IODP Proceedings Volume contents Search | |||
Expedition reports Research results Supplementary material Drilling maps Expedition bibliography | |||
Expedition-related bibliography*Citation data for IODP publications and journal articles in RIS format IODP publicationsScientific ProspectusWebster, J.M., Yokoyama, Y., and Cotterill, C., 2009. Great Barrier Reef environmental changes: the last deglacial sea level rise in the South Pacific: offshore drilling northeast Australia. IODP Sci. Prosp., 325. doi:10.2204/ Preliminary ReportExpedition 325 Scientists, 2010. Great Barrier Reef environmental changes: the last deglacial sea level rise in the South Pacific: offshore drilling northeast Australia. IODP Prel. Rept., 325. doi:10.2204/ Scientific Drilling journalYokohama, Y., Webster, J.M., Cotterill, C., Braga, J.C., Jovane, L., Mills, H., Morgan, S., Suzuki, A., and the IODP Expedition 325 Scientists, 2011. IODP Expedition 325: the Great Barrier Reef reveals past sea-level, climate, and environmental changes since the last Ice Age. Sci. Drill., 12:32–45. doi:10.2204/ Proceedings volumeWebster, J.M., Yokoyama, Y., Cotterill, C., and the Expedition 325 Scientists, 2011. Proc. IODP, 325: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition reportsExpedition 325 Scientists, 2011. Expedition 325 summary. In Webster, J.M., Yokoyama, Y., Cotterill, C., and the Expedition 325 Scientists, Proc. IODP, 325: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 325 Scientists, 2011. Methods. In Webster, J.M., Yokoyama, Y., Cotterill, C., and the Expedition 325 Scientists, Proc. IODP, 325: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 325 Scientists, 2011. Transect HYD-01C. In Webster, J.M., Yokoyama, Y., Cotterill, C., and the Expedition 325 Scientists, Proc. IODP, 325: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 325 Scientists, 2011. Transect HYD-02A. In Webster, J.M., Yokoyama, Y., Cotterill, C., and the Expedition 325 Scientists, Proc. IODP, 325: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 325 Scientists, 2011. Transect RIB-02A. In Webster, J.M., Yokoyama, Y., Cotterill, C., and the Expedition 325 Scientists, Proc. IODP, 325: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 325 Scientists, 2011. Transect NOG-01B. In Webster, J.M., Yokoyama, Y., Cotterill, C., and the Expedition 325 Scientists, Proc. IODP, 325: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition research resultsPending SynthesesCamoin, G., and Webster, J., 2014. Coral reefs and sea-level change. In Stein, R., Blackman, D.K., Inagaki, F., and Larsen, H.-C. (Eds.), Developments in Marine Geology (Volume 7): Earth and Life Processes Discovered from Subseafloor Environments: A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein (Series Ed.): New York (Elsevier), 395–441. http://dx.doi.org/ Journals/BooksAbbey, E., Webster, J.M., and Beaman, R.J., 2011. Geomorphology of submerged reefs on the shelf edge of the Great Barrier Reef: the influence of oscillating Pleistocene sea-levels. Marine Geology, 288(1–4):61–78. https://doi.org/10.1016/j.margeo.2011.08.006 Abbey, E., Webster, J.M., Braga, J.C., Jacobsen, G.E., Thorogood, G., Thomas, A.L., Camoin, G., Reimer, P.J., and Potts, D.C., 2013. Deglacial mesophotic reef demise on the Great Barrier Reef. Palaeogeography, Palaeoclimatology, Palaeoecology, 392:473–494. https://doi.org/10.1016/j.palaeo.2013.09.032 Abbey, E.A., 2011. The effects of late-Pleistocene sea-level and environmental change on submerged fossil reefs on the Great Barrier Reef and Tahiti [PhD dissertation]. University of Sydney, Australia. Akhtar, A.A., Cruger Ahm, A.-S., and Higgins, J.A., 2024. Geochemical fingerprints of early diagenesis in shallow-water marine carbonates: insights from paired δ44/40Ca and δ26Mg values. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2024.08.002 Braga, J.C., Puga-Bernabéu, Á., Heindel, K., Patterson, M.A., Birgel, D., Peckmann, J., Sánchez-Almazo, I.M., Webster, J.M., Yokoyama, Y., and Riding, R., 2019. Microbialites in last glacial maximum and deglacial reefs of the Great Barrier Reef (IODP Expedition 325, NE Australia). Palaeogeography, Palaeoclimatology, Palaeoecology, 514:1–17. https://doi.org/10.1016/j.palaeo.2018.10.007 Brenner, L.D., 2017. Paleoceanographic-proxy development in Scleractinia (stony corals) throughout the Pacific Ocean: exploring the variable utility of stable isotopes and trace metals in oceanographic reconstructions [PhD dissertation]. Columbia University, Columbia, NY. https://www.proquest.com/docview/1929236313/E6F9E73636C144E1PQ/39?accountid=7082 Brenner, L.D., Linsley, B.K., and Potts, D.C., 2017. A modern Sr/Ca-δ18O-sea surface temperature calibration for Isopora corals on the Great Barrier Reef. Paleoceanography, 32(2):182–192. https://doi.org/10.1002/2016PA002973 Brenner, L.D., Linsley, B.K., Webster, J.M., Potts, D., Felis, T., Gagan, M.K., Inoue, M., McGregor, H., Suzuki, A., Tudhope, A., Esat, T., Thomas, A., Thompson, W., Fallon, S., Humblet, M., Tiwari, M., and Yokoyama, Y., 2020. Coral record of Younger Dryas chronozone warmth on the Great Barrier Reef. Paleoceanography and Paleoclimatology, 35(12):e2020PA003962. https://doi.org/10.1029/2020PA003962 Bridge, T.C.L., Fabricius, K.E., Bongaerts, P., Wallace, C.C., Muir, P.R., Done, T.J., and Webster, J.M., 2012. Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs, 31(1):179–189. https://doi.org/10.1007/s00338-011-0828-1 Camoin, G., and Webster, J., 2014. Coral reefs and sea-level change. In Stein, R., Blackman, Donna K., Inagaki, Fumio, and Larsen, Hans-Christian (Eds.), Developments in Marine Geology (Volume 7): Earth and Life Processes Discovered from Subseafloor Environments: A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein (Series Ed.). New York (Elsevier), 395–441. https://doi.org/10.1016/B978-0-444-62617-2.00015-3 Camoin, G.F., and Webster, J.M., 2015. Coral reef response to Quaternary sea-level and environmental changes: state of the science. Sedimentology, 62(2):401–428. https://doi.org/10.1111/sed.12184 Esat, T.M., Yokoyama, Y., and Webster, J.M., 2022. Constraining rapid sea level change through radiometric dating of corals growing over a range in paleowater depths. Quaternary Science Advances, 7:100053. https://doi.org/10.1016/j.qsa.2022.100053 Exon, N., 2010. Scientific drilling beneath the oceans solves earthly problems. Australian Journal of Maritime and Ocean Affairs, 2(2):37–47. Felis, T., 2020. Extending the instrumental record of ocean-atmosphere variability into the last interglacial using tropical corals. Oceanography, 33(2):68–79. https://doi.org/10.5670/oceanog.2020.209 Felis, T., Hinestrosa, G., Köhler, P., and Webster, J.M., 2022. Role of the deglacial buildup of the Great Barrier Reef for the global carbon cycle. Geophysical Research Letters, 49(4):e2021GL096495. https://doi.org/10.1029/2021GL096495 Felis, T., McGregor, H.V., Linsley, B.K., Tudhope, A.W., Gagan, M.K., Suzuki, A., Inoue, M., Thomas, A.L., Esat, T.M., Thompson, W.G., Tiwari, M., Potts, D.C., Mudelsee, M., Yokoyama, Y., and Webster, J.M., 2014. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum. Nature Communications, 5:4102. https://doi.org/10.1038/ncomms5102 Fujita, K., Yagioka, N., Nakada, C., Kan, H., Miyairi, Y., Yokoyama, Y., and Webster, J.M., 2019. Reef-flat and back-reef development in the Great Barrier Reef caused by rapid sea-level fall during the last glacial maximum (30–17 ka). Geology, 48(1):39–43. https://doi.org/10.1130/G46792.1 Gischler, E., Thomas, A.L., Droxler, A.W., Webster, J.M., Yokoyama, Y., and Schöne, B.R., 2013. Microfacies and diagenesis of older Pleistocene (pre-last glacial maximum) reef deposits, Great Barrier Reef, Australia (IODP Expedition 325): a quantitative approach. Sedimentology, 60(6):1432–1466. https://doi.org/10.1111/sed.12036 Harper, B.B., Puga-Bernabéu, Á., Droxler, A.W., Webster, J.M., Gischler, E., Tiwari, M., Lado-Insua, T., Thomas, A.L., Morgan, S., Jovane, L., and Röhl, U., 2015. Mixed carbonate-siliciclastic sedimentation along the Great Barrier Reef upper slope: a challenge to the reciprocal sedimentation model. Journal of Sedimentary Research, 85(9):1019–1036. https://doi.org/10.2110/jsr.2015.58.1 Hassan, M.B., 2023. Magnetostratigraphic analysis of ferromanganese (Fe-Mn) deposits [PhD dissertation]. Instituto Oceanográfico, Sao Paulo, Brazil. https://doi.org/10.11606/T.21.2023.tde-04092023-104243 Hassan, M.B., Tagliaro, G., Harper, B., Droxler, A.W., Herrero-Bervera, E., Yokoyama, Y., Puga-Bernabéu, Á., Webster, J.M., and Jovane, L., 2023. A magnetic and geochemical approach to the changing sedimentation accumulation on the upper slope of the great barrier reef, northeastern Australian margin. Quaternary Science Reviews, 315:108230. https://doi.org/10.1016/j.quascirev.2023.108230 Herrero-Bervera, E., and Jovane, L., 2013. On the palaeomagnetic and rock magnetic constraints regarding the age of IODP 325 Hole M0058A. Geological Society Special Publication, 373(1):279–291. https://doi.org/10.1144/SP373.19 Hinestrosa, G., 2015. Shelf-edge reefs of the Great Barrier Reef, Australia: a time-capsule from the last glaciation [PhD dissertation]. University of Sydney, Australia. http://hdl.handle.net/2123/12726 Hinestrosa, G., Webster, J.M., and Beaman, R.J., 2016. Postglacial sediment deposition along a mixed carbonate-siliciclastic margin: new constraints from the drowned shelf-edge reefs of the Great Barrier Reef, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 446:168–185. https://doi.org/10.1016/j.palaeo.2016.01.023 Hinestrosa, G., Webster, J.M., and Beaman, R.J., 2019. Spatio-temporal patterns in the postglacial flooding of the Great Barrier Reef shelf, Australia. Continental Shelf Research, 173:13–26. https://doi.org/10.1016/j.csr.2018.12.001 Hinestrosa, G., Webster, J.M., and Beaman, R.J., 2022. New constraints on the postglacial shallow-water carbonate accumulation in the Great Barrier Reef. Scientific Reports, 12(1):924. https://doi.org/10.1038/s41598-021-04586-w Hinestrosa, G., Webster, J.M., and Beaman, R.J., 2022. Author Correction: new constraints on the postglacial shallow-water carbonate accumulation in the Great Barrier Reef. Scientific Reports, 12(1):1993. https://doi.org/10.1038/s41598-022-06337-x Hinestrosa, G., Webster, J.M., Beaman, R.J., and Anderson, L.M., 2014. Seismic stratigraphy and development of the shelf-edge reefs of the Great Barrier Reef, Australia. Marine Geology, 353:1–20. https://doi.org/10.1016/j.margeo.2014.03.016 Humblet, M., Webster, J.M., Yokoyama, Y., Braga, J.C., Fujita, K., Iryu, Y., Fallon, S.J., and Thompson, W.G., 2022. Reef growth history at intermediate to mesophotic depths since the end of the Last Glacial period along the Great Barrier Reef shelf edge. Coral Reefs and Sea-Level Change: Quaternary Records and Modelling, 2022-12:189–214. https://cir.nii.ac.jp/crid/1360298754817259136 Humblet, M., Hongo, C., and Sugihara, K., 2015. An identification guide to some major Quaternary fossil reef-building coral genera (Acropora, Isopora, Montipora, and Porites). Island Arc, 24(1):16–30. https://doi.org/10.1111/iar.12077 Humblet, M., Potts, D.C., Webster, J.M., Braga, J.