within Unit RSS-2 at Site 270 consist of a 365 m sequence of lithified 
glaciomarine mudstones with ice-rafted debris (IRD) and common 
macro- and microfossils, suggesting a shallow continental shelf en-
vironment with abundant terrestrial runoff. Above 100 meters be-
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low seafloor (mbsf ) (Unit RSS-3), many of the units (originally 
classified as mudstones) are diamictites (i.e., >20% sand) that were 
eroded and transported by glacial ice (Barrett, 1975).

Two ANDRILL sites drilled on the inner continental shelf of the 
western Ross Sea (98% recovery) contain an unprecedented record 
of marine-based ice sheet variability in the Ross Sea (Levy et al., 
2016; Naish et al., 2009; Wilson et al., 2012) over the past 20 My, 
although both of these sites are heavily influenced by the East Ant-
arctic Ice Sheet (EAIS). Site AND-2A recovered a ~20 to 14 Ma se-
quence interpreted to reflect TAM tidewater outlet glaciers 
overriding and/or calving near the site (Fielding et al., 2011; Levy et 
al., 2016; Passchier et al., 2011). At 15.7 Ma, a diatomite with abun-
dant pollen, algae, and other biomarkers suggests a warmer than 
present (mean surface temperature of ~10°C) climate during the 
MMCO (Feakins et al., 2012; Warny et al., 2009). At 300 mbsf, a 300 
ky disconformity is thought to be equivalent to Unconformity 
RSU4, suggesting a shelf-wide advance of the marine-based ice 
sheet during the MMCT (Figures F6, F8) (De Santis et al., 1999; 
Passchier et al., 2011).

The first unequivocal seismic evidence of a glacially carved 
trough in the central Ross Sea (key target of proposed Eastern Basin 
Outer Continental Shelf [EBOCS] Sites EBOCS-01D and EBOCS-
02B) occurs at Unconformity RSU4 (mid-Miocene) and is inter-
preted as an expansion of a grounded marine-based ice stream orig-
inating from the west (Figures F8, F9) (Anderson, 1999; De Santis et 
al., 1995; Ten Brink et al., 1995). At DSDP Site 272, a ~400 m thick 
middle–upper Miocene sequence of glaciomarine mudstones was 
recovered (Figure F6). Combined with the presence of numerous 
outwash channels above Unconformity RSU4, up to 250 m of till 
delta foreset and aggrading bottomset strata suggest that glacio-
marine sedimentation was dominated by the release of abundant 
erosive sediment-laden meltwater during the middle Miocene (~14 
Ma; Figure F9) (Anderson and Bartek, 1992; Chow and Bart, 2003). 
This meltwater release was likely associated with extensive channel-
levee systems above Unconformity RSU4 on the continental slope 
and rise (De Santis et al., 1995, 1999). A downlapping till delta thick-
ening toward the Central High (dated at Site 272 at 14.2–13.8 Ma) 
suggests that middle Miocene glaciation was characterized by local 
ice caps on the Central High and that the continental shelf was shal-
low and seaward dipping (cf. Figures F8, F9). Another possibility is 
that this feature was a grounding zone wedge forming on the flank 
of the Central High, where ice remained pinned during retreat after 
the ice expansion that carved Unconformity RSU4 over the central 
Ross Sea.

Unconformity RSU3 (key target of proposed Site EBOCS-03C) 
provides the first evidence for a major cross-shelf paleotrough 
eroded by an expanded WAIS, although the age of this event(s) is 
poorly constrained (~14–4 Ma; Figures F6, F8) (Bart, 2003; De San-
tis et al., 1995, 1999). Large meltwater and outwash features are ab-
sent and laminated seismic facies are progressively thinner/less 
common in strata younger than Unconformity RSU3, suggesting 
sediment starvation and a transition to a colder glacial regime. Site 
AND-1B sediments indicate that this transition may not have oc-
curred until the Pliocene (McKay et al., 2009), although evidence for 
meltwater outburst features is lacking in the TAM after 12.4 Ma 
(Lewis et al., 2006). High-velocity seismic units above Unconformi-
ties RSU3 and RSU2 suggest overcompaction by ice loading during 
WAIS expansion (Böhm et al., 2009). Bathymetric reconstructions 
suggest overdeepening and a transition to a landward-deepening 
continental shelf occurred by the Unconformity RSU2 event during 
the early Pliocene to early Pleistocene(?) (Figures F8, F10) (De San-

tis et al., 1995, 1999). A trough-mouth fan on the upper slope and a 
sediment-starved continental rise (typical of the Pliocene–Pleisto-
cene Antarctic margin) coincided with overdeepening (Bart et al., 
1999; Bart and Iwai, 2012; Cooper and O’Brien, 2004; Rebesco et al., 
2006).

At Site AND-1B, ~58 sedimentary cycles of ice sheet advance 
and retreat can be observed within the Ross Embayment over the 
past 13 My (McKay et al., 2009). Diatomites indicate frequent col-
lapses of the WAIS in the Pliocene (5.3–2.6 Ma), during which dia-
tom assemblages and geochemical paleothermometry indicate 
ocean temperatures up to 4°C warmer than present (McKay et al., 
2012a; Naish et al., 2009). However, sedimentary lithofacies indicate 
that meltwater discharge was reduced during Pliocene interglacials 
compared with the latest Miocene (11–5.3 Ma; Figure F5). By the 
mid-Pleistocene (1.0 Ma), the Ross Ice Shelf persisted through most 
interglacials (McKay et al., 2009).

Seismic facies above Unconformity RSU2 consist of till sheets 
bound by erosional unconformities in an aggrading shelf margin 
that is indicative of shelf-wide advances of the WAIS (Figures F8, 
F10) (Alonso et al., 1992; Bart et al., 2011; Brancolini et al., 1995). 
Unlike other sectors of the Antarctic, the eastern Ross Sea trough 
mouth contains thick (~2000 m) sedimentary sequences on the 
shelf and upper continental slope (Figure F10) that may contain a 
detailed WAIS history. Above Unconformity RSU1 (0.7? Ma; key 
target of proposed Site EBOCS-04B), shelf-edge sediments are ag-
grading or backstepping (rather than prograding), indicating that 
most sediment delivered from land was sequestered on the outer 
shelf.

Site survey data
Multichannel and single-channel seismic profiles have been col-

lected in the Ross Sea by several nations since 1980. The multichan-
nel seismic data are available through the Antarctic Seismic Data 
Library System, which works under the auspices of the Scientific 
Committee on Antarctic Research and the Antarctic Treaty (ATCM 
XVI-12). Prestack data are available only from the Italian cruises 
(1988, 1989, 1991, 1994, and 2006) and recently also from the 
BGR80 cruise.

We located the sites for scientific reasons such as maximum 
thickness of target sequence, better potential for dating sediments, 
and acoustic facies and geometry, which usually can be seen much 
better on high-resolution profiles. In most cases, high-resolution 
profiles are single channel or, in the case of the TAN lines, they have 
a very short streamer (200 m) compared with the water depth 
(>1000 m). In some cases, crossing lines are not available and the 
remoteness of Antarctic waters prevents the easy collection of new 
site survey data. New multichannel seismic (MCS) Profiles KSL14-
02 and KSL14-04 (unpublished) were collected in February 2013 
and in 2015 by the Korea Polar Research Institute (KOPRI) with the 
aim to provide the cross-lines for proposed Ross Sea Continental 
Shelf (RSCR) Sites RSCR-08C and RSCR-12B, respectively. Another 
SCS survey cruise was conducted in 2017 in the frame of the 
EU/FP7 EUROFLEETS2, Programma Nazionale di Ricerche in An-
tartide (PNRA) WHISPERS, and PNRA ODYSSEA projects, with 
the aim to collect more cross-lines of the proposed sites and identify 
future alternate sites that will be detailed in an addendum to this 
Scientific Prospectus.

Single-channel seismic data, collected by National Science 
Foundation (NSF) Cruises 1990 and 1994-95, were made available 
by John Anderson (Rice University, TX, USA) in the format of digi-
tal Society of Exploration Geophysicists (SEGY) data (PD90 cruise) 
5
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and paper copies (NBP 94-95 cruise). We made the conversion of 
the TIFF or JPG image to SEGY format to depth convert the sec-
tions and load the data in the HIS Kingdon interpretation software 
with the other available data sets. The supporting site survey data 
for Expedition 374 are archived at the IODP Site Survey Data Bank 
(https://ssdb.iodp.org/SSDBquery/SSDBquery.php; select P751 
for proposal number).

Scientific objectives
1. Evaluate the contribution of West Antarctica to far-field ice vol-

ume and sea level estimates

Far-field benthic foraminifer δ18O and sequence stratigraphic 
records suggest that large global ice volume and sea level (20–60 m) 
variations occurred during the Miocene and Pliocene (Figures F1, 
F6) (Cramer et al., 2009; Miller et al., 2005, 2012; Raymo et al., 2011; 
Zachos et al., 2001). Miocene to Pliocene sea level reconstructions 
could potentially be reconciled without invoking Northern Hemi-
sphere contributions if Antarctica’s ice sheets expanded to the con-
tinental shelf edge (~14 m sea level equivalent [SLE]) (Figure F4). 
The modeled difference between the glacial maxima states and loss 
of the marine-based WAIS (assuming present bathymetry) repre-
sent ~21 m SLE (with some minor loss of the EAIS), although 
changes in Ross Sea bathymetry could increase this value (Figure 
F4) (see Objective 5). Expedition 374 records will constrain the tim-
ing of the first WAIS advances to the shelf edge, and integration 
with the ANDRILL records allows assessment of the WAIS contri-
bution to Neogene sea level estimates.

Sedimentologic analyses at the proposed continental shelf sites 
(primary Sites EBOCS-01D, EBOCS-02B, EBOCS-03C, and EB-
OCS-04B), combined with seismic stratigraphic correlations, will 
identify deposition under grounded ice, glacial marine, and open-
marine conditions, following ANDRILL/CRP methodology (Field-
ing et al., 2000, 2011; McKay et al., 2009; Passchier et al., 2011; Pow-
ell and Cooper, 2002). Magneto-, bio-, and tephrochronology will 
enable identification of orbital-scale ice sheet variations and have 
been employed in discontinuous Antarctic margin sequences (Flo-
rindo et al., 2003, 2005; Tauxe et al., 2012; Wilson et al., 2012) (Fig-
ure F4). Furthermore, new quantitative techniques have greatly 
enhanced the biostratigraphic framework of the Southern Ocean 
(Cody et al., 2012, 2008; Crampton et al., 2016). Glacially reworked 
volcanic clasts (Wilson et al., 2012) and radiometrically datable fel-
sic ashes from Marie Byrd Land may be used to provide maximum 
ages (Wilch et al., 1999). Climate snapshots near magnetic reversals 
will be targeted (cf. the M2 glacial in Figure F4) because these 
events can be traced to more continuous records from the continen-
tal rise (proposed primary Sites RSCR-11A and RSCR-02B) and 
global sea level records (Figure F10). Sediment provenance studies 
(clast/sand petrology and Nd-, Sr-, and Pb-isotopic analysis) at pro-
posed Sites EBOCS-01D through EBOCS-04B will enable under-
standing of the changes in the origin of sediments (e.g., local ice 
caps vs. ice sheet expansion) (Figure F8) (Cook et al., 2013; Licht et 
al., 2005). As with all objectives, data integration with modeling 
studies will be undertaken (cf. Figure F4) (DeConto and Pollard, 
2016; Gasson et al., 2016; Golledge et al., 2012; Wilson et al., 2013).

