IODP Proceedings    Volume contents     Search

Expedition-related bibliography*

Citation data for IODP publications and journal articles in RIS format

IODP publications

Scientific Prospectus

Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Project Team, 2010. Deep coalbed biosphere off Shimokita: microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean. IODP Sci. Prosp., 337. doi:10.2204/iodp.sp.337.2010

Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Project Team, 2011. Deep coalbed biosphere off Shimokita: microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean. IODP Sci. Prosp., 337 addendum. doi:10.2204/iodp.sp.337add.2011

Preliminary Report

Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, 2012. Deep coalbed biosphere off Shimokita: microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean. IODP Prel. Rept., 337. doi:10.2204/iodp.pr.337.2012

Proceedings volume

Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, 2013. Proc. IODP, 337: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.337.2013

Expedition reports

Expedition 337 Scientists, 2013. Expedition 337 summary. In Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, Proc. IODP, 337: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.337.101.2013

Expedition 337 Scientists, 2013. Methods. In Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, Proc. IODP, 337: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.337.102.2013

Expedition 337 Scientists, 2013. Site C0020. In Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, Proc. IODP, 337: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.337.103.2013

Expedition research results

Ijiri, A., Ikegawa, Y., and Inagaki, F., 2017. Data report: permeability of ~1.9 km-deep coal-bearing formation samples off the Shimokita Peninsula, Japan. In Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, Proceedings of the Integrated Ocean Drilling Program, 337: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). https://doi.org/10.2204/iodp.proc.337.202.2017

Moen, N., Hong, W.-L., and Haley, B., 2015. Data report: 87Sr/86Sr in pore fluids off Shimokita, Japan. In Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, Proceedings of the Integrated Ocean Drilling Program, 337: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). http://dx.doi.org/10.2204/iodp.proc.337.201.2015

Phillips, S.C., and Johnson, J.E., 2017. Data report: grain size distribution of unconsolidated sands offshore Shimokita Peninsula, Japan (IODP Site C0020). In Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, Proceedings of the Integrated Ocean Drilling Program, 337: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). https://doi.org/10.2204/iodp.proc.337.203.2017

Tanikawa, W., Ohtomo, Y., Snyder, G., Morono, Y., Kubo, Y., Iijima, Y., Noguchi, T., Hinrichs, K.-U., and Inagaki, F., 2018. Data report: water activity of the deep coal-bearing basin off Shimokita from IODP Expedition 337. In Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, Proceedings of the Integrated Ocean Drilling Program, 337: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). https://doi.org/10.2204/iodp.proc.337.204.2018

Syntheses

Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, 2016. IODP Expedition 337: Deep Coalbed Biosphere off Shimokita—microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean. Scientific Drilling, 21:17–28. http://dx.doi.org/10.5194/sd-21-17-2016

Journals/Books

Arifeen, M.Z.U., Ahmad, S., Wu, X., Hou, S., and Liu, C., 2024. Amino acids could sustain fungal life in the energy-limited anaerobic sediments below the seafloor. Applied and Environmental Microbiology. https://journals.asm.org/doi/abs/10.1128/aem.01279-24

Bowden, S.A., Mohamed, A.Y., Edilbi, A.N.F., Lin, Y.-S., Morono, Y., Hinrichs, K.-U., and Inagaki, F., 2020. Modelling the Shimokita deep coalbed biosphere over deep geological time: starvation, stimulation, material balance and population models. Basin Research, 32(5):804–829. https://doi.org/10.1111/bre.12399

D'Hondt, S., Inagaki, F., Orcutt, B.N., and Hinrichs, K.-U., 2019. IODP advances in the understanding of subseafloor life. Oceanography, 32(1):198–207. https://doi.org/10.5670/oceanog.2019.146

Eng, C., and Tsuji, T., 2019. Influence of faults and slumping on hydrocarbon migration inferred from 3D seismic attributes: Sanriku-Oki forearc basin, northeast Japan. Marine and Petroleum Geology, 99:175–189. https://doi.org/10.1016/j.marpetgeo.2018.10.013

