IODP Proceedings Volume contents Search | |||
Expedition reports Research results Supplementary material Drilling maps Expedition bibliography | |||
Expedition-related bibliography*Citation data for IODP publications and journal articles in RIS format IODP publicationsScientific ProspectusFisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Project Team, 2004. Juan de Fuca Hydrogeology—The hydrogeologic architecture of basaltic oceanic crust: compartmentalization, anisotropy, microbiology, and crustal-scale properties on the eastern flank of Juan de Fuca Ridge, eastern Pacific Ocean. IODP Sci. Prosp., 301. doi:10.2204/iodp.sp.301.2004 Preliminary ReportShipboard Scientific Party, 2004. Juan de Fuca hydrogeology: the hydrogeologic architecture of basaltic oceanic crust: compartmentalization, anisotropy, microbiology, and crustal-scale properties on the eastern flank of Juan de Fuca Ridge, eastern Pacific Ocean. IODP Prel. Rept., 301. doi:10.2204/iodp.pr.301.2004 Scientific Drilling journalFisher, A.T., Urabe, T., Klaus, A., and the IODP Expedition 301 Scientists, 2005. IODP Expedition 301 installs three borehole crustal observatories, prepares for three-dimensional, cross-hole experiments in the northeastern Pacific Ocean. Sci. Drill., 1:6–11. doi:10.2204/iodp.sd.1.01.2005 Davis, E., and Becker, K., 2007. On the fidelity of “CORK” borehole hydrologic observatory pressure records. Sci. Drill., 5:54–59. doi:10.2204/iodp.sd.5.09.2007 Proceedings volumeFisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, 2005. Proc. IODP, 301: College Station TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.2005 Expedition reportsExpedition 301 Scientists, 2005. Expedition 301 summary. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, Proc. IODP, 301: College Station TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.101.2005 Zühlsdorff, L., Hutnak, M., Fisher, A.T., Spiess, V., Davis, E.E., Nedimovic, M., Carbotte, S., Villinger, H., and Becker, K., 2005. Site surveys related to IODP Expedition 301: ImageFlux (S149) and RetroFlux (TN116) expeditions and earlier studies. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, Proc. IODP, 301: College Station TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.102.2005 Fisher, A.T., Wheat, C.G., Becker, K., Davis, E.E., Jannasch, H., Schroeder, D., Dixon, R., Pettigrew, T.L., Meldrum, R., MacDonald, R., Nielsen, M., Fisk, M., Cowen, J., Bach, W., and Edwards, K., 2005. Scientific and technical design and deployment of long-term, subseafloor observatories for hydrogeologic and related experiments, IODP Expedition 301, eastern flank of Juan de Fuca Ridge. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, Proc. IODP, 301: College Station TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.103.2005 Becker, K., and Davis, E.E., 2005. A review of CORK designs and operations during the Ocean Drilling Program. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, Proc. IODP, 301: College Station TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.104.2005 Expedition 301 Scientists, 2005. Methods. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, Proc. IODP, 301: College Station TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.105.2005 Expedition 301 Scientists, 2005. Site U1301. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, Proc. IODP, 301: College Station TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.106.2005 Expedition 301 Scientists, 2005. Site 1026. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, Proc. IODP, 301: College Station TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.107.2005 Expedition research resultsHulme, S.M., Wheat, C.G., Coggon, R.M., and McManus, J., 2008. Data report: trace element, Sr isotope, and Ge/Si composition of fluids and sediments in ridge-flank low-temperature hydrothermal environments. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists. Proc. IODP, 301: College Station TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.202.2008 Nielsen, M.E., and Fisk, M.R., 2008. Data report: specific surface area and physical properties of subsurface basalt samples from the east flank of Juan de Fuca Ridge. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists. Proc. IODP, 301: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.205.2008 Noguchi, T., Shinjo, R., and Oomori, T., 2008. Data report: Pb isotope compositions of sediment from the eastern flank of Juan de Fuca Ridge. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, Proc. IODP, 301: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.203.2008 Sager, W.W., Housen, B.A., and Linville, L.M., 2009. Data report: paleomagnetic and rock magnetic measurements on Hole U1301B basaltic samples. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, Proc. IODP, 301: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.204.2008 SynthesesFisher, A.T., 2009. Expedition 301 synthesis: hydrogeologic studies. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, Proc. IODP, 301: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.206.2009 Journals/BooksAullo, T., Ranchou-Peyruse, A., Ollivier, B., and Magot, M., 2013. Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in deep subsurface environments. Frontiers in Microbiology, 4:362. https://doi.org/10.3389/fmicb.2013.00362 Baquiran, J.