2. Reconstruct ice-proximal atmospheric and oceanic temperatures 
to identify past polar amplification and assess its forcings/feed-
backs

Obtaining atmospheric and ocean temperatures from the pro-
posed Expedition 374 drill sites will enable the paleoclimate com-
munity to address the following key scientific questions:

• Were polar temperatures sensitive to the low-amplitude varia-
tions in Neogene atmospheric pCO2?

• Were Neogene ocean and atmospheric temperatures at Antarc-
tica’s margin amplified relative to the global mean, and if so, 
what were the forcings?

• How did ocean temperatures evolve as Antarctica’s ice sheets 
expanded and contracted during major Neogene climate transi-
tions and on orbital timescales?

Although ANDRILL’s records provide important archives of 
high-latitude oceanic conditions, they only provide snapshots of 
temperature and sea ice conditions through interglacials, when 
these sites were not covered by ice (McKay et al., 2012a; Warny et 
al., 2009). In contrast, proposed primary Sites EBOCS-01D to EB-
OCS-04B will likely provide intervals of more continuous sedimen-
tation (albeit with some periods of erosion during large glaciations) 
because they are farther out on the margin and overridden by ice 
less frequently (Bart et al., 2011; Pollard and DeConto, 2009). Near-
continuous records of oceanographic change are anticipated at the 
proposed continental rise sites (RSCR sites), providing high-latitude 
(~60°S) information on Neogene ocean and atmospheric tempera-
tures, meltwater input, and bottom water production.

Facies analysis will be used to reconstruct glacial thermal re-
gimes and glacial cyclicity (cf. Naish et al., 2009; McKay et al., 2009), 
whereas diatom census counts, palynology, organic biomarkers 
(e.g., TEX86 and BIT index; cf. McKay et al., 2012a), and redox-sen-
sitive metals (e.g., Mn, U, Re, and Mo for paleoproductivity, along 
with monitoring alteration of the biomarkers by methanogenesis 
and shifting redox boundaries) provide insights into high-latitude 
climate. Carbonate (e.g., calcareous nannofossils/foraminifers) may 
also be present in late Pleistocene interglacial sequences (e.g., Escu-
tia, Brinkhuis, Klaus, and the Expedition 318 Scientists, 2011; 
Scherer et al., 2008; Theissen et al., 2003; Villa et al., 2008). In the 
lower to middle Miocene, biogenic carbonate is more common in 
the Southern Ocean and Antarctica’s margins (Figure F5) (Escutia, 
Brinkhuis, Klaus, and the Expedition 318 Scientists, 2011; Exon, 
Kennett, Malone, et al., 2001; Fielding et al., 2011; Hayes et al., 1975; 
Kennett and Barker, 1990; Shevenell et al., 2004), making stable iso-
tope (δ18O and δ13C), trace element (e.g., Mg/Ca, Li/Ca, U/Ca, 
Ba/Ca, and B/Ca), and clumped isotope analyses possible, with 
careful consideration of proxy strengths/weaknesses in a marginal 
marine setting.

3. Assess the role of oceanic forcing (e.g., sea level and temperature) 
on WAIS stability/instability

WAIS collapse events during past warmer-than-present cli-
mates may be the consequence of intensified ocean-cryosphere in-
teractions (Naish et al., 2009; Pollard and DeConto, 2009). 
Interactions between the wind-driven upwelling of warm CDW and 
6
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the ice shelves that buttress the WAIS appear to play a significant 
role in modern ice mass loss in West Antarctica (Joughin et al., 
2012; Mercer, 1978; Pritchard et al., 2012; Shepherd et al., 2012). 
Observations and numerical ice sheet models suggest that changes 
in ocean heat flux are the key factor influencing the stability/insta-
bility of the WAIS (DeConto and Pollard, 2016; Golledge et al., 
2012; Pritchard et al., 2012). We postulate that changes in either the 
formation of Antarctic Surface and Deep Waters or the vigor of the 
wind-driven ASC control incursions of CDW and thus WAIS re-
treats (Figure F7). This expedition aims to test this hypothesis by 
assessing changes in these two variables (from grain size and facies 
analysis of sediment drifts on the continental rise, e.g., proposed 
primary Sites RSCR-02B and RSCR-11A) and ice sheet extent in the 
Ross Embayment (proposed primary Sites EBOCS-01D to EBOCS-
04B and ANDRILL).

The Ross Sea is also one of the three main sources of AABW 
that feeds the abyssal ocean (to become Southern Component Wa-
ter [SCW]). In the middle Miocene, benthic foraminifer δ13C indi-
cates changes in the relative input of SCW and Northern 
Component Water into the global ocean (Cramer et al., 2009; 
Shevenell et al., 2004; Woodruff and Savin, 1985; Wright et al., 
1991). Newer proxies, such as Nd isotopes, are now used to further 
refine the geographic source (e.g., Newkirk and Martin, 2009; Scher 
and Martin, 2006). Thus, it is anticipated that the records obtained 
during this drilling program and comparison to far-field records will 
provide insight into temporal changes in SCW production through 
the Neogene (Flower and Kennett, 1994; Hodell and Venz-Curtis, 
2006; Vincent and Berger, 1985).

Paleocurrent strength associated with past ASC changes will be 
reconstructed by examining the sedimentologic (e.g., facies analysis 
and grain size) and magnetic characteristics of continental rise sites 
(e.g., Bianchi et al., 1999; Hall et al., 2001; Joseph et al., 2004; Prins et 
al., 2002). Micropaleontological, geochemical, and sedimentological 
records from drill cores from all Expedition 374 sites will provide 
reconstructions of changing regional surface conditions (e.g., sea 
ice, surface stratification, sea-surface temperatures [SSTs], polynya 
mixing, glacial meltwater discharge, nutrient uptake, and super-
cooling of dense waters by ice shelves) proximal to Antarctica’s ice 
sheets (e.g., Houben et al., 2013; Levy et al., 2016; McKay et al., 
2012a; Shevenell et al., 2011) and thus AASW (and SCW) forma-
tion. Additionally, downslope currents resulting from the transfer of 
High-Salinity Shelf Water into the abyssal ocean can also be as-
sessed (and distinguished from ASC flow) by integrated facies anal-
ysis, geochemistry, micropaleontology, and seismic profiles (e.g., 
Caburlotto et al., 2010; Hepp et al., 2006; Lucchi and Rebesco, 2007) 
at primary Sites RSCR-11A and RSCR-02B. Carbonate-based paleo-
temperature and carbonate ion proxies (e.g., foraminiferal Mg/Ca, 
Li/Ca, U/Ca, and clumped isotopes) will also be applied if appropri-
ate species are preserved (see Objective 2).

4. Identify the sensitivity of WAIS to Earth’s orbital configuration 
under a variety of climate boundary conditions

Fundamental questions remain about the orbital pacing of Ant-
arctic ice sheet development and variability. The Ross Sea Expedi-
tion 374 sequences may shed light on (1) the absence of the 20 ky 
precession cycle in benthic δ18O records (Figure F4) (Huybers, 
2006; Lisiecki and Raymo, 2005; Raymo et al., 2006) and (2) the ori-
gin of transient shifts in the sensitivity of Earth’s climate system to 
orbital forcing (e.g., 40–100 ky dominated frequencies) in the mid-
dle Miocene (Shevenell et al., 2004) and Pliocene–Pleistocene (Tze-
dakis et al., 2017).

A recent hypothesis suggests that the last such shift in Earth’s 
history (the mid-Pleistocene transition) was initiated by an abrupt 
increase in Antarctic ice volume (Elderfield et al., 2012). This hy-
pothesis may be tested by identifying and dating grounding events 
on the outer Ross Sea continental shelf (proposed primary Site EB-
OCS-04B). If the dominant frequency of Antarctic ice sheet ad-
vance and retreat shifted from 40 to 100 ky at 0.8 Ma, records from 
this sensitive region will likely record this transition.

Recent evidence from ice-proximal drill sites indicates that Ant-
arctic ice sheets did advance and retreat with 40 and 100 ky cyclicity 
in the Neogene (Grützner et al., 2003; Naish et al., 2009; Patterson et 
al., 2014; Williams and Handwerger, 2005). However, these records 
are from single locations. We envision a more complete picture of 
the forcings and feedbacks involved with ice advance and retreat 
from our outer shelf to slope/rise transect. Sedimentologic analyses 
(complimented by downhole logs) will enable development of an or-
bital-scale continental shelf-to-rise sequence stratigraphy of glacial 
advance and retreat (all Expedition 374 sites; see Objective 1). Addi-
tional micropaleontologic, inorganic and organic geochemistry 
(e.g., δ18O, δ13C, δ30Si, and Nd), minor and trace elements (X-ray flu-
orescence and discrete samples), and organic biomarkers may be 
used to assess associated frequencies of change in the continental 
rise sites (RSCR-01B and RSCR-02B).

5. Reconstruct eastern Ross Sea bathymetry to examine relation-
ships between seafloor geometry, ice sheet stability/instability, 
and global climate
The transition from a terrestrial (or shallow marine)-based West 

Antarctica with a seaward-dipping shallow continental shelf to that 
of the modern overdeepened (i.e., landward-dipping) continental 
shelf would have a first order control on Antarctic ice sheet volume 
and mass balance (Gasson et al., 2016; Wilson et al., 2013). First, the 
cooling threshold for the development of a terrestrial-based ice 
sheet is lower than that of a marine-based ice sheet, which is highly 
sensitive to changes in oceanic heat flux (Figure F4) (Golledge et al., 
2012; Pollard and DeConto, 2009). A terrestrial (or shallow marine) 
West Antarctica may have supported a larger ice sheet in warmer-
than-present climates, whereas overdeepening of the continental 
shelves may have resulted in a smaller ice sheet with less frequent 
ice sheet advances, as hypothesized for the Antarctic Peninsula 
(e.g., Bart and Iwai, 2012). Ice sheet models indicate that a largely 
terrestrial West Antarctica could accommodate an extra ~13 mil-
lion km2 of grounded ice in the warmer-than-present climates of the 
Eocene (~30 m SLE; Figure F4) (Wilson et al., 2013). Therefore, 
constraining the timing of overdeepening in the Ross Sea is critical 
to reconcile far-field records of eustatic sea level variance into the 
late Neogene (see Objective 1).

The timing of Ross Sea shelf overdeepening is currently uncon-
strained. However, the Ross Sea has the most developed seismic 
framework in Antarctica and the highest resolution history of WAIS 
variability currently available (ANDRILL), making this location 
ideal for achieving this objective. Dating of Unconformities RSU3 
and RSU2 (Figure F6) at proposed primary Sites EBOCS-02B and 
EBOCS-03C in the eastern Ross Sea (via methodologies in Objec-
tive 1) will constrain the timing of this overdeepening (Figure F8).

