IODP Proceedings Volume contents Search | |||
Expedition reports Research results Supplementary material Drilling maps Expedition bibliography | |||
Previous | Next Expedition-related bibliography*Citation data for IODP publications and journal articles in RIS format IODP publicationsScientific ProspectusBackman, J., Moran, K., Evans, D., and the Expedition 302 Project Team, 2004. ACEX—Arctic Coring Expedition: paleoceanographic and tectonic evolution of the central Arctic Ocean. IODP Sci. Prosp., 302. doi:10.2204/iodp.sp.302.2004 Preliminary ReportExpedition 302 Scientists, 2005. Arctic Coring Expedition (ACEX): paleoceanographic and tectonic evolution of the central Arctic Ocean. IODP Prel. Rept., 302. doi:10.2204/iodp.pr.302.2005 Scientific Drilling journalBackman, J., Moran, K., McInroy, D., and the IODP Expedition 302 Scientists, 2005. IODP Expedition 302, Arctic Coring Expedition (ACEX): a first look at the Cenozoic paleoceanography of the central Arctic Ocean. Sci. Drill., 1:12–17. doi:10.2204/iodp.sd.1.02.2005 Dickens, G.R., Koelling, M., Smith, D.C., Schnieders, L., and the IODP Expedition 302 Scientists, 2007. Rhizon sampling of pore waters on scientific drilling expeditions: an example from the IODP Expedition 302, Arctic Coring Expedition (ACEX). Sci. Drill., 4:22–25. doi:10.2204/iodp.sd.4.08.2007 Sakamoto, T., Kuroki, K., Sugawara, T., Aoike, K., Iijima, K., and Sugisaki, S., 2006. Non-destructive X-ray fluorescence (XRF) core-imaging scanner, TATSCAN-F2. Scientific Drilling, 2:37–39. https://doi.org/10.5194/sd-2-37-2006 Proceedings volumeBackman, J., Moran, K., McInroy, D.B., Mayer, L.A., and the Expedition 302 Scientists, 2006. Proc. IODP, 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.302.2006 Expedition reportsExpedition 302 Scientists, 2006. Expedition 302 summary. In Backman, J., Moran, K., McInroy, D.B., Mayer, L.A., and the Expedition 302 Scientists, Proc. IODP, 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.302.101.2006 Jakobsson, M., Flodén, T., and the Expedition 302 Scientists, 2006. Expedition 302 geophysics: integrating past data with new results. In Backman, J., Moran, K., McInroy, D.B., Mayer, L.A., and the Expedition 302 Scientists, Proc. IODP, 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.302.102.2006 Expedition 302 Scientists, 2006. Methods. In Backman, J., Moran, K., McInroy, D.B., Mayer, L.A., and the Expedition 302 Scientists, Proc. IODP, 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.302.103.2006 Expedition 302 Scientists, 2006. Sites M0001–M0004. In Backman, J., Moran, K., McInroy, D.B., Mayer, L.A., and the Expedition 302 Scientists, Proc. IODP, 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.302.104.2006 Moore, T.C., and the Expedition 302 Scientists, 2006. Sedimentation and subsidence history of the Lomonosov Ridge. In Backman, J., Moran, K., McInroy, D.B., Mayer, L.A., and the Expedition 302 Scientists, Proc. IODP, 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.302.105.2006 Moran, K., Backman, J., and Farrell, J.W., 2006. Deepwater drilling in the Arctic Ocean's permanent sea ice. In Backman, J., Moran, K., McInroy, D.B., Mayer, L.A., and the Expedition 302 Scientists, Proc. IODP, 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.302.106.2006 Expedition research resultsO’Regan, M., 2008. Data report: high-resolution bulk density, dry density, and porosity records from the Arctic Coring Expedition, IODP Expedition 302. In Backman, J., Moran, K., McInroy, D.B., Mayer, L.A., and the Expedition 302 Scientists, Proc. IODP, 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.302.201.2008 O’Regan, M., Sakamoto, T., and King, J., 2008. Data report: regional stratigraphic correlation and a revised composite depth scale for IODP Expedition 302. In Backman, J., Moran, K., McInroy, D.B., Mayer, L.A., and the Expedition 302 Scientists, Proc. IODP, 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.302.202.2008 Vogt, C., 2009. Data report: semiquantitative determination of detrital input to ACEX sites based on bulk sample X-ray diffraction data. In Backman, J., Moran, K., McInroy, D.B., Mayer, L.A., and the Expedition 302 Scientists, Proc. IODP, 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.302.203.2009 SynthesesBackman, J., and Moran, K., 2009. Expanding the Cenozoic paleoceanographic record in the Central Arctic Ocean: IODP Expedition 302 synthesis. Cent. Eur. J. Geosci., 1(2):157–175. doi:10.2478/v10085-009-0015-6 Journals/BooksAbdelmalak, M.M., Minakov, A., Faleide, J.I., and Drachev, S.S., 2024. Lomonosov Ridge composite tectono-sedimentary element, Arctic Ocean. Geological Society, London, Memoirs, 57(1):M57-2022-2072. https://doi.org/10.1144/M57-2022-72 Akhmet’ev, M.A., Zaporozhets, N.I., Iakovleva, A.I., Aleksandrova, G.N., Beniamovsky, V.N., Oreshkina, T.V., Gnibidenko, Z.N., and Dolya, Z.A., 2010. Comparative analysis of marine Paleogene sections and biota from West Siberia and the Arctic Region. Stratigraphy and Geological Correlation, 18(6):635–659. https://doi.org/10.1134/S0869593810060043 Alexanderson, H., Backman, J., Cronin, T.M., Funder, S., Ingólfsson, Ó., Jakobsson, M., Landvik, J.Y., Löwemark, L., Mangerud, J., März, C., Möller, P., O'Regan, M., and Spielhagen, R.F., 2014. An Arctic perspective on dating Mid-Late Pleistocene environmental history. Quaternary Science Reviews, 92:9–31. https://doi.org/10.1016/j.quascirev.2013.09.023 Artyushkov, E.V., 2010. Continental crust in the Lomonosov Ridge, Mendeleev Ridge, and the Makarov basin. The formation of deep-water basins in the Neogene. Russian Geology and Geophysics, 51(11):1179–1191. https://doi.org/10.1016/j.rgg.2010.10.003 Backman, J., Moran, K., McInroy, D., Brinkhuis, H.K., Clemens, S., Cronin, T., Dickens, G.R., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R.W., Kaminski, M., King, J., Koç, N., Martinez, N.C., Matthiessen, J., Moore, T.C., Onodera, J., O'Regan, M., Pälike, H., Rea, B.R., Rio, D., Sakamoto, T., Smith, D.C., Stein, R., St. John, K.E.K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M. and Yamamoto, M., 2005. First paleoceanographic drilling of Cenozoic sediments in the central Arctic Ocean. Palaeoclimate Change: High Latitudes and Ocean Circulation Abstract Volume:8. https://eprints.soton.ac.uk/41920/ Backman, J., Fornaciari, E., and Rio, D., 2009. Biochronology and paleoceanography of late Pleistocene and Holocene calcareous nannofossil abundances across the Arctic Basin. Marine Micropaleontology, 72(1):86–98. https://doi.org/10.1016/j.marmicro.2009.04.001 Backman, J., Jakobsson, M., Frank, M., Sangiorgi, F., Brinkhuis, H., Stickley, C., O'Regan, M., and et al., 2008. Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge. Paleoceanography and Paleoclimatology, 23(1):PA1S03. https://doi.org/10.1029/2007PA001476 Backman, J., and Moran, K., 2008. Introduction to special section on Cenozoic paleoceanography of the central Arctic Ocean. Paleoceanography and Paleoclimatology, 23(1):PA1S01. https://doi.org/10.1029/2007PA001516 Barash, M.S., 2009. Response of oceanic organisms to abiotic events in the Paleogene. Oceanology, 49(3):385–395. https://doi.org/10.1134/S0001437009030114 Barke, J., 2010. Palaeoecological and palaeoclimatological implications of the Eocene Northern Hemisphere Azolla phenomenon. Utrecht University, Netherlands. https://dspace.library.uu.nl/handle/1874/188383 Barke, J., Abels, H.A., Sangiorgi, F., Greenwood, D.R., Sweet, A.R., Donders, T., Reichart, G.-J., Lotter, A.F., and Brinkhuis, H., 2011. Orbitally forced Azolla blooms and middle Eocene Arctic hydrology: clues from palynology. Geology, 39(5):427–430. https://doi.org/10.1130/G31640.1 Barke, J., van der Burgh, J., van Konijnenburg-van Cittert, J.H.A., Collinson, M.E., Pearce, M.A., Bujak, J., Heilmann-Clausen, C., Speelman, E.N., van Kempen, M.M.L., Reichart, G.-J., Lotter, A.F., and Brinkhuis, H., 2012. Coeval Eocene blooms of the freshwater fern Azolla in and around Arctic and Nordic Seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 337–338:108–119. https://doi.org/10.1016/j.palaeo.2012.04.002 Barrientos, N., Coxall, H., Lear, C., O'Regan, M., Mörth, C.-M., and Jakobsson, M., 2018. Mg/Ca ratios in late Quaternary benthic foraminifera from the central Arctic Ocean: Sweden (Stockholm University). http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-155087 Bauersachs, T., Speelman, E.N., Hopmans, E.C., Reichart, G.-J., Schouten, S., and Sinninghe Damsté, J.S., 2010. Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 107(45):19190–19194. https://doi.org/10.1073/pnas.1007526107 Berger, D., and Jokat, W., 2009. Sediment deposition in the northern basins of the North Atlantic and characteristic variations in shelf sedimentation along the East Greenland margin. Marine and Petroleum Geology, 26(8):1321–1337. https://doi.org/10.1016/j.marpetgeo.2009.04.005 Bickle, M.J., Pälike, H., and Teagle, D.A.H., 2011. Secrets of the sea floor. Nature Geoscience, 4(1):3–4. https://doi.org/10.1038/ngeo1053 Bornemann, A., Jehle, S., Lägel, F., Deprez, A., Petrizzo, M.R., and Speijer, R.P., 2021. Planktic foraminiferal response to an early Paleocene transient warming event and biostratigraphic implications. International Journal of Earth Sciences, 110(2):583–594. https://doi.org/10.1007/s00531-020-01972-z Boucsein, B., and Stein, R., 2009. Black shale formation in the late Paleocene/early Eocene Arctic Ocean and paleoenvironmental conditions; new results from a detailed organic petrological study. Marine and Petroleum Geology, 26(3):416–426. https://doi.org/10.1016/j.marpetgeo.2008.04.001 Brassell, S.C., 2014. Climatic influences on the Paleogene evolution of alkenones. Paleoceanography and Paleoclimatology, 29(3):255–272. https://doi.org/10.1002/2013PA002576 Brinkhuis, H., Schouten, S., Collinson, M.E., Sluijs, A., Sinninghe Damsté, J.S., Dickens, G.R., Huber, M., Cronin, T.M., Onodera, J., Takahashi, K., Bujak, J.P., Stein, R., van der Burgh, J., Eldrett, J.S., Harding, I.C., Lotter, A.F., Sangiorgi, F., van Konijnenburg-van Cittert, H., de Leeuw, J.W., Matthiessen, J., Backman, J., and Moran, K., 2006. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature, 441(7093):606–609. https://doi.org/10.1038/nature04692 Brinkhuis, H.K., Sluijs, A., Backman, J., Moran, K., McInroy, D., Clemens, S., Cronin, T., Dickens, G.R., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R.W., Kaminski, M., King, J., Koç, N., Martinez, N.C., Matthiessen, J., Moore, T.C., Onodera, J., O'Regan, M., Pälike, H., Rea, B.R., Rio, D., Sakamoto, T., Smith, D.C., Stein, R., St. John, K.E.K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M. and Yamamoto, M., 2005. The Cenozoic history of the Lomonosov Ridge; palynology a go go! Palaeoclimate Change: High Latitudes and Ocean Circulation Abstract Volume:10. https://eprints.soton.ac.uk/41921/ Bruvoll, V., Kristoffersen, Y., Coakley, B.J., and Hopper, J.R., 2010. Hemipelagic deposits on the Mendeleev and northwestern Alpha submarine ridges in the Arctic Ocean; acoustic stratigraphy, depositional environment and an inter-ridge correlation calibrated by the ACEX results. Marine Geophysical Research, 31(3):149–171. https://doi.org/10.1007/s11001-010-9094-9 Bugrova, E.M., 2023. Paleogene stratigraphy and foraminifera of the submarine Lomonosov Ridge, Arctic Ocean. Stratigraphy and Geological Correlation, 31(4):328–338. https://doi.org/10.1134/S0869593823030024 Bujak, J., and Bujak, A., 2014. The Arctic Azolla event. Geoscientist Online, 24(5):10. https://www.geolsoc.org.uk/Geoscientist/Archive/June-2014/The-Arctic-Azolla-event Castro, C.F., Knutz, P.C., Hopper, J.R., and Funck, T., 2018. Depositional evolution of the western Amundsen Basin, Arctic Ocean: paleoceanographic and tectonic implications. Paleoceanography and Paleoclimatology, 33(12):1357–1382. https://doi.org/10.1029/2018PA003414 Channell, J.E.T., and Xuan, C., 2009. Self-reversal and apparent magnetic excursions in Arctic sediments. Earth and Planetary Science Letters, 284(1–2):124–131. https://doi.org/10.1016/j.epsl.2009.04.020 Chen, T.