Fang, J., Kato, C., Runko, G., Nogi, Y., Hori, T., Li, J., Morono, Y., and Inagaki, F., 2017. Predominance of viable spore-forming piezophilic bacteria in high-pressure enrichment cultures from ~1.5 to 2.4 km-deep coal-bearing sediments below the ocean floor. Frontiers in Microbiology, 8:137. https://doi.org/10.3389/fmicb.2017.00137

Glombitza, C., Adhikari, R.R., Riedinger, N., Gilhooly, W.P., III, Hinrichs, K.-U., and Inagaki, F., 2016. Microbial sulfate reduction potential in coal-bearing sediments down to ~2.5 km below the seafloor off Shimokita Peninsula, Japan. Frontiers in Microbiology, 7:1576. https://doi.org/10.3389/fmicb.2016.01576

Gross, D., Bechtel, A., and Harrington, G.J., 2015. Variability in coal facies as reflected by organic petrological and geochemical data in Cenozoic coal beds offshore Shimokita (Japan): IODP Exp. 337. International Journal of Coal Geology, 152(B):63–79. https://doi.org/10.1016/j.coal.2015.10.007

Grunert, P., Rosenthal, Y., Jorissen, F., Holbourn, A., Zhou, X., and Piller, W.E., 2018. Mg/Ca-temperature calibration for costate Bulimina species (B. costata, B. inflata, B. mexicana): a paleothermometer for hypoxic environments. Geochimica et Cosmochimica Acta, 220:36–54. https://doi.org/10.1016/j.gca.2017.09.021

Hoshino, T., Doi, H., Uramoto, G.-I., Wörmer, L., Adhikari, R.R., Xiao, N., Morono, Y., D’Hondt, S., Hinrichs, K.-U., and Inagaki, F., 2020. Global diversity of microbial communities in marine sediment. Proceedings of the National Academy of Sciences of the United States of America, 117(44):27587–27597. https://doi.org/10.1073/pnas.1919139117

Hoshino, T., and Inagaki, F., 2017. Distribution of anaerobic carbon monoxide dehydrogenase genes in deep subseafloor sediments. Letters in Applied Microbiology, 64(5):355–363. https://doi.org/10.1111/lam.12727

Hoshino, T., and Inagaki, F., 2019. Abundance and distribution of Archaea in the subseafloor sedimentary biosphere. The ISME Journal, 13(1):227–231. https://doi.org/10.1038/s41396-018-0253-3

Hu, J., Wang, J., Li, J., and Fang, J., 2023. Origin and metabolic characteristics of deep seabed biosphere strain Virgibacilus pantothenticus 19R1-5. Journal of Shanghai Ocean University, 32(1):244–250. https://doi.org/10.12024/jsou.20210703503

Huang, X., Liu, X., Xue, Y., Pan, B., Xiao, L., Wang, S., Lever, M.A., Hinrichs, K.-U., Inagaki, F., and Liu, C., 2022. Methane production by facultative anaerobic wood-rot fungi via a new halomethane-dependent pathway. Microbiology Spectrum, 10(5):e01700-01722. https://doi.org/10.1128/spectrum.01700-22

Huber, J.A., 2015. Making methane down deep. Science, 349(6246):376–377. https://doi.org/10.1126/science.aac6673

Ijiri, A., Ohtomo, Y., Morono, Y., Ikehara, M., and Inagaki, F., 2013. Increase in acetate concentrations during sediment sample onboard storage; a caution for pore-water geochemical analyses. Geochemical Journal, 47(5):567–571. https://doi.org/10.2343/geochemj.2.0272