Drilling and coring strategy
Proposed drill sites

We plan to drill a total of six primary sites, four on the continen-
tal shelf and two on the continental slope or rise (Table T2). These 
7



R.M. McKay et al. Expedition 374 Scientific Prospectus
sites comprise both a depth (present water depths of 490 to 2400 m) 
and latitudinal transect, with links to ANDRILL and DSDP drilling 
(78° to 74°S). We expect to recover lower Miocene to present se-
quences (Tables T1, T2) of subglacial, glaciomarine, and open-ma-
rine/pelagic sediments with macrofossils, microfossils, and organic 
material that will enable the development of sedimentological and 
geochemical proxy records. Our operations plan is prioritized to 
maximize objectives in case we do not have time to core at all pri-
mary sites (Table T3). We also have eight alternate sites (Table T4) 
that can be occupied if any of the primary sites are ice covered. We 
will be adding additional alternate sites in an addendum to this Sci-
entific Prospectus.

Continental shelf (EBOCS) sites
We propose four primary continental shelf sites: EBOCS-01D, 

EBOCS-02B, EBOCS-03C, and EBOCS-04B. High-quality AN-
DRILL core material covering WAIS minima from the inner conti-
nental shelf will be integrated with our sites to provide a 
stratigraphic framework unmatched elsewhere in Antarctica. This 
integrated framework will enable us to constrain the spatial extent 
of Neogene glacial advance events across the Ross Sea and deter-
mine if these events are isochronous. Major hiatuses are likely to oc-
cur in continental shelf sequences, but the existing sediments 
provide critical snapshots into past interglacial intervals. The tim-
ing of major hiatuses will allow us to determine if widespread WAIS 
advances coincided with major global cooling steps (e.g., Anderson, 
1999; Zachos et al., 2001; Bart, 2003; Naish et al., 2009; Passchier et 
al., 2011; Fielding et al., 2011; Bart et al., 2011).

Proposed primary Site EBOCS-01D is located on the mid- to 
outer shelf near a northeast–southwest oriented paleotrough (Fig-
ure F8) and will penetrate the oldest strata overlying Unconformity 
RSU4 (middle Miocene) to establish the timing of the first expan-
sion of marine-based ice streams into the Ross Sea (Figure F9). The 
paleotrough orientation suggests that these streams may be of EAIS 
origin (De Santis et al., 1995) and the provenance of till associated 
with this unconformity will establish the geographic origin of these 
ice streams. Above Unconformity RSU4, the acoustic facies at Site 
EBOCS-01D indicates the presence of layered units (similar to 
those cored at Sites 270 and 272) that are likely glaciomarine and 
contain abundant terrestrial and marine biogenic material useful for 
dating and environmental reconstructions. These units lie between 
acoustically opaque (till) tongues that may provide direct evidence 
of ice sheet grounding onto the outer Ross Sea continental shelf 
during the middle to late Miocene (Objectives 1 and 4) (Figure F9). 
Site EBOCS-01D will also recover a climatic/ice sheet record of the 
MMCO (17–15 Ma) below Unconformity RSU4. The layered strata 
below Unconformity RSU4 are likely glaciomarine ice-proximal to 
ice-distal MMCO-aged deposits (Objective 2). Proposed alternate 
Site EBOCS-05A would recover a younger glaciomarine section be-
low Unconformity RSU4, although Site EBOCS-01D is prioritized 
because it enables recovery of the section immediately overlying 
Unconformity RSU4. Proposed primary Site EBOCS-02B (~70 km 
east of Site EBOCS-01D) has similar objectives but targets a thicker 
and younger (late Miocene?) interval of layered glaciomarine strata 
above Unconformity RSU4.

Proposed primary Site EBOCS-03C is located at the shelf break 
during the middle Miocene (Figure F8) and is designed to recover a 
post-Unconformity RSU4 sedimentary sequence that spans the 
MMCT to the Pleistocene (Unconformities RSU3 to RSU1) (Figure 
F6). It targets laminated and massive acoustic facies interpreted as 
interlayered glaciomarine/open-marine mudstones and massive 

diamictites (tills) (Figure F10). The massive facies display wedgelike 
or channel structures consistent with deposition and erosion by 
streaming ice (Objectives 1 and 4) (Figure F10). The primary objec-
tives at this site are to date WAIS advances associated with Uncon-
formities RSU3 and RSU2 (Objective 1) and to constrain the timing 
of the Ross Sea overdeepening (Objective 5). The glaciomarine 
mudstones are anticipated to be biogenic rich, enabling paleo-
environmental reconstructions for late Miocene to Pleistocene in-
terglacials (Objective 2). Proposed alternate Site EBOCS-06A 
would achieve the same objectives.

Proposed primary Site EBOCS-04B will recover a Pliocene–
Pleistocene sequence to date Unconformities RSU2 and RSU1. The 
upper ~140 m of sediment consists of tabular units interpreted as 
aggradational subglacial till sheets deposited by a grounded ice 
sheet during the late Pleistocene (Figure F10) (De Santis et al., 
1995). Underlying the till sheets is ~40 m of acoustically laminated 
facies interpreted as glaciomarine or hemipelagic sediments and 
~40 m of massive facies directly overlying Unconformity RSU1 
(<0.7 Ma?). The sedimentary succession underlying the Pleistocene 
till sheets is progradational and hypothesized to represent inter-
layered subglacial till and glaciomarine/hemipelagic sediments of 
early to late Pliocene age. This site will enable us to determine if ice 
sheet overriding events observed at Site AND-1B advanced to the 
shelf edge, allowing determination of Antarctic ice sheet contribu-
tion to Pliocene sea level lowstands (Objective 1) (Naish et al., 2009; 
Miller et al., 2012). Glaciomarine deposits at this site will allow re-
construction of paleoceanographic and paleoecological conditions 
at the outermost Ross Sea continental shelf (Objective 2). We antic-
ipate that these sequences will provide insights to the orbital con-
trols on marine-based ice sheet extent (Objective 4). Proposed 
alternate Site EBOCS-07C would achieve the same objectives.

Continental slope/rise (RSCR) sites
We propose two primary continental slope/rise sites: RSCR-02B 

and RSCR-11A (Figure F11). Sediment deposition on Antarctica’s 
continental rises results from the interplay among (1) downslope 
marine sediment gravity flows (turbidity currents) triggered by gla-
cial meltwater discharge and/or subglacial transport (Lucchi et al., 
2007), (2) along-slope transport (contour currents), (3) biogenic 
sedimentation (Escutia, Brinkhuis, Klaus, and the Expedition 318 
Scientists, 2011), and (4) iceberg rafting (Anderson 1999; Williams 
et al., 2012; Passchier et al., 2011). Suborbital resolution Neogene 
and Quaternary sequences with high recovery (87% in the advanced 
piston corer [APC] interval of Integrated Ocean Drilling Program 
Site U1361) and excellent chronostratigraphies have previously 
been recovered from the Wilkes Land (Integrated Ocean Drilling 
Program Expedition 318) and Prydz Bay (Ocean Drilling Program 
[ODP] Leg 188) continental rise (Florindo et al., 2003; Escutia, 
Brinkhuis, Klaus, and the Expedition 318 Scientists, 2011; Tauxe et 
al., 2012) and provide records of EAIS retreat events (Passchier et 
al., 2011; Cook et al., 2013). However, these locations do not offer 
paired high-resolution Neogene continental shelf records suitable 
for reconstructing the oceanographic response/drivers for changes 
in ice sheet extent.

Proposed primary Site RSCR-02B is located in 2550 m of water 
on the upper continental rise near the western levee of a channel 
system at the head of the Hillary Canyon (Figure F11), which is one 
of the main AAWB outflows in the central Ross Sea (Figure F7) 
(Orsi and Wiederwohl, 2009). This site is designed to penetrate sed-
iments above and below Unconformity RSU3 but with no major hi-
atus between Unconformities RSU2 and RSU3. The fine-grained 
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component of overbank deposits is expected to be interstratified
with bioturbated hemipelagic sediments during periods of reduced
turbidity current activity. This site will provide a mostly continuous
record of overbank turbidite (i.e., nonerosive) deposition that
should reflect late Neogene changes in SCW formation, ASC flow,
and ice sheet advance to the shelf edge (Figures F7, F10). Three pro-
posed alternate sites (RSCR-01B, RSCR-03A, and RSCR-10A)
would achieve the same objectives.

Proposed primary Site RSCR-11A is located on Iselin Bank out-
side of the Eastern Basin (Figure F11) but will provide an important
regional constraint for ASC and help distinguish local from regional
processes (Objectives 2 and 3). It is also a drift deposit on the upper
slope (in 1534 m of water) and will thus complement the deeper wa-
ter Site RSCR-02B with a broader geographic context. Site RSCR-
11A targets Pliocene–Pleistocene deposits and will recover a high-
resolution record of oceanographic change at the shelf edge. The
oceanographic connection at this site with the shelf (EBOCS) sites
is very strong, despite the geographic disconnect. The more west-
erly location of this site will also link directly with the benchmark
Site AND-1B core in the western Ross Sea. Proposed alternate Sites
RSCR-08C and RSCR-12B would achieve similar objectives.

Operations plan
The overall operations plan and time estimates for Expedition

374 are summarized in Table T3. After departing Wellington, New
Zealand, we will transit for ~6 days to the rendezvous point with the
R/V Nathaniel B. Palmer. This ship will escort us for ~2 days
through the sea ice to the Ross Sea polynya, where we will prepare
for coring operations on the continental shelf. Our operations plan
is designed to maximize achievement of scientific objectives rather
than minimize transit, so we plan to conduct coring operations at
three shelf sites, followed by coring at two slope/rise sites. We will
then return to the shelf to core the final shelf site. However, the ac-
tual order of operations will be dictated by ice and weather condi-
tions, and alternate sites (Table T4) may be occupied if primary sites
are covered by ice (see Risks and contingency). The operations
plan and time estimates are based on prior DSDP drilling in the re-
gion, together with formations and depths inferred from regional
seismic stratigraphy.

Shelf (EBOCS) sites
The operations plan includes a single rotary core barrel (RCB)

hole to total depth (500–950 mbsf ) at each of the primary shelf sites
due to the overconsolidated nature of anticipated glaciomarine and
subglacial diamictites and presence of boulders in surficial sedi-
ments. Ross Sea continental shelf sediments, including Quaternary
sediments, are typically lithified muddy diamictites/mudstones
(e.g., Site 270 and both ANDRILL holes) (Barrett, 1975; McKay et
al., 2009; Passchier et al., 2011). Although drilling unconsolidated
diamict is difficult and may result in poor recovery, drilling lithified
glacial sediment with an indurated mud matrix is easier because it is
homogeneous and cohesive. If rotary coring indicates the litho-
logies in the upper sections of any the shelf sites (in particular the
Pliocene–Pleistocene in Sites EBOCS-03C and EBOCS-04B) are
suitable for piston coring, we may core a second hole using the APC
and/or half-length APC (HLAPC) systems together with the ex-
tended core barrel (XCB) system through more indurated intervals
to recover a more complete section. Note that the use of the
APC/HLAPC system at any of the shelf sites would be at the ex-
pense of other planned operations and would require either coring
fewer sites (e.g., not coring at Site EBOCS-02B) or decreasing total

penetration depth at one or more sites. Following completion of
coring, we will condition the hole for downhole logging.

