IODP Proceedings Volume contents Search | |||
![]() | |||
Expedition reports Research results Supplementary material Drilling maps Expedition bibliography | |||
Expedition-related bibliography*Citation data for IODP publications and journal articles in RIS format IODP publicationsScientific ProspectusTakai, K., Mottl, M.J., and Nielsen, S., 2010. Deep hot biosphere. IODP Sci. Prosp., 331. doi:10.2204/ Preliminary ReportExpedition 331 Scientists, 2010. Deep hot biosphere. IODP Prel. Rept., 331. doi:10.2204/ Scientific Drilling journalTakai, K., Mottl, M.J., Nielsen, S.H.H., and the IODP Expedition 331 Scientists, 2012. IODP Expedition 331: strong and expansive subseafloor hydrothermal activities in the Okinawa Trough. Sci. Drill., 13:19–27. doi:10.2204/ Proceedings volumeTakai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, 2011. Proc. IODP, 331: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition reportsExpedition 331 Scientists, 2011. Expedition 331 summary. In Takai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, Proc. IODP, 331: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 331 Scientists, 2011. Methods. In Takai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, Proc. IODP, 331: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 331 Scientists, 2011. Site C0013. In Takai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, Proc. IODP, 331: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 331 Scientists, 2011. Site C0014. In Takai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, Proc. IODP, 331: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 331 Scientists, 2011. Site C0015. In Takai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, Proc. IODP, 331: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 331 Scientists, 2011. Site C0016. In Takai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, Proc. IODP, 331: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 331 Scientists, 2011. Site C0017. In Takai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, Proc. IODP, 331: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition research resultsBowden, S.A., Walker, J., Zilokowski, M., and Taylor, C., 2016. Data report: bitumen extracted from hydrothermally altered sediments encountered during Expedition 331. In Takai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, Proceedings of the Integrated Ocean Drilling Program, 331: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). http://dx.doi.org/ Muratli, J.M., Megowan, M.R., and McManus, J., 2015. Data report: sediment major element, minor element, and reactive iron and manganese data from the Okinawa Trough: IODP Expedition 331 Sites C0014 and C0017. In Takai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, Proceedings of the Integrated Ocean Drilling Program, 331: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). http://dx.doi.org/ Schippers, A., Breuker, A., and Blöthe, M., 2016. Data report: microbial activity determined by microcalorimetry and cultivation of bacteria from hydrothermally influenced subsurface marine sediments in the mid-Okinawa Trough (IODP Expedition 331). In Takai, K., Mottl, M.J., Nielsen, S.H., and the Expedition 331 Scientists, Proceedings of the Integrated Ocean Drilling Program, 331: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). http://dx.doi.org/ Journals/BooksAbbott, A.N., Löhr, S.C., Payne, A., Kumar, H., and Du, J., 2022. Widespread lithogenic control of marine authigenic neodymium isotope records? Implications for paleoceanographic reconstructions. Geochimica et Cosmochimica Acta, 319:318-336. https://doi.org/10.1016/j.gca.2021.11.021 Abomriga, W.M., 2017. Central North Atlantic (IODP Site U1313) paleoceanography based on a high-resolution dinoflagellate cyst record across the early-middle Pleistocene boundary (Marine Isotope Stages 20-18, ~810 -741 ka) [MS thesis]. Brock University, St. Catherines, Ontario, Canada. https://dr.library.brocku.ca/handle/10464/13356 Alonso-Garcia, M., Sierro, F.J., and Flores, J.A., 2008. Arctic Front reconstruction based on planktic foraminifer assemblages analysis for the marine isotope Stage 14, 15 and 16. Geogaceta, 45:79-82. Alonso-Garcia, M., Sierro, F.J., and Flores, J.A., 2011. Arctic front shifts in the subpolar North Atlantic during the mid-Pleistocene (800-400 ka) and their implications for ocean circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 311(3):268-280. https://doi.org/10.1016/j.palaeo.2011.09.004 Alonso-Garcia, M., Sierro, F.J., Kucera, M., Flores, J.A., Cacho, I., and Andersen, N., 2011. Ocean circulation, ice sheet growth and interhemispheric coupling of millennial climate variability during the mid-Pleistocene (ca 800-400 ka). Quaternary Science Reviews, 30(23):3234-3247. https://doi.org/10.1016/j.quascirev.2011.08.005 Alvarez Zarikian, C., Ulincy, A.J., Stepanova, A., and Gruetzner, J., 2011. Deep sea ostracods from the subpolar North Atlantic (IODP Site U1314) during the last 300,000 years. Joannea - Geologie und Palaontologie, 11:15-17. Alvarez Zarikian, C.A., Stepanova, A.Y., and Grutzner, J., 2009. Glacial-interglacial variability in deep sea ostracod assemblage composition at IODP Site U1314 in the subpolar North Atlantic. Marine Geology, 258(1-4):69-87. https://doi.org/10.1016/j.margeo.2008.11.009 Aubry, A.M.R., De Schepper, S., and de Vernal, A., 2020. Dinocyst and acritarch biostratigraphy of the Late Pliocene to Early Pleistocene at Integrated Ocean Drilling Program Site U1307 in the Labrador Sea. Journal of Micropalaeontology, 39(1):41-60. https://doi.org/10.5194/jm-39-41-2020 Aubry, A.M.R., Vernal, A., and Hillaire-Marcel, C., 2016. The "warm" Marine Isotope Stage 31 in the Labrador Sea: low surface salinities and cold subsurface waters prevented winter convection. Paleoceanography and Paleoclimatology, 31(9):1206-1224. https://doi.org/10.1002/2015PA002903 Bailey, I., Bolton, C.T., DeConto, R.M., Pollard, D., Schiebel, R., and Wilson, P.A., 2010. A low threshold for North Atlantic ice rafting from "low-slung slippery" late Pliocene ice sheets. Paleoceanography and Paleoclimatology, 25(1):PA1212. https://doi.org/10.1029/2009PA001736 Bailey, I., Foster, G.L., Wilson, P.A., Jovane, L., Storey, C.D., Trueman, C.N., and Becker, J., 2012. Flux and provenance of ice-rafted debris in the earliest Pleistocene sub-polar North Atlantic Ocean comparable to the last glacial maximum. Earth and Planetary Science Letters, 341-344:222-233. https://doi.org/10.1016/j.epsl.2012.05.034 Bailey, I., Hole, G.M., Foster, G.L., Wilson, P.A., Storey, C.D., Trueman, C.N., and Raymo, M.E., 2013. An alternative suggestion for the Pliocene onset of major Northern Hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quaternary Science Reviews, 75:181-194. https://doi.org/10.1016/j.quascirev.2013.06.004 Balsam, W., Damuth, J.E., and Deaton, B., 2007. Marine sediment components; identification and dispersal assessed by diffuse reflectance spectrophotometry. International Journal of Environment and Health, 1(3):403-426. https://doi.org/10.1504/IJENVH.2007.017869 Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe-Schönberg, D., and Lea, D.W., 2005. Final closure of Panama and the onset of Northern Hemisphere glaciation. Earth and Planetary Science Letters, 237(1-2):33-44. https://doi.org/10.1016/j.epsl.2005.06.020 Beard, J.S., and Frost, B.R., 2017. The stoichiometric effects of ferric iron substitutions in serpentine from microprobe data. International Geology Review, 59(5-6):541-547. https://doi.org/10.1080/00206814.2016.1197803 Bechtel, K., 2015. Record of late Pleistocene ice rafted debris at IODP Site 1308 in the central North Atlantic [BS thesis]. Ohio State