-P.M., Ramirez, G.A., Haddad, A.G., Toner, B.M., Hulme, S., Wheat, C.G., Edwards, K.J., and Orcutt, B.N., 2016. Temperature and redox effect on mineral colonization in Juan de Fuca Ridge flank subsurface crustal fluids. Frontiers in Microbiology, 7:396. https://doi.org/10.3389/fmicb.2016.00396 Bartetzko, A., and Fisher, A.T., 2008. Physical properties of young (3.5 Ma) oceanic crust from the eastern flank of the Juan de Fuca Ridge: comparison of wireline and core measurements with global data. Journal of Geophysical Research: Solid Earth, 113(B5):B05105. https://doi.org/10.1029/2007JB005268 Becker, K., and Fisher, A.T., 2008. Borehole packer tests at multiple depths resolve distinct hydrologic intervals in 3.5-Ma upper oceanic crust on the eastern flank of Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 113(B7):B07105. https://doi.org/10.1029/2007JB005446 Becker, K., Fisher, A.T., and Tsuji, T., 2013. New packer experiments and borehole logs in upper oceanic crust: evidence for ridge-parallel consistency in crustal hydrogeological properties. Geochemistry, Geophysics, Geosystems, 14(8):2900–2915. https://doi.org/10.1002/ggge.20201 Bijl, P.K., Bendle, J.A.P., Bohaty, S.M., Pross, J., Schouten, S., Tauxe, L., Stickley, C.E., McKay, R.M., Röhl, U., Olney, M., Sluijs, A., Escutia, C., and Brinkhuis, H., 2013. Eocene cooling linked to early flow across the Tasmanian Gateway. Proceedings of the National Academy of Sciences of the United States of America, 110(24):9645–9650. https://doi.org/10.1073/pnas.1220872110 Boettger, J., Lin, H.-T., Cowen, J.P., Hentscher, M., and Amend, J.P., 2013. Energy yields from chemolithotrophic metabolisms in igneous basement of the Juan de Fuca Ridge flank system. Chemical Geology, 337–338:11–19. https://doi.org/10.1016/j.chemgeo.2012.10.053 Bube, K., Klenke, T., and Feudel, U., 2006. An algorithm for detecting layer boundaries in sediments. Nonlinear Processes in Geophysics, 13(6):661–669. https://doi.org/10.5194/npg-13-661-2006 Coggon, R.M., Rehkamper, M., Atteck, C., Teagle, D.A.H., Alt, J.C., and Cooper, M.J., 2014. Controls on thallium uptake during hydrothermal alteration of the upper ocean crust. Geochimica et Cosmochimica Acta, 144:25–42. https://doi.org/10.1016/j.gca.2014.09.001 Cowen, J.P., Copson, D.A., Jolly, J., Hsieh, C.-C., Lin, H.-T., Glazer, B.T., and Wheat, C.G., 2012. Advanced instrument system for real-time and time-series microbial geochemical sampling of the deep (basaltic) crustal biosphere. Deep Sea Research, Part I: Oceanographic Research Papers, 61:43–56. https://doi.org/10.1016/j.dsr.2011.11.004 Davis, E.E., LaBonte, A., He, J., Becker, K., and Fisher, A., 2010. Thermally stimulated “runaway” downhole flow in a superhydrostatic ocean crustal borehole: observations, simulations, and inferences regarding crustal permeability. Journal of Geophysical Research: Solid Earth, 115(B7):B07102. https://doi.org/10.1029/2009JB006986 de Jong, M.T., 2020. Constraining hydraulic properties in oceanic crust near the Juan de Fuca spreading center [PhD dissertation]. University of California, Santa Barbara, CA. https://escholarship.org/uc/item/4t19r519 Edwards, K.J., Fisher, A.T., and Wheat, C.G., 2012. The deep subsurface biosphere in igneous ocean crust: frontier habitats for microbiological exploration. Frontiers in Microbiology, 3:8. https://doi.org/10.3389/fmicb.2012.00008 Engelen, B., and Cypionka, H., 2009. The subsurface of tidal-flat sediments as a model for the deep biosphere. Frontiers in Microbiology, 59(2):385–391. https://doi.org/10.1007/s10236-008-0166-1 Engelen, B., and Imachi, H., 2014. Cultivation of subseafloor prokaryotic life. In Stein, R., Blackman, D., Inagaki, F., and Larsen, H.-C. (Eds.), Developments in Marine Geology (Volume 7): Earth and Life Processes Discovered from Subseafloor Environments: a Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein (Series Ed.). Amsterdam (Elsevier), 197–215. https://doi.org/10.1016/B978-0-444-62617-2.00008-6 Engelen, B., Ziegelmüller, K., Wolf, L., Köpke, B., Gittel, A., Cypionka, H., Treude, T., Nakagawa, S., Inagaki, F., Lever, M.A., and Steinsbu, B.O., 2008. Fluids from the oceanic crust support microbial activities within the deep biosphere. Geomicrobiology Journal, 25(1):56–66. https://doi.org/10.1080/01490450701829006 Fichtel, K., Logemann, J., Fichtel, J., Rullkötter, J., Cypionka, H., and Engelen, B., 2015. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface. Frontiers in Microbiology, 6:1078. https://doi.org/10.3389/fmicb.2015.01078 Fichtel, K., Mathes, F., Könneke, M., Cypionka, H., and Engelen, B., 2012. Isolation of sulfate-reducing bacteria from sediments above the deep-subseafloor aquifer. Frontiers in Microbiology, 3:65. https://doi.org/10.3389/fmicb.2012.00065 Fisher, A.T., Alt, J., and Bach, W., 2014. Hydrogeologic properties, processes, and alteration in the igneous ocean crust. In Stein, R., Blackman, D., Inagaki, F., and Larsen, H.