Slope/rise (RSCR) sites
The operations plan for the slope/rise sites includes two APC

holes to refusal (estimated at 250 mbsf). At Site RSCR-11A, we will
then use the XCB coring system to extend the second hole to total
depth (500 mbsf ). Because penetration to 1000 mbsf is proposed for
Site RSCR-02B, a third hole will consist of an RCB hole to total
depth. Following completion of coring, we will condition the final
hole at each site for downhole logging measurements.

Upon completion of coring/logging operations at the last site,
we will transit ~7 days back to Wellington, New Zealand.

Downhole measurements strategy
Wireline logging

The downhole measurements plan for Expedition 374 aims to
provide continuous stratigraphic coverage of in situ formation
properties at all primary drilling sites. Downhole logging data will
provide the only stratigraphic data where core recovery is incom-
plete, which is likely when sites are single-cored with XCB and RCB
coring and in the challenging coring conditions of the continental
shelf. As demonstrated by Williams et al. (2012) for ANDRILL,
downhole logging allows a complete lithostratigraphy to be devel-
oped, and holes are generally stable for logging on the shelf and rise
(e.g., Escutia, Brinkhuis, Klaus, and the Expedition 318 Scientists,
2011; Williams et al., 2012). This approach was also used in Prydz
Bay (ODP Site 1166), where recovery was only 18% due to mostly
sandy lithologies in the Oligocene sequences (Cooper and O’Brien,
2004).

The three standard IODP tool strings will be deployed at each
logged site if conditions and time permit (Table T2). The first run
will be the triple combo tool string, which logs formation resistivity,
density, porosity, natural gamma radiation (NGR), and borehole di-
ameter. The General Purpose Inclinometry Tool (GPIT) will be
added to the triple combo because it includes a fluxgate magneto-
meter. We will also likely deploy the Lamont-Doherty magnetic sus-
ceptibility sonde (MSS) with the triple combo to provide magnetic
field and susceptibility information. The borehole diameter log pro-
vided by the caliper on the density tool will allow assessment of hole
conditions (e.g., washouts of sandy beds), log quality, and the poten-
tial for success of the following runs. 

The second logging run will be the Formation MicroScanner
(FMS)-sonic tool string, which provides an oriented resistivity im-
age of the borehole wall and logs formation acoustic velocity, NGR,
GPIT magnetometry, and borehole diameter. To provide a link be-
tween borehole stratigraphy and the seismic section, sonic velocity
and density data can be combined to generate synthetic seismo-
grams for detailed well-seismic correlations. If time and hole con-
ditions allow, the third run will consist of a check shot survey using
the Versatile Seismic Imager (VSI) with a station spacing of ~50–
100 m where the borehole diameter is narrow enough to give good
coupling of the tool’s geophone with the borehole wall. The objec-
tive is to directly establish the link between lithostratigraphic
depths in the borehole and reflectors in the seismic profiles. The
seismic source for the check shots will be either a generator-injec-
tor (GI) air gun (most suitable for the shelf sites) or two 250 inch3

Sercel G guns in parallel clusters 1 m apart (most suitable for
slope/rise sites). Deployment of the seismic source is subject to the
IODP marine mammal policy; the check shot survey would have to
9
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be postponed or canceled if policy conditions are not met. Details
of the logging tools are available at http://iodp.ldeo.colum-
bia.edu/TOOLS_LABS/tools.html.

Downhole temperature measurements
Temperature measurements are planned for all sites with APC

coring to reconstruct the thermal gradient at each location. Typi-
cally, ~3–5 measurements are made in one hole per site using the
advanced piston corer temperature tool (APCT-3), potentially sup-
plemented by the Sediment Temperature Tool (SET) if necessary
where sediments are more consolidated.

Risks and contingency
There have been extensive shallow coring and seismic survey ex-

peditions in the Ross Sea over the last few decades, and weather and
sea ice conditions in those waters are well understood. There have
also been significant improvements in coring technology since
DSDP Leg 28, which cored in the Ross Sea in 1973. Specifically, the
JOIDES Resolution has improved dynamic positioning and heave
compensation. New drill bit technology and advances in bottom-
hole assembly technology also give drillers more options to improve
core recovery and core quality in glacial diamicts. Continuous re-
covery is not required to achieve our paleoceanographic scientific
objectives at the proposed continental shelf (EBOCS) sites. Core re-
covery for sites on the continental slope and rise (RSCR) should be
comparable with that of lower latitude paleoceanographic condi-
tions and will hopefully allow for recovery of complete or nearly
complete stratigraphic sections in the upper part of the stratigraphy.

Ice conditions
Extensive sea ice–free conditions occur in the vicinity of the

continental shelf sites from January to mid-February within the
Ross Sea polynya. To gain entrance to the polynya, we have ar-
ranged to meet the Nathaniel B. Palmer near the ice edge on 15 Jan-
uary 2018. The icebreaker will escort us through the sea ice to the
open waters of the polynya. In addition, the Nathaniel B. Palmer
will be operating within 2 days of our position throughout our oper-
ations in the Ross Sea should we require assistance. The Nathaniel
B. Palmer must depart the Ross Sea no later than 24 February if we
require an escort out of the polynya. The JOIDES Resolution captain
will assess the sea ice conditions by 19 February to determine if we
must exit with Nathaniel B. Palmer support or if we can continue
operations in the polynya after the Nathaniel B. Palmer’s departure.

To maximize achievement of the expedition scientific objectives
regardless of sea ice conditions in the Ross Sea, we have included a
number of alternate sites that can be occupied should the primary
sites be ice covered. We will also include additional alternate sites in
an addendum to this Scientific Prospectus once the sites have been
approved at all levels of the IODP Science Advisory Structure. We
note that the sea ice–free season is shorter and less predictable near
continental slope/rise Sites RSCR-11B and RSCR-02B. If we can ac-
cess these sites, the rim of sea ice will act to dampen local wave
heights, which will reduce ship heave and enhance core recovery.
We include western Ross Sea continental rise alternate sites in a
more ice-free setting that should achieve similar scientific objec-
tives should the primary sites be ice covered.

Icebergs pose an additional threat to drilling operations and will
require the JOIDES Resolution to move off station if an iceberg ap-
proaches a site location. In these instances, we will deploy a free-fall
funnel (FFF) to allow for hole reentry after the iceberg passes.

Coring in glacial sediment
Core recovery from ship-based drilling on Antarctica’s conti-

nental shelves has been variable and is primarily affected by the na-
ture of the sediment and adverse weather and ice conditions.
Previous drilling during Leg 28 demonstrated that reasonably good
core recovery is possible (up to 67% for that expedition) for the pro-
posed Ross Sea sites. On the continental shelf, recovery is likely to
be lowest in the upper ~50 mbsf. Below that depth, the driller can
use weight on bit to help stabilize drilling and improve core recov-
ery. Less consolidated sediment will be more difficult to recover,
which may particularly impact the Pliocene–Pleistocene sequences
at Site EBOCS-04B. Heave in the Ross Sea should be lower than
other Antarctic regions (e.g., Prydz Bay, Wilkes Land, and the Ant-
arctic Peninsula) due to reduced storm frequency in the Ross Sea
sector and the dampening influence of sea ice north of the Ross Sea
polynya.

Other operational risks
The proposed penetration at some sites (up to 1000 mbsf) pres-

ents several challenges for successful drilling. Hole stability is al-
ways a risk during coring operations, and the risk increases with
longer open hole sections. Casing long open-hole sections (espe-
cially over intervals of unconsolidated sediment) is the best way to
mitigate this risk, but we do not plan to case any holes during this
expedition. Casing adds a significant amount of operational time
and would also be compromised if ice approached the site. Instead,
we will use drilling mud to help stabilize the open hole, although
lower annular velocities will make hole cleaning more challenging
in the deeper sections of these holes. Increasing flow rates to clean
the hole could result in washing out unconsolidated sections in the
upper part of the hole. This could lead to hole stability problems to-
ward the end of drilling and during logging operations.

We will likely need to deploy a FFF for some holes in order to
allow reentry capability if we have to move off site during coring op-
erations. There are several risks associated with FFF deployment.
The FFF can be dislodged while pulling out of the hole or can be-
come buried or impossible to use for reentry. The use of a FFF also
leaves the open-hole section open for a longer duration, which can
contribute to hole stability problems.

A stuck drill string is always a risk during coring operations and
can consume expedition time with attempts to free the stuck drill
string. If the drill string cannot be extracted, then additional time is
spent to sever the stuck pipe. This process can result in the com-
plete loss of the hole, lost equipment, and lost time while starting a
new hole. The JOIDES Resolution carries sufficient spare drilling
equipment to enable the continuation of coring, but the time lost to
the expedition can be significant.

Downhole logging risks
There are a few risks involved in any downhole logging opera-

tions. First, the upper parts of the holes have been open longer be-
fore logging, and high levels of fluid circulation might have been
used to raise the cuttings and clear the hole. Therefore, the hole
could be washed out (wide) over intervals through unconsolidated
sediment, and log quality will be reduced for those tools that need
good contact with the borehole wall (density, porosity, FMS resistiv-
ity images, and VSI check shots). Second, there is a risk of bridging
where the hole closes up. This bridging would mean either not
reaching the total depth of the hole or, in the worst case scenario,
getting a tool string stuck in the hole. A good guide to this will be
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the conditions encountered during drilling and a wiper trip before
logging. If the risk is considered to be significant, the radioactive
source will be left out of the density tool.

Sampling and data sharing strategy
Shipboard and shore-based researchers should refer to the IODP

Sample, Data, and Obligations policy (http://www.iodp.org/top-
resources/program-documents/policies-and-guidelines). This
document outlines the policy for distributing IODP samples and
data to research scientists, curators, and educators. The document
also defines the obligations that sample and data recipients incur.

The Sample Allocation Committee (SAC) must approve all re-
quests for core samples and data. The SAC is composed of the Co-
Chief Scientists, Expedition Project Manager, and IODP Curator on
shore or curatorial representative on board the ship. The SAC will
work with the entire scientific party to formulate a formal expedi-
tion-specific sampling plan for shipboard and postexpedition sam-
pling.

Scientists are expected to submit sample and data requests using
the Sample and Data Request Database (http://iodp.tamu.edu/
sdrm) several months before the beginning of the expedition. Based
on shipboard and shore-based research plans submitted by this
deadline, the SAC will prepare a tentative sampling plan that will be
revised on the ship as dictated by recovery and expedition objec-
tives. The sampling plan will be subject to modification depending
upon the actual material recovered and collaborations that may
evolve between scientists during the expedition. Modification of the
strategy during the expedition must be approved by the SAC.

The minimum permanent archive will be the standard archive
half of each core. All sample frequencies and sizes must be justified
on a scientific basis and will depend on core recovery, the full spec-
trum of other requests, and the expedition objectives. Some redun-
dancy of measurement is unavoidable, but minimizing the
duplication of measurements among the shipboard party and iden-
tified shore-based collaborators will be a factor in evaluating sample
requests.

If some critical intervals are recovered, there may be consider-
able demand for samples from a limited amount of cored material.
These intervals may require special handling, a higher sampling
density, reduced sample size, or continuous core sampling for the
highest priority research objectives.

Following Expedition 374, cores will be delivered to the IODP
Gulf Coast Repository in College Station, Texas (USA). All collected
data and samples will be protected by a 1 y moratorium period fol-
lowing the completion of the postexpedition sampling meeting,
during which time data and samples will be available only to the Ex-
pedition 374 science party and approved shore-based participants.