-Y., Frank, M., Haley, B.A., Gutjahr, M., and Spielhagen, R.F., 2012. Variations of North Atlantic inflow to the central Arctic Ocean over the last 14 million years inferred from hafnium and neodymium isotopes. Earth and Planetary Science Letters, 353–354:82–92. https://doi.org/10.1016/j.epsl.2012.08.012 Chernykh, A.A., and Krylov, A.A., 2017. Duration, causes, and geodynamic significance of the middle Cenozoic hiatus in sedimentation in the near-polar part of the Lomonosov Ridge (based on IODP-302-ACEX drilling data). Oceanology, 57(5):675–684. https://doi.org/10.1134/S0001437017050058 Cochran, J.R., Edwards, M.H., and Coakley, B.J., 2006. Morphology and structure of the Lomonosov Ridge, Arctic Ocean. Geochemistry, Geophysics, Geosystems, 7(5). https://doi.org/10.1029/2005GC001114 Cohen, A.S., Coe, A.L., and Kemp, D.B., 2007. The late Palaeocene-early Eocene and Toarcian (Early Jurassic) carbon isotope excursions; a comparison of their time scales, associated environmental changes, causes and consequences. Journal of the Geological Society (London, UK), 164(6):1093–1108. https://doi.org/10.1144/0016-76492006-123 Collinson, M.E., Barke, J., van der Burgh, J., and van Konijnenburg-van Cittert, J.H.A., 2009. A new species of the freshwater fern Azolla (Azollaceae) from the Eocene Arctic Ocean. Review of Palaeobotany and Palynology, 155(1–2):1–14. https://doi.org/10.1016/j.revpalbo.2008.12.014 Collinson, M.E., Barke, J., van der Burgh, J., van Konijnenburg-van Cittert, J.H.A., Heilmann-Clausen, C., Howard, L.E., and Brinkhuis, H., 2010. Did a single species of Eocene Azolla spread from the Arctic Basin to the southern North Sea? Review of Palaeobotany and Palynology, 159(3–4):152–165. https://doi.org/10.1016/j.revpalbo.2009.12.001 Couchon, K., 2006. An ice-breaking experience. Oceanography, 19(4):177. https://doi.org/10.5670/oceanog.2006.26 Cronin, T.M., Gemery, L., Briggs, W.M., Jakobsson, M., Polyak, L., and Brouwers, E.M., 2010. Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy. Quaternary Science Reviews, 29(25):3415–3429. https://doi.org/10.1016/j.quascirev.2010.05.024 Cronin, T.M., Smith, S.A., Eynaud, F., O'Regan, M., and King, J., 2008. Quaternary paleoceanography of the central Arctic based on Integrated Ocean Drilling Program Arctic Coring Expedition 302 foraminiferal assemblages. Paleoceanography and Paleoclimatology, 23(1):PA1S18. https://doi.org/10.1029/2007PA001484 Darby, D.A., 2008. Arctic perennial ice cover over the last 14 million years. Paleoceanography and Paleoclimatology, 23(1):PA1S07. https://doi.org/10.1029/2007PA001479 Darby, D.A., 2014. Ephemeral formation of perennial sea ice in the Arctic Ocean during the middle Eocene. Nature Geoscience, 7(3):210–213. https://doi.org/10.1038/ngeo2068 Davies, A., Hunter, S.J., Gréselle, B., Haywood, A.M., and Robson, C., 2019. Evidence for seasonality in early Eocene high latitude sea-surface temperatures. Earth and Planetary Science Letters, 519:274–283. https://doi.org/10.1016/j.epsl.2019.05.025 Dekker, R., 2010. Climatic conditions governing the early middle Eocene Azolla blooms and responses of the fresh water fern to elevated pCO2 conditions [MS thesis]. Utrecht University, Utrecht, Netherlands. http://igitur-archive.library.uu.nl/student-theses/2011-0715-200406/MasterThesis_R.Dekker.pdf Denis, E.H., Pedentchouk, N., Schouten, S., Pagani, M., and Freeman, K.H., 2017. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 467:149–156. https://doi.org/10.1016/j.epsl.2017.03.021 Derevyanko, L.G., Gusev, E.A., and Krylov, A.A., 2009. Palynological characteristics of Cretaceous rocks in the Lomonosov Ridge. Problemy Arktiki i Antarktiki, 82(2):78. Dickson, A.J., and Cohen, A.S., 2012. A molybdenum isotope record of Eocene Thermal Maximum 2: implications for global ocean redox during the early Eocene. Paleoceanography, 27(3):PA3230. https://doi.org/10.1029/2012PA002346 Dickson, A.J., Cohen, A.S., and Coe, A.L., 2012. Seawater oxygenation during the Paleocene-Eocene Thermal Maximum. Geology, 40(7):639–642. https://doi.org/10.1130/G32977.1 Dickson, A.J., Cohen, A.S., Coe, A.L., Davies, M., Shcherbinina, E.A., and Gavrilov, Y.O., 2015. Evidence for weathering and volcanism during the PETM from Arctic Ocean and Peri-Tethys osmium isotope records. Palaeogeography, Palaeoclimatology, Palaeoecology, 438:300–307. https://doi.org/10.1016/j.palaeo.2015.08.019 Diester-Haass, L., Billups, K., and Emeis, K., 2011. Enhanced paleoproductivity across the Oligocene/Miocene boundary as evidenced by benthic foraminiferal accumulation rates. Palaeogeography, Palaeoclimatology, Palaeoecology, 302(3–4):464–473. https://doi.org/10.1016/j.palaeo.2011.02.006 Dunkley Jones, T., Lunt, D.J., Schmidt, D.N., Ridgwell, A., Sluijs, A., Valdes, P.J., and Maslin, M., 2013. Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum. Earth-Science Reviews, 125:123–145. https://doi.org/10.1016/j.earscirev.2013.07.004 Eglinton, T.I., and Eglinton, G., 2008. Molecular proxies for paleoclimatology. Earth and Planetary Science Letters, 275(1–2):1–16. https://doi.org/10.1016/j.epsl.2008.07.012 Elling, F.J., Gottschalk, J., Doeana, K.D., Kusch, S., Hurley, S.J., and Pearson, A., 2019. Archaeal lipid biomarker constraints on the Paleocene-Eocene carbon isotope excursion. Nature Communications, 10(1):4519. https://doi.org/10.1038/s41467-019-12553-3 Eynaud, F., Cronin, T.M., Smith, S.A., Zaragosi, S., Mavel, J., Mary, Y., Mas, V., and Pujol, C., 2009. Morphological variability of the planktonic foraminifer Neogloboquadrina pachyderma from ACEX cores: implications for late Pleistocene circulation in the Arctic Ocean. IOP Conference Series: Earth and Environmental Science, 14(2011):012005. https://iopscience.iop.org/article/10.1088/1755-1315/14/1/012005 Eynaud, F., Cronin, T.M., Smith, S.A., Zaragosi, S., Mavel, J., Mary, Y., Mas, V., and Pujol, C., 2009. Morphological variability of the planktonic foraminifer Neogloboquadrina pachyderma from ACEX cores: implications for late Pleistocene circulation in the Arctic Ocean. Micropaleontology, 55(2/3):101–116. http://www.jstor.org/stable/40607109 Forschner, S.R., Sheffer, R., Rowley, D.C., and Smith, D.C., 2009. Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the central Arctic Basin. Environmental Microbiology, 11(3):630–639. https://doi.org/10.1111/j.1462-2920.2008.01834.x Forschner-Dancause, S.R., 2012. Exploration of deep sea subsurface sediments for microbial diversity and biomedical potential [PhD dissertation]. University of Rhode Island, South Kingstown, Rhode Island. https://digitalcommons.uri.edu/dissertations/AAI3503475/ Frank, M., Backman, J., Jakobsson, M., Moran, K., O'Regan, M., King, J., Haley, B.A., Kubik, P.W., and Garbe-Schönberg, D., 2008. Beryllium isotopes in central Arctic Ocean sediments over the past 12.3 million years: stratigraphic and paleoclimatic implications. Paleoceanography and Paleoclimatology, 23(1):PA1S02. https://doi.org/10.1029/2007PA001478 Frieling, J., and Sluijs, A., 2018. Towards quantitative environmental reconstructions from ancient non-analogue microfossil assemblages: ecological preferences of Paleocene–Eocene dinoflagellates. Earth-Science Reviews, 185:956–973. https://doi.org/10.1016/j.earscirev.2018.08.014 Fuentes Guerrero, C., 2015. Grain size analysis of a short sediment core from the Lomonosov Ridge, central Arctic Ocean [BS thesis]. Stockholm University, Sweden. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A822520&dswid=8377 Gaina, C., Medvedev, S., Torsvik, T.H., Koulakov, I., and Werner, S.C., 2014. 4D Arctic: a glimpse into the structure and evolution of the Arctic in the light of new geophysical maps, plate tectonics and tomographic models. Surveys in Geophysics, 35(5):1095–1122. https://doi.org/10.1007/s10712-013-9254-y Giles, J., 2004. Climatologists brave bergs for core data. Nature, 2004. https://doi.org/10.1038/news040531-11 Gleason, J.D., Blum, J.D., Moore, T.C., Polyak, L., Jakobsson, M., Meyers, P.A., and Biswas, A., 2017. Sources and cycling of mercury in the paleo-Arctic Ocean from Hg stable isotope variations in Eocene and Quaternary sediments. Geochimica et Cosmochimica Acta, 197:245–262. https://doi.org/10.1016/j.gca.2016.10.033 Gleason, J.D., Thomas, D.J., Moore, T.C., Jr., Blum, J.D., Owen, R.M., and Haley, B.A., 2009. Early to middle Eocene history of the Arctic Ocean from Nd-Sr isotopes in fossil fish debris, Lomonosov Ridge. Paleoceanography and Paleoclimatology, 24(2):PA2215. https://doi.org/10.1029/2008PA001685 Greenwood, D.R., Basinger, J.F., and Smith, R.Y., 2010. How wet was the Arctic Eocene rain forest? Estimates of precipitation from Paleogene Arctic macrofloras. Geology, 38(1):15–18. https://doi.org/10.1130/G30218.1 Haley, B.A., Frank, M., Spielhagen, R.F., and Eisenhauer, A., 2008. Influence of brine formation on Arctic Ocean circulation over the past 15 million years. Nature Geoscience, 1:68–72. https://doi.org/10.1038/ngeo.2007.5 Haley, B.A., Frank, M., Spielhagen, R.F., and Fietzke, J., 2008. Radiogenic isotope record of Arctic Ocean circulation and weathering inputs of the past 15 million years. Paleoceanography and Paleoclimatology, 23(1):PA1S13. https://doi.org/10.1029/2007PA001486 Hanslik, D., Löwemark, L., and Jakobsson, M., 2013. Biogenic and detrital-rich intervals in central Arctic Ocean cores identified using x-ray fluorescence scanning. Polar Research, 32:18386. https://doi.org/10.3402/polar.v32i0.18386 Harding, I.C., 2010. Greenhouse to icehouse: Arctic climate change 55–33 million years ago. Teaching Earth Science, 35(1):31–35. Harding, I.C., Charles, A.J., Marshall, J.E.A., Pälike, H., Roberts, A.P., Wilson, P.A., Jarvis, E., Thorne, R., Morris, E., Moremon, R., Pearce, R.B., and Akbari, S., 2011. Sea-level and salinity fluctuations during the Paleocene-Eocene Thermal Maximum in Arctic Spitsbergen. Earth and Planetary Science Letters, 303(1–2):97–107. https://doi.org/10.1016/j.epsl.2010.12.043 Hentzen, A., 2022. Comparative analysis of marine diatom species richness and diversity across the Paleocene-Eocene Thermal Maximum at different latitudes [MS thesis]. University of Missouri, Kansas City, MO. https://www.proquest.com/docview/2645182769 Hojnacki, V., 2019. Multi-proxy characterization of ACEX subunit 1/5 (the “zebra” interval) to better understand sediment deposition at this critical age boundary and paleoceanographic transition [BS honors thesis]. James Madison University, Harrisonburg, VA. https://commons.lib.jmu.edu/honors201019/681/ Hollingsworth, E.H., Elling, F.J., Badger, M.P.S., Pancost, R.D., Dickson, A.J., Rees-Owen, R.L., Papadomanolaki, N.M., Pearson, A., Sluijs, A., Freeman, K.H., Baczynski, A.A., Foster, G.L., Whiteside, J.H., and Inglis, G.N., 2024. Spatial and temporal patterns in petrogenic organic carbon mobilization during the Paleocene-Eocene Thermal Maximum. Paleoceanography and Paleoclimatology, 39(2):e2023PA004773. https://doi.org/10.1029/2023PA004773 Hossain, A., 2022. Impact of atmospheric CO2 and Atlantic-Arctic gateway evolution on Miocene climate and ocean circulation changes [PhD dissertation]. University of Bremen, Germany. https://epic.awi.de/id/eprint/56666/ Immonen, N., 2009. Composition and quartz grain microtextural analysis of the central Arctic Ocean sediments: implications for the Cenozoic palaeoenvironments in the North (IODP Arctic Coring Expedition 302) [MS thesis]. University of Oulu, Finland. Immonen, N., 2013. Surface microtextures of ice-rafted quartz grains revealing glacial ice in the Cenozoic Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology, 374:293–302. https://doi.org/10.1016/j.palaeo.2013.02.003 Immonen, N., 2014. Glaciations and climate in the Cenozoic Arctic: evidence from microtextures of ice-rafted quartz grains [PhD dissertation]. University of