University, Columbus, OH. http://hdl.handle.net/1811/68921 Bjørklund, K.R., Hatakeda, K., Kruglikova, S.B., and Matul, A.G., 2015. Amphimelissa setosa (Cleve) (Polycystina, Nassellaria): a stratigraphic and paleoecological marker of migrating polar environments in the Northern Hemisphere during the Quaternary. Stratigraphy, 12(1):23-37. https://www.micropress.org/microaccess/stratigraphy/issue-316/article-1926 Blake-Mizen, K., 2019. Reconstructing the southern Greenland Ice Sheet and deep ocean circulation during the Plio-Pleistocene intensification of Northern Hemisphere glaciation [PhD dissertation]. University of Exeter, United Kingdom. https://www.proquest.com/docview/2508752714 Blake-Mizen, K., Hatfield, R.G., Stoner, J.S., Carlson, A.E., Xuan, C., Walczak, M., Lawrence, K.T., Channell, J.E.T., and Bailey, I., 2019. Southern Greenland glaciation and western boundary undercurrent evolution recorded on Eirik Drift during the late Pliocene intensification of Northern Hemisphere glaciation. Quaternary Science Reviews, 209:40-51. https://doi.org/10.1016/j.quascirev.2019.01.015 Blaser, P., Gutjahr, M., Pöppelmeier, F., Frank, M., Kaboth-Bahr, S., and Lippold, J., 2020. Labrador Sea bottom water provenance and REE exchange during the past 35,000 years. Earth and Planetary Science Letters, 542:116299. https://doi.org/10.1016/j.epsl.2020.116299 Blaser, P., Lippold, J., Gutjahr, M., Frank, N., Link, J.M., and Frank, M., 2016. Extracting foraminiferal sea water Nd isotope signatures from bulk deep sea sediment by chemical leaching. Chemical Geology, 439:189-204. https://doi.org/10.1016/j.chemgeo.2016.06.024 Blaser, P., Pöppelmeier, F., Schulz, H.-M., Gutjahr, M., Frank, M., Lippold, J.A., Heinrich, H., Link, J.M., Hoffmann, J.E., Szidat, S., and Frank, N., 2019. The resilience and sensitivity of Northeast Atlantic Deep Water εNd to overprinting by detrital fluxes over the past 30,000 years. Geochimica et Cosmochimica Acta, 245:79-97. https://doi.org/10.1016/j.gca.2018.10.018 Bokhari Friberg, Y., 2015. The paleoceanography of Kattegat during the last deglaciation from benthic foraminiferal stable isotopes [MS thesis]. Lund University, Sweden. https://lup.lub.lu.se/student-papers/search/publication/8229269 Bolton, C.T., Bailey, I., Friedrich, O., Tachikawa, K., Garidel-Thoron, T., Vidal, L., Sonzogni, C., Marino, G., Rohling, E.J., Robinson, M.M., Ermini, M., Koch, M., Cooper, M.J., and Wilson, P.A., 2018. North Atlantic midlatitude surface-circulation changes through the Plio-Pleistocene intensification of Northern Hemisphere glaciation. Paleoceanography and Paleoclimatology, 33(11):1186-1205. https://doi.org/10.1029/2018PA003412 Bolton, C.T., Wilson, P.A., Bailey, I., Friedrich, O., Beer, C.J., Becker, J., Baranwal, S., and Schiebel, R., 2010. Millennial-scale climate variability in the subpolar North Atlantic Ocean during the late Pliocene. Paleoceanography, 25(4):PA4218-PA4233. https://doi.org/10.1029/2010PA001951 Bouttes, N., Vazquez Riveiros, N., Govin, A., Swingedouw, D., Sanchez-Goni, M.F., Crosta, X., and Roche, D.M., 2020. Carbon 13 isotopes reveal limited ocean circulation changes between interglacials of the last 800 ka. Paleoceanography and Paleoclimatology, 35(5):e2019PA003776. https://doi.org/10.1029/2019PA003776 Brombacher, A., Elder, L.E., Hull, P.M., Wilson, P.A., and Ezard, T.H.G., 2018. Calibration of test diameter and area as proxies for body size in the planktonic foraminifer Globoconella puncticulata. Journal of Foraminiferal Research, 48(3):241-245. https://doi.org/10.2113/gsjfr.48.3.241 Brombacher, A., Wilson, P.A., Bailey, I., and Ezard, T.H.G., 2021. The dynamics of diachronous extinction associated with climatic deterioration near the Neogene/Quaternary boundary. Paleoceanography and Paleoclimatology, 36(6):e2020PA004205. https://doi.org/10.1029/2020PA004205 Brombacher, A., Wilson, P.A., and Ezard, T.H.G., 2017. Calibration of the repeatability of foraminiferal test size and shape measures with recommendations for future use. Marine Micropaleontology, 133:21-27. https://doi.org/10.1016/j.marmicro.2017.05.003 Catunda, M.C.A., Bahr, A., Kaboth-Bahr, S., Zhang, X., Foukal, N.P., and Friedrich, O., 2021. Subsurface heat channel drove sea surface warming in the high-latitude North Atlantic during the Mid-Pleistocene Transition. Geophysical Research Letters, 48(11):e2020GL091899. https://doi.org/10.1029/2020GL091899 Cavaleiro, C., 2011. Paleo-productivity changes in the North Atlantic (IODP Site U1313) during Marine Isotope Stages (MIS) 10 to 12 based on nannofossil Sr/Ca data [MS thesis]. University of Oviedo, Spain. Cavaleiro, C., Voelker, A.H.L., Stoll, H., Baumann, K.H., Kulhanek, D.K., Naafs, B.D.A., Stein, R., Grützner, J., Ventura, C., and Kucera, M., 2018. Insolation forcing of coccolithophore productivity in the North Atlantic during the middle Pleistocene. Quaternary Science Reviews, 191:318-336. https://doi.org/10.1016/j.quascirev.2018.05.027 Chalk, T.B., Foster, G.L., and Wilson, P.A., 2019. Dynamic storage of glacial CO2 in the Atlantic Ocean revealed by boron [CO3/2-] and pH records. Earth and Planetary Science Letters, 510:1-11. https://doi.org/10.1016/j.epsl.2018.12.022 Channell, J.E.T., 2014. The Iceland Basin excursion: age, duration, and excursion field geometry. Geochemistry, Geophysics, Geosystems, 15(12):4920-4935. https://doi.org/10.1002/2014GC005564 Channell, J.E.T., 2017. Cobb Mountain Subchron recorded at IODP Site U1306 (Eirik Drift, off SE Greenland). Geophysical Journal International, 209(3):1389-1397. https://doi.org/10.1093/gji/ggx098 Channell, J.E.T., 2017. Complexity in Matuyama-Brunhes polarity transitions from North Atlantic IODP/ODP deep-sea sites. Earth and Planetary Science Letters, 467:43. https://doi.org/10.1016/j.epsl.2017.03.019 Channell, J.E.T., 2017. Magnetic excursions in the late Matuyama Chron (Olduvai to Matuyama-Brunhes boundary) from North Atlantic IODP sites. Journal of Geophysical Research: Solid Earth, 122(2):773-789. https://doi.org/10.1002/2016JB013616 Channell, J.E.T., 2017. Mid-Brunhes magnetic excursions in marine isotope stages 9, 13, 14, and 15 (286, 495, 540, and 590 ka) at North Atlantic IODP Sites U1302/3, U1305, and U1306. Geochemistry, Geophysics, Geosystems, 18(2):473-487. https://doi.org/10.1002/2016GC006626 Channell, J.E.T., and Hodell, D.A., 2013. Magnetic signatures of Heinrich-like detrital layers in the Quaternary of the North Atlantic. Earth and Planetary Science Letters, 369-370:260-270. https://doi.org/10.1016/j.epsl.2013.03.034 Channell, J.E.T., and Hodell, D.A., 2014. North Atlantic paleoceanography from Integrated Ocean Drilling Program Expeditions (2003-2013). In Stein, R., Blackman, D.K., Inagaki, F., and Larsen, H.-C. (Eds.), Developments in Marine Geology (Volume 7): Earth and Life Processes Discovered from Subseafloor Environments: A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein (Series Ed.). New York (Elsevier), 359-393. https://doi.org/10.1016/B978-0-444-62617-2.00014-1 Channell, J.E.T., Hodell, D.A., and Curtis, J.H., 2016. Relative paleointensity (RPI) and oxygen isotope stratigraphy at IODP Site U1308: North Atlantic RPI stack for 1.2-2.2 Ma (NARPI-2200) and age of the Olduvai Subchron. Quaternary Science Reviews, 131(A):1-19. https://doi.org/10.1016/j.quascirev.2015.10.011 Channell, J.E.T., Hodell, D.A., Romero, O., Hillaire-Marcel, C., de Vernal, A., Stoner, J.S., Mazaud, A., and Röhl, U., 2012. A 750-kyr detrital-layer stratigraphy for the North Atlantic (IODP Sites U1302-U1303, Orphan Knoll, Labrador Sea). Earth and Planetary Science Letters, 317-318:218-230. https://doi.org/10.1016/j.epsl.2011.11.029 Channell, J.E.T., Hodell, D.A., Singer, B.S., and Xuan, C., 2010. Reconciling astrochronological and 40 Ar/ 39 Ar ages for the Matuyama-Brunhes boundary and late Matuyama Chron. Geochemistry, Geophysics, Geosystems, 11:Q0AA12. https://doi.org/10.1029/2010GC003203 Channell, J.E.T., Hodell, D.A., Xuan, C., Mazaud, A., and Stoner, J.S., 2008. Age calibrated relative paleointensity for the last 1.5 Myr at IODP Site U1308 (North Atlantic). Earth and Planetary Science Letters, 274(1-2):59-71. https://doi.org/10.1016/j.epsl.2008.07.005 Channell, J.E.T., Wright, J.D., Mazaud, A., and Stoner, J.S., 2014. Age through tandem correlation of Quaternary relative paleointensity (RPI) and oxygen isotope data at IODP Site U1306 (Eirik Drift, SW Greenland). Quaternary Science Reviews, 88:135-146. https://doi.org/10.1016/j.quascirev.2014.01.022 Channell, J.E.T., Xuan, C., and Hodell, D.A., 2009. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth and Planetary Science Letters, 283(1-4):14-23. https://doi.org/10.1016/j.epsl.2009.03.012 Crocket, K.C., Vance, D., Foster, G.L., Richards, D.A., and Tranter, M., 2012. Continental weathering fluxes during the last glacial/interglacial cycle; insights from the marine sedimentary Pb isotope record at Orphan Knoll, NW Atlantic. Quaternary Science Reviews, 38:89-99. https://doi.org/10.1016/j.quascirev.2012.02.004 De Schepper, S., Fischer, E.I., Groeneveld, J., Head, M.J., and Matthiessen, J., 2011. Deciphering the palaeoecology of late Pliocene and early Pleistocene dinoflagellate cysts. Palaeogeography, Palaeoclimatology, Palaeoecology, 309(1):17-32. https://doi.org/10.1016/j.palaeo.2011.04.020 de Schepper, S., Groeneveld, J., Naafs, B.D.A., van Renterghem, C., Hennissen, J., Head, M.J., Louwye, S., and Fabian, K., 2013. Northern Hemisphere glaciation during the globally warm early late Pliocene. PloS One, 2013(8):12. https://doi.org/10.1371/journal.pone.0081508 de Schepper, S., Head, M.J., and Groeneveld, J., 2009. North Atlantic Current variability through Marine Isotope Stage M2 (circa 3.3 Ma) during the mid-Pliocene. Paleoceanography and Paleoclimatology, 24(4):PA4206. https://doi.org/10.1029/2008PA001725 de Winter, N.J., Zeeden, C., and Hilgen, F.J., 2014. Low-latitude climate variability in the Heinrich frequency band of the Late Cretaceous greenhouse world. Climate of the Past, 10(3):1-19. https://doi.org/10.5194/cp-10-1-2014 Dos Santos, Z., 2020. Stratigraphic development and petroleum prospectivity of northern Zealandia [MS thesis]. Victoria University of Wellington, New Zealand. http://hdl.handle.net/10063/9212 Drinkorn, C., Saynisch-Wagner, J., Uenzelmann-Neben, G., and Thomas, M., 2021. Decadal climate sensitivity of contouritic sedimentation in a dynamically coupled ice-ocean-sediment model of the North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 572:110391. https://doi.org/10.1016/j.palaeo.2021.110391 Dube, M.M., 2019. Central North Atlantic paleoceanography during the late early Pleistocene (spanning Marine Isotope Stage 21) based on a high-resolution dinoflagellate cyst record [MS thesis]. Brock University, St. Catherines, Ontario. https://dr.library.brocku.ca/bitstream/handle/10464/14006/Brock_Mukudzei_Dube_2019.pdf.pdf?sequence=1&isAllowed=y Emanuele, D., Ferretti, P., Palumbo, E., and Amore, F.O., 2015. Sea-surface dynamics and palaeoenvironmental changes in the North Atlantic Ocean (IODP Site U1313) during Marine Isotope Stage 19 inferred from coccolithophore assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 430:104-117. https://doi.org/10.1016/j.palaeo.2015.04.014 Evans, H.F., Channell, J.E.T., Stoner, J.S., Hillaire-Marcel, C., Wright, J.D., Neitzke, L.C., and Mountain, G.S., 2007. Paleointensity-assisted chronostratigraphy of detrital layers on the Eirik Drift (North Atlantic) since marine isotope 11. Geochemistry, Geophysics, Geosystems, 8(11):Q11007. https://doi.org/10.1029/2007GC001720 Ferretti, P., Crowhurst, S.J., Hall, M.A., and Cacho, I., 2010. North Atlantic millennial-scale climate variability 910 to 790 ka and the role of the equatorial insolation forcing. Earth and Planetary Science Letters, 293(1-2):28-41. https://doi.org/10.1016/j.epsl.2010.02.016 Ferretti, P., Crowhurst, S.J., Naafs, B.D.A., and Barbante, C., 2015. The Marine Isotope Stage 19 in the mid-latitude North Atlantic Ocean: astronomical signature and intra-interglacial variability. Quaternary Science Reviews, 108:95-110. https://doi.org/10.1016/j.quascirev.2014.10.024 Friedrich, O., Wilson, P.A., Bolton, C.T., Beer, C.J., and Schiebel, R., 2013. Late Pliocene to early Pleistocene changes in the North Atlantic Current and suborbital-scale sea-surface temperature variability. Paleoceanography, 28(2):274-282. https://doi.org/10.1002/palo.20029 Galaasen, E.V., Ninnemann, U.S., Irvali, N., Kleiven, H.F., Rosenthal, Y., Kissel, C., and Hodell, D.A., 2014. Rapid reductions in North Atlantic Deep Water during the peak of the last interglacial period. Science, 343(6175):1129-1132. https://doi.org/10.1126/science.1248667 Galaasen, E.V., Ninnemann, U.S., Kessler, A., Irvali, N., Rosenthal, Y., Tjiputra, J., Bouttes, N., Roche, D.M., Kleiven, H.F., and Hodell, D.A., 2020. Interglacial instability of North Atlantic Deep Water ventilation. Science, 367(6485):1485-1489. https://doi.org/10.1126/science.aay6381 Ge, Y., Liu, L., Ji, J., and Balsam, W., 2009. Rapid quantification of calcite in North Atlantic sediments by DRIFTS and its climate significance--example of drilling Site U1308. Geological Journal of China Universities, 15(2):184-191. https://geology.nju.edu.cn/EN/Y2009/V15/I2/184 Grützner, J., and Higgins, S.M., 2010. Threshold behavior of millennial scale variability in deep water hydrography inferred from a 1.1 Ma long record of sediment provenance at the southern Gardar Drift. Paleoceanography and Paleoclimatology, 25(4):PA4204. https://doi.org/10.1029/2009PA001873 Guitián, J., Dunkley Jones, T., Hernández-Almeida, I., Löffel, T., and Stoll, H.M., 2020. Adaptations of coccolithophore size to selective pressures during the Oligocene to Early Miocene high CO2 world. Paleoceanography and Paleoclimatology, 35(12):e2020PA003918. https://doi.org/10.1029/2020PA003918 Guo, Z., 2012. Early Pleistocene climate changes recorded by deep-sea sediments at station U1313 in the North Atlantic [PhD dissertation]. Nanjing University, Nanjing, China. https://cdmd.cnki.com.cn/Article/CDMD-10284-1014451202.htm Guo, Z.Y., Zhai, Q.M., Dou, T.C., and Win, S.S., 2012. Early Pleistocene variability of SST record by foraminifera shell Mg/Ca ratio at IODP Site U1313,North Atlantic. Advanced Materials Research, 468-471:1339-1343. https://doi.org/10.4028/www.scientific.net/AMR.468-471.1339 Haack, M.E., 2006. A study of ice-rafted debris as a paleoclimatic proxy for the North Atlantic for the last one million years. [BS thesis]. The Ohio State University, Columbus, OH. https://kb.osu.edu/handle/1811/21999 Hagen, C.J., Reilly, B.T., Stoner, J.S., and Creveling, J.R., 2020. Dynamic time warping of palaeomagnetic secular variation data. Geophysical Journal International, 221(1):706-721. https://doi.org/10.1093/gji/ggaa004 Harris, R.N., and Higgins, S.M., 2008. A permeability estimate in 56 Ma crust at ODP Hole 642E, Vøring Plateau Norwegian Sea. Earth and Planetary Science Letters, 267(1-2):378-385. https://doi.org/10.1016/j.epsl.2007.11.055 Hatakeda, K., and Bjorklund, K.R., 2009. Polycystine radiolarian assemblages from IODP Expedition 306 Site U1313 and Site U1314, a preliminary result. News of Osaka Micropaleontologists (NOM), Special Volume, 14:91-108. http://radiolarians.g.dgdg.jp/publication/NOM_PDF/NOM_14_06_Hatakeda%20&%20Bjorklund_2009(n).pdf Hayashi, T., and Ohno, M., 2021. Diatoms in upper Pliocene-lower