-C. (Eds.), Developments in Marine Geology (Volume 7): Earth and Life Processes Discovered from Subseafloor Environments: A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein (Series Ed.). Amsterdam (Elsevier), 507–551. https://doi.org/10.1016/B978-0-444-62617-2.00018-9 Fisher, A.T., Davis, E.E., and Becker, K., 2008. Borehole-to-borehole hydrologic response across 2.4 km in the upper oceanic crust; implications for crustal-scale properties. Journal of Geophysical Research: Solid Earth, 113. https://doi.org/10.1029/2007JB005447 Futagami, T., Morono, Y., Terada, T., Kaksonen, A.H., and Inagaki, F., 2009. Dehalogenation activities and distribution of reductive dehalogenase homologous genes in marine subsurface sediments. Applied and Environmental Microbiology, 75(21):6905–6909. https://doi.org/10.1128/AEM.01124-09 Goldberg, D.S., Takahashi, T., and Slagle, A.L., 2008. Carbon dioxide sequestration in deep-sea basalt. Proceedings of the National Academy of Sciences of the United States of America, 105(29):9920–9925. https://doi.org/10.1073/pnas.0804397105 Goto, S., and Matsubayashi, O., 2008. Inversion of needle-probe data for sediment thermal properties of the eastern flank of the Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 113. https://doi.org/10.1029/2007JB005119 Goto, S., and Matsubayashi, O., 2009. Relations between the thermal properties and porosity of sediments in the eastern flank of the Juan de Fuca Ridge. Earth, Planets and Space, 61(7):863–870. https://doi.org/10.1186/BF03353197 Heuer, V., Elvert, M., Tille, S., Krummen, M., Mollar, X.P., Hmelo, L.R., and Hinrichs, K.-U., 2006. Online δ13C analysis of volatile fatty acids in sediment/porewater systems by liquid chromatography-isotope ratio-mass spectrometry. Limnology and Oceanography: Methods, 4(10):346–357. https://doi.org/10.4319/lom.2006.4.346 Hoshino, T., Doi, H., Uramoto, G.-I., Wörmer, L., Adhikari, R.R., Xiao, N., Morono, Y., D’Hondt, S., Hinrichs, K.-U., and Inagaki, F., 2020. Global diversity of microbial communities in marine sediment. Proceedings of the National Academy of Sciences of the United States of America, 117(44):27587–27597. https://doi.org/10.1073/pnas.1919139117 Hoshino, T., and Inagaki, F., 2017. Distribution of anaerobic carbon monoxide dehydrogenase genes in deep subseafloor sediments. Letters in Applied Microbiology, 64(5):355–363. https://doi.org/10.1111/lam.12727 Hoshino, T., and Inagaki, F., 2024. Distribution of eukaryotic environmental DNA in global subseafloor sediments. Progress in Earth and Planetary Science, 11(1):19. https://doi.org/10.1186/s40645-024-00621-2 Hoshino, T., Toki, T., Ijiri, A., Morono, Y., Machiyama, H., Ashi, J., Okamura, K., and Inagaki, F., 2017. Atribacteria from the subseafloor sedimentary biosphere disperse to the hydrosphere through submarine mud volcanoes. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01135 Hulme, S.M., 2010. The birth and death of the oceanic lithosphere: Geochemical and tectonic investigations of the Juan de Fuca Ridge and Mariana Trench. https://ui.adsabs.harvard.edu/abs/2010PhDT.......245H Hutnak, M., and Fisher, A.T., 2007. Influence of sedimentation, local and regional hydrothermal circulation, and thermal rebound on measurements of seafloor heat flux. Journal of Geophysical Research Solid Earth, 112(B12):B12101. https://doi.org/10.1029/2007JB005022 Hutnak, M., Fisher, A.T., Zühlsdorff, L., Spiess, V., Stauffer, P.H., and Gable, C.W., 2006. Hydrothermal recharge and discharge guided by basement outcrops on 0.7-3.6 Ma seafloor east of the Juan de Fuca Ridge: observation and numerical models. Geochemistry, Geophysics, Geosystems, 7(7):Q07O02. https://doi.org/10.1029/2006GC001242 Ildefonse, B., Abe, N., Godard, M., Morris, A., Teagle, D.A.H., and Umino, S., 2014. Formation and evolution of oceanic lithosphere: new insights on crustal structure and igneous geochemistry from ODP/IODP Sites 1256, U1309, and U1415. In Stein, R., Blackman, D.K., Inagaki, F., and Larsen, H.-C. (Eds.), Earth and Life Processes Discovered from Subseafloor Environments: A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein (Series Ed.). Developments in Marine Geology, 7: New York (Elsevier), 449–505. https://doi.org/10.1016/B978-0-444-62617-2.00017-7 Jungbluth, S.P., 2014. Microbial ecology in the sediment-covered ocean basement of the Juan de Fuca Ridge [PhD dissertation]. University of Hawaii at Manoa, Honolulu, HI. https://www.proquest.com/docview/1673159073 Jungbluth, S.P., Grote, J., Lin, H.-T., Cowen, J.P., and Rappé, M.S., 2013. Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank. The ISME Journal, 7(1):161–172. https://doi.org/10.1038/ismej.2012.73 Jungbluth, S.P., Lin, H.-T., Cowen, J.P., Glazer, B.T., and Rappe, M.S., 2014. Phylogenetic diversity of microorganisms in subseafloor crustal fluids from Holes 1025C and 1026B along the Juan de Fuca Ridge flank. Frontiers in Microbiology, 5:119. https://doi.org/10.3389/fmicb.2014.00119 Kaster, A.-K., Mayer-Blackwell, K., Pasarelli, B., and Spormann, A.M., 2014. Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian margin. The ISME Journal, 8(9):1831–1842. https://doi.org/10.1038/ismej.2014.24 Kenig, F., Simons, D.-J.H., Crich, D., Cowen, J.P., Ventura, G.T., Rehbein-Khalily, T., Brown, T.C., and Anderson, K.B., 2003. Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples. Proceedings of the National Academy of Sciences of the United States of America, 100(22):12554–12558. https://doi.org/10.1073/pnas.1735581100 Kiyokawa, S., and Yokoyama, K., 2009. Provenance of turbidite sands from IODP EXP 1301 in the northwestern Cascadia Basin, western North America. Marine Geology, 260(1–4):19–29. https://doi.org/10.1016/j.margeo.2009.01.003 LaRowe, D., and Amend, J., 2014. Energetic constraints on life in marine deep sediments. In Kallmeyer, J., and Wagner, D. (Eds.), Microbial Life of the Deep Biosphere. Berlin, Boston (De Gruyter), 279–302. https://doi.org/10.1515/9783110300130.279 Lever, M.A., 2008. Anaerobic carbon cycling pathways in the subseafloor investigated via functional genes, chemical gradients, stable carbon isotopes, and thermodynamic calculations [PhD dissertation]. The University of North Carolina at Chapel Hill, NC. https://www.proquest.com/docview/304530841 Lever, M.A., 2013. Functional gene surveys from ocean drilling expeditions—a review and perspective. FEMS Microbiology Ecology, 84(1):1–23. https://doi.org/10.1111/1574-6941.12051 Lever, M.A., Rouxel, Olivier, Alt, Jeffrey C., Shimizu, Nobumichi, Ono, Shuhei, Coggon, Rosalind M., Shanks, Wayne C., III, Lapham, Laura, Elvert, Marcus, Prieto-Mollar, Xavier, Hinrichs, Kaiwe-Uwe, Inagaki, Fumio, and Teske, Andreas, 2013. Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt. Science, 339(6125):1305–1308. https://doi.org/10.1126/science.1229240 Lever, M.A., Alperin, M., Engelen, B., Inagaki, F., Nakagawa, S., Steinsbu, B.O., and Teske, A., 2006. Trends in basalt and sediment core contamination during IODP Expedition 301. Geomicrobiology Journal, 23(7):517–530. https://doi.org/10.1080/01490450600897245 Lever, M.A., Heuer, V.B., Morono, Y., Masui, N., Schmidt, F., Alperin, M.J., Inagaki, F., Hinrichs, K.-U., and Teske, A., 2010. Acetogenesis in deep subseafloor sediments of the Juan de Fuca Ridge flank: a synthesis of geochemical, thermodynamic, and gene-based evidence. Geomicrobiology Journal, 27(2):183–211. https://doi.org/10.1080/01490450903456681 Lin, H.T., 2013. Biogeochemistry of basement fluids from the sediment-buried Juan de Fuca Ridge flanks [PhD dissertation]. University of Hawaii at Manoa, Honolulu, HI. https://www.proquest.com/docview/1468444976 Lin, H.-T., Amend, J.P., LaRowe, D.E., Bingham, J.-P., and Cowen, J.P., 2015. Dissolved amino acids in oceanic basaltic basement fluids. Geochimica et Cosmochimica Acta, 164:175–190. https://doi.org/10.1016/j.gca.2015.04.044 Lin, H.-T., Cowen, J.P., Olson, E.J., Amend, J.P., and Lilley, M.D., 2012. Inorganic chemistry, gas compositions and dissolved organic carbon in fluids from sedimented young basaltic crust on the Juan de Fuca Ridge flanks. Geochimica et Cosmochimica Acta, 85:213–227. https://doi.org/10.1016/j.gca.2012.02.017 Lipp, J.S., and Hinrichs, K.-U., 2009. Structural diversity and fate of intact polar lipids in marine sediments. Geochimica et Cosmochimica Acta, 73(22):6816–6833. https://doi.org/10.1016/j.gca.2009.08.003 Lipp, J.S., Morono, Y., Inagaki, F., and Hinrichs, K.-U., 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454(7207):991–994. https://doi.org/10.1038/nature07174 Louis, E., 2023. Investigating suitable geochemical tracers for monitoring CO2 sequestration in offshore deep-sea basalt in the Cascadia Basin [MS thesis]. University of Victoria, Victoria, BC. http://hdl.handle.net/1828/15322 Lu, G.-S., LaRowe, D.E., and Amend, J.P., 2021. Bioenergetic potentials in terrestrial, shallow-sea and deep-sea hydrothermal systems. Chemical Geology, 583:120449. https://doi.org/10.1016/j.chemgeo.2021.120449 McCarthy, M.D., Beaupre, S.R., Walker, B.D., Voparil, I., Guilderson, T.P., and Druffel, E.R.M., 2011. Chemosynthetic origin of 14C-depleted dissolved organic matter in a ridge-flank hydrothermal system. Nature Geoscience, 4(1):32–36. https://doi.org/10.1038/ngeo1015 Metze, F., Vollmers, J., Lenk, F., and Kaster, A.-K., 2023. First shotgun metagenomics study of Juan de Fuca deep-sea sediments reveals distinct microbial communities above, within, between, and below sulfate methane transition zones. Frontiers in Microbiology, 14:1241810. https://doi.org/10.3389/fmicb.2023.1241810 Nakagawa, S., Inagaki, F., Suzuki, Y., Steinsbu, B.O., Lever, M.A., Takai, K., Engelen, B., Sako, Y., Wheat, C.G., and Horikoshi, K., 2006. Microbial community in black rust exposed to hot ridge flank crustal fluids. Applied and Environmental Microbiology, 72(10):6789–6799. https://doi.org/10.1128/AEM.01238-06 Nielsen, M.E., and Fisk, M.R., 2010. Surface area measurements of marine basalts: implications for the subseafloor microbial biomass. Geophysical Research Letters, 37(15):L15604. https://doi.org/10.1029/2010GL044074 Nielsen, S.G., Rehkämper, M., and Prytulak, J., 2017. Investigation and application of thallium isotope fractionation. Reviews in Mineralogy and Geochemistry, 82(1):759–798. https://doi.org/10.2138/rmg.2017.82.18 Orcutt, B., Wheat, C.G., and Edwards, K.J., 2010. Subseafloor ocean crust microbial observatories: development of FLOCS (FLow-through Osmo Colonization System) and evaluation of borehole construction materials. Geomicrobiology Journal, 27(2):143–157. https://doi.org/10.1080/01490450903456772 Orcutt, B.N., Bach, W., Becker, K., Fisher, A.T., Hentscher, M., Toner, B.M., Wheat, C.G., and Edwards, K.J., 2011. Colonization of subsurface microbial observatories deployed in young ocean crust. The ISME Journal, 5(4):692–703. https://doi.org/10.1038/ismej.2010.157 Orcutt, B.N., and Edwards, K.J., 2014. Life in the ocean crust: lessons from subseafloor laboratories. In Stein, R., Blackman, D.K., Inagaki, F., and Larsen, H.