Imachi, H., Tasumi, E., Takaki, Y., Hoshino, T., Schubotz, F., Gan, S., Tu, T.-H., Saito, Y., Yamanaka, Y., Ijiri, A., Matsui, Y., Miyazaki, M., Morono, Y., Takai, K., Hinrichs, K.-U., and Inagaki, F., 2019. Cultivable microbial community in 2-km-deep, 20-million-year-old subseafloor coalbeds through ~1000 days anaerobic bioreactor cultivation. Scientific Reports, 9(1):2305. https://doi.org/10.1038/s41598-019-38754-w

Inagaki, F., Hinrichs, K.U., Kubo, Y., Bowles, M.W., Heuer, V.B., Hong, W.L., Hoshino, T., Ijiri, A., Imachi, H., Ito, M., Kaneko, M., Lever, M.A., Lin, Y.S., Methé, B.A., Morita, S., Morono, Y., Tanikawa, W., Bihan, M., Bowden, S.A., Elvert, M., Glombitza, C., Gross, D., Harrington, G.J., Hori, T., Li, K., Limmer, D., Liu, C.H., Murayama, M., Ohkouchi, N., Ono, S., Park, Y.S., Phillips, S.C., Prieto-Mollar, X., Purkey, M., Riedinger, N., Sanada, Y., Sauvage, J., Snyder, G., Susilawati, R., Takano, Y., Tasumi, E., Terada, T., Tomaru, H., Trembath-Reichert, E., Wang, D.T., and Yamada, Y., 2015. Exploring deep microbial life in coal-bearing sediment down to ∼2.5 km below the ocean floor. Science, 349(6246):420–424. https://doi.org/10.1126/science.aaa6882

Inagaki, F., and Orphan, V., 2014. Exploration of subseafloor life and the biosphere through IODP (2003–2013). In Stein, R., Blackman, D.K., Inagaki, F., and Larsen, H.-C. (Eds.), A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). Developments in Marine Geology. R. Stein (Series Ed.), 7: 39–63. https://doi.org/10.1016/B978-0-444-62617-2.00002-5

Inagaki, F., and Taira, A., 2019. Future opportunities in scientific ocean drilling: illuminating planetary habitability. Oceanography, 32(1):212–216. https://doi.org/10.5670/oceanog.2019.148

Jiang, J.-P., Leng, S., Liao, Y.-F., Liu, X., Li, D.-X., Chu, C., Yu, X.-Y., and Liu, C.-H., 2023. The potential role of subseafloor fungi in driving the biogeochemical cycle of nitrogen under anaerobic conditions. Science of The Total Environment, 897:165374. https://doi.org/10.1016/j.scitotenv.2023.165374

Jiang, J.-P., Liu, X., Liao, Y.-F., Shan, J., Zhu, Y.-P., and Liu, C.-H., 2023. Genomic insights into Aspergillus sydowii 29R-4-F02: unraveling adaptive mechanisms in subseafloor coal-bearing sediment environments. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1216714

Jiang, L., Si, X., and Wu, X., 2023. Filling borehole image gaps with a partial convolution neural network. Geophysics, 89(2):D89–D98. https://doi.org/10.1190/geo2022-0344.1

Jørgensen, B.B., 2017. Microbial life in deep subseafloor coal beds: discussion. Proceedings of the National Academy of Sciences of the United States of America, 114(44):11568–11570. https://doi.org/10.1073/pnas.1716232114

Kaneko, M., Takano, Y., Kamo, M., Morimoto, K., Nunoura, T., and Ohkouchi, N., 2021. Insights into the methanogenic population and potential in subsurface marine sediments based on coenzyme F430 as a function-specific biomarker. JACS Au, 1(10):1743–1751. https://doi.org/10.1021/jacsau.1c00307

Kawai, M., Futagami, T., Toyoda, A., Takaki, Y., Nishi, S., Hori, S., Arai, W., Tsubouchi, T., Morono, Y., Uchiyama, I., Ito, T., Fujiyama, A., Inigaki, F., and Takami, H., 2014. High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes. Frontiers in Microbiology, 5:80. https://doi.org/10.3389/fmicb.2014.00080