Pleistocene sediments, subpolar North Atlantic: 3. Thalassionema bacillare. Diatom, 37:22-29. https://doi.org/10.11464/diatom.37.22 Hayashi, T., and Ohno, M., 2022. Diatoms in Upper Pliocene-Lower Pleistocene sediments, subpolar North Atlantic: 4. Thalassiosira hexagona sp. nov. Diatom, 38:1-13. https://doi.org/10.11464/diatom.38.1 Hayashi, T., Ohno, M., Acton, G., Guyodo, Y., Evans, H.F., Kanamatsu, T., Komatsu, F., and Murakami, F., 2010. Millennial-scale iceberg surges after intensification of Northern Hemisphere glaciation. Geochemistry, Geophysics, Geosystems, 11(9):Q09Z20. https://doi.org/10.1029/2010GC003132 Head, M.J., and Mantilla-Duran, F., 2020. Atlanticodinium striaticonulum n. gen., n. sp., a widespread extant dinoflagellate cyst from the late Cenozoic, and its comparison with Atlanticodinium janduchenei (Head et al., 1989) n. comb. Marine Micropaleontology, 159:101774. https://doi.org/10.1016/j.marmicro.2019.101774 Henderson, S.S., 2009. Tracking deep -water flow on Eirik Drift over the past 160 kyr [PhD dissertation]. The State University of New Jersey, New Brunswick, NJ. https://www.proquest.com/docview/304992735 Hennissen, J.A.I., 2013. Late Pliocene--early Pleistocene North Atlantic circulation: integrating dinocyst assemblages and foraminiferal geochemistry [PhD dissertation]. University of Toronto, Toronto, Ontario (Canada). https://www.proquest.com/docview/1501654084# Hennissen, J.A.I., Head, M.J., de Schepper, S., and Groeneveld, J., 2014. Palynological evidence for a southward shift of the North Atlantic Current at ∼2.6 Ma during the intensification of late Cenozoic Northern Hemisphere glaciation. Paleoceanography and Paleoclimatology, 29(6):564-580. https://doi.org/10.1002/2013PA002543 Hennissen, J.A.I., Head, M.J., de Schepper, S., and Groeneveld, J., 2015. Increased seasonality during the intensification of Northern Hemisphere glaciation at the Pliocene-Pleistocene boundary ∼2.6 Ma. Quaternary Science Reviews, 129:321-332. https://doi.org/10.1016/j.quascirev.2015.10.010 Hennissen, J.A.I., Head, M.J., De Schepper, S., and Groeneveld, J., 2017. Dinoflagellate cyst paleoecology during the Pliocene-Pleistocene climatic transition in the North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 470:81-108. https://doi.org/10.1016/j.palaeo.2016.12.023 Hernández Almeida, I., 2011. Variabilidad climática orbital y suborbital en el Atlántico Norte durante el Pleistoceno (1.070.000-780.000 años) [PhD dissertation]. Universidad de Salamanca, Spain. Hernández-Almeida, I., Bjorklund, K.R., Sierro, F.J., Filippelli, G.M., Cacho, I., and Flores, J.A., 2013. A high resolution opal and radiolarian record from the subpolar North Atlantic during the mid-Pleistocene transition (1069-779 ka): palaeoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 391(A):49-70. https://doi.org/10.1016/j.palaeo.2011.05.049 Hernández-Almeida, I., Sierro, F.J., Cacho, I., and Flores, J.A., 2012. Impact of suborbital climate changes in the North Atlantic on ice sheet dynamics at the mid-Pleistocene transition. Paleoceanography and Paleoclimatology, 27(3):PA3214. https://doi.org/10.1029/2011PA002209 Hernández-Almeida, I., Sierro, F.J., Cacho, I., and Flores, J.A., 2015. Subsurface North Atlantic warming as a trigger of rapid cooling events: evidence from the early Pleistocene (MIS 31-19). Climate of the Past, 11(4):687-696. https://doi.org/10.5194/cp-11-687-2015 Hernández-Almeida, I., Sierro, F.J., Flores, J.-A., Cacho, I., and Filippelli, G.M., 2013. Palaeoceanographic changes in the North Atlantic during the mid-Pleistocene transition (MIS 31-19) as inferred from planktonic foraminiferal and calcium carbonate records. Boreas, 42(1):140-159. https://doi.org/10.1111/j.1502-3885.2012.00283.x Hillaire-Marcel, C., de Vernal, A., and McKay, J., 2011. Foraminifer isotope study of the Pleistocene Labrador Sea, northwest North Atlantic (IODP Sites 1302/03 and 1305), with emphasis on paleoceanographical differences between its "inner" and "outer" basins. Marine Geology, 279(1-4):188-198. https://doi.org/10.1016/j.margeo.2010.11.001 Hodell, D., Channell, J., Curtis, J., Romero, O., and Roehl, U., 2007. Millennial-scale climate variability in the North Atlantic beyond the last glacial cycle inferred from IODP Site U1308 (re-occupation of DSDP Site 609). Eos, Transactions of the American Geophysical Union, 88(52):PP44B-04. https://abstractsearch.agu.org/meetings/2007/FM/PP44B-04.html Hodell, D.A., and Channell, J.E.T., 2016. Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate. Climate of the Past, 12(9):1805-1828. https://doi.org/10.5194/cp-12-1805-2016 Hodell, D.A., Channell, J.E.T., Curtis, J.H., Romero, O.E., and Röhl, U., 2008. Onset of "Hudson Strait" Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (∼640 ka)? Paleoceanography and Paleoclimatology, 23(4):PA4218. https://doi.org/10.1029/2008PA001591 Hodell, D.A., and Curtis, J.H., 2008. Oxygen and carbon isotopes of detrital carbonate in North Atlantic Heinrich events. Marine Geology, 256(1-4):30-35. https://doi.org/10.1016/j.margeo.2008.09.010 Hodell, D.A., Minth, E.K., Curtis, J.H., McCave, I.N., Hall, I.R., Channell, J.E.T., and Xuan, C., 2009. Surface and deep-water hydrography on Gardar Drift (Iceland Basin) during the last interglacial period. Earth and Planetary Science Letters, 288(1-2):10-19. https://doi.org/10.1016/j.epsl.2009.08.040 Hodell, D.A., Nicholl, J.A., Bontognali, T.R.R., Danino, S., Dorador, J., Dowdeswell, J.A., Einsle, J., Kuhlmann, H., Martrat, B., Mleneck-Vautravers, M.J., Rodríguez-Tovar, F.J., and Röhl, U., 2017. Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography and Paleoclimatology, 32(3):284-303. https://doi.org/10.1002/2016PA003028 Irvalı, N., Galaasen, E.V., Ninnemann, U.S., Rosenthal, Y., Born, A., and Kleiven, H.F., 2020. A low climate threshold for south Greenland Ice Sheet demise during the Late Pleistocene. Proceedings of the National Academy of Sciences, 117(1):190-195. https://doi.org/10.1073/pnas.1911902116 Jakob, K.A., Late Pliocene to early Pleistocene millennial-scale climate fluctuations and sea-level variability: A view from the tropical Pacific and the North Atlantic [PhD dissertation]. Heidelberg University, Heidelberg, Germany. https://doi.org/10.11588/heidok.00022942 Jakob, K.A., Pross, J., Link, J.M., Blaser, P., Hauge Braaten, A., and Friedrich, O., 2021. Deep-ocean circulation in the North Atlantic during the Plio-Pleistocene intensification of Northern Hemisphere Glaciation (~2.65-2.4 Ma). Marine Micropaleontology, 165:101998. https://doi.org/10.1016/j.marmicro.2021.101998 Jakob, K.A., Wilson, P.A., Pross, J., Ezard, T.H.G., Fiebig, J., Repschläger, J., and Friedrich, O., 2020. A new sea-level record for the Neogene/Quaternary boundary reveals transition to a more stable East Antarctic Ice Sheet. Proceedings of the National Academy of Sciences of the United States of America, 117(49):30980-30987. https://doi.org/10.1073/pnas.2004209117 Jatiningrum, R., and Sato, T., 2017. Sea-surface dynamics changes in the subpolar North Atlantic Ocean (IODP Site U1314) during late Pliocene climate transition based on calcareous nannofossil observation. Open Journal of Geology, 7:1538-1551. https://doi.org/10.4236/ojg.2017.710103 Ji, J., Ge, Y., Balsam, W., Damuth, J.E., and Chen, J., 2009. Rapid identification of dolomite using a Fourier transform infrared spectrophotometer (FTIR): a fast method for identifying Heinrich events in IODP Site U1308. Marine Geology, 258(1-4):60-68. https://doi.org/10.1016/j.margeo.2008.11.007 Kanamatsu, T., Ohno, M., Acton, G., Evans, H., and Guyodo, Y., 2009. Rock magnetic properties of the Gardar Drift sedimentary sequence, Site IODP U1314, North Atlantic: implications for bottom current change through the mid-Pleistocene. Marine Geology, 265(1-2):31-39. https://doi.org/10.1016/j.margeo.2009.06.012 Kaufman, D.S., Cooper, K., Behl, R., Billups, K., Bright, J., Gardner, K., Hearty, P., Jakobsson, M., Mendes, I., O'Leary, M., Polyak, L., Rasmussen, T., Rosa, F., and Schmidt, M., 2013. Amino acid racemization in mono-specific foraminifera from Quaternary deep-sea sediments. Quaternary Geochronology, 16:50-61. https://doi.org/10.1016/j.quageo.2012.07.006 Kawamura, K., 2010. Burial consolidation processes of deep-sea sediments: an example of core sediments collected from the Labrador Sea in the Northwest Atlantic. Soils and Foundations, 50(5):623-632. https://doi.org/10.3208/sandf.50.623 Kawamura, N., 2007. Early diagenetic effects on magnetic properties of marine sediments [PhD dissertation]. Kyoto University, Japan. http://hdl.handle.net/2433/136431 Kawamura, N., Ishikawa, N., and Torii, M., 2012. Diagenetic alteration of magnetic minerals in Labrador Sea sediments (IODP sites U1305, U1306, and U1307). Geochemistry, Geophysics, Geosystems, 13(8):Q08013. https://doi.org/10.1029/2012GC004213 Kellum, M., 2015. The mid-Pleistocene record of ice-rafting at IODP Site 1308, central North Atlantic: links between IRD abundance variations and climatic transistions [BS thesis]. The Ohio State University, Columbus, OH. http://hdl.handle.net/1811/68693 Kender, S., Aturamu, A., Zalasiewicz, J., Kaminski, M.A., and Williams, M., 2019. Benthic foraminifera indicate Glacial North Pacific Intermediate Water and reduced primary productivity over Bowers Ridge, Bering Sea, since the Mid-Brunhes Transition. Journal of Micropaleontology, 38(2):177-187. https://doi.org/10.5194/jm-38-177-2019 Kessler, A., Bouttes, N., Roche, D.M., Ninnemann, U.S., Galaasen, E.V., and Tjiputra, J., 2020. Atlantic meridional overturning circulation and δ 13 C variability during the last interglacial. Paleoceanography and Paleoclimatology, 35(5):e2019PA003818. https://doi.org/10.1029/2019PA003818 Kita, I., Yamashita, T., Chiyonobu, S., Hasegawa, H., Sato, T., and Kuwahara, Y., 2016. Mercury content in Atlantic sediments as a new indicator of the enlargement and reduction of Northern Hemisphere ice sheets. Journal of Quaternary Science, 31(3):167-177. https://doi.org/10.1002/jqs.2854 Kuhs, M., Austin, W.E.N., Abbott, P.M., and Hodell, D.A., 2014. Iceberg-rafted tephra as a potential tool for the reconstruction of ice-sheet processes and ocean surface circulation in the glacial North Atlantic. In Austin, W.E.N., Abbott, P.M., Davies, S.M., Pearce, N.J.G., and Wastegård, S. (Eds.), Marine tephrochronology. Geological Society Special Publication, 398: 141-155. https://doi.org/10.1144/SP398.8 Kulhanek, D.K., 2009. Calcareous nannoplankton as paleoceanographic and biostratigraphic proxies: examples from the Mid-Cretaceous equatorial Atlantic (ODP Leg 207) and Pleistocene of the Antarctic Peninsula (NBP0602A) and North Atlantic (IODP Exp. 306) [PhD dissertation]. Florida State University, Tallahassee, FL. Lamziouaq, R., 2015. Nd and Pb conime isotopic tracers of Pleistocene Recent thermohaline circulation in north-west Atlantic (Site IODP 1305) [MS thesis]. University of Quebec, Montreal, Quebec (Canada). https://uknowledge.uky.edu/ees_etds/27/ Lang, D.C., Bailey, I., Wilson, P.A., Beer, C.J., Bolton, C.T., Friedrich, O., Newsam, C., Spencer, M.R., Gutjahr, M., Foster, G.L., Cooper, M.J., and Milton, J.A., 2014. The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site. Quaternary Science Reviews, 93:125-141. https://doi.org/10.1016/j.quascirev.2014.04.005 Lang, D.C., Bailey, I., Wilson, P.A., Chalk, T.B., Foster, G.L., and Gutjahr, M., 2016. Incursions of southern-sourced water into the deep North Atlantic during late Pliocene glacial intensification. Nature Geoscience, 9(5):375-379. https://doi.org/10.1038/ngeo2688 Lang, D.C., Bailey, I., Wilson, P.A., Foster, G.L., Bolton, C.T., Friedrich, O., and Gutjahr, M., 2014. Response to "Comment on 'The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site,' by David Lant et al.". Quaternary Science Reviews, 103:179-183. https://doi.org/10.1016/j.quascirev.2014.08.015 Lathrop, E., 2015. Sediment composition in the Gulf of Cádiz contourites during the Pleistocene [BS thesis]. Ohio State University, Columbus, OH. http://hdl.handle.net/1811/68670 Leathrum, E., 2022. A paleoceanographic reconstruction of North Atlantic Ocean circulation [Senior thesis]. University of Delaware, Newark, DE. https://udspace.udel.edu/handle/19716/31123 Lee, J., 2013. Evolution of anthropogenic Pb and Pb isotopes in the deep north Atlantic Ocean and the Indian Ocean [PhD dissertation]. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, https://hdl.handle.net/1912/6074 Li, B., 2011. Natural thermoluminescence characteristics of long-scale pelagic sediments and their paleoclimate significance [MS thesis]. China University of Geosciences, Beijing, China. https://cdmd.cnki.com.cn/Article/CDMD-11415-1011077933.htm Liautaud, P.R., Hodell, D.A., and Huybers, P.J., 2020. Detection of significant climatic precession variability in early Pleistocene glacial cycles. Earth and Planetary Science Letters, 536:116137. https://doi.org/10.1016/j.epsl.2020.116137 Lippold, J., Gutjahr, M., Blaser, P., Christner, E., de Carvalho Ferreira, M.L., Mulitza, S., Christl, M., Wombacher, F., Böhm, E., Antz, B., Cartapanis, O., Vogel, H., and Jaccard, S.L., 2016. Deep water provenance and dynamics of the (de)glacial Atlantic Meridional Overturning Circulation. Earth and Planetary Science Letters, 445:68-78. https://doi.org/10.1016/j.epsl.2016.04.013 Liu, J., Fang, N., Wang, F., Yang, F., and Ding, X., 2018. Features of ice-rafted debris (IRD) at IODP Site U1312 and their palaeoenvironmental implications during the last 2.6 Myr. Palaeogeography, Palaeoclimatology, Palaeoecology, 511:364. https://doi.org/10.1016/j.palaeo.2018.09.002 Maegakiuchi, K., Hyodo, M., Kitaba, I., Hirose, K., Katoh, S., and Sato, H., 2016. Brief sea-level fall event and centennial to millennial sea-level variations during Marine Isotope Stage 19 in Osaka Bay, Japan. Journal of Quaternary Science, 31(7):809-822. https://doi.org/10.1002/jqs.2907 Mao, L., Piper, D.J.W., Saint-Ange, F., and Andrews, J.T., 2018. Labrador Current fluctuation during the last glacial cycle. Marine Geology, 395:234-246. https://doi.org/10.1016/j.margeo.2017.10.012 Martínez-Sánchez, M., Flores, J.-A., Palumbo, E., Alonso-Garcia, M., Sierro, F.-J., and Amore, F.O., 2019. Reconstruction of surface water dynamics in the North Atlantic during the Mid-Pleistocene (~540-400 ka), as inferred from coccolithophores and planktonic foraminifera. Marine Micropaleontology, 152:101730. https://doi.org/10.1016/j.marmicro.2019.03.002 Martin-Garcia, G., 2019. Oceanic impact on European climate changes during the Quaternary. Geosciences, 9(3). https://doi.org/10.3390/geosciences9030119 Mazaud, A., Channell, J.E.T., and Stoner, J.S., 2012. Relative paleointensity and environmental magnetism since 1.2 Ma at IODP Site U1305 (Eirik Drift, NW Atlantic). Earth and Planetary Science Letters, 357-358:137-144. https://doi.org/10.1016/j.epsl.2012.09.037 Mazaud, A., Channell, J.E.T., and Stoner, J.S., 2015. The paleomagnetic record at IODP Site U1307 back to 2.2 Ma (Eirik Drift, off South Greenland). Earth and Planetary Science Letters, 429:82-89. https://doi.org/10.1016/j.epsl.2015.07.059 Mazaud, A., Channell, J.E.T., Xuan, C., and Stoner, J.S., 2009. Upper and lower Jaramillo polarity transitions recorded in IODP Expedition 303 North Atlantic sediments: implications for transitional field geometry. Physics of the Earth and Planetary Interiors, 