-C. (Eds.), Developments in Marine Geology (Volume 7): Earth and Life Processes Discovered from Subseafloor Environments: A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein (Series Ed.). Amsterdam (Elsevier), 175–196. https://doi.org/10.1016/B978-0-444-62617-2.00007-4 Prokopenko, M.G., 2004. Fractionation of nitrogen isotopes during early diagenesis [PhD dissertation]. University of Southern California, Los Angeles, CA. http://digitallibrary.usc.edu/cdm/ref/collection/p15799coll16/id/422548 Rabinovich, A., Stroker, K., Thomson, R., and Davis, E., 2011. DARTs and CORK in Cascadia Basin: high-resolution observations of the 2004 Sumatra tsunami in the northeast Pacific. Geophysical Research Letters, 38(8):L08607. https://doi.org/10.1029/2011GL047026 Robador, A., Jungbluth, S.P., LaRowe, D.E., Bowers, R.M., Rappe, M.S., Amend, J.P., and Cowen, J.P., 2015. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust. Frontiers in Microbiology, 5:748. https://doi.org/10.3389/fmicb.2014.00748 Schrenk, M.O., Huber, J.A., and Edwards, K.J., 2010. Microbial provinces in the subseafloor. Annual Review of Marine Science, 2(Volume 2, 2010):279–304. https://doi.org/10.1146/annurev-marine-120308-081000 Smith, A., Popa, R., Fisk, M.R., Nielsen, M.E., Wheat, C.G., Jannasch, H.W., Fisher, A.T., Becker, K., Sievert, S.M., and Flores, G., 2011. In situ enrichment of ocean crust microbes on igneous minerals and glasses using an osmotic flow-through device. Geochemistry, Geophysics, Geosystems, 12(6):Q06007. https://doi.org/10.1029/2010GC003424 Smith, A.R., 2011. Subsurface igneous mineral microbiology: iron-oxidizing organotrophs on olivine surfaces and the significance of mineral heterogeneity in basalts [MS thesis]. Portland State University, Portland, OR. http://pdxscholar.library.pdx.edu/open_access_etds/294/ Smith, A.R., 2017. Impact of igneous mineralogy on the composition and metabolic function of microbial biofilms in a thermal suboceanic crustal aquifer [PhD dissertation]. Oregon State University, Corvallis, OR. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/47429g06d Smith, A.R., Fisk, M.R., Thurber, A.R., Flores, G.E., Mason, O.U., Popa, R., and Colwell, F.S., 2017. Deep crustal communities of the Juan de Fuca Ridge are governed by mineralogy. Geomicrobiology Journal, 34(2):147–156. https://doi.org/10.1080/01490451.2016.1155001 Smith, A.R., Kieft, B., Mueller, R., Fisk, M.R., Mason, O.U., Popa, R., and Colwell, F.S., 2019. Carbon fixation and energy metabolisms of a subseafloor olivine biofilm. The ISME Journal, 13(7):1737–1749. https://doi.org/10.1038/s41396-019-0385-0 Stanislowski, K., Roesner, A., and Ikari, M.J., 2022. Implications for megathrust slip behavior and pore pressure at the shallow northern Cascadia subduction zone from laboratory friction experiments. Earth and Planetary Science Letters, 578:117297. https://doi.org/10.1016/j.epsl.2021.117297 Steinsbu, B.O., Thorseth, I.H., Nakagawa, S., Inagaki, F., Lever, M.A., Engelen, B., Ovreas, L., and Pedersen, R.B., 2010. Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. International Journal of Systematic and Evolutionary Microbiology, 60(12):2745–2752. http://doi.org/10.1099/ijs.0.016105-0 Tsuji, T., and Iturrino, G.J., 2008. Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: the effect of crack closure on seismic velocity. Exploration Geophysics, 39(1):41–51. https://doi.org/10.1071/EG08001 Tsuji, T., Yamaguchi, H., Ishii, T., and Matsuoka, T., 2010. Mineral classification from quantitative X-ray maps using neural network: application to volcanic rocks. Island Arc, 19(1):105–119. https://doi.org/10.1111/j.1440-1738.2009.00682.x Walker, B.D., McCarthy, M.D., Fisher, A.T., and Guilderson, T.P., 2008. Dissolved inorganic carbon isotopic composition of low-temperature axial and ridge-flank hydrothermal fluids of the Juan de Fuca Ridge. Marine Chemistry, 108(1–2):123–136. https://doi.org/10.1016/j.marchem.2007.11.002 Wang, F., Lu, S., Orcutt, B.N., Xie, W., Chen, Y., Xiao, X., and Edwards, K.J., 2013. Discovering the roles of subsurface microorganisms: progress and future of deep biosphere investigation. Chinese Science Bulletin, 58(4):456–467. https://doi.org/10.1007/s11434-012-5358-x Wheat, C.G., Jannasch, H.W., Fisher, A.T., Becker, K., Sharkey, J., and Hulme, S., 2010. Subseafloor seawater-basalt-microbe reactions; continuous sampling of borehole fluids in a ridge flank environment. Geochemistry, Geophysics, Geosystems, 11(7):Q07011. https://doi.org/10.1029/2010GC003057 Wheat, C.G., and McManus, J., 2008. Germanium in mid-ocean ridge flank hydrothermal fluids. Geochemistry, Geophysics, Geosystems, 9(3):Q03025. https://doi.org/10.1029/2007GC001892 Winslow, D.M., Fisher, A.T., Stauffer, P.H., Gable, C.W., and Zyvoloski, G.A., 2016. Three-dimensional modeling of outcrop-to-outcrop hydrothermal circulation on the eastern flank of the Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 121(3):1365–1382. https://doi.org/10.1002/2015JB012606 