-C., Iryu, Y., Yokoyama, Y., Bourillot, R., Séard, C., Droxler, A.W., Fujita, K., Gischler, E.F., and Kan, H., 2019. Late glacial to deglacial variation of coralgal assemblages in the Great Barrier Reef, Australia. Global and Planetary Change, 174:70–91. https://doi.org/10.1016/j.gloplacha.2018.12.014 Humblet, M., and Webster, J.M., 2017. Coral community changes in the Great Barrier Reef in response to major environmental changes over glacial-interglacial timescales. Palaeogeography, Palaeoclimatology, Palaeoecology, 472:216–235. https://doi.org/10.1016/j.palaeo.2017.02.003 Insua, T.L., Hamel, L., Moran, K., Anderson, L.M., Webster, J.M., and Camoin, G.F., 2015. Advanced classification of carbonate sediments based on physical properties. Sedimentology, 62(2):590–606. https://doi.org/10.1111/sed.12168 Lado Insua, T., 2013. Physical properties of marine sediments and their application toward climate change studies [PhD dissertation]. University of Rhode Island, South Kingstown, RI. https://digitalcommons.uri.edu/oa_diss/47/ Lemley, G.M., 2012. Assessing δ18O in the coral genus Isopora for reconstructing Indo-Pacific regional and seasonal climate variability [MS thesis]. State University New York, Albany, NY. https://www.proquest.com/docview/1040872258 Mills, H.J., Reese, B.K., and St. Peter, C., 2012. Characterization of microbial population shifts during sample storage. Frontiers in Microbiology, 3:49. https://doi.org/10.3389/fmicb.2012.00049 Patterson, M.A., Webster, J.M., Hutchings, P., Braga, J.-C., Humblet, M., and Yokoyama, Y., 2020. Bioerosion traces in the Great Barrier Reef over the past 10 to 30 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 542:109503. https://doi.org/10.1016/j.palaeo.2019.109503 Puga-Bernabéu, Á., Webster, J.M., Beaman, R.J., Reimer, P.J., and Renema, W., 2014. Filling the gap: a 60 ky record of mixed carbonate-siliciclastic turbidite deposition from the Great Barrier Reef. Marine and Petroleum Geology, 50:40–50. https://doi.org/10.1016/j.marpetgeo.2013.11.009 Puga-Bernabéu, Á., Webster, J.M., Beaman, R.J., Thran, A., López-Cabrera, J., Hinestrosa, G., and Daniell, J., 2019. Submarine landslides along the mixed siliciclastic-carbonate margin of the Great Barrier Reef (Offshore Australia). In Ogata, K., Festa, A., and Pini, G.A. (Eds.), Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles. Geophysical Monograph: 313–337. https://doi.org/10.1002/9781119500513.ch19 Renema, W., Beaman, R.J., and Webster, J.M., 2013. Mixing of relict and modern tests of larger benthic foraminifera on the Great Barrier Reef shelf margin. Marine Micropaleontology, 101:68–75. https://doi.org/10.1016/j.marmicro.2013.03.002 Szilagyi, Z., Webster, J.M., Patterson, M.A., Hips, K., Riding, R., Foley, M., Humblet, M., Yokoyama, Y., Liang, L., Gischler, E., Montaggioni, L., Gherardi, D., and Braga, J.C., 2020. Controls on the spatio-temporal distribution of microbialite crusts on the Great Barrier Reef over the past 30,000 years. Marine Geology, 429:106312. https://doi.org/10.1016/j.margeo.2020.106312 Thran, A.C., East, M., Webster, J.M., Salles, T., and Petit, C., 2020. The influence of carbonate platforms on the geomorphological development of a mixed carbonate‐siliciclastic margin (Great Barrier Reef, Australia). Geochemistry, Geophysics, Geosystems, 21(4):e2020GC008915. https://doi.org/10.1029/2020GC008915 Webster, J.M., 2017. Great Barrier Reef Environmental Changes: IODP Expedition 325. In Exon, N., Exploring the Earth under the Sea: Australian and New Zealand Achievements in the First Phase of IODP Scientific Ocean Drilling. Acton, Australia (Australian National University Press), 101–109. http://www.jstor.org/stable/j.ctt1x76gd2.25 Webster, J.M., Beaman, R.J., Bridge, T., Davies, P.J., Byrne, M., Williams, S., Manning, P., and et al., 2008. From corals to canyons: the Great Barrier Reef margin. Eos, Transactions of the American Geophysical Union, 89(24):217–218. https://doi.org/10.1029/2008EO240002 Webster, J.M., Braga, J.C., Humblet, M., Potts, D.C., Iryu, Y., Yokoyama, Y., Fujita, K., Bourillot, R., Esat, T.M., Fallon, S., Thompson, W.G., Thomas, A.L., Kan, H., McGregor, H.V., Hinestrosa, G., Obrochta, S.P., and Lougheed, B.C., 2018. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years. Nature Geoscience, 11(6):426–432. https://doi.org/10.1038/s41561-018-0127-3 Woodroffe, C.D., and Webster, J.M., 2014. Coral reefs and sea-level change. Marine Geology, 352:248–267. https://doi.org/10.1016/j.margeo.2013.12.006 Xiao, H., 2014. Sedimentary records and paleoclimatic evolution of the Great Barrier Reef in Australia during the past 150,000 years [PhD dissertation]. China University of Geosciences, Beijing, China. https://cdmd.cnki.com.cn/Article/CDMD-11415-1014249502.htm Xiao, H., Liao, L., Ji, J., and Jian, H., 2014. Sedimentary records and paleoclimatic evolution of the Great Barrier Reef in Australia. Frontiers in Earth Science, 21(2). https://doi.org/10.13745/j.esf.2014.02.024 Yagioka, N., Nakada, C., Fujita, K., Kan, H., Yokoyama, Y., and Webster, J.M., 2019. Depositional environments beneath the shelf-edge slopes of the Great Barrier Reef, inferred from foraminiferal assemblages; IODP Expedition 325. Palaeogeography, Palaeoclimatology, Palaeoecology, 514:386–397. https://doi.org/10.1016/j.palaeo.2018.10.033 Yokoyama, Y., Esat, T.M., Thompson, W.G., Thomas, A.L., Webster, J.M., Miyairi, Y., Sawada, C., Aze, T., Matsuzaki, H., Okuno, J., Fallon, S., Braga, J.-C., Humblet, M., Iryu, Y., Potts, D.C., Fujita, K., Suzuki, A., and Kan, H., 2018. Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum. Nature, 559(7715):603–607. https://doi.org/10.1038/s41586-018-0335-4 Yokoyama, Y., Lambeck, K., De Deckker, P., Esat, T.M., Webster, J.M., and Nakada, M., 2022. Towards solving the missing ice problem and the importance of rigorous model data comparisons. Nature Communications, 13(1):6261. https://doi.org/10.1038/s41467-022-33952-z Zhang, G.-L., and Smith-Duque, C., 2014. Seafloor basalt alteration and chemical change in the ultra thinly sedimented South Pacific. Geochemistry, Geophysics, Geosystems, 15(7):3066–3080. https://doi.org/10.1002/2013GC005141 Conferences*American Geophysical Union (AGU) Fall Meeting 2010Abbey, E.A., Webster, J.M., and Beaman, R.J., 2010. Submerged shelf edge features on Australia’s Great Barrier Reef and their response to Quaternary sea-level changes [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract PP11E-1475) http://abstractsearch.agu.org/ Lado-Insua, T., Moran, K., Anderson, L., Webster, J.M., Morgan, S., Fehr, A., Lofi, J., Lukies, V., Loggia, D., and the IODP Expedition 325 Scientists, 2010. Are physical properties able to differentiate glacial and interglacial coral identity? [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract PP11E-1476) http://abstractsearch.agu.org/ Lau, J.K., Herrero-Bervera, E., and Jovane, L., 2010. Geomagnetic excursions recorded from a sediment core from the Great Barrier Reef, IODP Expedition 325, Australia [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract GP13A-0765) http://abstractsearch.agu.org/ Webster, J.M., Yokoyama, Y., Cotterill, C., and the Expedition 325 Scientists, 2010. First results from IODP Expedition 325 to the Great Barrier Reef: unlocking climate and sea level secrets since the Last Glacial Maximum [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract PP13F-07) http://abstractsearch.agu.org/ AGU Fall Meeting 2011Lau, J.K., Herrero-Bervera, E., and Jovane, L., 2011. Paleomagnetic