172(3-4):131-140. https://doi.org/10.1016/j.pepi.2008.08.012 McCarron, A.P., Bigg, G.R., Brooks, H., Leng, M.J., Marshall, J.D., Ponomareva, V., Portnyagin, M., Reimer, P.J., and Rogerson, M., 2021. Northwest Pacific ice-rafted debris at 38°N reveals episodic ice-sheet change in late Quaternary northeast Siberia. Earth and Planetary Science Letters, 553:116650. https://doi.org/10.1016/j.epsl.2020.116650 Mirzaloo, M., Nürnberg, D., Kienast, M., and van der Lubbe, H.J.L., 2019. Synchronous changes in sediment transport and provenance at the Iceland-Faroe Ridge linked to millennial climate variability from 55 to 6 ka BP. Geochemistry, Geophysics, Geosystems, 20(8):4184-4201. https://doi.org/10.1029/2019GC008298 Mokeddem, Z., and McManus, J.F., 2016. Persistent climatic and oceanographic oscillations in the subpolar North Atlantic during the MIS 6 glaciation and MIS 5 interglacial. Paleoceanography and Paleoclimatology, 31(6):758-778. https://doi.org/10.1002/2015PA002813 Müller-Michaelis, A., and Uenzelmann-Neben, G., 2014. Development of the Western Boundary Undercurrent at Eirik Drift related to changing climate since the early Miocene. Deep-Sea Research, Part I: Oceanographic Research Papers, 93:21-34. https://doi.org/10.1016/j.dsr.2014.07.010 Müller-Michaelis, A., Uenzelmann-Neben, G., and Stein, R., 2013. A revised early Miocene age for the instigation of the Eirik Drift, offshore southern Greenland: evidence from high-resolution seismic reflection data. Marine Geology, 340:1-15. https://doi.org/10.1016/j.margeo.2013.04.012 Naafs, B.D.A., Hefter, J., Acton, G., Haug, G.H., Martinez-Garcia, A., Pancost, R., and Stein, R., 2012. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth and Planetary Science Letters, 317-318:8-19. https://doi.org/10.1016/j.epsl.2011.11.026 Naafs, B.D.A., Hefter, J., Ferretti, P., Stein, R., and Haug, G.H., 2011. Sea surface temperatures did not control the first occurrence of Hudson Strait Heinrich events during MIS 16. Paleoceanography and Paleoclimatology, 26(4):PA4201. https://doi.org/10.1029/2011PA002135 Naafs, B.D.A., Hefter, J., Grützner, J., and Stein, R., 2013. Warming of surface waters in the mid-latitude North Atlantic during Heinrich events. Paleoceanography, 28(1):153-163. https://doi.org/10.1029/2012PA002354 Naafs, B.D.A., Hefter, J., and Stein, R., 2012. Application of the long chain diol index (LDI) paleothermometer to the early Pleistocene (MIS 96). Organic Geochemistry, 49:83-85. https://doi.org/10.1016/j.orggeochem.2012.05.011 Naafs, B.D.A., Hefter, J., and Stein, R., 2013. Millennial-scale ice rafting events and Hudson Strait Heinrich(-like) events during the late Pliocene and Pleistocene: a review. Quaternary Science Reviews, 80:1-28. https://doi.org/10.1016/j.quascirev.2013.08.014 Naafs, B.D.A., Hefter, J., and Stein, R., 2014. Dansgaard-Oeschger forcing of sea surface temperature variability in the midlatitude North Atlantic between 500 and 400 ka (MIS 12). Paleoceanography and Paleoclimatology, 29(11):1024-1030. https://doi.org/10.1002/2014PA002697 Naafs, B.D.A., Martínez-García, A., Grützner, J., and Higgins, S., 2014. The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site: discussion. Quaternary Science Reviews, 103:175-179. https://doi.org/10.1016/j.quascirev.2014.08.014 Naafs, B.D.A., Stein, R., Hefter, J., Khelifi, N., de Schepper, S., and Haug, G.H., 2010. Late Pliocene changes in the North Atlantic Current. Earth and Planetary Science Letters, 298(3-4):434-442. https://doi.org/10.1016/j.epsl.2010.08.023 Naafs, B.D.A., Voelker, A.H.L., Karas, C., Andersen, N., and Sierro, F.J., 2020. Repeated near-collapse of the Pliocene sea surface temperature gradient in the North Atlantic. Paleoceanography and Paleoclimatology, 35(5):e2020PA003905. https://doi.org/10.1029/2020PA003905 Nicholl, J.A.L., Hodell, D.A., Naafs, B.D.A., Hillaire-Marcel, C., Channell, J.E.T., and Romero, O.E., 2012. A Laurentide outburst flooding event during the last interglacial period. Nature Geoscience, 5(12):901-904. https://doi.org/10.1038/ngeo1622 Obrochta, S.P., 2008. Glacial North Atlantic millennial variability over the last 300,000 years [PhD dissertation]. Duke University, Durham, NC. Obrochta, S.P., Crowley, T.J., Channell, J.E.T., Hodell, D.A., Baker, P.A., Seki, A., and Yokoyama, Y., 2014. Climate variability and ice-sheet dynamics during the last three glaciations. Earth and Planetary Science Letters, 406:198-212. https://doi.org/10.1016/j.epsl.2014.09.004 Ockert, C., Gussone, N., Kaufhold, S., and Teichert, B.M.A., 2013. Isotope fractionation during Ca exchange on clay minerals in a marine environment. Geochimica et Cosmochimica Acta, 112:374-388. https://doi.org/10.1016/j.gca.2012.09.041 Ockert, C., Wehrmann, L.M., Kaufhold, S., Ferdelman, T.G., Teichert, B.M.A., and Gussone, N., 2014. Calcium-ammonium exchange experiments on clay minerals using a 45 Ca tracer technique in marine pore water. Isotopes in Environmental and Health Studies, 50(1):1-17. https://doi.org/10.1080/10256016.2013.806505 Ohno, M., Hayashi, T., Komatsu, F., Murakami, F., Zhao, M., Guyodo, Y., Acton, G., Evans, H.F., and Kanamatsu, T., 2012. A detailed paleomagnetic record between 2.1 and 2.75 Ma at IODP Site U1314 in the North Atlantic: geomagnetic excursions and the Gauss-Matuyama transition. Geochemistry, Geophysics, Geosystems, 13(5):Q12Z39. https://doi.org/10.1029/2012GC004080 Ohno, M., Murakami, F., Komatsu, F., Guyodo, Y., Acton, G., Kanamatsu, T., Evans, H.F., and Nanayama, F., 2008. Paleomagnetic directions of the Gauss-Matuyama polarity transition recorded in drift sediments (IODP Site U1314) in the North Atlantic. Earth, Planets and Space, 60(9):pagese13-e16. https://doi.org/10.1186/BF03352845 Orr, D., 2019. Eocene to Miocene tectonostratigraphic evolution of northwest New Zealand [MS thesis]. Victoria University of Wellington, New Zealand. http://hdl.handle.net/10063/8280 Parker, R., 2022. Pliocene-Pleistocene evolution of the Laurentide Ice Sheet and North Atlantic Ocean circulation [PhD dissertation]. University of Exeter, Exeter, England. http://hdl.handle.net/10871/129984 Parker, R.L., Foster, G.L., Gutjahr, M., Wilson, P.A., Littler, K.L., Cooper, M.J., Michalik, A., Milton, J.A., Crocket, K.C., and Bailey, I., 2022. Laurentide Ice Sheet extent over the last 130 thousand years traced by the Pb isotope signature of weathering inputs to the Labrador Sea. Quaternary Science Reviews, 287:107564. https://doi.org/10.1016/j.quascirev.2022.107564 Penman, D.E., Keller, A., D'Haenens, S., Kirtland Turner, S., and Hull, P.M., 2019. Atlantic deep-sea cherts associated with Eocene hyperthermal events. Paleoceanography and Paleoclimatology, 34(2):287-299. https://doi.org/10.1029/2018PA003503 Pöppelmeier, F., Gutjahr, M., Blaser, P., Schulz, H., Süfke, F., and Lippold, J., 2021. Stable Atlantic Deep Water mass sourcing on glacial-interglacial timescales. Geophysical Research Letters, 48(15):e2021GL092722. https://doi.org/10.1029/2021GL092722 Preuß, F., 2016. The impact of viruses on the marine deep biosphere [PhD dissertation]. Universität Oldenburg, Germany. https://oops.uni-oldenburg.de/id/eprint/2815 Rashid, H., Polyak, L., and Mosley-Thompson, E., 2021. Abrupt climate change revisited. In Rashid, H., Polyak, L., and Mosley-Thompson, E. (Eds.), Abrupt Climate Change: Mechanisms, Patterns, and Impacts. Geophysical Monograph, 193: 1-14. https://doi.org/10.1029/2011GM001139 Rodriguez-Tovar, F.J., Dorador, J., and Hodell, D.A.V., 2019. Trace fossils evidence of a complex history of nutrient availability and oxygen conditions during Heinrich Event 1. Global and Planetary Change, 174:26-34. https://doi.org/10.1016/j.gloplacha.2019.01.003 Roman, M., Ferretti, P., Cairns, W.R.L., Spolaor, A., Turetta, C., and Barbante, C., 2019. High speed-low volume automated ICP-QMS method for determination of Mg/Ca in biogenic calcite. Journal of Analytical Atomic Spectrometry, 34(4):764-773. https://doi.org/10.1039/C8JA00396C Romero, O.E., Swann, G.E.A., Hodell, D.A., Helmke, P., Rey, D., and Rubio, B., 2011. A highly productive subarctic Atlantic during the last interglacial and the role of diatoms. Geology, 39(11):1015-1018. https://doi.org/10.1130/G32454.1 Rousseau, D.D., Bagniewski, W., and Ghil, M., 2022. Abrupt climate changes and the astronomical theory: are they related? Climate of the Past, 18(2):249-271. https://doi.org/10.5194/cp-18-249-2022 Rousseau, D.