Expedition scientists and scientific 
participants

The current list of participants for Expedition 374 can be
found at http://iodp.tamu.edu/scienceops/expeditions/ross_-
sea_ice_sheet_history.html.
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Table T1. Summary of Ross Sea stratigraphy based on Brancolini et al. (1995).

Table T2. Summary of Expedition 374 primary and alternate sites. EPSP = Environmental Protection and Safety Panel

Sequence Sequence seismic character Age Bottom unconformity

RSS-8 Aggradational topset beds underlying locally backstepping grounding zone wedge Pleistocene RSU1 (0.7 Ma?)
RSS-7 Aggradational topset beds Pliocene RSU2 (4 Ma?)
RSS-6 Shelf topset beds and prograding trough mouth fan at the shelf edge late Miocene RSU3 (12 Ma?)
RSS-5 Alternating subsequences of grounding zone prograding wedges and subhorizontal strata packages middle Miocene RSU4 (14–16 Ma?)
RSS-4 Grounding zone prograding wedges and subhorizontal strata packages early Miocene RSU4a (18.5 Ma?)
RSS-3 Alternating subsequences of grounding zone prograding wedges and subhorizontal strata packages early Miocene RSU5 (21 Ma?)
RSS-2 Alternating subsequences of grounding zone prograding wedges and subhorizontal strata packages late Oligocene–early Miocene RSU6 (29 Ma?)
RSS-1 (upper) Subhorizontal strata filling basement basins late Eocene–early Oligocene RSU7
RSS-1 (lower) Subhorizontal strata filling basement basins ?Late Cretaceous Basement

Proposed site Seismic line Latitude Longitude
Water 

depth (m)

Proposed 
penetration 

(mbsf )

EPSP 
approved 

penetration 
(mbsf) Coring plan Logging plan

Anticipated age 
at proposed 
penetration 
depth (Ma)

Primary sites
EBOCS-03C SP300 on Line IO6290-Y2A 76.55380°S 174.75794°W 558 545 545 Hole A: RCB Hole A: triple combo, 

FMS-sonic, VSI
mid-Miocene

EBOCS-01D SP690 on Line PD90-36 75.68392°S 179.67179°W 566 950 950 Hole A: RCB Hole A: triple combo, 
FMS-sonic, VSI

mid-Miocene

EBOCS-04B SP5162 on Line PD90-30 76.17651°S 172.88398°W 480 520 520 Hole A: RCB Hole A: triple combo, 
FMS-sonic, VSI

Pliocene

RSCR-02B SP4050 on Line ATC82B-208 74.50592°S 172.85452°W 2550 1000 1000 Hole A: APC 
Hole B: APC/XCB/RCB

Hole B: triple combo, FMS-
sonic, VSI

mid-Miocene

RSCR-11A SP1800 on Line IT91A-88B 71.84603°S 175.67904°W 1534 500 500 Hole A: APC 
Hole B: APC/XCB/RCB

Hole B: triple combo, FMS-
sonic, VSI

Pliocene

EBOCS-02B SP3160 on Line PD90-35 76.08827°S 178.09119°W 658 500 500 Hole A: RCB Hole A: triple combo, 
FMS-sonic, VSI

mid-Miocene

Alternate sites
EBOCS-05A SP1838 on Line PD90-36 75.54986ºS 179.20599ºE 525 700 700 Hole A: RCB Hole A: triple combo, 

FMS-sonic, VSI
mid-Miocene

EBOCS-06A SP100 on Line IO6290-X4 75.91448ºS 175.34958ºW 515 700 700 Hole A: RCB Hole A: triple combo, 
FMS-sonic, VSI

mid-Miocene

EBOCS-07C SP3500 on Line IO6290-Y7 76.19502ºS 173.70576ºW 540 750 750 Hole A: RCB Hole A: triple combo, 
FMS-sonic, VSI

Pliocene

RSCR-01B SP10430 on Line IT88-01C 75.24660ºS 175.00582ºW 1400 1000 1000 Hole A: APC 
Hole B: APC/XCB/RCB

Hole B: triple combo, FMS-
sonic, VSI

mid-Miocene

RSCR-03A SP1660 on Line IT94A-127 75.00100ºS 173.92012ºW 1824 800 800 Hole A: APC 
Hole B: APC/XCB/RCB

Hole B: triple combo, FMS-
sonic, VSI

mid-Miocene

RSCR-10A SP5000 on Line TAN0602_08 74.21739ºS 173.63372ºW 2390 1000 1000 Hole A: APC 
Hole B: APC/XCB/RCB

Hole B: triple combo, FMS-
sonic, VSI

mid-Miocene

RSCR-08C SP10095 on Line BGR80-008 73.36928ºS 178.91774ºE 700 1000 1000 Hole A: APC 
Hole B: APC/XCB/RCB

Hole B: triple combo, FMS-
sonic, VSI

mid-Miocene

RSCR-12B SP6500 on Line IT91A-88 71.85123ºS 178.16371ºE 1952 620 650 Hole A: APC 
Hole B: APC/XCB/RCB

Hole B: triple combo, FMS-
sonic, VSI

late Miocene?
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Table T3. Operations and time estimates for Expedition 374.

5.0

6.3

2.3

EBOCS-03C 76° 33.2277' S 569 0 2.8 1.3

EPSP 174° 45.4762' W

to 545 mbsf

4.1

0.3

EBOCS-01D 75° 41.0353' S 577 0 5.2 1.8

EPSP 179° 40.3074' W

to 950 mbsf

6.9

0.4

EBOCS-04B 76° 10.5907' S 491 0 2.5 1.3

EPSP 172° 53.0390' W

to 520 mbsf

3.8

0.4

RSCR-02B 74° 30.3551' S 2561 0 1.9 0.0

EPSP 172° 51.2711' W 0 2.3 0.0

to 1000 mbsf 0 6.8 2.0

13.0

0.7

RSCR-11A 71° 50.7616' S 1545 0 1.5 0.0

EPSP 175° 40.7424' W 0 1.2 0.0

to 500 mbsf 0 2.8 1.2

6.7

1.0

EBOCS-02B 76° 5.2964' S 669 0 2.5 1.3

EPSP 178° 5.5140' W

to 500 mbsf

3.8

2.2

6.3

19.8 29.5 8.7

5.0

38.2

Exp-374 West Antarctic Ice Sheet Climate (P751)
Operations Plan Summary

Site No.
Location 
(Latitude 

Longitude)

Seafloor Depth 
(mbrf) Operations Description Transit 

(days)

Drilling/ 
Coring 
(days)

Logging 
(days)

Wellington Begin Expedition port call days

Transit ~1581nmi toIce breaker rendezvous@ 10.5

Transit ~566nmi toEBOCS-03C@ 10.5

Hole A - RCB to 545 mbsf and log w/ triple combo, FMS sonic and VSI

Sub-Total Days On-Site:

Transit ~88nmi toEBOCS-01D@ 10.5

Hole A - RCB to 950 mbsf and log w/ triple combo, FMS sonic and VSI

Sub-Total Days On-Site:

Transit ~103nmi toEBOCS-04B@ 10.5

Hole A - RCB to 520 mbsf and log w/ triple combo, FMS sonic and VSI

Sub-Total Days On-Site:

Transit ~100nmi toRSCR-02B@ 10.5

Hole A - APC to 250 mbsf

Hole B - APC/XCB to 350 mbsf

Hole C - RCB to 1000 mbsf and log w/ triple combo, FMS sonic and VSI

Sub-Total Days On-Site:

Transit ~167nmi toRSCR-11A@ 10.5

Hole A - APC to 250 mbsf

Hole B - APC to 250 mbsf

Hole C - APC/XCB to 500 mbsf and log w/ triple combo, FMS sonic and VSI

Sub-Total Days On-Site:

Transit ~258nmi toEBOCS-02B@ 10.5

Hole A - RCB to 500 mbsf and log w/ triple combo, FMS sonic and VSI

Sub-Total Days On-Site:

Transit ~523nmi toIce breaker rendezvous@ 10.5

Transit ~1581nmi toWellington@ 10.5

Wellington End Expedition

Port Call: Total Operating Days: 58.0

Sub-Total On-Site: Total Expedition: 63.0
17
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Table T4. Operations plan for Expedition 374 alternate sites.

EBOCS-05A 75° 32.9913' S 531 3.3 1.5

EPSP 179° 12.3592' E

to 700 mbsf

4.8

EBOCS-06A 75° 54.8689' S 511 2.0 1.2

EPSP 175° 20.9749' W

to 700 mbsf

3.2

EBOCS-07C 76° 11.7013' S 535 3.5 1.5

EPSP 173° 42.3458' W

to 750 mbsf

5.0

RSCR-01B 75° 14.7959' S 1411 1.5 0.0

EPSP 175° 0.3494' W 1.9 0.0

to 1000 mbsf 5.7 1.9

10.9

RSCR-03A 75° 0.0599' S 1835 1.7 0.0

EPSP 173° 55.2070' W 2.1 0.0

to 800 mbsf 4.4 1.7

9.9

RSCR-08C 73° 22.1567' S 711 1.2 0.0

EPSP 178° 55.0646' E 1.5 0.0

to 1000 mbsf 4.9 1.8

9.4

RSCR-10A 74° 13.0433' S 2401 1.8 0.0

EPSP 173° 38.0233' W 2.3 0.0

to 1000 mbsf 6.7 1.9

12.8

RSCR-12B 71° 51.0735' S 1963 1.7 0.0

EPSP 178° 9.8226' E 1.3 0.0

to 650 mbsf 3.8 1.3

8.1

Hole A - APC to 250 mbsf

Hole B - APC/XCB to 350 mbsf

Hole C - RCB to 1000 mbsf and log w/ triple combo, FMS sonic and VSI

Sub-Total Days On-Site:

Hole A - APC to 250 mbsf

Hole B - APC to 250 mbsf

Hole C - APC/XCB to 620 mbsf and log w/ triple combo, FMS sonic and VSI

Sub-Total Days On-Site:

Hole A - APC to 250 mbsf

Hole B - APC/XCB to 350 mbsf

Hole C - RCB to 800 mbsf and log w/ triple combo, FMS sonic and VSI

Sub-Total Days On-Site:

Hole A - APC to 250 mbsf

Hole B - APC/XCB to 350 mbsf

Hole C - RCB to 1000 mbsf and log w/ triple combo, FMS sonic and VSI

Sub-Total Days On-Site:

Hole B - APC/XCB to 350 mbsf

Hole C - RCB to 1000 mbsf and log w/ triple combo, FMS sonic and VSI

Sub-Total Days On-Site:

Hole A - APC to 250 mbsf

Sub-Total Days On-Site:

Hole A - RCB to 750 mbsf and log w/ triple combo, FMS sonic and VSI

Sub-Total Days On-Site:

Hole A - RCB to 700 mbsf and log w/ triple combo, FMS sonic and VSI

Sub-Total Days On-Site:

Hole A - RCB to 420 mbsf and log w/ triple combo, FMS sonic and VSI

Exp-374 West Antarctic Ice Sheet Climate (P751)
Alternate Sites

Site No.
Location 
(Latitude 

Longitude)

Seafloor 
Depth 
(mbrf)

Operations Description
Drilling 
Coring 
(days)

LWD/M
WD Log 
(days)
18
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Figure F1. Data reconstructions. A. Compilation of atmospheric CO2 proxies throughout the Cenozoic (left). Proxy methods (see legend) are from Masson-
Delmotte et al. (2013). “Best and worst case” representative concentration pathways (RCPs) for historic and future atmospheric CO2 emissions (right) are from 
Meinshausen et al. (2011). B. Composite deep ocean benthic δ18O record for the last 65 My, which represents a combined signal of global ice volume and deep 
ocean temperature after approximately 35 Ma (Zachos et al., 2001). C. Long-term trend in deep-sea temperature through the Cenozoic based on removal of 
the ice volume component of the benthic δ18O record using sequence stratigraphic records (black line with gray uncertainty band) and Mg/Ca estimates of 
deep-sea temperatures (Cramer et al., 2009) and scaled δ18O for the past 10 My (Miller et al., 2011). D. Reconstruction of sea level lowstands (i.e., black lines) 
with minimum uncertainty ranges (gray shading) and smoothed trend (black dotted line) using sequence stratigraphy for the New Jersey margin. Sea levels 
>70 m imply a significant tectonic component to this record, particularly prior to the Oligocene (Kominz et al., 2008).
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Figure F2. Location maps. A. Antarctica with basic glaciology and previous/proposed DSDP/ODP/Integrated Ocean Drilling Program/IODP drill sites. B. Ross Sea 
bathymetry with locations of proposed Expedition 374 sites (including alternates) and existing seismic network. EB = Eastern Basin, CB = Central Basin, VLB = 
Victoria Land Basin, IB = Iselin Bank.