and environmental magnetic record from a sediment core from the Great Barrier Reef, IODP Expedition 325, Australia [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract GP51A-1149) http://abstractsearch.agu.org/ Lemley, G.M., Linsley, B.K., Potts, D.C., and Howe, S.S., 2011. Assessing oxygen isotope variability and Sr/Ca ratios in the non-massive coral genus Isopora as a paleoclimate archive [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract PP51D-1891) http://abstractsearch.agu.org/ Mills, H.J., Reese, B.K., St. Peter, C., Shepard, A., and the IODP Expedition 325 Science Party, 2011. Exploring how to characterize the subsurface biosphere by drilling beneath the Great Barrier Reef [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract B51K-0560) http://abstractsearch.agu.org/ Reese, B.K., Shepard, A., St. Peter, C., and Mills, H.J., 2011. Biogeography of metabolically active microbial populations within the subseafloor biosphere [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract B51K-0561) http://abstractsearch.agu.org/ Thomas, A.L., Esat, T.M., Thompson, W.G., Yokoyama, Y., Webster, J.M., and the Expedition 325 Scientists, 2011. The prospects for a new sea level record from the Great Barrier Reef: early findings of IODP Expedition 325 “Great Barrier Reef Environmental Changes” [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract GC54B-08) http://abstractsearch.agu.org/ AGU Fall Meeting 2012Harper, B., Bernabéu, A., Droxler, A.W., Webster, J.M., Thomas, A.L., Tiwari, M., Gischler, E., Jovane, L., Morgan, S., and Lado-Insua, T., 2012. Fore reef upper slope mixed sedimentation response to penultimate glacial interglacial sea level fluctuations: IODP Hole 325-M0058A, Great Barrier Reef, Australia [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract OS43F-06) http://abstractsearch.agu.org/ AGU Fall Meeting 2013Yokoyama, Y., Esat, T.M., Thompson, W.G., Thomas, A.L., Webster, J.M., Miyairi, Y,. Matsuzaki, H., Okuno, J., Fallon, S.J., Braga, J., Humblet, M., Iryu, Y., and Potts, D.C., 2013. Sea level record obtained from submerged the Great Barrier Reef coral reefs [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract PP51D-06) http://abstractsearch.agu.org/ AGU Fall Meeting 2014Brenner, L.D., Linsley, B.K., and Potts, D.C., 2014. A modern Sr/Ca-d18O-sea surface temperature calibration for Isopora corals in the Great Barrier Reef [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP42A-07) http://abstractsearch.agu.org/ AGU Fall Meeting 2016Brenner, L.D., Linsley, B.K., Potts, D.C., Felis, T., Mcgregor, H.V., Gagan, M.K., Inoue, M., Tudhope, A.W., Esat, T.M., Thompson, W.G., Tiwari, M., Fallon, S., Humblet, M., Yokoyama, Y., and Webster, J., 2016. Development and application of Sr/Ca-18O–sea surface temperature calibrations for Last Glacial Maximum–aged Isopora corals in the Great Barrier Reef [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract PP51D-2331) http://abstractsearch.agu.org/ European Geosciences Union (EGU) General Assembly 2015Felis, T., McGregor, H.V., Linsley, B.K., Tudhope, A.W., Gagan, M.K., Suzuki, A., Inoue, M., Thomas, A.L., Esat, T.M., Thompson, W.G., Tiwari, M., Potts, D.C., Mudelsee, M., Yokoyama, Y., and Webster, J.M., 2015. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum—results from IODP Expedition 325. Geophysical Research Abstracts, 17:EGU2015-10089. http://meetingorganizer.copernicus.org/ International Coral Reef Symposium 2012Herrero-Bervera, E., and Jovane, L., 2012. Paleomagnetism and rock magnetism of IODP 325 Hole M0058A. Proc. 12th Int. Coral Reef Symp. http://www.icrs2012.com/ *The Expedition-related bibliography is continually updated online. Please send updates to PubCrd@iodp.tamu.edu. |