Oulu, Finland. https://www.semanticscholar.org/paper/Glaciations-and-climate-in-the-Cenozoic-Arctic-%3A-of-Immonen/e12e400c1cb9358a3ccd9d4c4ef5869be5d2d23b Immonen, N., Strand, K., and Turunen, S., 2009. Mineralogical evidence of middle Miocene glacial ice in the central Arctic Ocean sediments. Geophysica, 45(1–2):93–101. http://www.geophysica.fi/pdf/geophysica_2009_45_1-2_093_immonen.pdf Iwasaki, S., Takahashi, K., Ogawa, Y., Uehara, S., and Vogt, C., 2014. Alkaline leaching characteristics of biogenic opal in Eocene sediments from the central Arctic Ocean: a case study in the ACEX cores. Journal of Oceanography, 70(3):241–249. https://doi.org/10.1007/s10872-014-0227-7 Jacobsen, B.C., 2011. Benthic foraminiferal micro-ecology and the geochemical environments they sample [MS thesis]. Northern Illinois University, DeKalb, IL. https://www.proquest.com/docview/873899499 Jakobsson, M., Backman, J., Rudels, B., Nycander, J., Frank, M., Mayer, L., Jokat, W., Sangiorgi, F., O'Regan, M., Brinkhuis, H., King, J., and Moran, K., 2007. The Early Miocene onset of ventilated circulation regime in the Arctic Ocean. Nature, 447(7147):986–990. https://doi.org/10.1038/nature05924 Jakobsson, M., Macnab, R., Mayer, L., Anderson, R., Edwards, M., Hatzky, J., Schenke, H.W., and Johnson, P., 2008. An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophysical Research Letters, 35(7):L07602. https://doi.org/10.1029/2008GL033520 Jiang, S., Cui, Y., and Wang, Y., 2021. Carbon cycle variability in tropical Atlantic across two early Eocene hyperthermals. Geoscience Frontiers, 12(2):521–530. https://doi.org/10.1016/j.gsf.2020.07.014 Jin, S., Kemp, D.B., Shen, J., Yin, R., Jolley, D.W., Vieira, M., and Huang, C., 2024. Spatiotemporal distribution of global mercury enrichments through the Paleocene-Eocene Thermal Maximum and links to volcanism. Earth-Science Reviews, 248:104647. https://doi.org/10.1016/j.earscirev.2023.104647 Jones, M.T., Percival, L.M.E., Stokke, E.W., Frieling, J., Mather, T.A., Riber, L., Schubert, B.A., Schultz, B., Tegner, C., Planke, S., and Svensen, H.H., 2019. Mercury anomalies across the Palaeocene–Eocene Thermal Maximum. Climate of the Past, 15(1):217–236. https://doi.org/10.5194/cp-15-217-2019 Kallmeyer, J., Smith, D.C., Spivack, A.J., and D'Hondt, S., 2008. New cell extraction procedure applied to deep subsurface sediments. Limnology and Oceanography: Methods, 6(6):236–245. https://doi.org/10.4319/lom.2008.6.236 Kaminski, M.A., Silye, L., and Kender, S., 2009. Miocene deep-water agglutinated foraminifera from the Lomonosov Ridge and the opening of the Fram Strait. Micropaleontology, 55(2–3):117–135. https://www.jstor.org/stable/40607110 Kaminski, M.A., and Takahashi, K., 2009. Micropaleontology at the North Pole: an introduction. Micropaleontology, 55(2–3):97–100. http://www.micropress.org/microaccess/check/1621 Kaminski, M.A., and Takahashi, K., 2009. The Arctic Coring Expedition (IODP 302): micropaleontology at the North Pole. Micropaleontology, 55. http://www.micropress.org/microaccess/micropaleontology/issue-258 Katsuki, K., Takahashi, K., Onodera, J., Jordan, R.W., and Suto, I., 2009. Living diatoms in the vicinity of the North Pole, summer 2004. Micropaleontology, 55(2–3):137–170. https://www.jstor.org/stable/40607111 Kender, S., and Kaminski, M.A., 2013. Arctic Ocean benthic foraminiferal faunae change associated with the onset of perennial sea ice in the middle Miocene. Journal of Foraminiferal Research, 43(1):99–106. https://doi.org/10.2113/gsjfr.43.1.99 Kerr, R.A., 2004. Signs of a warm, ice-free Arctic. Science, 305(5691):1693. https://doi.org/10.1126/science.305.5691.1693a Kim, B.I., and Glezer, Z.I., 2007. Sedimentary cover of the Lomonosov Ridge: Stratigraphy, structure, deposition history, and ages of seismic facies units. Stratigraphy and Geological Correlation, 15(4):401–420. https://doi.org/10.1134/S0869593807040053 Kingdon, A., Evans, D., and Skinner, A., 2005. On top of the world. Earthwise, 22:30–31. http://nora.nerc.ac.uk/id/eprint/15131 Knies, J., 2022. Nitrogen isotope evidence for changing Arctic Ocean ventilation regimes during the Cenozoic. Geophysical Research Letters, 49(17):e2022GL099512. https://doi.org/10.1029/2022GL099512 Knies, J., Cabedo-Sanz, P., Belt, S.T., Baranwal, S., Fietz, S., and Rosell-Melé, A., 2014. The emergence of modern sea ice cover in the Arctic Ocean. Nature Communications, 5(1):5608. https://doi.org/10.1038/ncomms6608 Knies, J., Mann, U., Popp, B.N., Stein, R., and Brumsack, H.-J., 2008. Surface water productivity and paleoceanographic implications in the Cenozoic Arctic Ocean. Paleoceanography and Paleoclimatology, 23(1):PA1S16. https://doi.org/10.1029/2007PA001455 Kraal, P., Slomp, C.P., Forster, A., Kuypers, M.M.M., and Sluijs, A., 2009. Pyrite oxidation during sample storage determines phosphorus fractionation in carbonate-poor anoxic sediments. Geochimica et Cosmochimica Acta, 73(11):3277–3290. https://doi.org/10.1016/j.gca.2009.02.026 Krajick, K., 2007. Race to plumb the frigid depths. Science, 315(5818):1525–1528. https://doi.org/10.1126/science.315.5818.1525 Krishnan, S., Pagani, M., Huber, M., and Sluijs, A., 2014. High latitude hydrological changes during the Eocene Thermal Maximum 2. Earth and Planetary Science Letters, 404:167–177. https://doi.org/10.1016/j.epsl.2014.07.029 Kristoffersen, Y., Coakley, B.J., Hall, J.K., and Edwards, M., 2007. Mass wasting on the submarine Lomonosov Ridge, central Arctic Ocean. Marine Geology, 243(1–4):132–142. https://doi.org/10.1016/j.margeo.2007.04.012 Kristoffersen, Y., Hall, J.K., and Nilsen, E.H., 2022. Sediment deformation atop the Lomonosov Ridge, central Arctic Ocean: evidence for gas-charged sediment mobilization? Marine and Petroleum Geology, 138:105555. https://doi.org/10.1016/j.marpetgeo.2022.105555 Kristoffersen, Y., and Mikkelsen, N., 2006. On sediment deposition and nature of the plate boundary at the junction between the submarine Lomonosov Ridge, Arctic Ocean and the continental margin of Arctic Canada/North Greenland. Marine Geology, 225(1–4):265–278. https://doi.org/10.1016/j.margeo.2005.07.006 Krupskaya, V., Krylov, A., Garshev, A., and Sokolov, A., 2010. Cretaceous–Paleocene–Eocene sedimentation in Arctic Ocean: results from the clay minerals investigation (IODP-ACEX, 302 data). Acta Mineralogica-Petrographica, 6(624). Krylov, A.A., Andreeva, I.A., Vogt, C., Backman, J., Krupskaya, V.V., Grikurov, G.E., Moran, K., and Shoji, H., 2008. A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean. Paleoceanography and Paleoclimatology, 23(1):PA1S06. https://doi.org/10.1029/2007PA001497 Langinen, A.E., Lebedeva-Ivanova, N.N., Gee, D.G., and Zamansky, Y.Y., 2009. Correlations between the Lomonosov Ridge, Marvin Spur and adjacent basins of the Arctic Ocean based on seismic data. Tectonophysics, 472(1):309–322. https://doi.org/10.1016/j.tecto.2008.05.029 Lebedeva-Ivanova, N., 2010. Geophysical studies bearing on the origin of the Arctic Basin [PhD dissertation]. Uppsala University, Sweden. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A306742&dswid=998 Liu, J., Shi, X., Liu, Y., Liu, Q., Liu, Y., Zhang, Q., Ge, S., and Li, J., 2019. A thick negative polarity anomaly in a sediment core from the central Arctic Ocean: geomagnetic excursion versus reversal. Journal of Geophysical Research: Solid Earth, 124(11):10687–10703. https://doi.org/10.1029/2019JB018073 Löwemark, L., Jakobsson, M., Mörth, M., and Backman, J., 2008. Arctic Ocean manganese contents and sediment colour cycles. Polar Research, 27(2):105–113. https://doi.org/10.3402/polar.v27i2.6169 Mann, U., Knies, J., Chand, S., Jokat, W., Stein, R., and Zweigel, J., 2009. Evaluation and modelling of Tertiary source rocks in the central Arctic Ocean. Marine and Petroleum Geology, 26(8):1624–1639. https://doi.org/10.1016/j.marpetgeo.2009.01.008 Marshall, N.R., de Vernal, A., Mucci, A., Filippova, A., Kienast, M., Gibb, O., and Hillaire-Marcel, C., 2021. Biogenic carbonate fluxes and preservation in the northwestern Labrador Sea since the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 576:110498. https://doi.org/10.1016/j.palaeo.2021.110498 Martinez, N.C., Murray, R.W., Dickens, G.R., and Kölling, M., 2009. Discrimination of sources of terrigenous sediment deposited in the central Arctic Ocean through the Cenozoic. Paleoceanography, 24(1):PA1210. https://doi.org/10.1029/2007PA001567 März, C., Schnetger, B., and Brumsack, H.J., 2010. Paleoenvironmental implications of Cenozoic sediments from the central Arctic Ocean (IODP Expedition 302) using inorganic geochemistry. Paleoceanography, 25(3):PA3206. https://doi.org/10.1029/2009PA001860 März, C., Vogt, C., Schnetger, B., and Brumsack, H.-J., 2011. Variable Eocene-Miocene sedimentation processes and bottom water redox conditions in the central Arctic Ocean (IODP Expedition 302). Earth and Planetary Science Letters, 310(3–4):526–537. https://doi.org/10.1016/j.epsl.2011.08.025 Matthiessen, J., Brinkhuis, H., Poulsen, N., and Smelror, M., 2009. Decahedrella martinheadii Manum 1997 - a stratigraphically and paleoenvironmentally useful Miocene acritarch of the high northern latitudes. Micropaleontology, 55(2–3):171–186. https://www.jstor.org/stable/40607112 Matthiessen, J., Knies, J., Vogt, C., and Stein, R., 2009. Pliocene palaeoceanography of the Arctic Ocean and subarctic seas. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1886):21–48. https://doi.org/10.1098/rsta.2008.0203 Matthiessen, J., Schreck, M., De Schepper, S., Zorzi, C., and de Vernal, A., 2018. Quaternary dinoflagellate cysts in the Arctic Ocean: potential and limitations for stratigraphy and paleoenvironmental reconstructions. Quaternary Science Reviews, 192:1–26. https://doi.org/10.1016/j.quascirev.2017.12.020 McCartney, K., Abe, K., Harrison, M.A., Witkowski, J., Harwood, D.M., Jordan, R.W., and Kano, H., 2015. Silicoflagellate double skeletons in the geologic record. Marine Micropaleontology, 117:65–79. https://doi.org/10.1016/j.marmicro.2015.04.002 McCartney, K., Abe, K., Witkowski, J., and Jordan, R.W., 2015. Two rare silicoflagellate double skeletons of the star-of-David configuration from the Eocene. Journal of Micropalaeontology, 34(1):97–99. https://doi.org/10.1144/jmpaleo2013-024 Miller, G.H., Brigham-Grette, J., Alley, R.B., Anderson, L., Bauch, H.A., Douglas, M.S.V., Edwards, M.E., Elias, S.A., Finney, B.P., Fitzpatrick, J.J., Funder, S.V., Herbert, T.D., Hinzman, L.D., Kaufman, D.S., MacDonald, G.M., Polyak, L., Robock, A., Serreze, M.C., Smol, J.P., Spielhagen, R., White, J.W.C., Wolfe, A.P., and Wolff, E.W., 2010. Temperature and precipitation history of the Arctic. Quaternary Science Reviews, 29(15–16):1679–1715. https://doi.org/10.1016/j.quascirev.2010.03.001 Minakov, A.N., and Podladchikov, Y.Y., 2011. Tectonic subsidence of the Lomonosov Ridge. Geology, 40(2):99–102. https://doi.org/10.1130/G32445.1 Moran, K., J. Backman, and the IODP Expedition 302 Science Party, 2006. The Arctic Coring Expedition (ACEX) recovers a Cenozoic history of the Arctic Ocean. Oceanography, 19(4):162–167. https://doi.org/10.5670/oceanog.2006.14 Moran, K., 2009. The geoscience of climate and energy, 3: the Cenozoic Arctic Ocean climate. Geoscience Canada, 36(2):55–59. http://journals.hil.unb.ca/index.php/GC/article/view/12579/13447 Moran, K., Altmann, V., O’Regan, M., and Ashmankas, C., 2007. Acoustic compressional wave velocity as a predictor of glacio-marine sediment grain size. Geotechnical Testing Journal, 30(4):267–273. https://doi.org/10.1520/GTJ100228 Moran, K., and Backman, J., 2007. The Arctic Ocean, so much we still don't know. Geotimes, 52(10):24. Moran, K., Backman, J., Brinkhuis, H., Clemens, S.C., Cronin, T.M., Dickens, G.R., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R.W., Kaminski, M., King, J., Koç, N., Krylov, A., Martinez, N.C., Matthiessen, J., McInroy, D., Moore, T.C., Onodera, J., O'Regan, M., Palike, H., Rea, B., Rio, D., Sakamoto, T., Smith, D.C., Stein, R., St. John, K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M., Yamamoto, M., Farrell, J., Frank, M., Kubik, P., Jokat, W., and Kristoffersen, Y., 2006. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441(7093):601–605. https://doi.org/10.1038/nature04800 Neville, L.A., Grasby, S.E., and McNeil, D.H., 2019. Limited freshwater cap in the Eocene Arctic Ocean. Scientific Reports, 9(1):4226. https://doi.org/10.1038/s41598-019-40591-w O’Regan, M., Backman, J., Fornaciari, E., Jakobsson, M., and West, G., 2020. Calcareous nannofossils anchor chronologies for Arctic Ocean sediments back to 500 ka. Geology, 48(11):1115–1119. https://doi.org/10.1130/G47479.1 Ogawa, Y., Takahashi, K., and Yamanaka, T., 2008. Paleoceanography of the middle Eocene Arctic Ocean based on geochemical measurements of biogenic matter. Memoirs of the Faculty of Science, Kyushu University, Series D, Earth and Planetary Sciences, 32(1):31–48. http://doi.org/10.5109/11806 Ogawa, Y., Takahashi, K., Yamanaka, T., and Onodera, J., 2009. Significance of euxinic condition in the middle Eocene paleo-Arctic basin; a geochemical study on the IODP Arctic Coring Expedition 302 sediments. Earth and Planetary Science Letters, 285(1–2):190–197. https://doi.org/10.1016/j.epsl.2009.06.011 Onodera, J., and Takahashi, K., 2009. Taxonomy and biostratigraphy of middle Eocene silicoflagellates in the central Arctic Basin. Micropaleontology, 55(2–3):209–248. https://www.jstor.org/stable/40607114 Onodera, J., and Takahashi, K., 2009. Middle Eocene ebridians from the central Arctic Basin. Micropaleontology, 55(2–3):187–208. https://www.jstor.org/stable/40607113 Onodera, J., Takahashi, K., and Jordan, R.W., 2008. Eocene silicoflagellate and ebridian paleoceanography in the central Arctic Ocean. Paleoceanography and Paleoclimatology, 23(1):PA1S15. https://doi.org/10.1029/2007PA001474 O'Regan, M., 2011. Late Cenozoic paleoceanography of the central Arctic Ocean. IOP Conference Series: Earth and Environmental Science, 14:012002. https://doi.org/10.1088/1755-1315/14/1/012002 O'Regan, M., Coxall, H.K., Cronin, T.M., Gyllencreutz, R., Jakobsson, M., Kaboth, S., Löwemark, L., Wiers, S., and West, G., 2019. Stratigraphic occurrences of sub-polar planktic foraminifera in Pleistocene sediments on the Lomonosov Ridge, Arctic Ocean. Frontiers in Earth Science, 7:71. https://doi.org/10.3389/feart.2019.00071 O'Regan, M., King, J., Backman, J., Jakobsson, M., Pälike, H., Moran, K., Heil, C., Sakamoto, T., Cronin, T.M., and Jordan, R.W., 2008. Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge. Paleoceanography and Paleoclimatology, 23(1):PA1S19. https://doi.org/10.1029/2007PA001551 O'Regan, M., and Moran, K., 2010. Deep water methane hydrates in the Arctic Ocean: reassessing the significance of a shallow BSR on the Lomonosov Ridge. Journal of Geophysical Research: Solid Earth, 115(B5):B05102. https://doi.org/10.1029/2009JB006820 O'Regan, M., Moran, K., Backman, J., Jakobsson, M., Sangiorgi, F., Brinkhuis, H., Pockalny, R., Skelton, A., Stickley, C., Koç, N., Brumsack, H.-J., and Willard, D., 2008. Mid-Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean. Paleoceanography and Paleoclimatology, 23(1):PA1S20. https://doi.org/10.1029/2007PA001559 O'Regan, M., Moran, K., Baxter, C.D.P., Cartwright, J., Vogt, C., and Kölling, M., 2010. Towards ground truthing exploration in the central Arctic Ocean: a Cenozoic compaction history from the Lomonosov Ridge. Basin Research, 22(2):215–235. https://doi.org/10.1111/j.1365-2117.2009.00403.x O'Regan, M., St. John, K., Moran, K., Backman, J., King, J., Haley, B.A., Jakobsson, M., Frank, M., and Röhl, U., 2010. Plio-Pleistocene trends in ice rafted debris on the Lomonosov Ridge. Quaternary International, 219(1):168–176. https://doi.org/10.1016/j.quaint.2009.08.010 O'Regan, M., Williams, C.J., Frey, K.E., and Jakobsson, M., 2011. A synthesis of the long-term paleoclimatic evolution of the Arctic. Oceanography, 24(3):66–80. https://doi.org/10.5670/oceanog.2011.57 O'Regan, M.A., 2007. A Cenozoic history of the central Arctic Ocean [PhD dissertation]. University of Rhode Island, Kingston, RI. https://digitalcommons.uri.edu/dissertations/AAI3277002/ Pagani, M., Caldeira, K., Archer, D., and Zachos, J.C., 2006. An ancient carbon mystery. Science, 314(5805):1556–1557. https://doi.org/10.1126/science.1136110 Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinninghe Damsté, J.S., Dickens, G.R., and the Expedition 302 Scientists, 2006. Arctic hydrology during global warming at the Palaeocene/Eocene Thermal Maximum. Nature, 442(7103):671–675. https://doi.org/10.1038/nature05043 Pälike, H., Spofforth, D.J.A., O'Regan, M., and Gattacceca, J., 2008. Orbital scale variations and timescales from the Arctic Ocean. Paleoceanography and Paleoclimatology, 23(1):PA1S10. https://doi.org/10.1029/2007PA001490 Poirier, A., and Hillaire-Marcel, C., 2009. Os-isotope insights into major environmental changes of the Arctic Ocean during the Cenozoic. Geophysical Research Letters, 36(11):L11602. https://doi.org/10.1029/2009GL037422 Poirier, A., and Hillaire-Marcel, C., 2011. Improved Os-isotope stratigraphy of the Arctic Ocean. Geophysical Research Letters, 38(14):L14607. https://doi.org/10.1029/2011GL047953 Polyak, L., and Jakobsson, M., 2011. Quaternary Sedimentation in the Arctic Ocean: recent advances and further challenges. Oceanography, 24(3):52–64. http://www.jstor.org/stable/24861298 Poselov, V.A., Butsenko, V.V., Kireev, A.A., Smirnov, O.E., and Zholondz, S.M., 2019. Seismic stratigraphy of sedimentary cover. In Piskarev, A., Poselov, V., and Kaminsky, V. (Eds.), Geologic Structures of the Arctic Basin. Cham (Springer International Publishing), 71–104. https://doi.org/10.1007/978-3-319-77742-9_2 Rekant, P.V., and Gusev, E.A., 2012. Seismic geologic structure model for the sedimentary cover of the Laptev Sea part of the Lomonosov Ridge and adjacent parts of the Amundsen Plain and Podvodnikov Basin. Russian Geology and Geophysics, 53(11):1150–1162. https://doi.org/10.1016/j.rgg.2012.09.003 Roberts, C.D., LeGrande, A.N., and Tripati, A.K., 2009. Climate sensitivity to Arctic seaway restriction during the early Paleogene. Earth and Planetary Science Letters, 286(3–4):576–585. https://doi.org/10.1016/j.epsl.2009.07.026 Sangiorgi, F., Brinkhuis, H., and Damassa, S.P., 2009. Arcticacysta: a new organic-walled dinoflagellate cyst genus from the early Miocene? of the central Arctic Ocean. Micropaleontology, 55(2–3):249–258. https://www.jstor.org/stable/40607115 Sangiorgi, F., Brumsack, H.-J., Willard, D.A., Schouten, S., Stickley, C.E., O'Regan, M., Reichart, G.-J., Sinninghe Damsté, J.S., and Brinkhuis, H., 2008. A 26 million year gap in the central Arctic record at the greenhouse-icehouse transition: looking for clues. Paleoceanography and Paleoclimatology, 23(1):PA1S04. https://doi.org/10.1029/2007PA001477 Sangiorgi, F., van Soelen, E.E., Spofforth, D.J.A., Pälike, H., Stickley, C.E., St. John, K., Koç, N., Schouten, S., Sinninghe Damsté, J.S., and Brinkhuis, H., 2008. Cyclicity in the middle Eocene central Arctic Ocean sediment record: orbital forcing and environmental response. Paleoceanography and Paleoclimatology, 23(1):PA1S08. https://doi.org/10.1029/2007PA001487 Sauermilch, I., 2015. An insight into the sedimentary history of the Lomonosov Ridge, Arctic Ocean [MS thesis]. University of Bremen, Germany. https://epic.awi.de/id/eprint/38564/ Sauermilch, I., Weigelt, E., and Jokat, W., 2018. Pre-rift sedimentation of the Lomonosov Ridge, Arctic Ocean at 84°N – a correlation to the complex geologic evolution of the conjugated Kara Sea. Journal of Geodynamics, 118:49–54. https://doi.org/10.1016/j.jog.2018.05.002 Schoon, P.L., Sluijs, A., Sinninghe Damsté, Jaap S., and Schouten, S., 2011. Stable carbon isotope patterns of marine biomarker lipids in the Arctic Ocean during Eocene Thermal Maximum 2. Paleoceanography and Paleoclimatology, 26(3):PA3215. https://doi.org/10.1029/2010PA002028 Schouten, S., Woltering, M., Rijpstra, W.I.C., Sluijs, A., Brinkhuis, H., and Sinninghe Damsté, J.S., 2007. The Paleocene-Eocene carbon isotope excursion in higher plant organic matter; differential fractionation of angiosperms and conifers in the Arctic. Earth and Planetary Science Letters, 258(3–4):581–592. https://doi.org/10.1016/j.epsl.2007.04.024 Setoyama, E., Kaminski, M.A., and Tyszka, J., 2011. Campanian agglutinated Foraminifera from the Lomonosov Ridge, IODP Expedition 302, ACEX, in the paleogeographic context of the Arctic Ocean. Micropaleontology, 57(6):507–530. https://www.jstor.org/stable/23250463 Shellito, C.J., Lamarque, J.-F., and Sloan, L.C., 2009. Early Eocene Arctic climate sensitivity to pCO2 and basin geography. Geophysical Research Letters, 36(9). https://doi.org/10.1029/2009GL037248 Sluijs, A., 2006. Global change during the Paleocene–Eocene Thermal Maximum [PhD dissertation]. Utrecht University, Netherlands. https://dspace.library.uu.nl/bitstream/1874/12527/1/title.pdf Sluijs, A., and Brinkhuis, H., 2024. High Arctic late Paleocene and early Eocene dinoflagellate cysts. Journal of Micropalaeontology, 43(2):441–474. https://doi.org/10.5194/jm-43-441-2024 Sluijs, A., and Dickens, G.R., 2012. Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across early Paleogene carbon cycle perturbations. Global Biogeochemical Cycles, 26(4):GB4005. https://doi.org/10.1029/2011GB004224 Sluijs, A., Frieling, J., Inglis, G.N., Nierop, K.G.J., Peterse, F., Sangiorgi, F., and Schouten, S., 2020. Late Paleocene–early Eocene Arctic Ocean sea surface temperatures: reassessing biomarker paleothermometry at Lomonosov Ridge. Climate of the Past, 16:2381–2400. https://doi.org/10.5194/cp-16-2381-2020 Sluijs, A., Röhl, U., Schouten, S., Brumsack, H.-J., Sangiorgi, F., Sinninghe Damsté, J.S., and Brinkhuis, H., 2008. Arctic late Paleocene-early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene Thermal Maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302). Paleoceanography and Paleoclimatology, 23(1):PA1S11. https://doi.org/10.1029/2007PA001495 Sluijs, A., Schouten, S., Donders, T.H., Schoon, P.L., Röhl, U., Reichart, G.-J., Sangiorgi, F., Kim, J.-H., Sinninghe Damsté, J.S., and Brinkhuis, H., 2009. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nature Geoscience, 2(11):777–780. https://doi.org/10.1038/ngeo668 Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J.S., Dickens, G.R., Huber, M., Reichart, G.-J., Stein, R., Matthiessen, J., Lourens, L.J., Pedentchouk, N., Backman, J., and Moran, K., 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene Thermal Maximum. Nature, 441(7093):610–613. https://doi.org/10.1038/nature04668 Soffientino, B., Spivack, A.J., Smith, D.C., and D'Hondt, S., 2009. Hydrogenase activity in deeply buried sediments of the Arctic and North Atlantic Oceans. Geomicrobiology Journal, 26(7):537–545. https://doi.org/10.1080/01490450903104232 Speelman, E.N., Van Kempen, M.M.L., Barke, J., Brinkhuis, H., Reichart, G.J., Smolders, A.J.P., Roelofs, J.G.M., Sangiorgi, F., De Leeuw, J.W., Lotter, A.F., and Sinninghe Damsté, J.S., 2009. The Eocene Arctic Azolla bloom: environmental conditions, productivity and carbon drawdown. Geobiology, 7(2):155–170. https://doi.org/10.1111/j.1472-4669.2009.00195.x Speelman, E.N., 2010. Reconstruction of the Arctic Ocean environment during the Eocene Azolla interval using geochemical proxies and climate modeling [PhD dissertation]. Utrecht University, Netherlands. https://dspace.library.uu.nl/bitstream/1874/197551/2/speelman.pdf Speelman, E.N., Reichart, G.