ConferencesBartetzko, A.C., Iturrino, G.J., Tsuji, T., and Fisher, A.T., 2005. Volcanic architecture and hydrogeology at the Juan de Fuca Ridge—first results from downhole logging in Hole U1301B (IODP Expedition 301). Eos, Transactions of the American Geophysical Union, 86:T33A–0509. https://abstractsearch.agu.org/ Becker, K., Davis, E.E., and Fisher, A.T., 2005. Latest results of formation pressure monitoring using CORKs penetrating upper basement on the eastern flank of the Juan de Fuca Ridge. Eos, Transactions of the American Geophysical Union, 86:T33A–0511. https://abstractsearch.agu.org/ Becker, K., Fisher, A., Tsuji, T., Mrozewski, S., Winslow, D., and Expedition 327 Scientists, 2010. IODP packer experiments in young Juan de Fuca crust suggest lateral continuity of hydrological structure on ridge-parallel scale of ~1 km. Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ Cowen, J.P., Glazer, B., Rappé, M., Kenig, F., Fisher, A., Copson, D., Harris, D., Jolly, J., and Nuzzio, D., 2005. Improved access to aging ocean basement biosphere for microbial geochemical studies. Eos, Transactions of the American Geophysical Union, 86(52):T33A–0524. https://abstractsearch.agu.org/ Cowen, J.P., Glazer, B., Rappé, M., Lin, H.T., Matsumoto, R., Matzinger, M., Mojica, K., Nakata, L., Ricardo, A., Youngbluth, S., Albert, D., and Amend, J., 2008. The biogeochemistry and ecology of deep sediment-buried basement biosphere: Juan de Fuca Ridge flanks. Eos, Transactions of the American Geophysical Union, 89(53):B51F–02. https://abstractsearch.agu.org/ Cowen, J.P., Lin, H., Rappé, M., Jungbluth, S., Glazer, B.T., Matzinger, M., Amend, J.P., and Boettger, J., 2010. Window into sediment-buried basement biosphere: fluid sampling from CORK observatory seafloor platforms, Juan de Fuca Ridge flanks. Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ Cowen, J.P., Lin, H., Rappe, M., Junbgluth, S., Glazer, B.T., and Matzinger, M., 2010. New developments in the collection of high integrity fluid samples from the deep subseafloor basement (basaltic crust) aquifer for geochemical and microbial ecological studies. Eos, Transactions of the American Geophysical Union, 91(26):IT45G–03. https://abstractsearch.agu.org/ Cowen, J.P., Lin, H., Jungbluth, S., Hsieh, C., Rappe, M., Glazer, B.T., Matzinger, M., Becker, K., Fisher, A.T., Amend, J.P., and Johnson, H.P., 2011. 1997 to Present: quality and versatile access to the deep biosphere with coupled advanced CORKs and fluid pumping systems. Presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011. https://abstractsearch.agu.org/ Cowen, J.P., Hsieh, C., Guss, J., Fisher, A.T., Lin, H., Lark, J.F., and Wheat, C.G., 2012. Time-series geochemical and tracer injection recovery data from the deep (basaltic) crustal fluids from IODP Holes 1301A/1362B on the eastern flank of Juan de Fuca Ridge. Presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012. https://abstractsearch.agu.org/ Engelen, B., Wolf, L., Cypionka, H., and the IODP Expedition 301 Scientific Party, 2005. Microbial activities along the sediment column of the Juan de Fuca Ridge (IODP Site U1301). Presented at the 2005 Subsurface Microbiology and Environmental Biogeochemistry Joint International Symposia, Jackson Hole, WY, 14–19 August 2005. Engelen, B., Ziegelmüller, K., Mathes, F., Wolf, L., and Cypionka, H., 2006. Influence of fluids from the ocean crust on growth and activity of deep-biosphere populations (IODP Expedition 301). Presented at the 2006 IODP/ICDP Kolloquium, Greifswald, Germany, 27–29 March 2006. Engelen, B., Ziegelmüller, K., Batzke, A., Wilms, R., Köpke, B., Sass, H., and Cypionka, H., 2006. The subsurface of tidal-flat sediments as a model for the deep biosphere [poster presented at the IODP Subseafloor Life Workshop. Presented at the 2006 IODP Subseafloor Life Workshop, Vancouver, Canada, 3–5 October 2006. Engelen, B., Ziegelmüller, K., Batzke, A., Wilms, R., Köpke, B., Sass, H., and Cypionka, H., 2007. The subsurface of tidal-flat sediments as a model for the deep biosphere. Presented at the 2007 Association for General and Applied Microbiology Annual Conference, Osnabrück, Germany. Fisher, A.T., Wheat, C.G., Becker, K., Davis, E., Jannasch, H., Hulme, S., Nielsen, M., Schroeder, D., Dixon, R., Urabe, T., Klaus, A., Pettigrew, T., Macdonald, R., Meldrum, R., Fisk, M., Cowen, J., Bach, W., and the Expedition 301 Scientific Party, 2004. A three-dimensional subseafloor observatory network for cross-hole, hydrogeologic experiments established in the northeast Pacific Ocean. Eos, Transactions of the American Geophysical Union, 85(52):OS43B-0547. https://abstractsearch.agu.org/ Fisher, A.T., and Becker, K., 2005. Packer experiments during IODP Expedition 301 to assess upper crustal permeabilities in 3.4 Ma crust on the eastern flank of the Juan de Fuca Ridge. Eos, Transactions of the American Geophysical Union, 86(52):T33A–0510. https://abstractsearch.agu.org/ Fisher, A.T., Becker, K., and Davis, E.E., 2006. Single and cross-hole experiments indicate very high permeability in young ocean crust. Eos, Transactions of the American Geophysical Union, 87(52):V31E–03. https://abstractsearch.agu.org/ Fisher, A.T., Neira, N.M., Wheat, C.G., Clark, J.F., Becker, K., Hsieh, C.C., and Rappe, M.S., 2014. A