Keppler, F., 2021. A surprise from the deep. Science, 374(6569):821–822. https://doi.org/10.1126/science.abm6027

Kinoshita, M., Kimura, G., and Saito, S., 2014. Seismogenic processes revealed through the Nankai Trough Seismogenic Zone Experiments: core, log, geophysics, and observatory measurements. In Stein, R., Blackman, D., Inagaki, F., and Larsen, H.-C. (Eds.), Developments in Marine Geology (Volume 7): Earth and Life Processes Discovered from Subseafloor Environments: A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein (Series Ed.). Amsterdam (Elsevier B.V.), 641–670. https://doi.org/10.1016/B978-0-444-62617-2.00021-9

Kret, K., Tsuji, T., Chhun, C., and Takano, O., 2020. Distributions of gas hydrate and free gas accumulations associated with upward fluid flow in the Sanriku-Oki forearc basin, northeast Japan. Marine and Petroleum Geology, 116:104305. https://doi.org/10.1016/j.marpetgeo.2020.104305

Liu, C.-H., Huang, X., Xie, T.-N., Duan, N., Xue, Y.-R., Zhao, T.-X., Lever, M.A., Hinrichs, K.-U., and Inagaki, F., 2017. Exploration of cultivable fungal communities in deep coal-bearing sediments from ∼1.3 to 2.5 km below the ocean floor. Environmental Microbiology, 19(2):803–818. https://doi.org/10.1111/1462-2920.13653

Liu, X., Huang, X., Chu, C., Xu, H., Wang, L., Xue, Y., Arifeen Muhammad, Z.U., Inagaki, F., and Liu, C., 2022. Genome, genetic evolution, and environmental adaptation mechanisms of Schizophyllum commune in deep subseafloor coal-bearing sediments. iScience, 25(6):104417. https://doi.org/10.1016/j.isci.2022.104417

Liu, X., Wang, X., Zhou, F., Xue, Y., and Liu, C., 2024. Genomic insights into Penicillium chrysogenum adaptation to subseafloor sedimentary environments. BMC Genomics, 25(1):4. https://doi.org/10.1186/s12864-023-09921-1

Liu, X., Wang, X.-R., Zhou, F., Xue, Y.-R., Yu, X.-Y., and Liu, C.-H., 2024. Novel insights into dimethylsulfoniopropionate cleavage by deep subseafloor fungi. Science of The Total Environment, 933:173057. https://doi.org/10.1016/j.scitotenv.2024.173057

Lloyd, M.K., Trembath-Reichert, E., Dawson, K.S., Feakins, S.J., Mastalerz, M., Orphan, V.J., Sessions, A.L., and Eiler, J.M., 2021. Methoxyl stable isotopic constraints on the origins and limits of coal-bed methane. Science, 374(6569):894–897. https://doi.org/10.1126/science.abg0241

Ma, Y., Wang, Z., Arifeen, M.Z.U., Xue, Y., Yuan, S., and Liu, C., 2022. Structure and bioactivity of polysaccharide from a subseafloor strain of Schizophyllum commune 20R-7-F01. International Journal of Biological Macromolecules, 222:610–619. https://doi.org/10.1016/j.ijbiomac.2022.09.189

Morono, Y., and Inagaki, F., 2016. Analysis of low-biomass microbial communities in the deep biosphere. In Sariaslani, S., and Gadd, G.M. (Eds.), Advances in Applied Microbiology. 95: 149–178. https://doi.org/10.1016/bs.aambs.2016.04.001

Nakamura, Y., Ashi, J., and Morita, S., 2020. Change in slide direction of submarine landslides in the Pliocene-Quaternary deposits near the Shimokita Peninsula, northeast Japan, using 3D seismic data. Island Arc, 29(1):e12365. https://doi.org/10.1111/iar.12365