Figure F3. Ross Sea seismic stratigraphy and previous drilling (see Figure F1 for transect lines). Expedition 374 sites form a continental shelf-to-rise transect 
designed to tie into inner shelf sites and to trace the Neogene and Quaternary evolution of the WAIS and the forcings and feedbacks influencing past variabil-
ity.
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Figure F4. Expedition 374 sites are located in the most sensitive sector of the Antarctic for assessing ice sheet responses to (A) sea level and (B) ocean heat flux. 
C–F. A more terrestrial West Antarctica in the Oligocene could support a larger ice sheet than present, despite a warmer climate (Wilson et al., 2013). Thus, the 
timing of Ross Sea overdeepening has important implications for sea level budgets and for understanding mass balance controls. G. The integration of sedi-
mentologic data with modeling was key to the success of ANDRILL (blue circle). Despite discontinuous sedimentation, targeting time intervals with short 
duration magnetic reversals enabled orbital-scale WAIS reconstructions. Models indicate that grounded ice sheets occur at Expedition 374 sites (EBOCS-01 to 
04; black circles) during periods of maximum Antarctic ice volume. These ice-proximal sites will enable the assessment of the Antarctic contributions to sea 
level lowstands, building significantly on the record of ANDRILL. Not all modeled glacial maxima are characterized by advance of ice to the continental shelf 
edge.
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure F5. Neogene Ross Sea continental shelf lithofacies interpretations (after McKay et al., 2009; Fielding et al., 2011). GSE = glacial surface of erosion (sharp 
contacts associated with subglacial deformation features). MST = mean summer temperature. A. Late Pleistocene diamictite overlying deformed mudstone 
(MST) (AND-1B; 82.7–82.85 mbsf ). B. Pliocene diamictite overlying deformed diatomite (AND-1B; 211.3–211.45 mbsf ) and thin interval of stratified gravels, 
sands, and muds overlying diamictite indicative of glacial retreat in sediment-starved polar regime (AND-1B; 224.9–225.05 mbsf ). C. Rhythmically laminated 
glaciomarine mudstone indicative of subglacial meltwater discharge (AND-1B; 1033.3–1033.45 mbsf ), stratified coarse sandstones deposited by meltwater 
discharge in a subglacial fan system (AND-1B; 1062.75–1062.9 mbsf ), and carbonate (bivalve fossils) in glaciomarine deposits (AND-2A; 430.52–430.7 mbsf ).
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure F6. Chronostratigraphic summary of Ross Sea drilling. Seismic stratigraphy is constrained by drilling in the Victoria Land Basin (SR-VLB), but not in the 
Central and Eastern Basins (RSU). Expedition 374 sites will reduce uncertainties associated with RSU4 to RSU2 and assess the spatial coherency of these ero-
sional features. Far-field climate (δ18O), CO2, carbon cycle (δ13C), Equatorial Pacific carbonate compensation depth (CCD), and sea level records discussed in the 
text are indicated (modified from ANDRILL Coulman High Drilling NSF Proposal).
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure F7. Ross Sea physical oceanography highlighting the role the ASC in influencing regional water masses. A. Observational conditions over the past 50 y.
B. Hypothesized changes related to the invigoration of the ASC. C. Cross-section of observation conditions shown in A. D. Cross-section of C. Note the increase
in Antarctic Surface Water in the Ross Sea, resulting in (1) a greater dynamical barrier for shelf MCDW incursions and (2) decreased production of High-Salinity
Shelf Water (SW) influencing deep waters (e.g., Antarctic Deep Water [ADW] vs. Antarctic Bottom Water [AABW]). Figure modified from Smith et al. (2012).
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure F8. Depth maps for selected regional seismic ANTOSTRAT unconformities, with interpretations of ice sheet history (after Brancolini et al., 1995). RSU4, 
RSU3 and RSU2 maps have now been extended into the continental slope and rise area (not shown) as part of the IPY Rossmap project.
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure F9. A. Sites EBOCS-01D, 05A (alternate), and 02B. B. Line drawings of seismic Lines BGR80-80 and 80-04, highlighting the glacial trough associated with 
RSU4. C. Seismic Profiles PD90-35 and 36. Site EBOCS-01D will target glacial and glaciomarine sediments above and below RSU4 (green line). Site EBOCS-05A 
(alternate) will recover a younger section below RSU4 (inferred to be deposited during the MMCO). Site EBOCS-02B will recover a higher resolution record of 
subglacial tills and glaciomarine meltwater outwash sediments above RSU4 (late Miocene?). Seismic line locations are shown in Figure F2.
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure F10. Stratigraphic linkages and targets for Sites EBOCS-03C (RSU3, RSU2, and RSU1) and 04B (RSU2 and RSU1; blue line). These reflectors may be traced 
from the shelf to continental slope/rise Sites RSCR-01B (alternate, shown) and 02B (not shown). On the continental slope, the onlapping reflectors above RSU3 
(magenta) at alternate Site RSCR-01B (part A) are interpreted as the fine-grained distal component of a trough mouth fan, with reworking by along-slope 
currents, overlying a levee system (below RSU3). RSCR-02B (not shown) consists of levee deposits above and below RSU3 and is a more continuous Neogene to 
Quaternary record (see Site summaries for details). Seismic line locations are shown in Figure F2.
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure F11. (Top) Interpreted seismic Profile ATC82B-208 across Site RSCR-02B showing major unconformities and water masses influencing the sites. (Middle) 
Regional 3-D bathymetry and generalized oceanography of the Ross Sea with location of primary (large yellow circles) and alternate (small yellow circles) sites 
on the continental slope and rise, showing the competing influence of downslope and along-slope currents at the sites. (Bottom) Interpreted seismic Profile 
IT91-A-88B across Site RSCR-11A showing the major unconformity. This site is interpreted to be a sediment drift deposited by Antarctic Slope Current (ASC) on 
the continental slope. ISW = Ice Shelf Water; HSSW = High-Salinity Shelf Water; AABW = Antarctic Bottom Water; LS-RSBW = Low Salinity Ross Sea Bottom 
Water; HS-RSBW = High Salinity Ross Sea Bottom Water. AASW = Antarctic Surface Water; MCDW = Modified Circumpolar Deep Water. CDW = Circumpolar 
Deep Water; RIS = Ross Ice Shelf.
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Site summaries
Site EBOCS-01D

Site EBOCS-02B

Site EBOCS-03C

Site EBOCS-04B

Priority:  Primary
Position:  75.68392°S, 179.67179°W
Water depth (m):  566
Target drilling depth 

(mbsf):
 950 

Approved maximum 
penetration (mbsf):

 950

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF1)
Deep-penetration seismic reflection: 
• Primary line: SP690 on Line PD90-36 (Figure AF2)

Objective(s): • Establish timing of first marine-based ice streams into Ross 
Sea

• Recover a mid- to upper Miocene climate, oceanic, and ice 
sheet record from glaciomarine and subglacial till above 
RSU4

• Recover a record from 75°S of the Middle Miocene Climatic 
Optimum below RSU4

Drilling program: Hole A: RCB to 950 mbsf with nonmagnetic core barrels
Downhole 

measurements 
program:

Hole A: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Glaciomarine and subglacial diamicts and mudstones, with 
possible open marine mudstone and biogenic ooze

Priority:  Primary
Position:  76.08827°S, 178.09119°W
Water depth (m):  658
Target drilling depth 

(mbsf):
 500

Approved maximum 
penetration (mbsf):

 500

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF3)
Deep-penetration seismic reflection:
• Primary line: SP3160 on Line PD90-35 (Figure AF4)
• Crossing line: SP1063 on analog Line NBP94-09 (Figure 

AF5)
Objective(s): • Establish timing of first marine-based ice streams into Ross 

Sea (RSU4)
• Determine if glacial advance associated with RSU4 was 

from localized ice caps or shelf-wide ice sheet advance
• Recover a mid- to upper Miocene climate, oceanic, and ice 

sheet record from glaciomarine and subglacial till above 
RSU4

Drilling program: Hole A: RCB to 500 mbsf with nonmagnetic core barrels
Downhole 

measurements 
program:

Hole A: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Glaciomarine and subglacial diamicts and mudstones, with 
possible open marine mudstone and biogenic ooze

Priority:  Primary
Position:  76.55380°S, 174.75794°W
Water depth (m):  558
Target drilling depth 

(mbsf):
 545

Approved maximum 
penetration (mbsf ):

 545

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF6)
Deep-penetration seismic reflection:
• Primary line: SP300 on Line IO6290-Y2A (Figure AF7)

Objective(s): • Constrain age of first shelf-wide advance of WAIS (RSU3)
• Recover a post-RSU4 paleoclimate, glacimarine, and ice 

sheet stratigraphic record that spans the mid-Miocene 
climate transition to present

• Constrain age of overdeepening event associated with 
RSU2 and assess response of ice sheet variability

Drilling program: Hole A: RCB to 545 mbsf with nonmagnetic core barrels
Downhole 

measurements 
program:

Hole A: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Glaciomarine and subglacial diamicts and mudstones, with 
possible open marine mudstone and biogenic ooze

Priority:  Primary

Position:  76.17651°S, 172.88398°W

Water depth (m):  480

Target drilling depth 
(mbsf):

 520

Approved maximum 
penetration (mbsf ):

 520

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF8)
Deep-penetration seismic reflection:
• Primary line: SP5162 on Line PD90-30 (Figure AF9)
• Crossing line: SP190 on Line NBP9601-T16 (Figure AF10)

Objective(s): • Recover a post-RSU2 paleoclimate, glacimarine, and ice 
sheet stratigraphic record that spans the Pliocene (late 
Miocene?) to present