-J., de Leeuw, J.W., Rijpstra, W.I.C., and Sinninghe Damsté, J.S., 2009. Biomarker lipids of the freshwater fern Azolla and its fossil counterpart from the Eocene Arctic Ocean. Organic Geochemistry, 40(5):628–637. https://doi.org/10.1016/j.orggeochem.2009.02.001 Spofforth, D.J.A., Pälike, H., and Green, D., 2008. Paleogene record of elemental concentrations in sediments from the Arctic Ocean obtained by XRF analyses. Paleoceanography and Paleoclimatology, 23(1):PA1S09. https://doi.org/10.1029/2007PA001489 St. John, K., 2008. Cenozoic ice-rafting history of the central Arctic Ocean: terrigenous sands on the Lomonosov Ridge. Paleoceanography and Paleoclimatology, 23(1):PA1S05. https://doi.org/10.1029/2007PA001483 Stein, R., Schubert, C.J., Macdonald, R.W., Fohl, K., Harvey, H.R., and Weiel, D., 2004. The Central Arctic Ocean: distribution, sources, variability and burial of organic carbon. In Stein, R., and Macdonald, R.W. (Eds.), The Organic Carbon Cycle in the Arctic Ocean. Berlin (Springer-Verlag). https://epic.awi.de/id/eprint/8578/ Stein, R., 2007. Upper Cretaceous/lower Tertiary black shales near the North Pole: organic carbon origin and source rock potential. Marine and Petroleum Geology, 24(2):67–73. https://doi.org/10.1016/j.marpetgeo.2006.10.002 Stein, R., 2008. Mesozoic to Cenozoic palaeoenvironmental records of high northern latitudes. In Stein, R., Developments in Marine Geology (Volume 2): Arctic Ocean Sediments, Processes, Proxies, and Paleoenvironment. R. Stein (Series Ed.). Amsterdam (Elsevier), 439–496. https://doi.org/10.1016/S1572-5480(08)00007-9 Stein, R., 2008. Proxies used for palaeoenvironmental reconstructions in the Arctic Ocean. In Stein, R., Developments in Marine Geology (Volume 2): Arctic Ocean Sediments, Processes, Proxies, and Paleoenvironment. R. Stein (Series Ed.). Amsterdam (Elsevier), 133–243. https://doi.org/10.1016/S1572-5480(08)00004-3 Stein, R., 2011. The great challenges in Arctic Ocean paleoceanography. IOP Conference Series: Earth and Environmental Science, 14:012001. https://doi.org/10.1088/1755-1315/14/1/012001 Stein, R., 2019. The late Mesozoic-Cenozoic Arctic Ocean climate and sea ice history: a challenge for past and future scientific ocean drilling. Paleoceanography and Paleoclimatology, 34(12):1851–1894. https://doi.org/10.1029/2018PA003433 Stein, R., Backman, J., and Moran, K., 2007. The Arctic Coring Expedition—a breakthrough in Arctic Ocean geoscientific research. Exploration & Production - The Oil and Gas Review, 2007:47–49. Stein, R., Boucsein, B., and Meyer, H., 2006. Anoxia and high primary production in the Paleogene central Arctic Ocean: first detailed records from Lomonosov Ridge. Geophysical Research Letters, 33(18):L18606. https://doi.org/10.1029/2006GL026776 Stein, R., Fahl, K., and Müller, J., 2012. Proxy reconstruction of Cenozoic Arctic Ocean sea-ice history—from IRD to IP25. Polarforschung, 82(1):37–71. https://doi.org/10013/epic.40432.d001 Stein, R., Fahl, K., Schreck, M., Knorr, G., Niessen, F., Forwick, M., Gebhardt, C., Jensen, L., Kaminski, M., Kopf, A., Matthiessen, J., Jokat, W., and Lohmann, G., 2016. Evidence for ice-free summers in the late Miocene central Arctic Ocean. Nature Communications, 7(1):11148. https://doi.org/10.1038/ncomms11148 Stein, R., Jokat, W., Niessen, F., and Weigelt, E., 2015. Exploring the long-term Cenozoic Arctic Ocean climate history: a challenge within the International Ocean Discovery Program (IODP). arktos, 1(1):3. https://doi.org/10.1007/s41063-015-0012-x Stein, R., Macdonald, R.W., Naidu, A.S., Yunker, M.B., Gobeil, C., Cooper, L.W., Grebmeier, J.M., Whitledge, T.E., Hameedi, M.J., Petrova, V.I., Batova, G.I., Zinchenko, A.G., Kursheva, A.V., Narkevskiy, E.V., Fahl, K., Vetrov, A., Romankevich, E.A., Birgel, D., Schubert, C., Harvey, H.R., and Weiel, D., 2004. Organic carbon in Arctic Ocean sediments: sources, variability, burial, and paleoenvironmental significance. In Stein, R., and Macdonald, R.W. (Eds.), The Organic Carbon Cycle in the Arctic Ocean. Berlin (Springer), 169–314. https://doi.org/10.1007/978-3-642-18912-8_7 Stein, R., Weller, P., Backman, J., Brinkhuis, H., Moran, K., and Pälike, H., 2014. Cenozoic Arctic Ocean climate history: some highlights from the Integrated Ocean Drilling Program Arctic Coring Expedition. In Stein, R., Blackman, D.K., Inagaki, F., and Larsen, H.-C. (Eds.), Developments in Marine Geology (Volume 7): Earth and Life Processes Discovered from Subseafloor Environments: a Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein (Series Ed.). Amsterdam (Elsevier), 259–293. https://doi.org/10.1016/B978-0-444-62617-2.00011-6 Stevenson, R., Poirier, A., Véron, A., Carignan, J., and Hillaire-Marcel, C., 2015. Late Eocene to present isotopic (Sr-Nd-Pb) and geochemical evolution of sediments from the Lomonosov Ridge, Arctic Ocean: implications for continental sources and linkage with the North Atlantic Ocean. Comptes Rendus Geoscience, 347(5–6):227–135. https://doi.org/10.1016/j.crte.2015.02.008 Stickley, C.E., 2014. The sea ice thickens. Nature Geoscience, 7(3):165–166. https://doi.org/10.1038/ngeo2080 Stickley, C.E., Koç, N., Brumsack, H.-J., Jordan, R.W., and Suto, I., 2008. A siliceous microfossil view of middle Eocene Arctic paleoenvironments: a window of biosilica production and preservation. Paleoceanography and Paleoclimatology, 23(1):PA1S14. https://doi.org/10.1029/2007PA001485 Stickley, C.E., Koç, N., Pearce, R.B., Kemp, A.E.S., Jordan, R.W., Sangiorgi, F., and St. John, K., 2012. Variability in the length of the sea ice season in the middle Eocene Arctic. Geology, 40(8):727–730. https://doi.org/10.1130/G32976.1 Stickley, C.E., St. John, K., Koç, N., Jordan, R.W., Passchier, S., Pearce, R.B., and Kearns, L.E., 2009. Evidence for middle Eocene Arctic Sea ice from diatoms and ice-rafted debris. Nature, 460(7253):376–379. https://doi.org/10.1038/nature08163 Stoll, H.M., 2006. The Arctic tells its story. Nature, 441(7093):579–580. https://doi.org/10.1038/441579a Strand, K., Junttila, J., Lahtinen, T., and Saarni, S. M., 2008. Climatic transitions in the Arctic as revealed by mineralogical evidence from the Upper Cenozoic sediments in the central Arctic Ocean and the Yermak Plateau. Norsk Geologisk Tidsskrift, 88:305–312. Strand, K., and Immonen, N., 2009. The IODP's focus on polar regions. Geologi, 61(5):147. Suc, J.-P., Fauquette, S., Popescu, S.-M., and Robin, C., 2020. Subtropical mangrove and evergreen forest reveal Paleogene terrestrial climate and physiography at the North Pole. Palaeogeography, Palaeoclimatology, Palaeoecology, 551:109755. https://doi.org/10.1016/j.palaeo.2020.109755 Suto, I., Jordan, R.W., and Watanabe, M., 2008. Taxonomy of the fossil marine diatom resting spore genus Goniothecium Ehrenberg and its allied species. Diatom Research, 23(2):445–469. https://doi.org/10.1080/0269249X.2008.9705769 Suto, I., Jordan, R.W., and Watanabe, M., 2009. Taxonomy of middle Eocene diatom resting spores and their allied taxa from the central Arctic Basin. Micropaleontology, 55(2–3):259–312. https://www.jstor.org/stable/40607116 Suto, I., Watanabe, M., and Jordan, R.W., 2011. Taxonomy of the fossil marine diatom resting spore genus Odontotropis. Diatom Research, 26(3):255–272. https://doi.org/10.1080/0269249X.2011.591047 Takahashi, K., Onodera, J., and Katsuki, K., 2009. Significant populations of seven-sided Distephanus (Silicoflagellata) in the sea-ice covered environment of the central Arctic Ocean, summer 2004. Micropaleontology, 55(2–3):313–325. https://www.jstor.org/stable/40607117 Thiede, J., Jessen, C., Knutz, P., Kuijpers, A., Mikkelsen, N., Norgaard-Pedersen, N., and Spielhagen, R.F., 2011. Millions of years of Greenland ice sheet history recorded in ocean sediments. Polarforschung, 80(3):141–159. https://epic.awi.de/id/eprint/30005/1/15-33.pdf Thompson, B., Jakobsson, M., Nilsson, J., Nycander, J., and Döös, K., 2012. A model study of the first ventilated regime of the Arctic Ocean during the early Miocene. Polar Research, 31(4):267–273. https://doi.org/10.3402/polar.v31i0.10859 Thompson, B., Nilsson, J., Nycander, J., Jakobsson, M., and Döös, K., 2010. Ventilation of the Miocene Arctic Ocean: an idealized model study. Paleoceanography, 25(4):PA4216. https://doi.org/10.1029/2009PA001883 Tremblay, L.B., Schmidt, G.A., Pfirman, S., Newton, R., and DeRepentigny, P., 2015. Is ice-rafted sediment in a North Pole marine record evidence for perennial sea-ice cover? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2052):20140168. https://doi.org/10.1098/rsta.2014.0168 Tripati, A., and Darby, D., 2018. Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice. Nature Communications, 9(1):1038. https://doi.org/10.1038/s41467-018-03180-5 Tsutsui, H., and Takahashi, K., 2009. Biometry of Distephanus medianoctisol (Silicoflagellata) in the sea-ice covered environment of the central Arctic Ocean, summer 2004. Memoirs of the Faculty of Science, Kyushu University, Series D, Earth and Planetary Sciences, 32(2):57–68. https://doi.org/10.5109/13527 Tsutsui, H., Takahashi, K., and Fowell, S.J., 2009. Pollen and spores from the perennial sea-ice covered environment of the central Arctic Ocean, summer 2004 (IODP ACEX 302). Memoirs of the Faculty of Science, Kyushu University, Series D, Earth and Planetary Sciences, 32(2):45–56. https://doi.org/10.5109/13526 Turunen, S., 2008. Clay mineralogy and sediment components in the central Arctic Ocean: implications for Cenozoic glacial history and sea-ice transport (IODP Arctic Coring Expedition 302) [MS thesis]. University of Oulu, Finland. Vermassen, F., O’Regan, M., de Boer, A., Schenk, F., Razmjooei, M., West, G., Cronin, T.M., Jakobsson, M., and Coxall, H.K., 2023. A seasonally ice-free Arctic Ocean during the Last Interglacial. Nature Geoscience, 16(8):723–729. https://doi.org/10.1038/s41561-023-01227-x Vogt, C., 2008. X-ray diffraction analysis of sediment cores from the ACEX expedition to the Arctic Ocean, dataset #705057. http://doi.pangaea.de/10.1594/PANGAEA.705057 Waddell, L.M., 2009. Cenozoic high latitude paleoceanography: new perspectives from the Arctic and subantarctic Pacific [PhD dissertation]. University of Michigan, Ann Arbor, MI. http://deepblue.lib.umich.edu/bitstream/2027.42/62273/1/waddelin_1.pdf Waddell, L.M., and Moore, T.C., 2008. Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate. Paleoceanography and Paleoclimatology, 23(1):PA1S12. https://doi.org/10.1029/2007PA001451 Wade, B.S., O'Neill, J.F., Phujareanchaiwon, C., Ali, I., Lyle, M., and Witkowski, J., 2020. Evolution of deep-sea sediments across the Paleocene-Eocene and Eocene-Oligocene boundaries. Earth-Science Reviews, 211:103403. https://doi.org/10.1016/j.earscirev.2020.103403 Weijers, J.W.H., Schouten, S., Sluijs, A., Brinkhuis, H., and Sinninghe Damsté, J.S., 2007. Warm Arctic continents during the Palaeocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 261(1–2):230–238. https://doi.org/10.1016/j.epsl.2007.06.033 Weller, P., and Stein, R., 2008. Paleogene biomarker records from the central Arctic Ocean (Integrated Ocean Drilling Program Expedition 302): organic carbon sources, anoxia, and sea surface temperature. Paleoceanography and Paleoclimatology, 23(1):PA1S17. https://doi.org/10.1029/2007PA001472 West, G., Kaufman, D.S., Jakobsson, M., and O'Regan, M., 2023. Amino acid racemization in Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean and its implications for age models. Geochronology, 5(1):285–299. https://doi.org/10.5194/gchron-5-285-2023 Willard, D.A., Donders, T.H., Reichgelt, T., Greenwood, D.R., Sangiorgi, F., Peterse, F., Nierop, K.G.J., Frieling, J., Schouten, S., and Sluijs, A., 2019. Arctic vegetation, temperature, and hydrology during early Eocene transient global warming events. Global and Planetary Change, 178:139–152. https://doi.org/10.1016/j.gloplacha.2019.04.012 Willard, D.A., and Ruppert, L.F., 2023. Broadening the perspectives of sedimentary organic matter analysis to understand Earth system response to change. International Journal of Coal Geology, 274:104281. https://doi.org/10.1016/j.coal.2023.104281 Yamamoto, M., 2018. Paleoceanographic study of the Arctic Ocean: its state and issues. Geological Magazine, 124(1):3–16. https://doi.org/10.5575/geosoc.2017.0075 Yamamoto, M., Okino, T., Sugisaki, S., and Sakamoto, T., 2008. Late Pleistocene changes in terrestrial biomarkers in sediments from the central Arctic Ocean. Organic Geochemistry, 39(6):754–763. https://doi.org/10.1016/j.orggeochem.2008.04.009 Zhukov, N.N., Nikishin, A.M., Petrov, E.I., and Freiman, S.I., 2020. Rift systems of the east Siberian continental margin. Moscow University Geology Bulletin, 75(6):547–559. https://doi.org/10.3103/S0145875220060137 ConferencesAshmankas, C.E., O’Regan, M., and Moran, K., 2007. Paleo-currents and -ice, using grain size analyses in the ACEX and ARCTIC ‘91 cores. Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0788. https://abstractsearch.agu.org/ Backman, J., Moran, K., Moore, T., King, J.W., Gattacecca, J., Brinkhuis, H., Matthiessen, J., Jakobsson, M., Pälike, H., O’Regan, M., Fran, M., and Kubik, P., 2005. Cenozoic ridge crest sediments from the Central Arctic Ocean yield cm/ka-scale sedimentation rates. Eos, Transactions of the American Geophysical Union, 86(52):PP51C–0607. https://abstractsearch.agu.org/ Backman, J., Jakobsson, M., Rudels, B., Moran, K., O’Regan, M., Moore, T., Jokat, W., and Mayer, L.A., 2006. Cenozoic depositional regimes and the onset of ventilated conditions in the Central Arctic Ocean. Eos, Transactions of the American Geophysical Union, 87(52):U24A–01. https://abstractsearch.agu.org/ Bagard, M.L., Davies, M.K., Dickson, A., and Cohen, A.S., 2014. Multi proxy reconstruction (δ98/95Mo, δ238/235U) of global ocean oxygenation during the early Eocene. Presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014. https://abstractsearch.agu.org/ Barke, J., Brinkhuis, H., Sangiorgi, F., van der Burgh, J., van Konijnenburg-van Cittert, H., Collinson, M.E., Speelman, E., Reichart, G.-J., van Kempen, M., Roelofs, J., Sinninghe Damsté, J., Lotter, A.F., and the Azolla Research Team, 2008. Extensive Azolla bloom in the Eocene Arctic Ocean: indications for major episodes of fresh surface waters and possible consequences for global biogeochemical cycling. Geophysical Research Abstracts, 10(8054). https://meetings.copernicus.org/ Boucsein, B., and Stein, R., 2006. Organic petrology of Upper Cretaceous/lower Tertiary deposits from the central Arctic Ocean (IODP Hole 302): paleoenvironmental and paleoceanographic links. Eos, Transactions of the American Geophysical Union, 87(52):PP41A–1186. https://abstractsearch.agu.org/ Boucsein, B., 2006. Organic petrography on Cenozoic sediments from Hole 302 (Lomonosov Ridge): a classical approach for estimations of organic carbon fluxes [IODP-ICDP Kolloquium 2006]. Presented at the Greifswald, Germany, 27–29 March 2006. Boucsein, B., Knies, J., and Stein, R., 2008. How is black shale formation in the early Eocene Arctic Ocean influenced by export of terrestrial organic matter? Details from an organic petrological approach on marine sediments from IODP Hole 302 (Lomonosov Ridge). Presented at the IODP/ICDP Kolloquium, Hannover, Germany, 12–14 March 2008. Brinkhuis, H., Schouten, S., Collinson, M.E., Sluijs, A., Sinninghe Damsté, J.S., Dickens, G.R., Huber, M., Cronin, T.M., Bujak, J.P., Stein, R., Eldrett, J.S., Harding, I.C., and Sangiorgi, F., 2005. A giant Arctic freshwater pond at the end of the early Eocene: implications for ocean heat transport and carbon cycling. Eos, Transactions of the American Geophysical Union, 86(52):PP51C–0617. https://abstractsearch.agu.org/ Brumsack, H.-J., Sangiorgi, F., Brinkhuis, H., Stein, R., and Schnetger, B., 2007. Paleogene black shales from the central Arctic Ocean: a Black Sea analogue? Geophysical Research Abstracts, 9(10272). https://meetings.copernicus.org/ Chernyh, A.a.K., A., 2010. The history of sedimentation in the Amundsen Basin based on geophysical data and results of ACEX (IODP-302). NGF Abstracts and Proceedings, 2(11). Conner, K.C.a.S.J., K., 2007. Concentration of heavy grains in the core catcher samples of mid Eocene to late Pleistocene sediments from the Lomonosov Ridge, Arctic Ocean. Geological Society of America Abstracts with Programs, 39(2). Conze, R., Krysiak, F., Wallrabe-Adams, H., and Graham, C.C., 2004. Data modeling, development, installation and operation of the ACEX offshore drilling information system for the mission specific platform expedition to the Lomonosov Ridge, Arctic Ocean. Eos, Transactions of the American Geophysical Union 85(47):GC51D–1084. https://abstractsearch.agu.org/ Couchon, K.M., 2006. Broader impact and the Arctic Coring expedition of summer 2004: a science teacher brings the pole to the public. Eos, Transactions of the American Geophysical Union, 87(52):ED23B-1253. https://abstractsearch.agu.org/ Cronin, T.M., O’Regan, M., Smith, S., Eynaud, F., and Jakobsson, M., 2008. Quaternary foraminifers from IODP ACEX Core 4C and Arctic sea-ice history. Presented at the 38th International Arctic Workshop, Boulder, CO, 5–7 March 2008. Darby, D., 2007. The Arctic perennial ice cover over the last 14 million years. Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0789. https://abstractsearch.agu.org/ Darby, D.A., 2010. Evidence that the Arctic perennial ice has disappeared several times in the past. Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ Dickson, A.J., Cohen, A.S., and Coe, A.L., 2010. Molybdenum and osmium isotope evidence for palaeoceanographic changes in the Arctic Ocean over the Paleocene-Eocene Thermal Maximum (PETM). Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ Farrell, J.W., Moran, K., and Backman, J., 2007. Arctic coring expedition: how to beat the system and win. Eos, Transactions of the American Geophysical Union, 88(52):PP43D–01. https://abstractsearch.agu.org/ Firth, J.V., Eldrett, J.S., Harding, I.C., Coxall, H.K., Wade, B., and Backman, J., 2010. Re-assessment of the Eocene-Oligocene age model of ODP Hole 647A, with implications for correlation of paleoceanographic events from very high to low latitudes. Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ Fitzgerald, S., Pierce, C., Schloss, J., Thompson, B., and Rowsell, J., 2011. Molecular hydrogen interactions within metal-organic frameworks. Presented at the International Symposium on Molecular Spectroscopy, Columbus, OH, 20–24 June 2011. Forschner, S.R., Rowley, D.C., and Smith, D.C., 2006. Exploration of deeply buried Arctic sediments for microbial diversity and novel biomedical resources. Eos, Transactions of the American Geophysical Union, 87(36):OS25M-20. https://abstractsearch.agu.org/ Gleason, J., Thomas, D., Moore, T., Blum, J., Owen, R., and Haley, B., 2008. Paleoceanography of the Eocene Arctic Basin through Nd-Sr isotope study of fossil fish debris. Presented at the 33rd International Geological Congress, Oslo, Norway, 6–14 August 2008. Gleason, J.D., Thomas, D.T., Moore, T.C., Blum, J.D., and Owen, R.M., 2006. Eocene history of the Arctic Ocean basin from Nd-Sr isotopes in fossil fish debris. Eos, Transactions of the American Geophysical Union, 87(52):U33A–0002. https://abstractsearch.agu.org/ Gleason, J.D., Thomas, D.T., Moore, T.C., Jr., Waddell, L.M., Blum, J.D., and Haley, B.A., 2007. Reconstruction of the Eocene Arctic Ocean using ichthyolith isotope analyses. Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0779. https://abstractsearch.agu.org/ Gleason, J.D., Thomas, D.T., Moore, T.C., Jr., Blum, U.D., and Owen, R.M., 2007. Water column structure of the Eocene Arctic Ocean from Nd-Sr isotope proxies in fossil fish debris. Abstracts of the 17th Annual V. M. Goldschmidt Conference, 71(15S):A329. https://goldschmidt.info/ Gleason, J.D., Thomas, D.T., Moore, T.C., Blum, J.D., Owen, R.M., and Haley, B.A., 2009. Seawater exchange and freshwater input to the Eocene Arctic Ocean from Nd-Sr isotope proxies in fossil fish debris. Eos, Transactions of the American Geophysical Union, 90(22):PP73A-04. https://abstractsearch.agu.org/ Haley, B.A., Frank, M., and Spielhagen, R., 2006. Neodymium isotopes and the Neogene evolution of Arctic intermediate water. Eos, Transactions of the American Geophysical Union, 87(52):PP12B–04. https://abstractsearch.agu.org/ Haley, B.A., Frank, M., Spielhagen, R.F., and Fietzke, J., 2007. The radiogenic isotope record of Arctic Ocean circulation and weathering inputs of the past 15 million years. Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0786. https://abstractsearch.agu.org/ Haley, B.A., Frank, M., Spielhagen, R., and Fietzke, J., 2007. The Pb isotope evolution of Arctic Ocean Intermediate Water over the past 16 million years. Abstracts of the 17th Annual V. M. Goldschmidt Conference, 71(15S):A371. https://goldschmidt.info/ Haley, B.A., Frank, M., Moran, K., and Backman, J., 2006. Cenozoic nedoymium isotope evolution of Arctic Ocean deep water. Geochimica et Cosmochimica Acta, 70(18):A223. https://doi.org/ Harding, I., Marshall, J., Pälike, H., Wilson, P., and Roberts, A., 2008. The Palaeocene–Eocene Thermal Maximum in the high Arctic: a high resolution multi-proxy study from Spitsbergen. Presented at the 33rd International Geological Congress, Oslo, Norway, 6–14 August 2008. Hashimoto, S., Yamaguchi, K.E., and Takahashi, K., 2012. Evolution of biogeochemical cycling of phosphorus during 45–50 Ma revealed by sequential extraction analysis of IODP Expedition 302 cores from the Arctic Ocean. Presented at the American Geophysical Union 2012 Fall Meeting, San Francisco, CA, 3–7 December 2012. https://abstractsearch.agu.org/ Hillaire-Marcel, C.a.P., A., 2013. The very late Eocene opening of Fram Strait between the Arctic Ocean and the Nordic Seas: linkages with the Popigai Impact. Presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013. https://abstractsearch.agu.org/ Immonen, N., and Strand, K., 2007. Quartz grain surface textures of the Lomonosov Ridge sediments characterizing Ceonozoic glaciations. Presented at the Congress of the International Polar Year2007/08: Celebration of Finnish Geoscientific Studies in Polar Areas, Espoo, Finland, 12 and 13 November 2008. Immonen, N., 2008. Quartz grain surface textures of the Lomonosov Ridge sediments characterizing Cenozoic glaciations (IODP Arctic Coring EXpedition 302): Espoo, Finland (Geological Survey of Finland). Immonen, N., Strand, K., and Turunen, S., 2008. Quartz grain microtextures and clay minerals as indicators of Neogene glacial conditions in the central Arctic Ocean. Presented at the 33rd International Geological Congress, Oslo, Norway, 6–14 August 2008. Isono, D., and Polyak, L., 2007. Late Pleistocene biomarker records from the central Arctic Ocean (ACEX Hole M0004C and HOTRAX HLY0503-08JPC). Eos, Transactions of the American Geophysical Union, 88(52):PP51A–0185. https://abstractsearch.agu.org/ Jokat, W., and Stein, R., 2011. The Cenozoic-Mesozoic Arctic Ocean and its tectonic and paleoceanographic evolution: a challenge for future scientific IODP-type drilling. Presented at the 3P Arctic 2011: The Polar Petroleum Potential, Halifax, Canada, 30 August–2 September 2011. https://epic.awi.de/ King, J.W., Heil, C., O’Regan, M., Moran, K., Gattacecca, J., Jakobsson, M., and Moore, T., 2005. Paleomagnetic results from the Pleistocene sediments of Lomonosov Ridge, central Arctic Ocean, IODP Leg 302. Eos, Transactions of the American Geophysical Union, 86(52):GP44A–04. https://abstractsearch.agu.org/ Knies, J., Baranwal, S., Fabian, K., Grøsfjeld, K., Andreassen, K., Husum, K., Mattingsdal, R., Gaina, C., De Schepper, S., Vogt, C., and Andersen, N., 2012. New insights into late Neogene glacial dynamics, tectonics, and hydrocarbon migrations in the Atlantic-Arctic gateway region. Geophysical Research Abstracts, 14:EGU2012–2384. Krupskaya, V., Krylov, A., Vogt, C., Nechitaylo, A., Borisov, D., Andreeva, I., and Piloyan, G., 2008. Clay mineral assemblages of the bottom sediments from the Arctic Ocean as an indicators of paleoclimatic changes during Cenozoic time (IODP Leg 302 data). Presented at the 33rd International Geological Congress, Oslo, Norway, 6–14 August 2008. Krupskaya, V., Nechitaylo, A., Krylov, A., Vogt, C., and Andreeva, I., 2008. Clay mineral assemblages of the bottom sediments from the Arctic Ocean as an indicators of paleoclimatic changes during Cenozoic time. Presented at the 4th Mid-European Clay Conference, Zakopane, Poland, 22–27 September 2008. Ludvigson, G.A., Gonzalez, L.A., and Pagani, M., 2008. Stable isotope proxies for polar paleoprecipitation in ancient greenhouse worlds. Geological Society of America Abstracts with Programs, 40(6). Mann, U.a.K., J., 2007. Petroleum generation in the central Arctic Ocean: how, where and when? Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0790. https://abstractsearch.agu.org/ Marshall, C.C., Flynn, M.M., Kearns, L.E., and St. John, K.E., 2011. Insight into changing climate and source areas: an investigation of marine Arctic clay sediments. Geological Society of America Abstracts with Programs, 43(2). Martinez, N.C., Murray, R.W., Dickens, G.R., and Kölling, M., 2007. Geochemical and paleoceanographic examination of the Cenozoic Arctic Ocean: results from IODP ACEX 302. Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0774. https://abstractsearch.agu.org/ Matthiessen, J., Backman, J., Brinkhuis, H., Jakobsson, M., King, J., Martin, F., Moran, K., and O’Regan, M., 2006. Plio-/Pleistocene palynostratigraphy in the central Arctic Ocean (Lomonosov Ridge, Expedition 302). Presented at the IODP-ICDP Kolloquium 2006, Greifswald, Germany, 27–29 March 2006. Matthiessen, J., Brinkhuis, H., Poulsen, N., and Smelror, M., 2007. Towards a Neogene palynostratigraphy of the Arctic Ocean. Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0785. https://abstractsearch.agu.org/ Mayer, L., Moran, K., and Backman, J., 2007. The Cenozoic Arctic Ocean unveiled through scientific ocean drilling. Eos, Transactions of the American Geophysical Union, 88(52):PP43D–02. https://abstractsearch.agu.org/ Moran, K., and Backman, J., 2004. ACEX: a first look at Arctic Ocean Cenozoic history. Eos, Transactions of the American Geophysical Union, 85(47):PP54B–03. https://abstractsearch.agu.org/ Moran, K., Lado-Insua, T., and O’Regan, M., 2013. Grain size analyses of Neogene-Quaternary sediments form the Arctic Coring Expedition. Presented at the 2013 American Geophysical Union Fall Meeting, San Francisco, CA, 9–13 December 2013. https://abstractsearch.agu.org/ Moran, K.a.B., J., 2008. Recovering an Arctic climate record from the North Pole. Presented at the 33rd International Geological Congress, Oslo, Norway, 6–14 August 2008. Mullen, K., Summa, M., and St. John, K., 2006. The first long term record of ice rafting in the Central Arctic based on sand accumulation, 0 to 46 Ma. Geological Society of America Abstracts with Programs, 38(3). O’Regan, M., Moran, K., Backman, J., King, J., Heil, C., and Jakobsson, M., 2005. Integrating recent Pleistocene glacial records from the Lomonosov Ridge, Central Arctic Ocean. Eos, Transactions of the American Geophysical Union, 86(52):PP43C–04. https://abstractsearch.agu.org/ O’Regan, M., Moran, K., Sangiorgi, F., Brinkhuis, H., Backman, J., Jakobsson, M., Stickley, C., Koç, N., Brumsack, H., and Pockalny, R., 2006. Evidence for the Mid-Cenozoic uplift of the Lomonosov Ridge. Eos, Transactions of the American Geophysical Union, 87(52):OS53B–1113. https://abstractsearch.agu.org/ O’Regan, M., Frank, M., Haley, B., St. John, K., Backman, J., Moran, K., Vogt, C., Jakobsson, M., King, J., and Ashmankas, C., 2008. North Atlantic inflow and ice-coverage in the Central Arctic Ocean: Neogene records from the Lomonosov Ridge. Geophysical Research Abstracts, 10:EGU2008-A-07844. https://www.cosis.net/ O’Regan, M.A., Jakobsson, M., and Ahnfelt, P., 2011. A regional perspective on the timing of ventilation of the Arctic Ocean: did it occur in the late Eocene or early Miocene? Presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011. https://abstractsearch.agu.org/ Ogawa, Y., Takahashi, K., and Yamanaka, T., 2007. Paleoceanography of the middle Eocene Arctic Ocean based on geochemical measurements of biogenic matter. Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0778. https://abstractsearch.agu.org/ Onodera, J., and Takahashi, K., 2006. The middle Eocene paleoceanography of the Arctic Ocean based on silicoflagellates and ebridians. Eos, Transactions of the American Geophysical Union, 87(52):U33A–0019. https://abstractsearch.agu.org/ Onodera, J.a.T., K., 2007. The silicoflagellates and ebridians from the Central Arctic Ocean in the early middle Eocene. Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0777. https://abstractsearch.agu.org/ Onodera, J.a.T., K., 2008. The 10,000 year–scale paleoceanography based on silicoflagellate and ebridian assemblages in the middle Eocene Arctic Ocean. Eos, Transactions of the American Geophysical Union, 89(53):PP33B–1557. https://abstractsearch.agu.org/ Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinninghe Damsté, J.S., and Dickens, G.R., 2005. Arctic’s hydrology during global warming at the Palaeocene–Eocene Thermal Maximum. Eos, Transactions of the American Geophysical Union, 86(52):PP52B–04. https://abstractsearch.agu.org/ Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinninghe Damsté, J.S., and Dickens, G.R., 2005. Atmosphere-ocean CO2 disequilibrium and the hydrologic response to climate change during the PETM: an Arctic perspective. Geological Society of American Abstracts with Programs, 37(7):265. Paquay, F.S.a.R., G., 2010. Variations in the osmium isotopes record during the Azolla phase (IODP Expedition 302). Goldschmidt 2010: Earth, Energy, and the Environment, 74(12S):A791. https://goldschmidt.info/ Paquay. F. and Ravizza, G., 2011. Variations in the osmium isotopes record during the Azolla phase (IODP Expedition 302). Geophysical Research Abstracts, 13:EGU2011–4999. Poirier, A., Stevenson, R.K., Véron, A., and Hillaire-Marcel, C., 2009. Sr-Pb-Os in the Arctic Ocean: revealing environmental Cenozoic changes. Eos, Transactions of the American Geophysical Union, 90(22):GA21B–02. https://abstractsearch.agu.org/ Poirier, A., Hillaire-Marcel, C., Véron, A.J., Stevenson, R., and Carignan, J., 2011. From the Arctic Lake to the Arctic Ocean: radiogenic isotope signature of transitional sediments. Presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011. https://abstractsearch.agu.org/ Poselov, V., Kaminsky, V.D., Butsenko, V.V., and Grikurov, G.E., 2010, 2010. Lomonosov Ridge as a natural component of continental margin. Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ Poselov, V., Butsenko, V., Kaminskiy, V., Kireev, A., and Grikurov, G., 2013. Seismic stratigraphy of sedimentary cover in the southern Amerasia Basin between 140E and 170W. Presented at the 2013 American Geophysical Union Fall Meeting, San Francisco, CA, 9–13 December 2013. https://abstractsearch.agu.org/ Pound, K.S., St. John, K., Krissek, L.A., Jones, M.H., Leckie, R.M., and Pyle, E.J., 2008. Why drill here? Teaching to build student understanding of the role sediment cores from polar regions play in interpreting climate change. Eos, Transactions of the American Geophysical Union, 89(53):ED33A–0612. https://abstractsearch.agu.org/ Quirk, B.a.S.J., K., 2006. Cenozoic planktonic foraminifera diagenetically altered to siderite in Lomonosov Ridge sediments, Arctic Ocean. Geological Society of America Abstracts with Programs, 38(3):36. Ramstad, C.a.S.J., K., 2007. Composition of Eocene ice-rafted debris, central Arctic Ocean. Eos, Transactions of the American Geophysical Union, 88(52):PP11A–0231. https://abstractsearch.agu.org/ Sakamoto, T., Sugisaki, S., Iijima, K., Yamamoto, M., O’Regan, M., King, J.W., and Moran, K., 2006. Arctic-ice history and its related sedimentary regimes in the central Arctic Ocean: IODP Expedition 302—Arctic Coring Expedition: ACEX by new non-destructive 2-D XRF and transmission X-ray sediment-scanning techniques, TATSCAN. Eos, Transactions of the American Geophysical Union, 87(52):U33A–0023. https://abstractsearch.agu.org/ Sakamoto, T., Iijima, K., and Sugisaki, S., 2008. High-resolution sea-ice and ocean circulation history during 18 Ma: upper 200 m core section obtained by IODP Expedition 302 (ACEX). Geophysical Research Abstracts, 10(09167). https://www.cosis.net/ Sakamoto, T., Sugisaki, S., and Iijima, K., 2008. Late Cenozoic sea-ice history around the Lomonosov Ridge in the central Arctic Ocean: results from the IODP Expedition 302 ACEX. Presented at the Japan Geoscience Union Meeting 2008, Chiba City, Japan, 25–30 May 2008. Sangiorgi, F., Brumsack, H., Schouten, S., Brinkhuis, H., Kaminski, M.A., Reichart, G., Stickley, C.E., Willard, D.A., and Sinninghe Damsté, J.S., 2006. The gap in the Arctic Cenozoic record: expect the unexpected. Eos, Transactions of the American Geophysical Union, 87(52):U24A–06. https://abstractsearch.agu.org/ Sangiorgi, F., van Soelen, E.E., Spofforth, D.J., Pälike, H., Stickley, C.E., St. John, K., Koç, N., Schouten, S., Sinninghe Damsté, J.S., and Brinkhuis, H., 2007. Cyclicity in the central Arctic Ocean middle Eocene sediment record: orbital forcing and environmental response. Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0775. https://abstractsearch.agu.org/ Sangiorgi, F., Brumsack, H.-J., Schouten, S., Brinkhuis, H., Willard, D.A., Reichart, G.-J., Stickley, C.E., Kaminski, M.A., and Sinninghe Damsté, J.S., 2007. A 25 Ma gap in the central Arctic Cenozoic record: why and how? Geophysical Research Abstracts, 9(3266). https://meetings.copernicus.org/ Sangiorgi, F., Brinkhuis, H., Schouten, S., Reichart, G.-J., Sinninghe Damsté, J.S., Florindo, F., and Harwood, D., 2008. Cenozoic climate history: an Arctic–Antarctic comparison from direct archives. Presented at the 33rd International Geological Congress, Oslo, Norway, 6–14 August 2008. Schneider-Mor, A.a.B., G.J., 2008. Dynamics of carbon burial in the coastal oceans through the Paleocene-Eocene Thermal Maximum. Eos, Transactions of the American Geophysical Union, 89(53):PP33B–1547. https://abstractsearch.agu.org/ Schreck, M.a.M., J., 2010. Palynostratigraphy and paleoenvironment of Arctic and subarctic Neogene sediments: a magnetostratigraphic calibration of ODP Site 907A dinocyst events. Presented at the IODP-ICDP Kolloquium 2010, Frankfurt, Germany, 9–11 March 2010. Setoyama, E., Kaminski, M.A., and Tyszka, J., 2012. Campanian agglutinated foraminifera from the Lomonosov Ridge, IODP Leg 302 (ACEX): implications for Arctic Late Cretacous paleogeography. Geophysical Research Abstracts, 14(4757). Sluijs, A., Schouten, S., Pagani, M., Brinkhuis, H., Sinninghe Damsté, J.S., Dickens, G.R., Huber, M., Reichart, G., Stein, R., and Lourens, L.J., 2005. Extremely high late Paleocene–early Eocene sea surface temperatures on the North Pole. Eos, Transactions of the American Geophysical Union, 86(52):PP52B–03. https://abstractsearch.agu.org/ Sluijs, A., Schouten, S., Röhl, U., Reichart, G., Sinninghe Damsté, J.S., Sangiorgi, F., Krishnan, S., Pagani, M., and Brinkhuis, H., 2007. Fresh and warm Arctic Ocean surface waters during Eocene Thermal Maximum 2. Eos, Transactions of the American Geophysical Union, 88(52):PP43D–04. https://abstractsearch.agu.org/ Sluijs, A., Schouten, S., Roehl, U., Reichart, G.-J., Sinninghe Damsté, J.S., Sangiorgi, F., Krishnan, S., Pagani, M., and Brinkhuis, H., 2008. Fresh and warm Arctic Ocean surface waters during Eocene thermal maximum 2. Geological Society of America Abstracts with Programs, 40(6):194. Smith, S.A., Cronin, T.M., and Eynaud, F., 2006. Quaternary foraminiferal assemblages from IODP-ACEX cores, central Arctic Ocean. Eos, Transactions of the American Geophysical Union, 87(52):OS53B–1100. https://abstractsearch.agu.org/ Snowball, I., Lougheed, B.C., and O’Regan, M., 2014. Quaternary sediments in the Arctic Ocean: towards solving a paleomagnetic conundrum. Presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014. https://abstractsearch.agu.org/ Speelman, E., Sinninghe Damsté, J., März, C., Brumsack, H., and Reichart, G.