Paul, S., Gross, D., Bechtel, A., and Dutta, S., 2020. Preservation of monoterpenoids in Oligocene resin: insights into the evolution of chemical defense mechanism of plants in deep-time. International Journal of Coal Geology, 217:103326. https://doi.org/10.1016/j.coal.2019.103326

Phillips, S.C., Hong, W.-L., Johnson, J.E., Fahnestock, M.F., and Bryce, J.G., 2018. Authigenic carbonate formation influenced by freshwater inputs and methanogenesis in coal-bearing strata offshore Shimokita, Japan (IODP Site C0020). Marine and Petroleum Geology, 96:288–303. https://doi.org/10.1016/j.marpetgeo.2018.06.007

Phillips, S.C., Johnson, J.E., Clyde, W.C., Setera, J.B., Maxbauer, D.P., Severmann, S., and Riedinger, N., 2017. Rock magnetic and geochemical evidence for authigenic magnetite formation via iron reduction in coal-bearing sediments offshore Shimokita Peninsula, Japan (IODP Site C0020). Geochemistry, Geophysics, Geosystems, 18(6):2076–2098. https://doi.org/10.1002/2017GC006943

Purkey Phillips, M., Harwood, D.M., and Harrington, G.J., 2016. Neogene and early Pleistocene diatom biostratigraphy and age synthesis of Site C9001/C0020, Northwest Pacific. Marine Micropaleontology, 128:39–49. https://doi.org/10.1016/j.marmicro.2016.08.002

Showstack, R., 2012. New scientific ocean drilling depth record extends study of subseafloor life. Eos, Transactions of the American Geophysical Union, 93(38):362–363. https://doi.org/10.1029/2012EO380002

Tanikawa, W., Tadai, O., Morita, S., Lin, W., Yamada, Y., Sanada, Y., Moe, K., Kubo, Y.s., and Inagaki, F., 2016. Thermal properties and thermal structure in the deep-water coalbed basin off the Shimokita Peninsula, Japan. Marine and Petroleum Geology, 73:445–461. https://doi.org/10.1016/j.marpetgeo.2016.03.006

Tanikawa, W., Tadai, O., Morono, Y., Hinrichs, K.-U., and Inagaki, F., 2018. Geophysical constraints on microbial biomass in subseafloor sediments and coal seams down to 2.5 km off Shimokita Peninsula, Japan. Progress in Earth and Planetary Science, 5(1):58. https://doi.org/10.1186/s40645-018-0217-2

Tobin, H., Henry, P., Vannucchi, P., and Screaton, E., 2014. Subduction zones: structure and deformation history. In Stein, R., Blackman, D.K., Inagaki, F., and Larsen, H.-C. (Eds.), Developments in Marine Geology (Volume 7): Earth and Life Processes Discovered from Subseafloor Environments: A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein (Series Ed.). New York (Elsevier), 599–640. https://doi.org/10.1016/B978-0-444-62617-2.00020-7

Trembath-Reichert, E., 2016. Molecular and geochemical insights into microbial life centimeters to kilometers below the seafloor [PhD dissertation]. California Institute of Technology, Pasadena, CA. https://doi.org.10.7907/Z96Q1V6Q

Trembath-Reichert, E., Morono, Y., Ijiri, A., Hoshino, T., Dawson, K.S., Inagaki, F., and Orphan, V.J., 2017. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. Proceedings of the National Academy of Sciences of the United States of America, 114(44):E9206–E9215. https://doi.org/10.1073/pnas.1707525114

Ul Arifeen, M.Z., Chu, C., Yang, X., Liu, J., Huang, X., Ma, Y., Liu, X., Xue, Y., and Liu, C., 2021. The anaerobic survival mechanism of Schizophyllum commune 20R-7-F01, isolated from deep sediment 2 km below the seafloor. Environmental Microbiology, 23(2):1174–1185. https://doi.org/10.1111/1462-2920.15332