• Constrain age of overdeepening event associated with 
RSU2 and assess response of ice sheet variability

Drilling program: Hole A: RCB to 520 mbsf with nonmagnetic core barrels

Downhole 
measurements 
program:

Hole A: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Glaciomarine and subglacial diamicts alternating with 
glaciomarine mudstones and possible biogenic ooze
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Site RSCR-02B

Site RSCR-11A

Site EBOCS-05A

Site EBOCS-06A

Priority:  Primary
Position:  74.50592°S, 172.85452°W
Water depth (m):  2550
Target drilling depth 

(mbsf):
 1000

Approved maximum 
penetration (mbsf):

 1000

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF11)
Deep-penetration seismic reflection:
• Primary line: SP4050 on Line ATC82B-208 (Figure AF12)

Objective(s): • Obtain a near-continuous post-RSU3 (mid-Miocene to 
Pleistocene?) and pre-RSU3 (mid-Miocene to Pliocene) 
sediment sequence to provide a high-resolution 
chronology and an ice-distal record of glacial/interglacial 
cycles

• Recover a high-resolution record for correlation to inner 
and outer shelf records and mid- to high-latitude deep-sea 
records of glacial and environmental change

• Reconstruct Antarctic Slope Current vigor and Ross Sea 
Bottom Water production

Drilling program: Hole A: APC to 250 mbsf with nonmagnetic core barrels, 
orientation (Icefield tool), and APCT-3

Hole B: APC/XCB to 350 mbsf with nonmagnetic core barrels 
and orientation (APC only)

Hole C: RCB to 1000 mbsf with nonmagnetic core barrels
Downhole 

measurements 
program:

Hole C: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Turbiditic/contouritic mud alternating with hemipelagic 
biogenic mud

Priority:  Primary
Position:  71.84603°S, 175.67904°W
Water depth (m):  1534
Target drilling depth 

(mbsf):
 500

Approved maximum 
penetration (mbsf):

 500

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF13)
Deep-penetration seismic reflection:
• Primary line: SP1800 on Line IT91A-88B (Figure AF14)
• Crossing line: SP5173 on Line TAN0602-10 (Figure AF15)

Objective(s): • Obtain a near-continuous Pliocene to present sediment 
sequence to provide a high-resolution chronology and an 
ice-distal record of glacial/interglacial cycles

• Recover a high-resolution record for correlation to inner 
and outer shelf records and mid- to high-latitude deep-sea 
records of glacial and environmental change

• Reconstruct Antarctic Slope Current vigor and Ross Sea 
Bottom Water production

Drilling program: Hole A: APC to 250 mbsf with nonmagnetic core barrels, 
orientation (Icefield tool), and APCT-3

Hole B: APC to 250 mbsf with nonmagnetic core barrels and 
orientation

Hole C: APC/XCB to 500 mbsf with nonmagnetic core barrels 
and orientation (APC only)

Downhole 
measurements 
program:

Hole C: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Drift sediments

Priority:  Alternate
Position:  75.54986°S, 179.20599°E
Water depth (m):  525
Target drilling depth 

(mbsf):
 700

Approved maximum 
penetration (mbsf ):

 700

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF16)
Deep-penetration seismic reflection:
• Primary line: SP1838 on Line PD90-36 (Figure AF17)
• Crossing line: SP1724 on line BGR80-08 (Figure AF18)

Objective(s): • Establish timing of first marine-based ice streams into Ross 
Sea

• Determine if glacial advance associated with RSU4 was 
from local ice caps or shelf-wide ice sheet advance

• Recover a mid- to upper Miocene climate, oceanic, and ice 
sheet record from glaciomarine and subglacial till above 
RSU4

• Recover a record from 75°S of the Middle Miocene Climatic 
Optimum below RSU4

Drilling program: Hole A: RCB to 700 mbsf with nonmagnetic core barrels
Downhole 

measurements 
program:

Hole A: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Glaciomarine and subglacial diamicts and mudstones, with 
possible lithified open marine mudstone and biogenic 
ooze

Priority:  Alternate
Position:  75.91448°S, 175.34958°W
Water depth (m):  515
Target drilling depth 

(mbsf):
 700

Approved maximum 
penetration (mbsf ):

 700

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF19)
Deep-penetration seismic reflection:
• Primary line: SP1315 on line IO6290-Y7 (Figure AF20)
• Crossing line: SP100 on line IO6290-X4 (Figure AF21)

Objective(s): • Constrain age of first shelf-wide advance of WAIS (RSU3)
• Recover a post-RSU4 paleoclimate, glacimarine, and ice 

sheet stratigraphic record that spans the mid-Miocene 
climate transition to present

• Constrain age of overdeepening event associated with 
RSU2 and assess response of ice sheet variability

Drilling program: Hole A: RCB to 700 mbsf with nonmagnetic core barrels
Downhole 

measurements 
program:

Hole A: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Glaciomarine and subglacial diamicts and mudstones, with 
possible lithified open marine mudstone and biogenic 
ooze
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Site EBOCS-07C

Site RSCR-01B

Site RSCR-03A

Site RSCR-10A

Priority:  Alternate
Position:  76.19502°S, 173.70576°W
Water depth (m):  540
Target drilling depth 

(mbsf):
 750

Approved maximum 
penetration (mbsf):

 750

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF22)
Deep-penetration seismic reflection:
• Primary line: SP3500 on Line IO6290-Y7B (Figure AF23)

Objective(s): • Recover a post-RSU3 paleoclimate, glacimarine, and ice 
sheet stratigraphic record that spans the Pliocene (late 
Miocene?) to present

• Constrain age of overdeepening event associated with 
RSU2 and assess response of ice sheet variability

Drilling program: Hole A: RCB to 750 mbsf with nonmagnetic core barrels
Downhole 

measurements 
program:

Hole A: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Lithified glaciomarine and subglacial diamicts and 
mudstones, with possible lithified open marine mudstone 
and biogenic ooze

Priority:  Alternate
Position:  75.24660°S, 175.00582°W
Water depth (m):  1400
Target drilling depth 

(mbsf):
 1000

Approved maximum 
penetration (mbsf):

 1000

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF24)
Deep-penetration seismic reflection:
• Primary line: SP10430 on Line IT88-01C (Figure AF25)

Objective(s): • Obtain a near-continuous post-RSU2 (mid-Miocene to 
Pleistocene?) and pre-RSU3 (mid-Miocene to Pliocene) 
sediment sequence to provide a high-resolution 
chronology and an ice-distal record of glacial/interglacial 
cycles

• Recover a high-resolution record for correlation to inner 
and outer shelf records and mid- to high-latitude deep-sea 
records of glacial and environmental change

• Reconstruct Antarctic Slope Current vigor and Ross Sea 
Bottom Water production

Drilling program: Hole A: APC to 250 mbsf with nonmagnetic core barrels, 
orientation (Icefield tool), and APCT-3

Hole B: APC/XCB to 350 mbsf with nonmagnetic core barrels 
and orientation (APC only)

Hole C: RCB to 1000 mbsf with nonmagnetic core barrels
Downhole 

measurements 
program:

Hole C: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Fine-grained turbidites alternating with hemipelagic 
biogenic mud

Priority:  Alternate
Position:  75.00100°S, 173.92012°W
Water depth (m):  1824
Target drilling depth 

(mbsf):
 800

Approved maximum 
penetration (mbsf ):

 800

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF26)
Deep-penetration seismic reflection:
• Primary line: SP1660 on Line IT94A-127 (Figure AF27)

Objective(s): • Obtain a near-continuous pre-RSU3 (mid-Miocene to 
Pliocene) sediment sequence to provide a high-resolution 
chronology and an ice-distal record of glacial/interglacial 
cycles

• Recover a high-resolution record for correlation to inner 
and outer shelf records and mid- to high-latitude deep-sea 
records of glacial and environmental change

• Reconstruct Antarctic Slope Current vigor and Ross Sea 
Bottom Water production

Drilling program: Hole A: APC to 250 mbsf with nonmagnetic core barrels, 
orientation (Icefield tool), and APCT-3

Hole B: APC/XCB to 350 mbsf with nonmagnetic core barrels 
and orientation (APC only)

Hole C: RCB to 800 mbsf with nonmagnetic core barrels
Downhole 

measurements 
program:

Hole C: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Fine-grained turbidites alternating with hemipelagic 
biogenic mud

Priority:  Alternate
Position:  74.21739°S, 173.63372°W
Water depth (m):  2390
Target drilling depth 

(mbsf):
 1000

Approved maximum 
penetration (mbsf ):

 1000

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF11)
Deep-penetration seismic reflection:
• Primary line: SP5000 on Line TAN0602-08 (Figure AF28)

Objective(s): • Obtain a near-continuous post-RSU3 (mid-Miocene to 
Pleistocene?) and pre-RSU3 (mid-Miocene to Pliocene) 
sediment sequence to provide a high-resolution 
chronology and an ice-distal record of glacial/interglacial 
cycles

• Recover a high-resolution record for correlation to inner 
and outer shelf records and mid- to high-latitude deep-sea 
records of glacial and environmental change

• Reconstruct Antarctic Slope Current vigor and Ross Sea 
Bottom Water production

Drilling program: Hole A: APC to 250 mbsf with nonmagnetic core barrels, 
orientation (Icefield tool), and APCT-3

Hole B: APC/XCB to 350 mbsf with nonmagnetic core barrels 
and orientation (APC only)

Hole C: RCB to 1000 mbsf with nonmagnetic core barrels
Downhole 

measurements 
program:

Hole C: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Diatom-bearing mud with dispersed clasts
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Site RSCR-08C Site RSCR-12B
Priority:  Alternate
Position:  73.36928°S, 178.91774°E
Water depth (m):  700
Target drilling depth 

(mbsf):
 1000

Approved maximum 
penetration (mbsf):

 1000

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF29)
Deep-penetration seismic reflection:
• Primary line: SP10095 on Line BGR80-008A (Figure AF30)
• Crossing line: SP3491 on Line KSL14-02 (Figure AF31)

Objective(s): • Obtain a near-continuous post-RSU3 (mid-Miocene to 
Pleistocene?) and pre-RSU3 (mid-Miocene to Pliocene) 
sediment sequence to provide a high-resolution 
chronology and an ice-distal record of glacial/interglacial 
cycles

• Recover a high-resolution record for correlation to inner 
and outer shelf records and mid- to high-latitude deep-sea 
records of glacial and environmental change

• Reconstruct Antarctic Slope Current vigor and Ross Sea 
Bottom Water production

Drilling program: Hole A: APC to 250 mbsf with nonmagnetic core barrels, 
orientation (Icefield tool), and APCT-3

Hole B: APC/XCB to 350 mbsf with nonmagnetic core barrels 
and orientation (APC only)

Hole C: RCB to 1000 mbsf with nonmagnetic core barrels
Downhole 

measurements 
program:

Hole C: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Sediment drift (mud?) alternating with hemipelagic biogenic 
mud

Priority:  Alternate
Position:  71.85123°S, 178.16371°E
Water depth (m):  1952
Target drilling depth 

(mbsf):
 620

Approved maximum 
penetration (mbsf ):

 650

Survey coverage (track 
map; seismic profile):

Bathymetric sketch and site track map (Figure AF32)
Deep-penetration seismic reflection:
• Primary line: SP6500 on Line IT91A-88 (Figure AF33)
• "Crossing line: SP8724 on line KSL14-04 (Figure AF34)