cross-hole, multi-year tracer injection experiment in the volcanic ocean crust. Presented at the 2014 American Geophysical Union Fall Meeting, Washington, DC, 15–19 December 2014. https://abstractsearch.agu.org/ Girguis, P.R., Robidart, J., and Wheat, G., 2008. The BOSS: a novel approach to coupling temporal changes in geochemistry and microbiology in the deep subsurface biosphere. Eos, Transactions of the American Geophysical Union, 89(53):B51F–03. https://abstractsearch.agu.org/ Glazer, B.T., Cowen, J.P., Rappe, M.S., Matzinger, M., and Ricardo, A., 2008. Real-time detection of redox species in basement fluids accessed through IODP CORK observatories. Eos, Transactions of the American Geophysical Union, 89(53):B53C–0504. https://abstractsearch.agu.org/ Goldberg, D., Matter, J., Takahashi, T., and Mutter, J.C., 2005. Ridge flank crustal systems: potential for permanent sequestration of anthropogenic carbon dioxide on the Juan de Fuca plate. Eos, Transactions of the American Geophysical Union, 86(52):T33A–0527. https://abstractsearch.agu.org/ Goto, S., and Matsubayashi, O., 2006. Thermal properties of marine sediments recovered from eastern flank of the Juan de Fuca Ridge. Eos, Transactions of the American Geophysical Union, 87(52):T53B–1609. https://abstractsearch.agu.org/ Hawkins, L.K., Housen, B.A., Sager, W.W., and Expedition 301 Scientific Party, 2004. Undergraduate student research with the Integrated Ocean Drilling Program on Expedition 301. Eos, Transactions of the American Geophysical Union, 85:ED41C–05. https://abstractsearch.agu.org/ Heuer, V., Elvert, M., Prieto Mollar, X., Hmelo, L.R., Krummen, M., and Hinrichs, K.-U., 2005. Carbon isotopic compositions of volatile fatty acids in sediment/pore-water systems measured by isotope-ratio-monitoring liquid chromatograhy/mass spectrometry. Geophysical Research Abstracts, 7(08293). https://www.cosis.net/ Heuer, V., Tille, S., Finke, N., Elvert, M., and Hinrichs, K.-U., 2006. Carbon isotopic compositions of volatile fatty acids in sediment/pore-water systems measured by isotope-ratio-monitoring liquid chromatography/mass spectrometry. Geophysical Research Abstracts, 8(07052). https://www.cosis.net/ Heuer, V., Elvert, M., Tille, S., Finke, N., and Hinrichs, K.-U., 2006. Carbon isotopic compositions of volatile fatty acids as proxies for biogeochemical processes in the deep marine biosphere. Presented at the 2006 IODP/ICDP Kolloquium, Greifswald, Germany, 27–29 March 2006. Heuer, V., Pohlman, J., Torres, M.E., Elvert, M., and Hinrichs, K.-U., 2008. Biogeochemistry of acetate in the deep marine biosphere—new insights from stable carbon isotopic investigations. Presented at the 2008 Gordon Research Conference on Organic Geochemistry, Holderness, NH, 3–8 August 2008. Hulme, S., and Wheat, C.G., 2010. Fluid and chemical fluxes along a buried-basement ridge in the eastern Juan de Fuca Ridge flank. Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ Hulme, S.M., 2005. Insights of ridge-flank hydrothermal processes through minor and trace element geochemistry of sediment pore fluids from IODP Site 1301. Eos, Transactions of the American Geophysical Union, 86(52):T33A–0520. https://abstractsearch.agu.org/ Inderbitzen, K.E., Becker, K., Davis, E.E., Hulme, S., and Wheat, C.G., 2010. Middle Valley in perspective: new outlooks from changes in local hydrothermal venting. Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ Jungbluth, S., Bowers, R., Lin, H., Hseih, C., Cowen, J.P., and Rappé, M., 2012. Microbial diversity within Juan de Fuca ridge basement fluids sampled from oceanic borehole observatories. Presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012. https://abstractsearch.agu.org/ Jungbluth, S., Bowers, R.M., Lin, H., Hsieh, C., Cowen, J.P., and Rappe, M.S., 2013. Subsurface fluids from basement basalt of the Juan de Fuca Ridge possess microbial communities that are distinct from overlying sediments and surrounding seawater. Presented at the 2013 American Geophysical Union Fall Meeting, San Francisco, CA, 9–13 December 2013. https://abstractsearch.agu.org/ Lin, H., Cowen, J.P., Butterfield, D.A., Embley, R.W., and Resing, J., 2009. Dissolved organic carbon distribution in two hydrothermal systems—west Mata, NE Lau Basin during an eruption event and basement fluids form sediment-buried Juan de Fuca Ridge flanks. Eos, Transactions of the American Geophysical Union, 90(52):B21D–06. https://abstractsearch.agu.org/ Lin, H., Cowen, J.P., Olson, E.J., Lilley, M.D., Jungbluth, S., Rappé, M., and Bowers, R., 2012. Biogeochemistry of dissolved methane and hydrogen within basement fluids of the sediment-buried Juan de Fuca Ridge flank at Borehole (CORKs) 1301A, 1362A and 1362B. Presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012. https://abstractsearch.agu.org/ Lin, W., Cowen, J.P., Amend, J.P., Albert, D.B., Glazer, B.T., Rappe, M., Jungbluth, S., and Matzinger, M., 2010. Organic chemistry of fluids from sediment-buried young basement: discrete sampling from ODP borehole 1301A & 1025C. Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ Linville, L.M., Housen, B., and Sager, W., 2005. Effects of hydrothermal alteration on the magnetic mineralogy of mid-ocean ridge basalts, IODP Site 1301B, Juan de Fuca Ridge. Eos, Transactions of the American Geophysical Union, 86(52):OS43B–0547. https://abstractsearch.agu.org/ Mark, N.E., Reimers, C.E., and Given, H.K., 2006. Drilling for success: the Integrated Ocean Drilling Program as an opportunity for young scientists. Eos, Transactions of the American Geophysical Union, 87(36):OS43E–04. https://abstractsearch.agu.org/ Moran, K., 2007. SCIMPI: A new seafloor observatory system. Eos, Transactions of the American Geophysical Union, 88(52):OS34A–01. https://abstractsearch.agu.org/ Nakagawa, S., Inagaki, F., Suzuki, Y., Takai, K., and Horikoshi, K., 2005. Unique thermophiles supported by the ocean crustal fluids exiting from a borehole in the eastern flank of Juan de Fuca Ridge. Eos, Transactions of the American Geophysical Union, 86(52):T33A–0523. https://abstractsearch.agu.org/ Orcutt, B.N., Bach, W., Becker, K., Fisher, A.T., Hulme, S., Toner, B.M., Wheat, C.G., Edwards, K.J., and the IODP Expedition 327 Shipboard Party, 2010 American Geophysical Union Fall Meeting. Microbial borehole observatories deployed within the oceanic crust: design considerations and initial results from long-term colonization experiments. Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ Rappé, M., Jungbluth, S., Lin, H., and Cowen, J.P., 2010. Microbial inhabitants of basalt-hosted fluids of the deep ocean crust. Presented at the 2010 American Geophysical Union Ocean Sciences Meeting, Portland, OR, 22–26 February 2010. https://abstractsearch.agu.org/ Rice, J., Iturrino, G.J., and Klaus, A., 2004. Experiences and results from the Integrated Ocean Drilling Program (IODP) Teacher at Sea Program, Expedition 301. Eos, Transactions of the American Geophysical Union, 85:ED21C–0077. https://abstractsearch.agu.org/ Robador, A., and Cowen, J.P., 2011. Microbial sulfate reduction in basaltic fluids on the flanks of Juan de Fuca Ridge. Presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011. https://abstractsearch.agu.org/ Sakaguchi, M., Kiyokawa, S., and Ishizuka, H., 2005. Hydrothermal alteration and bulk rock chemistry of basaltic rocks in the eastern flank of Juan de Fuca Ridge, IODP Expedition 301. Eos, Transactions of the American Geophysical Union, 86(52):T33A–0519. https://abstractsearch.agu.org/ Shimizu, N., and Mandeville, C.W., 2009. Deep sulfur cycle. Eos, Transactions of the American Geophysical Union, 90(52):V44C–09. https://abstractsearch.agu.org/ Smith, A., Popa, R., Fisk, M., Nielsen, M., Wheat, G., Jannasch, H., Fisher, A., and Sievert, S., 2008. Sub-seafloor microbial colonization of igneous minerals and glasses. Eos, Transactions of the American Geophysical Union, 89:B53C–0506. https://abstractsearch.agu.org/ Smith, A., Colwell, F.S., Popa, R., and Fisk, M.R., 2012. Variability in microbial communities attached to minerals and glasses incubated in young ocean crust. Presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012. https://abstractsearch.agu.org/ Tsujii, T., Iturrino, G.J., Kono, F., Saeki, T., Tokuyama, H., and IODP Expedition 301 Scientific Party, 2005. Acoustic properties from discrete measurements and downhole logging of the eastern flank of the Juan de Fuca Ridge (IODP Expedition 301). Presented at the 2005 Joint Meeting for Earth and Planetary Science, Chiba, Japan, 22–26 May 2005. Wheat, C.G., Hulme, S., Mottl, M.J., Fisher, A.T., and Davis, E.E., 2011. Geochemical constraints for plate scale subseafloor fluid circulation: the eastern flank of the Juan de Fuca Ridge. Presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011. https://abstractsearch.agu.org/ Wheat, C.G., Fisher, A.T., Hulme, S., Becker, K., Villinger, H.W., Bach, W., and Edwards, K.J., 2012. Plate scale sub-seafloor fluid circulation: the tale of two endmembers, Juan de Fuca Ridge and North Pond. Presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012. https://abstractsearch.agu.org/ Winslow, D.M., Fisher, A.T., and Becker, K., 2010. Application of an iterative analytical model for determining formation permeability from temperature data in subseafloor boreholes. Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ Ziegelmueller, K., Niebuhr, M., Cypionka, H., and Engelen, B., 2007. Influence of hydrothermal crustal fluids on deep-biosphere populations. Geochimica Cosmochimica Acta, (15S):A1175. https://goldschmidt.info/ Ziegelmüller, K., Mathes, F., Engelen, B., and Cypionka, H., 2006. Linking geochemical profiles and microbial activities along the sediment column of the Juan de Fuca Ridge (IODP Site U1301). Presented at the 2006 Association for General and Applied Microbiology Annual Conference, Jena, Germany, 19–22 March 2006. Ziegelmüller, K., Cypionka, H., and Engelen, B., 2007. Hydrothermal fluids from the oceanic crust stimulate metabolic activities of deep-biosphere populations. Presented at the 2007 Association for General and Applied Microbiology Annual Conference, Osnabrück, Germany, 1–4 April 2007. Ziegelmüller, K., Cypionka, H., and Engelen, B., 2007. Hydrothermal fluids from the oceanic crust stimulate metabolic activities of deep-biosphere populations (IODP Leg 301). Presented at the 2007 IODP/ICDP Kolloquium, Potsdam, Germany, 19–21 March 2007. *The Expedition-related bibliography is continually updated online. Please send updates to PubCrd@iodp.tamu.edu. |