Wehrmann, L.M., and Ferdelman, T.G., 2014. Biogeochemical consequences of the sedimentary subseafloor biosphere. In Stein, R., Blackman, D., Inagaki, F., and Larsen, H.-C. (Eds.), Developments in Marine Geology (Volume 7): Earth and Life Processes Discovered from Subseafloor Environments: A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein (Series Ed.). Amsterdam (Elsevier B.V.), 217–252. https://doi.org/10.1016/B978-0-444-62617-2.00009-8

Wörmer, L., Hoshino, T., Bowles, M.W., Viehweger, B., Adhikari, R.R., Xiao, N., Uramoto, G.-i., Könneke, M., Lazar, C.S., Morono, Y., Inagaki, F., and Hinrichs, K.-U., 2019. Microbial dormancy in the marine subsurface: global endospore abundance and response to burial. Science Advances, 5(2):eaav1024. https://doi.org/10.1126/sciadv.aav1024

Xie, T., 2018. Isolation and identification of oceanic fungi and their nitrification and denitrification effects [MS thesis]. Nanjing University, Nanjing, China. https://cdmd.cnki.com.cn/Article/CDMD-10284-1018155293.htm

Yamada, Y., Dugan, B., Hirose, T., and Saito, S., 2019. Riser drilling: access to deep subseafloor science. Oceanography, 32(1):95–97. https://doi.org/10.5670/oceanog.2019.127

Zain ul Arifeen, M., Ma, Y., Wu, T., Chu, C., Liu, X., Jiang, J., Li, D., Xue, Y.-R., and Liu, C.-H., 2022. Anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungi isolated from anaerobic coal-associated sediments at 2.5 km below the seafloor. Chemosphere, 303:135062. https://doi.org/10.1016/j.chemosphere.2022.135062

Zhao, T., 2015. Study on the diversity and function of cultivable fungi in ocean bottom sediments [MS thesis]. Nanjing University, Nanjing, China. https://cdmd.cnki.com.cn/Article/CDMD-10284-1015321287.htm

Conferences

American Geophysical Union (AGU) Meeting 2012

Inagaki, F., Hinrichs, K., and Kubo, Y., 2012. Rapid report of the IODP Expedition 337: exploration of microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract OS23B-01) http://abstractsearch.agu.org/meetings/2012/FM/OS23B-01.html

Inagaki, F., Lever, M.A., Morono, Y., and Hoshino, T., 2012. Drilling fluid contamination during riser drilling quantified by chemical and molecular tracers [presented at the American Geophysical Union 2012 Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract B43G-0484) http://abstractsearch.agu.org/meetings/2012/FM/B43G-0484.html

AGU Fall Meeting 2013

Fang, J., Kato, C., Hori, T., Morono, Y., and Inagaki, F., 2013. Piezophilic bacteria isolated from sediment of the Shimokita Coalbed, Japan [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract B13C-0497) http://abstractsearch.agu.org/meetings/2013/FM/B13C-0497.html

Glombitza, C., Inagaki, F., Lever, M.A., and Jorgensen, B., 2013. Potential sulfate reduction in deeply buried coalbeds 2 km below the seafloor off the Shimokita Peninsula (Japan) [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract B23G-06) http://abstractsearch.agu.org/meetings/2013/FM/B23G-06.html

Harrison, B.K., and Bailey, J.V., 2013. Actinobacterial diversity across a marine transgression in the deep subsurface off Shimokita Peninsula, Japan [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract B13C-0513) http://abstractsearch.agu.org/meetings/2013/FM/B13C-0513.html

Hong, W., Moen, N., and Haley, B.A., 2013. Fluid source inferred from strontium isotopes in pore fluid and carbonate recovered during Expedition 337 off Shimokita, Japan [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract B13C-0493) http://abstractsearch.agu.org/meetings/2013/FM/B13C-0493.html