Objective(s): • Obtain a near-continuous Pliocene/late Miocene? to 
present sediment sequence to provide a high-resolution 
chronology and an ice-distal record of glacial/interglacial 
cycles

• Recover a high-resolution record for correlation to inner 
and outer shelf records and mid- to high-latitude deep-sea 
records of glacial and environmental change

• Reconstruct Antarctic Slope Current vigor and Ross Sea 
Bottom Water production

Drilling program: Hole A: APC to 250 mbsf with nonmagnetic core barrels, 
orientation (Icefield tool), and APCT-3

Hole B: APC to 250 mbsf with nonmagnetic core barrels and 
orientation

Hole C: APC/XCB to 620 mbsf with nonmagnetic core barrels 
and orientation (APC only)

Downhole 
measurements 
program:

Hole C: 
• Triple combo
• FMS-sonic
• VSI

Nature of rock 
anticipated:

Mid-slope sediment drift forming on a basement terrace 
associated with along slope current
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Figure AF1. Contoured bathymetric maps showing location of proposed primary Site EBOCS-01D on seismic reflection Profile PD90-36 (Figure AF2). A. 
Bathymetry from Davey (2004). Contour interval = 25 m. B. Swath bathymetry collected during seismic survey cruises.
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Figure AF2. Seismic reflection profile Line PD90-36 with location of proposed primary Site EBOCS-01D (75.68392°S, 179.67179°W; SP 690; water depth = 566 m; 
target depth = 950 mbsf; approved maximum penetration 950 mbsf ). SP = shotpoint.
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Figure AF3. Contoured bathymetric maps showing location of proposed primary Site EBOCS-02B on seismic reflection Profiles PD90-35 (Figure AF4) and 
NBP94-09 (Figure AF5). A. Bathymetry from Davey (2004). Contour interval = 25 m. B. Swath bathymetry collected during seismic survey cruises.
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Figure AF4. Seismic reflection profile Line PD90-35 with location of proposed primary Site EBOCS-02B (76.08827°S, 178.09119°W; SP 3160; water depth = 658 
m; target depth = 500 mbsf; approved maximum penetration = 500 mbsf ).
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Figure AF5. Analog Line NBP94-09 with location of proposed primary Site EBOCS-02B (76.08827°S, 178.09119°W; SP 1063; water depth = 658 m; target depth = 
500 mbsf; approved maximum penetration = 500 mbsf ).
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Figure AF6. Contoured bathymetric maps showing location of proposed primary Site EBOCS-03C on seismic reflection Profile IO6290-Y2 (Figure AF7). A. 
Bathymetry from Davey (2004). Contour interval = 25 m. B. Swath bathymetry collected during seismic survey cruises.
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Figure AF7. Seismic reflection profile Line I06290-Y2 with location of proposed primary Site EBOCS-03C (76.55380°S, 174.75794°W; SP 300; water depth = 558 
m; target depth = 545 mbsf; approved maximum penetration = 545 mbsf ).
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Figure AF8. Contoured bathymetric maps showing location of proposed primary Site EBOCS-04B on seismic reflection Profiles PD90-30 (Figure AF9) and
NBP9601-T16 (Figure A10). A. Bathymetry from Davey (2004). Contour interval = 25 m. B. Swath bathymetry collected during seismic survey cruises.
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Figure AF9. Seismic reflection profile Line PD90-30 with location of proposed primary Site EBOCS-04B (76.17651°S, 172.88398°W; SP 5162; water depth = 480 
m; target depth = 520 mbsf; approved maximum penetration = 520 mbsf ).
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Figure AF10. Seismic reflection profile Line NBP9601-T16 with location of proposed primary Site EBOCS-04B (76.17651°S, 172.88398°W; SP 190; water depth = 
480 m; target depth = 520 mbsf; approved maximum penetration = 520 mbsf ).
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Figure AF11. Contoured bathymetric maps showing location of proposed primary Site RSCR-02B on seismic reflection Profile ATC82B-208 (Figure AF12) and 
proposed alternate Site RSCR-10A on seismic reflection Profile TAN0602-08 (Figure AF28). A. Bathymetry from Davey (2004). Contour interval = 25 m. B. Swath 
bathymetry collected during seismic survey cruises.
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Figure AF13. Contoured bathymetric maps showing location of proposed primary Site RSCR-11A on seismic reflection Profiles IT91A-88B (Figure AF14) and 
TAN0602-10 (Figure AF15). A. Bathymetry from Davey (2004). Contour interval = 25 m. B. Swath bathymetry collected during seismic survey cruises.
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF14. Seismic reflection profile Line IT91A-88B with location of proposed primary Site RSCR-11A (71.84603°S, 175.67904°W; SP 1800; water depth = 
1534 m; target depth = 500 mbsf; approved maximum penetration = 500 mbsf ).
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF15. Seismic reflection profile Line TAN0602-10 with location of proposed primary Site RSCR-11A (71.84603°S, 175.67904°W; SP 5173; water depth = 
1534 m; target depth = 500 mbsf; approved maximum penetration = 500 mbsf ).
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF16. Contoured bathymetric maps showing location of proposed alternate Site EBOCS-05A on seismic reflection Profiles PD90-36 (Figure AF17) and 
BGR80-08 (Figure AF18). A. Bathymetry from Davey (2004). Contour interval = 25 m. B. Swath bathymetry collected during seismic survey cruises.
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF17. Seismic reflection profile Line PD90-36 with location of proposed alternate Site EBOCS-05A (75.54986°S, 179.20599°E; SP 1838; water depth = 525 
m; target penetration depth = 700 mbsf; approved maximum penetration = 700 mbsf ).
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF18. Seismic reflection profile Line BGR-80-08 with location of proposed alternate Site EBOCS-05A (75.54986°S, 179.20599°E; SP 1724; water depth = 
525 m; target penetration depth = 700 mbsf; approved maximum penetration = 700 mbsf ).
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF19. Contoured bathymetric maps showing location of proposed alternate Site EBOCS-06A on seismic reflection Profiles IO6290-Y7 (Figure AF20) and 
IO6290-X4 (Figure AF21). A. Bathymetry from Davey (2004). Contour interval = 25 m. B. Swath bathymetry collected during seismic survey cruises.
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF20. Seismic reflection profile Line IO6290-Y7 with location of proposed alternate Site EBOCS-06A (75.91448°S, 175.34958°W; SP 1315; water depth =
515 m; target penetration depth = 700 mbsf; approved maximum penetration = 700 mbsf ).
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF21. Seismic reflection profile Line IO6290-X4 with location of proposed alternate Site EBOCS-06A (75.91448°S, 175.34958°W; SP 100; water depth =
515 m; target penetration depth = 700 mbsf; approved maximum penetration = 700 mbsf ).
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF22. Contoured bathymetric maps showing location of proposed alternate Site EBOCS-07C on seismic reflection Profile IO6290-Y7B (Figure AF23). A.
Bathymetry from Davey (2004). Contour interval = 25 m. B. Swath bathymetry collected during seismic survey cruises.
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF23. Seismic reflection profile Line IO6290-Y7 with location of proposed alternate Site EBOCS-07C (76.19502°S, 173.70576°W; SP 3500; water depth =
540 m; target penetration depth = 750 mbsf; approved maximum penetration depth = 750 mbsf ).
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF24. Contoured bathymetric maps showing location of proposed alternate Site RSCR-01B on seismic reflection Profile IT88-01C (Figure AF25). A. 
Bathymetry from Davey (2004). Contour interval = 25 m. B. Swath bathymetry collected during seismic survey cruises.
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Figure AF25. Seismic reflection profile Line IT88-01C with location of proposed alternate Site RSCR-01B (75.24660°S, 175.00582°W; SP 10430; water depth = 
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF26. Contoured bathymetric maps showing location of proposed alternate Site RSCR-03A on seismic reflection Profile IT94A-127 (Figure AF27). A. 
Bathymetry from Davey (2004). Contour interval = 25 m. B. Swath bathymetry collected during seismic survey cruises.
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF27. Seismic reflection profile Line IT94A-127 with location of proposed alternate Site RSCR-03A (75.00100°S, 173.92012°W; SP 1660; water depth = 
1824 m; target penetration depth = 800 mbsf; approved maximum depth = 800 mbsf ).

2100 2200 23002000190018001700160015001400130012001100

10 km

2500

3000

3500

4000

4500

2100 2200 23002000190018001700160015001400130012001100

IT94A-127

IT94A-127

RSCR-03A10 km

2500

3000

3500

4000

4500

RSU3

Tw
o-

w
ay

 tr
av

el
tim

e 
(m

s)
Tw

o-
w

ay
 tr

av
el

tim
e 

(m
s)

SP

SP
56



R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF28. Seismic reflection profile Line TAN0602-08 with location of proposed alternate Site RSCR-10A (74.21739°S, 173.63372°W; SP 5000; water depth = 
2390 m; target penetration depth = 1000 mbsf; approved maximum penetration = 1000 mbsf ).
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF29. Contoured bathymetric maps showing location of proposed alternate Site RSCR-08C on seismic reflection Profiles BGR80-008A (Figure AF30) and 
KSL14-02 (Figure AF31). A. Bathymetry from Davey (2004). Contour interval = 25 m. B. Swath bathymetry collected during seismic survey cruises.
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF30. Seismic reflection profile Line BGR80-008A with location of proposed alternate Site RSCR-08C (73.36928°S, 178.91774°E; SP 10095; water depth = 
700 m; target penetration depth = 1000 mbsf; approved maximum penetration = 1000 mbsf ).
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF31. Seismic reflection profile Line KSL14-02 with location of proposed alternate Site RSCR-08C (73.36928°S, 178.91774°E; SP 3491; water depth = 700 
m; target penetration depth = 1000 mbsf; approved maximum penetration = 1000 mbsf ).
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF32. Contoured bathymetric maps showing location of proposed alternate Site RSCR-12B on seismic reflection profiles IT91A-88 (Figure AF33) and 
KSL14-04 (Figure AF34). A. Bathymetry from Davey (2004). Contour interval = 25 m. B. Swath bathymetry collected during seismic survey cruises.
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R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF33. Seismic reflection profile Line IT91A-88 with location of proposed alternate Site RSCR-12B (71.85123°S, 178.16371°E; SP 6500; water depth = 1952 
m; target penetration depth = 620 mbsf; approved maximum penetration = 650 mbsf ).

65006900 6800 6700 6600 6300 6200

2.5

3.0

6400

IT91A-88

IT91A-88

Basement

Sediment drift
migrating upslope

6500

RSCR-12B
2.5

3.0

6800 6700 6600 6300 6200

5 km

Tw
o-

w
ay

 tr
av

el
tim

e 
(s

)
Tw

o-
w

ay
 tr

av
el

tim
e 

(s
)

SP

SP

6400

WE

WE

RSU4

RSU3

RSU2
62



R.M. McKay et al. Expedition 374 Scientific Prospectus
Figure AF34. Seismic reflection profile Line KSL14-04 with location of proposed alternate Site RSCR-12B (71.85123°S, 178.16371°E; SP 8724; water depth = 1952 
m; target penetration depth = 620 mbsf; approved maximum penetration = 650 mbsf ).
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