-H., 2010. Arctic Ocean circulation during the anoxic Eocene Azolla event. Geophysical Research Abstracts, 12(13875). Speelman, E.N., Reichart, G., Brinkhuis, H., Sinninghe Damsté, J.S., de Leeuw, J.M., and van Kempen, M., 2007. Biomarker constraints on Arctic surface water conditions during the Middle Eocene. Eos, Transactions of the American Geophysical Union, 88(52):PP43D–06. https://abstractsearch.agu.org/ Spofforth, D.J., Pälike, H., O’Regan, M., Gattacceca, J., and Green, D., 2007. Paleogene record of orbital variations, time scales and elemental distribution in sediments from the Arctic Ocean obtained by XRF analyses. Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0783. https://abstractsearch.agu.org/ St. John, K., Passchier, S., and Kearnes, L., 2010. Paleoenvironmental interpretation of quartz surface textures, from the middle Eocene Central Arctic IRD record. Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ St. John, K.E., 2007. Neogene and Eocene ice-rafting in the central Arctic. Eos, Transactions of the American Geophysical Union, 88(52):PP43D–03. https://abstractsearch.agu.org/ St. John, K.E., Passchier, S., and Kearns, L.E., 2008. Evaluating the input of iceberg-rafted vs. sea ice–rafted debris using surface texture analyses of quartz grains from the ACEX Central Arctic middle Eocene marine sediment record. Eos, Transactions of the American Geophysical Union, 89(53):PP33B–1556. https://abstractsearch.agu.org/ St. John, K.K.a.S., C.E., 2011. Anchor ice transport and redeposition of mud clumps in Arctic Coring Expedition (ACEX) lithologic Subunit 1/6? Presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011. https://abstractsearch.agu.org/ Stein, R., Matthießen, J., and the Expedition 302 Science Party, 2005. The Paleogene (“Greenhouse”) Arctic Ocean paleoenvironment: implications from organic-carbon records (IODP-ACEX Expedition 302). Presented at the 2nd International Alfred Wegener Symposium, Bremerhaven, Germany, 30 October – 2 November 2005. Stein, R., Weller, P., and Meyer, H., 2006. The Paleocene-Eocene (“greenhouse”) Arctic Ocean paleoenvironment: implications from organic-carbon and biomarker records (IODP-ACEX Expedition 302). Geophysical Research Abstracts, 8. https://meetings.copernicus.org/ Stein, R., 2007. Organic carbon accumulation in the Central Arctic Ocean during Cenozoic times and its paleoenvironmental significance. Eos, Transactions of the American Geophysical Union, 88(52):PP42B–03. https://abstractsearch.agu.org/ Stein, R., Weller, P., and Pälike, H., 2010. Middle Eocene 15°C sea-surface water cooling and sea-ice formation in the central Arctic Ocean. Geophysical Research Abstracts, 12(14815). Stein, R., and Backman, J., 2011. Lower Tertiary black shales near the North Pole: organic-carbon sources, paleoenvironment and source-rock potential (IODP Expedition 302–ACEX). Presented at the 3P Arctic: The Polar Petroleum Potential, Halifax, Canada, 30 August–2 September 2011. Stein, R., Weller, P., and Pälike, H., 2011. Middle Eocene sea-surface water cooling and sea-ice formation at Lomonosov Ridge/Arctic Ocean (IODP Expedition 302–ACEX). Presented at the 20 Year North Pole Anniversary Symposium, Kiel, Germany, 7 September 2011. Stein, R., 2011. Organic carbon in Cenozoic Arctic Ocean sediments: origin, paleoenvironment, burial, and source-rock potential. Presented at the Geological Society of London Conference: Source Rocks: Character, Prediction and Value, London, England, 12–14 September 2011. https://epic.awi.de/ Stein, R., Coakley, B., Mikkelsen, N., O’Regan, M., and Ruppel, C., 2012. Future scientific drilling in the Arctic Ocean: key objectives, areas, and strategies. Geophysical Research Abstracts, 14(1824). Stein, R., 2015. Arctic Ocean paleoceanography and future IODP drilling. Geophysical Research Abstracts, 17:EGU2015–4419. Stein, R.a.W., P., 2006. The Paleogene (“Greenhouse”) Arctic Ocean paleoenvironment: implications from organic-carbon records (IODP-ACEX Expedition 302). Presented at the IODP-ICDP Kolloquium 2006, Greifswald, Germany, 27–29 March 2006. Stickley, C., Koç, N., Jordan, R., and Suto, I., 2006. Early middle Eocene palaeoenvironments and biostratigraphy of the Lomonosov Ridge: a diatom and chrysophyte perspective. Eos, Transactions of the American Geophysical Union, 87(52):U33A–0008. https://abstractsearch.agu.org/ Stickley, C., and Koç, N., 2008. The ACEX siliceous microfossils: middle Eocene biogenic silica production and preservation in the central Arctic. Geophysical Research Abstracts, 10(1412). https://www.cosis.net/ Stickley, C.E., Koç, N., Brumsack, H., Jordan, R.W., and Suto, I., 2007. A siliceous microfossil view of middle Eocene Arctic paleoenvironments. Eos, Transactions of the American Geophysical Union, 88(52). https://abstractsearch.agu.org/ Stickley, C.E., Koç, N., Jordan, R., and Suto, I., 2007. Eocene palaeoenvironments and biostratigraphy in the Arctic: a diatom and crysophyte perspective. Geophysical Research Abstracts, 9(4417). https://meetings.copernicus.org/ Stickley, C.E., Koç, N., Brumsack, H.-J., Jordan, R.W., and Suto, I., 2008. Siliceous microfossil derived salinity changes in the early middle Eocene central Arctic. Geophysical Research Abstracts, 10(12060). https://meetings.copernicus.org/ Stickley, C.E., and Koç, N., 2009. The big freeze: diatoms record Arctic sea ice at 47 Ma. Geophysical Research Abstracts, 11(1665). Stickley, C.E., Koç, N., Pearce, R.B., and Kemp, A.E.S., 2009. Do biosiliceous laminated sediments reveal sea ice seasonality in the middle Eocene Arctic Ocean? Geophysical Research Abstracts, 11(1781). Stickley, C.E., Koç, N., Pearce, R.B., and Kemp, A.E.S., 2010. Characteristics and temporal significance of middle Eocene laminated sediments from the Central Arctic. Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ Strand, K., 2011. Arctic climate and sea ice history: perspectives from the central Arctic Ocean sediment record. Presented at the Northern Environmental Research Symposium (Hokkaido-Finland Days: A Bridge for Northern Cooperation), Hokkaido, Japan, 31 October 2011. Strano, S.E., Stoner, J.S., and Xuan, C., 2012. Assessing geomagnetic signal attenuation in North Atlantic deep-sea paleomagnetic records. Presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012. https://abstractsearch.agu.org/ Strano, S.E., Stoner, J.S., and Ziegler, L.B., 2013. Holocene paleomagnetic record of the North Atlantic. Presented at the 2013 American Geophysical Union Fall Meeting, San Francisco, CA, 9–13 December 2013. https://abstractsearch.agu.org/ Sugisaki, S., Sakamoto, T., Iijima, K., and Yamamoto, M., 2007. Late Neogene Arctic sea ice history, IODP Expedition 302: Arctic Coring Expedition (ACEX) by new non-destructive technology, TATSCANs. Geophysical Research Abstracts, 9(10304). https://www.cosis.net/ Suto, I., Jordan, R.W., and Watanabe, M., 2007. Paleoenvironmental changes affected on the diversity explosion and extinction events of the fossil diatom resting spore assemblage across the E/O boundary. Eos, Transactions of the American Geophysical Union, 88(52):PP11A–0224. https://abstractsearch.agu.org/ Takahashi, K., Ogawa, Y., Onodera, J., and Yamanaka, T., 2007. Paleoceanography of the Eocene Arctic basin reconstructed with chemical parameters and siliceous microfossils. Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0781. https://abstractsearch.agu.org/ Thompson, B., Jakobsson, M., Nilsson, J., and Nycander, J., 2010. A model study on the Arctic Ocean early Miocene transition from an enclosed basin to a ventilated ocean. Presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010. https://abstractsearch.agu.org/ Tripati, A., Backman, J., Elderfield, H., and Ferretti, P., 2005. New results from ODP and IODP on the greenhouse–icehouse transition: evidence for early (Eocene) bipolar glaciation associated with global carbon cycle changes. Eos, Transactions of the American Geophysical Union, 86(52):V41H–02. https://abstractsearch.agu.org/ Tripati, A., Backman, J., Elderfield, H., Ferretti, P., and Macintyre, H., 2006. New results from ODP and IODP on the greenhouse-icehouse transition: evidence for Eocene bipolar glaciation associated with global carbon cycle changes. Geophysical Research Abstracts, 8. https://meetings.copernicus.org/ van Soelen, E., Brinkhuis, H., Sangiorgi, F., Spofforth, D., Pälike, H., Stickley, C.E., Koç, N., Schouten, S., and Sinninghe Damsté, J.S., 2007. Middle Eocene cyclicity in central Arctic Ocean sediments: preliminary results. Geophysical Research Abstracts, 9(3469). https://meetings.copernicus.org/ Vogt, C., Stein, R., and Fischer, R.X., 2006. Bulk mineral assemblage of IODP Leg 302-Arctic Coring Expedition (ACEX) cores: implications on paleoceanography and early diagenesis. Presented at the IODP-ICDP Kolloquium 2006, Greifswald, Germany, 27–29 March 2006. Vogt, C., Matthiessen, J., Knies, J., and Nam, S.-I., 2007. Mineral assemblages of the Arctic Ocean (I)ODP cores through the last 3 ma—quartz and feldspar contents and ratios vs. glacial onsets? Presented at the The Oceans in the Earth System: International Conference 2007 and 97th Annual Meeting of the Geologische Vereinigung e.V. (GV), Bremen, Germany, 1–5 October 2007. Vogt, C., Matthiessen, J., Krylov, A., Stein, R., and Fischer, R.X., 2007. Evidence of 15 million years of continuous sea-ice and iceberg input to the Arctic Ocean. Presented at the IODP-ICDP Kolloquium 2007, Potsdam, Germany, 19–21 March 2007. Vogt, C.a.F., R.X., 2007. Zeolites in IODP Leg 302—Arctic Coring Expedition (ACEX) cores. Presented at the IODP-ICDP Kolloquium 2007, Potsdam, Germany. 19–21 March 2007 Vogt, C.a.I.S., 2006. Bulk mineralogy of 15 million years of continuous sea-ice and iceberg input to the Arctic Ocean. Eos, Transactions of the American Geophysical Union, 87(52):U24A–05. https://abstractsearch.agu.org/ Vogt, C.M., Matthiessen, J., Knies, J., Stein, R., and Fischer, R.X., 2006. Pleistocene bulk and clay mineralogy of (I)ODP Sites in the Arctic Ocean. Geophysical Research Abstracts, 8. https://meetings.copernicus.org/ Vogt, C.M., Fischer, R.X., and Stein, R., 2007. Bulk mineral assemblage of the PETM and other extreme warm events in the IODP Arctic Ocean Coring Expedition’s sediments—weathering vs. transport. Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0780. https://abstractsearch.agu.org/ Waddell, L.M.a.M., T.C., 2006. Salinity of the early and middle Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate. Eos, Transactions of the American Geophysical Union, 87(52):OS53B–1097. https://abstractsearch.agu.org/ Weller, P.a.S., R., 2006. The Paleocene–Eocene “Greenhouse” Arctic Ocean paleoenvironment: implications from biomarker results from IODP Expedition 302 (ACEX). Eos, Transactions of the American Geophysical Union, 87(52):PP41A–1184. https://abstractsearch.agu.org/ Weller, P.a.S., R., 2007. Biomarker records and paleoenvironment of the central Arctic Ocean during Paleogene times. Eos, Transactions of the American Geophysical Union, 88(52):PP41D–0784. https://abstractsearch.agu.org/ Yamamoto, M., Sugisaki, S., and Sakamoto, T., 2006. Late Pleistocene variations in the water current and ice rafting transportations of organic matter in the central Arctic Ocean (ACEX Hole M0004C). Eos, Transactions of the American Geophysical Union, 87(52):U33A–0022. https://abstractsearch.agu.org/ Yamamoto, M., Okino, T., Sugisaki, S., and Sakamoto, T., 2007. Biomarker evidence for transport history of continental soils and shelf sediments to the central Arctic Ocean (ACEX Hole M0004C) over the last 240,000 years. Presented at the 9th International Conference on Paleoceanography, Shanghai, China, 3–7 September 2007. Yamamoto, M.a.P., L., 2007. Late Pleistocene biomarker records from the central Arctic Ocean (ACEX Hole M0004C and HOTRAX HLY0503-08JPC). Eos, Transactions of the American Geophysical Union, 88(52):PP51A–0185. https://abstractsearch.agu.org/ *The Expedition-related bibliography is continually updated online. Please send updates to PubCrd@iodp.tamu.edu. Top of page | Previous | Next |