Imachi, H., Tasumi, E., Morono, Y., Ito, M., Takai, K., and Inagaki, F., 2013. Cultivation of methanogenic community from 2-km deep subseafloor coalbeds using a continuous-flow bioreactor [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract B24A-08) http://abstractsearch.agu.org/meetings/2013/FM/B24A-08.html

Morita, S., Goto, S., Miyata, Y., Nakamura, Y., Kitahara, Y., and Yamada, Y., 2013. Research activities on submarine landslides in gentle continental slope [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract NH13A-1593) http://abstractsearch.agu.org/meetings/2013/FM/NH13A-1593.html

Riedinger, N., Smirnoff, M.N., Gilhooly, W.P., Phillips, S.C., Lyons, T.W., and the IODP Expedition 337 Scientific Party, 2013. Sulfur and iron cycling in deep-subsurface, coal bed–containing sediments off Shimokita (Japan) [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract B13E-0562) http://abstractsearch.agu.org/meetings/2013/FM/B13E-0562.html

AGU Fall Meeting 2014

Runko, G.M., Fang, J., and Kato, C., 2014. Isolation and characterization of gram-positive piezophilic bacteria from deep marine subsurface sediment [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract B11H-0138) http://abstractsearch.agu.org/meetings/2014/FM/B11H-0138.html

Tanikawa, W., Tadai, O., Morita, S., Lin, W., Yamada, Y., Sanada, Y., Moe, K., Kubo, Y., and Inagaki, F., 2014. Porosity and mineralogy control on the thermal properties of sediments in off-Shimokita deep-water coal bed basin [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract MR23A-4312) http://abstractsearch.agu.org/meetings/2014/FM/MR23A-4312.html

Trembath-Reichert, E., Morono, Y., Dawson, K., Wanger, G., Bowles, M., Heuer, V., Hinrichs, K.U., Inagaki, F., and Orphan, V.J., 2014. Evidence for methyl-compound-activated life in coal bed system 2 km below sea floor [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract B22D-01) http://abstractsearch.agu.org/meetings/2014/FM/B22D-01.html

Yamada, Y., Sanada, Y., Moe, K., Kubo, Y., and Inagaki, F., 2014. Temperature measurements at IODP 337 Expedition, off Shimokita, NE Japan [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract MR23B-4342) http://abstractsearch.agu.org/meetings/2014/FM/MR23B-4342.html

AGU Fall Meeting 2015

Ijiri, A., and Kuratomi, T., 2015. Occurrence of microbial acetate-oxidation in ~2 km-deep coal-bearing sediments off the Shimokita Peninsula, Japan (IODP Expedition 337) [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract OS23B-2021) http://abstractsearch.agu.org/meetings/2015/FM/OS23B-2021.html

Kuratomi, T., and D’Hondt, S., 2015. Exploring frontiers of the deep biosphere through scientific ocean drilling [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract OS11C-01) http://abstractsearch.agu.org/meetings/2015/FM/OS11C-01.html

AGU Fall Meeting 2016

Tanikawa, W., Yamada, Y., Sanada, Y., Kubo, Y., and Inagaki, F., 2016. Permeability structure and its influence on microbial activity at off-Shimokita Basin, Japan [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract B13G-0718) http://abstractsearch.agu.org/meetings/2016/FM/B13G-0718.html

Japan Geoscience Union (JpGU) Meeting 2019

Yabe, S. Fukuchi, R., Ueki, K., and Hamada, Y., 2019. Quantitative logging unit classification with Hidden Markov Model. Presented at the Japan Geoscience Union Meeting 2019, Chiba, Japan, 26–30 May 2019. https://confit.atlas.jp/guide/event/jpgu2019/subject/E_MGI33-P04/advanced

*The Expedition-related bibliography is continually updated online. Please send updates to PubCrd@iodp.tamu.edu.