-D., Antoine, P., Boers, N., Lagroix, F., Ghil, M., Lomax, J., Fuchs, M., Debret, M., Hatté, C., Moine, O., Gauthier, C., Jordanova, D., and Jordanova, N., 2020. Dansgaard-Oeschger-like events of the penultimate climate cycle: the loess point of view. Climate of the Past, 16(2):713-727. https://doi.org/10.5194/cp-16-713-2020 Sarnthein, M., Bartoli, G., Prange, M., Schmittner, A., Schneider, B., Weinelt, M., Andersen, N., and Garbe-Schönberg, D., 2009. Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates. Climate of the Past, 5(2):269-283. https://doi.org/10.5194/cp-5-269-2009 Sato, M., Makio, M., Hayashi, T., and Ohno, M., 2015. Abrupt intensification of North Atlantic Deep Water formation at the Nordic Seas during the late Pliocene climate transition. Geophysical Research Letters, 42(12):4949-4955. https://doi.org/10.1002/2015GL063307 Satte, M.Y., 2010. Clay mineral assemblages and thermohaline circulation in the North Atlantic during isotope stages 27 to 31 [MS thesis]. Université du Québec, Montreal, QC (Canada). http://www.archipel.uqam.ca/3709/1/M11607.pdf Scher, H.D., Whittaker, J.M., Williams, S.E., Latimer, J.C., Kordesch, W.E.C., and Delaney, M.L., 2015. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature, 523(7562):580-583. https://doi.org/10.1038/nature14598 Setoyama, E., and Kaminski, M.A., 2015. Neogene benthic foraminifera from the southern Bering Sea (IODP Expedition 323). Palaeontologia Electronica, 18.2.38A:1-30. https://doi.org/10.26879/462 Shimada, C., Sato, T., Kudo, M., and Yamasaki, M., 2008. Significance of Neodenticula kamtschatica, an extinct planktonic diatom species from the middle Quaternary submarine deposit, IODP Expedition 303, North Atlantic Ocean. Journal of the Geological Society of Japan, 114(1):47-50. https://doi.org/10.5575/geosoc.114.47 Shimada, C., Sato, T., Toyoshima, S., Yamasaki, M., and Tanimura, Y., 2008. Paleoecological significance of laminated diatomaceous oozes during the middle-to-late Pleistocene, North Atlantic Ocean (IODP Site U1304). Marine Micropaleontology, 69(2):139-150. https://doi.org/10.1016/j.marmicro.2008.07.004 Smith, M.E., 2010. Paleoceanographic variability of the North Atlantic from Marine Isotope Stage 6 to 5 at Integrated Ocean Drilling Program suptropical Site 1313 and subpolar Site 1314 [BS thesis]. Ohio State University, Columbus, OH. http://kb.osu.edu/dspace/bitstream/handle/1811/45626/Smith_Mary_2010.pdf?sequence=6 Stein, R., Hefter, J., Grützner, J., Voelker, A., and Naafs, B.D.A., 2009. Variability of surface water characteristics and Heinrich-like events in the Pleistocene midlatitude North Atlantic Ocean; biomarker and XRD records from IODP Site U1313 (MIS 16-9). Paleoceanography, 24(2):PA2203. https://doi.org/10.1029/2008PA001639 Stein, R., Kanamatsu, T., Alvarez Zarikian, C., Higgins, S.M., Channell, J.E.T., Aboud, E., Ohno, M., Acton, G.D., Akimoto, K., Bailey, I., Bjorklund, K.R., Evans, H., Nielsen, S.H.H., Fang, N., Ferretti, P., Gruetzer, J., Guyodo, Y.J.B., Hagino, K., Harris, R., Hatakeda, K., Hefter, J., Judge, S.A., Kulhanek, D.K., Nanayama, F., Rashid, H., Sierro Sanchez, F.J., Voelker, A., and Zhai, Q., 2006. North Atlantic paleoceanography; the last five million years. Eos, Transactions of the American Geophysical Union, 87(13):129. https://doi.org/10.1029/2006EO130002 Stoner, J.S., Channell, J.E.T., Mazaud, A., Strano, S.E., and Xuan, C., 2013. The influence of high-latitude flux lobes on the Holocene paleomagnetic record of IODP Site U1305 and the northern North Atlantic. Geochemistry, Geophysics, Geosystems, 14(10):4623-4646. https://doi.org/10.1002/ggge.20272 Strother, S.L., 2016. Southern high-latitude vegetation and climate change during the Holocene (South Georgia) and Oligocene (Wilkes Land, Antarctica) [PhD dissertation]. Northumbria University, Newcastle upon Tyne, England. http://nrl.northumbria.ac.uk/id/eprint/27303 Sun, Y., McManus, J.F., Clemens, S.C., Zhang, X., Vogel, H., Hodell, D.A., Guo, F., Wang, T., Liu, X., and An, Z., 2021. Persistent orbital influence on millennial climate variability through the Pleistocene. Nature Geoscience, 14(11):812-818. https://doi.org/10.1038/s41561-021-00794-1 Tan, N., Ladant, J.-B., Ramstein, G., Dumas, C., Bachem, P., and Jansen, E., 2018. Dynamic Greenland ice sheet driven by pCO2 variations across the Pliocene Pleistocene transition. Nature Communications, 9(1):4755. https://doi.org/10.1038/s41467-018-07206-w Todd, C.L., Schmidt, D.N., Robinson, M.M., and De Schepper, S., 2020. Planktic foraminiferal test size and weight response to the late Pliocene environment. Paleoceanography and Paleoclimatology, 35(1):e2019PA003738. https://doi.org/10.1029/2019PA003738 Uenzelmann-Neben, G., and Gruetzner, J., 2018. Chronology of Greenland Scotland Ridge overflow: what do we really know? Marine Geology, 406:109-118. https://doi.org/10.1016/j.margeo.2018.09.008 Ventura, C., 2008. Traçar episódios de meltwater e variações de temperatura das águas superficiais no estádio glaciar 14 ao largo da costa Sul da Gronelândia [BS thesis]. University of the Algarve, Portugal. Voelker, A.H.L., Rodrigues, T.A., Billups, K., Oppo, D.W., McManus, J.F., Stein, R., Hefter, J., and Grimalt, J.O., 2010. Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9-14) and their implications for the thermohaline circulation. Climate of the Past, 6(4):531-552. https://doi.org/10.5194/cp-6-531-2010 Vogt-Vincent, N., Lippold, J., Kaboth-Bahr, S., and Blaser, P., 2020. Ice-rafted debris as a source of non-conservative behaviour for the εNd palaeotracer: insights from a simple model. Geo-Marine Letters, 40(3):325-340. https://doi.org/10.1007/s00367-020-00643-x Whyte, C., 2014. The mid- to late Pleistocene ice rafted debris record at IODP Site 1308, central North Atlantic [BS thesis]. Ohio State University, Columbus, OH. http://hdl.handle.net/1811/59892 Xu, Y., Eyles, N., and Simpson, M.J., 2009. Terrigenous organic matter sources in mid-Pleistocene sediments from the Orphan Knoll, Northwest Atlantic Ocean. Applied Geochemistry, 24(10):1934-1940. https://doi.org/10.1016/j.apgeochem.2009.07.007 Xuan, C., 2010. Tests for orbital influences on the geomagnetic field, and Quaternary magnetic records from North Atlantic and Arctic deep-sea sediments [PhD dissertation]. University of Florida, Gainesville, FL. https://www.proquest.com/docview/743820210 Xuan, C., and Channell, J.E.T., 2008. Origin of orbital periods in the sedimentary relative paleointensity records. Physics of the Earth and Planetary Interiors, 169(1):140-151. https://doi.org/10.1016/j.pepi.2008.07.017 Xuan, C., Channell, J.E.T., and Hodell, D.A., 2016. Quaternary magnetic and oxygen isotope stratigraphy in diatom-rich sediments of the southern Gardar Drift (IODP Site U1304, North Atlantic). Quaternary Science Reviews, 142:74-89. https://doi.org/10.1016/j.quascirev.2016.04.010 Xue, P., Chang, L., Zhaowen, P., and Harrison, R., 2022. Discovery of giant magnetofossils within and outside of the Palaeocene-Eocene Thermal Maximum in the North Atlantic. Earth and Planetary Science Letters. https://doi.org/10.17863/CAM.81243 Yamamoto, Y., Fukami, H., and Lippert, P.C., 2022. Eocene relative paleointensity of the geomagnetic field from Integrated Ocean Drilling Program Site U1403 and U1408 sediments in the northwest Atlantic. Earth and Planetary Science Letters, 584:117518. https://www.sciencedirect.com/science/article/pii/S0012821X22001546 Yamasaki, M., Matsui, M., Shimada, C., Chiyonobu, S., and Sato, T., 2008. Timing of shell size increase and decrease of the planktic foraminifer Neogloboquadrina pachyderma (sinistral) during the Pleistocene, IODP Exp. 303 Site U1304, the North Atlantic Ocean. Open Paleontology Journal, 1:18-23. https://doi.org/10.2174/1874425700801010018 Yamasaki, M., Shimada, C., Ikehara, M., and Schiebel, R., 2021. Two-tiered transition of the North Atlantic surface hydrology during the past 1.6 Ma: multiproxy evidence from planktic foraminifera. Paleontological Research, 25(4):345-365. https://doi.org/10.2517/2020PR026 Yang, F., 2013. An analysis of paleoclimatic changes in the North Atlantic ice raft clastic zone on a millennium scale since the Pliocene [MS thesis]. China University of Geosciences, Beijing, China. https://cdmd.cnki.com.cn/Article/CDMD-11415-1013270317.htm Zhang, H., Stoll, H., Bolton, C., Jin, X., and Liu, C., 2018. A refinement of coccolith separation methods: measuring the sinking characteristics of coccoliths. Biogeosciences, 15(15):4759-4775. https://doi.org/10.5194/bg-15-4759-2018 ConferencesAmerican Geophysical Union (AGU) Fall Meeting 2011Masaki, Y., Takai, K., Mottl, M.J., Hartnett, H.E., Kinoshita, M., and the IODP Expedition 331 Scientists, 2011. Hydrothermal regime of the Iheya-North hydrothermal field inferred from surface heat flow data and IODP Expedition 331 drilling results [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract OS11B-1476) http://abstractsearch.agu.org/ Moyer, C.L., and McAllister, S.M., 2011. IODP Expedition 331: iron-oxidizing bacteria from the Okinawa Trough deep subsurface biosphere [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract OS11B-1476) http://abstractsearch.agu.org/ AGU Fall Meeting 2012Aoyama, S., Nishizawa, M., Takai, K., and Ueno, Y., 2012. Microbial sulfate reduction within the Iheya north subseafloor hydrothermal system constrained by quadruple sulfur isotopes [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract OS13A-1698) http://abstractsearch.agu.org/ Miyoshi, Y., Ishibashi, J., Faure, K., and Uehara, S., 2012. Structure of a seafloor hydrothermal system in volcanic sediment: distribution of hydrothermal clay minerals, at the Iheya North Knoll, Okinawa Trough [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract OS13A-1699) http://abstractsearch.agu.org/ Nishizawa, M., and Takai, K., 2012. Compositional and isotopic properties of nitrogen in subseafloor hydrothermal environments at the Iheya North field in the mid-Okinawa Trough [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract OS13A-1697) http://abstractsearch.agu.org/ Noguchi, T., Hatta, M., Sunamura, M., Fukuba, T., Suzue, T., Kimoto, H., and Okamura, K., 2012. Carbonate system and Ihyea North in Okinawa Trough—IODP drilling and post drilling environment [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract OS13A-1701) http://abstractsearch.agu.org/ Takai, K., Kawagucci, S., Miyazaki, J., Watsuji, T., Ishibashi, J., Yamamoto, H., Nozaki, T., Kashiwabara, T., and Shibuya, T., 2012. Post-drilling hydrothermal vent and associated biological activities seen through artificial hydrothermal vents in the Iheya North field, Okinawa Trough [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract D144A-08) http://abstractsearch.agu.org/ Yamanaka, T., Akashi, H., and Mitsunari, T., 2012. What is the constraint on formation of oil-starved hydrothermal systems in the sediment-rich Okinawa Trough, southwestern Japan [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract OS13A-1712) http://abstractsearch.agu.org/meetings/2012/FM/OS13A-1712.html Yanagawa, K., Nunoura, T., Kawagucci, S., Hirai, M., Sunamura, M., Breuker, A., Brandt, L., House, C.H., McAllister, S.M., Moyer, C.L., and Takai, K., 2012. Structural and functional diversity of microbial communities beneath the hydrothermal vent at the Iheya North field of the Mid-Okinawa Trough (IODP Expedition 331) [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract OS13A-1696) http://abstractsearch.agu.org/ AGU Fall Meeting 2013Brandt, L.D., House, C.H., Nunoura, T., and Yanagawa, K., 2013. Investigating the effect of hydrothermal conditions on the subvent biosphere of the Okinawa backarc basin [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract B13C-0509) http://abstractsearch.agu.org/meetings/2013/FM/B13C-0509.html AGU Fall Meeting 2014Brandt, L.D., and House, C.H., 2014. Microbial communities of the Okinawa Backarc Basin subvent biosphere [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract B11H-0142) http://abstractsearch.agu.org/ Masaki, Y., Kinoshita, M., Yamamoto, H., Nakajima, R., Kumagai, H., and Takai, K., 2014. The scale of hydrothermal circulation of the Iheya-North field inferred from intensive heat flow measurements and ocean drilling [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract V21A-4733) http://abstractsearch.agu.org/ Tanaka, A., Abe, G., and Yamaguchi, K.E., 2014. Geochemical evidence for Recent hydrothermal alteration of marine sediments in Mid-Okinawa Trough, Southwest Japan [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract V21A-4722) http://abstractsearch.agu.org/ AGU Fall Meeting 2015Brandt, L.D., and Hser Wah Saw, J., 2015. Marine subsurface microbial communities across a hydrothermal gradient in Okinawa Trough sediments [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract B11I-0562) http://abstractsearch.agu.org/ Shao, H., and Yang, S., 2015. Rare earth element compositions of chlorite-rich hydrothermal sediments in the middle Okinawa Trough, East China Sea [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract V13C-3148) http://abstractsearch.agu.org/ Yamasaki, T., 2015. Petrology and geochemistry of hydrothermally altered volcanic rocks in the Iheya North Hydrothermal Field, Middle Okinawa Trough [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract OS43A-2027) http://abstractsearch.agu.org/ AGU Fall Meeting 2016Shao, H., Yang, S., Teng, F.Z., Cai, D., and Humphris, S.E., 2016. Magnesium isotopic behavior during the formation of chlorite-rich hydrothermal sediment in the middle Okinawa Trough [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract V51A-3035) http://abstractsearch.agu.org/ PACRIM 2015 CongressIshibashi, J., and Miyoshi, Y., 2015. Hydrothermal alteration process in active sea floor hydrothermal systems in the Okinawa trough, from a viewpoint of a modern analogue for the Kuroko-type volcanogenic massive sulfide deposits. Proceedings of the PACRIM 2015 Congress: Melbourne, Australia (The Australian Institute of Mining and Mettalurgy), 481–486. Society for Geology Applied to Mineral Deposits (SGA) Biennial Meeting, 12thIshibashi, J., Miyoshi, Y., Inoue, H., Yeats, C., Hollis, S.P., Corona, J.C., Bowden, S., Yang, S. Southam, G., Masaki, Y., Hartnet, H., and IODP Expedition 331 Scientists, 2013. Subseafloor structure of a submarine hydrothermal system within volcaniclastic sediments: a modern analogue for “Kuroko-type” VMS deposits [presented at the 12th Biennial Meeting of the Society for Geology Applied to Mineral Deposits (SGA), Uppsala, Sweden, 12–15 August 2013]. *The Expedition-related bibliography is continually updated online. Please send updates to PubCrd@iodp.tamu.edu. |