IODP Proceedings Volume contents Search | |||
Expedition reports Research results Supplementary material Drilling maps Expedition bibliography | |||
Expedition-related bibliography*Citation data for IODP publications and journal articles in RIS format IODP publicationsScientific ProspectusNorris, R.D., Wilson, P.A., and Blum, P., 2011. Paleogene Newfoundland sediment drifts. IODP Sci. Prosp., 342. doi:10.2204/ Preliminary ReportExpedition 342 Scientists, 2012. Paleogene Newfoundland sediment drifts. IODP Prel. Rept., 342. doi:10.2204/ Scientific Drilling journalFlemings, P.B., Polito, P.J., Pettigrew, T.L., Iturrino, G.J., Meissner, E., Aduddell, R., Brooks, D.L., Hetmaniak, C., Huey, D., Germaine, J.T., and the IODP Expedition 342 Scientists, 2013. The Motion Decoupled Delivery System: a new deployment system for downhole tools is tested at the New Jersey Margin. Scientific Drilling, 15:51–56. http:// Proceedings volumeNorris, R.D., Wilson, P.A, Blum, P., and the Expedition 342 Scientists, 2014. Proc. IODP, 342: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/ Expedition reportsNorris, R.D., Wilson, P.A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Ghosh, A.K., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Turner, S.K., Whiteside, J.H., Yamaguchi, T., and Yamamoto, Y., 2014. Expedition 342 summary. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proc. IODP, 342: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/ Norris, R.D., Wilson, P.A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Ghosh, A.K., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Turner, S.K., Whiteside, J.H., Yamaguchi, T., and Yamamoto, Y., 2014. Methods. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proc. IODP, 342: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/ Norris, R.D., Wilson, P.A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Ghosh, A.K., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Turner, S.K., Whiteside, J.H., Yamaguchi, T., and Yamamoto, Y., 2014. Site U1402. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proc. IODP, 342: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/ Norris, R.D., Wilson, P.A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Ghosh, A.K., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Turner, S.K., Whiteside, J.H., Yamaguchi, T., and Yamamoto, Y., 2014. Site U1403. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proc. IODP, 342: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/ Norris, R.D., Wilson, P.A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Ghosh, A.K., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Turner, S.K., Whiteside, J.H., Yamaguchi, T., and Yamamoto, Y., 2014. Site U1404. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proc. IODP, 342: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/ Norris, R.D., Wilson, P.A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Ghosh, A.K., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Turner, S.K., Whiteside, J.H., Yamaguchi, T., and Yamamoto, Y., 2014. Site U1405. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proc. IODP, 342: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/ Norris, R.D., Wilson, P.A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Ghosh, A.K., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Turner, S.K., Whiteside, J.H., Yamaguchi, T., and Yamamoto, Y., 2014. Site U1406. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proc. IODP, 342: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/ Norris, R.D., Wilson, P.A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Ghosh, A.K., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Turner, S.K., Whiteside, J.H., Yamaguchi, T., and Yamamoto, Y., 2014. Site U1407. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proc. IODP, 342: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/ Norris, R.D., Wilson, P.A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Ghosh, A.K., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Turner, S.K., Whiteside, J.H., Yamaguchi, T., and Yamamoto, Y., 2014. Site U1408. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proc. IODP, 342: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/ Norris, R.D., Wilson, P.A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Ghosh, A.K., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Turner, S.K., Whiteside, J.H., Yamaguchi, T., and Yamamoto, Y., 2014. Site U1409. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proc. IODP, 342: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/ Norris, R.D., Wilson, P.A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Ghosh, A.K., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Turner, S.K., Whiteside, J.H., Yamaguchi, T., and Yamamoto, Y., 2014. Site U1410. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proc. IODP, 342: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/ Norris, R.D., Wilson, P.A., Blum, P., Fehr, A., Agnini, C., Bornemann, A., Boulila, S., Bown, P.R., Cournede, C., Friedrich, O., Ghosh, A.K., Hollis, C.J., Hull, P.M., Jo, K., Junium, C.K., Kaneko, M., Liebrand, D., Lippert, P.C., Liu, Z., Matsui, H., Moriya, K., Nishi, H., Opdyke, B.N., Penman, D., Romans, B., Scher, H.D., Sexton, P., Takagi, H., Turner, S.K., Whiteside, J.H., Yamaguchi, T., and Yamamoto, Y., 2014. Site U1411. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proc. IODP, 342: College Station, TX (Integrated Ocean Drilling Program). doi:10.2204/ Expedition research resultsHollis, C.J., 2017. Data report: siliceous microfossil abundance in IODP Expedition 342 sediments. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proceedings of the Integrated Ocean Drilling Program, 342: College Station, TX (Integrated Ocean Drilling Program). http://doi.org/ Hull, P.M., Bohaty, S.M., Cameron, A., Coxall, H.K., D’haenens, S., De Vleeschouwer, D., Elder, L.E., Friedrich, O., Kerr, K., Turner, S.K., Kordesch, W.E.C., Moriya, K., Norris, R.N., Opdyke, B.N., Penman, D.E., Pälike, H., Wilson, P.A., Sexton, P.F., Vahlenkamp, M., Wu, F., and Zachos, J.C., 2017. Data report: coarse fraction record for the Eocene megasplice at IODP Sites U1406, U1408, U1409, and U1411. In Norris, R.D., Wilson, P.A, Blum, P., and the Expedition 342 Scientists, Proceedings of the Integrated Ocean Drilling Program, 342: College Station, TX (Integrated Ocean Drilling Program). http://dx.doi.org/ Moriya, K., and Friedrich, O., 2016. Data report: relative abundance of benthic foraminiferal morphotypes across the Eocene/Oligocene and Oligocene/Miocene boundaries (IODP Expedition 342 Site U1406, North Atlantic). In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proceedings of the Integrated Ocean Drilling Program, 342: College Station, TX (Integrated Ocean Drilling Program). http://dx.doi.org/ Śliwińska, K.K., Mets, A., and Schouten, S., 2017. Data report: distribution and sources of tetraether lipids in Oligocene deposits from the western North Atlantic, IODP Sites U1406 and U1411. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proceedings of the Integrated Ocean Drilling Program, 342: College Station, TX (Integrated Ocean Drilling Program). http://doi.org/ van Peer, T.E., Liebrand, D., Xuan, C., Lippert, P.C., Agnini, C., Blum, N., Blum, P., Bohaty, S.M., Bown, P.R., Greenop, R., Kordesch, W.E.C., Leonhardt, D., Friedrich, O., and Wilson, P.A., 2017. Data report: revised composite depth scale and splice for IODP Site U1406. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proceedings of the Integrated Ocean Drilling Program, 342: College Station, TX (Integrated Ocean Drilling Program). https://doi.org/ Yamaguchi, T., 2018. Data report: late Eocene–early Oligocene ostracods at IODP Site U1411, off Newfoundland, North Atlantic. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proceedings of the Integrated Ocean Drilling Program, 342: College Station, TX (Integrated Ocean Drilling Program). https://doi.org/ Yamamoto, Y., Fukami, H., Taniguchi, W., and Lippert, P.C., 2018. Data report: updated magnetostratigraphy for IODP Sites U1403, U1408, U1409, and U1410. In Norris, R.D., Wilson, P.A., Blum, P., and the Expedition 342 Scientists, Proceedings of the Integrated Ocean Drilling Program, 342: College Station, TX (Integrated Ocean Drilling Program). https://doi.org/ Journals/BooksAnagnostou, E., John, E.H., Babila, T.L., Sexton, P.F., Ridgwell, A., Lunt, D.J., Pearson, P.N., Chalk, T.B., Pancost, R.D., and Foster, G.L., 2020. Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nature Communications, 11(1):4436. https://doi.org/10.1038/s41467-020-17887-x Arimoto, J., Nishi, H., Kuroyanagi, A., Takashima, R., Matsui, H., and Ikehara, M., 2020. Changes in upper ocean hydrography and productivity across the middle Eocene climatic optimum: local insights and global implications from the Northwest Atlantic. Global and Planetary Change, 193:103258. https://doi.org/10.1016/j.gloplacha.2020.103258 Barrett, R., Adebowale, M., Birch, H., Wilson, J.D., and Schmidt, D.N., 2023. Planktic foraminiferal resilience to environmental change associated with the PETM. Paleoceanography and Paleoclimatology, 38(8):e2022PA004534. https://doi.org/10.1029/2022PA004534 Batenburg, S.J., Friedrich, O., Moriya, K., Voigt, S., Cournède, C., Blum, P., Bornemann, A., Fiebig, J., Hasegawa, T., Hull, P.M., Norris, R.D., Röhl, U., Sexton, P.F., Westerhold, T., Wilson, P.A., and the IODP Expedition 342 Scientists, 2018. Late Maastrichtian carbon isotope stratigraphy and cyclostratigraphy of the Newfoundland Margin (Site U1403, IODP Leg 342). Newsletters on Stratigraphy, 51(2):245–260. https://doi.org/10.1127/nos/2017/0398 Batenburg, S.J., Voigt, S., Friedrich, O., Osborne, A.H., Bornemann, A., Klein, T., Pérez-Díaz, L., and Frank, M., 2018. Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth. Nature Communications, 9(1):4954. https://doi.org/10.1038/s41467-018-07457-7 Bijl, P.K., Brinkhuis, H., Egger, L.M., Eldrett, J.S., Frieling, J., Grothe, A., Houben, A.J.P., Pross, J., Śliwińska, K.K., and Sluijs, A., 2017. Comment on ‘Wetzeliella and its allies – the ‘hole’ story: a taxonomic revision of the Paleogene dinoflagellate subfamily Wetzelielloideae’ by Williams et al. (2015). Palynology, 41(3):423–429. https://doi.org/10.1080/01916122.2016.1235056 Boulila, S., and Hinnov, L.A., 2022. Constraints on Earth-moon dynamical parameters from Eocene cyclostratigraphy. Global and Planetary Change, 216:103925. https://doi.org/10.1016/j.gloplacha.2022.103925 Bown, P.R., Kim, H., and Gibbs, S.J., 2023. Danian calcareous nannofossil evolution and taxonomy with focus on sites from the North Atlantic Ocean (IODP Expedition 342, Sites U1403 and U1407). Journal of Nannoplankton Research, 41(2):110–157. https://doi.org/10.58998/jnr3943 Bown, P.R., and Newsam, C., 2017. Calcareous nannofossils from the Eocene North Atlantic Ocean (IODP Expedition 342 Sites U1403–1411). Journal of Nannoplankton Research, 37(1):25–60. http://ina.tmsoc.org/JNR/JNRcontents.htm Boyle, P.R., Romans, B.W., Tucholke, B.E., Norris, R.D., Swift, S.A., and Sexton, P.F., 2017. Cenozoic North Atlantic deep circulation history recorded in contourite drifts, offshore Newfoundland, Canada. Marine Geology, 385:185–203. https://doi.org/10.1016/j.margeo.2016.12.014 Breen, P., 2016. Creating an extensive, multi-species planktonic foraminifera isotope record at an Eocene-Oligocene high latitude site [BS thesis]. Yale University, New Haven, CT. https://earth.yale.edu/sites/default/files/files/Breen_Thesis.pdf Brzelinski, S., 2020. Dynamics of the Late Oligocene Antarctic Ice Sheet [PhD dissertation]. Heidelberg University, Heidelberg, Germany. https://archiv.ub.uni-heidelberg.de/volltextserver/30687/ Brzelinski, S., Bornemann, A., Liebrand, D., van Peer, T.E., Wilson, P.A., and Friedrich, O., 2023. Large obliquity-paced Antarctic ice-volume fluctuations suggest melting by atmospheric and ocean warming during late Oligocene. Communications Earth & Environment, 4(1):222. https://doi.org/10.1038/s43247-023-00864-9 Cappelli, C., Bown, P.R., De Riu, M., and Agnini, C., 2020. Middle Eocene large coccolithaceans: biostratigraphic implications and paleoclimatic clues. Marine Micropaleontology, 154:101812. https://doi.org/10.1016/j.marmicro.2019.101812 Cappelli, C., Bown, P.R., de Riu, M., and Agnini, C., 2021. The evolution of Eocene (Ypresian/Lutetian) sphenoliths: biostratigraphic implications and paleoceanographic significance from North Atlantic Site IODP U1410. Newsletters on Stratigraphy, 54(4):405–431. https://doi.org/10.1127/nos/2020/0606 Cappelli, C., Bown, P.R., Westerhold, T., Bohaty, S.M., de Riu, M., Lobba, V., Yamamoto, Y., and Agnini, C., 2019. The early to middle Eocene transition: an integrated calcareous nannofossil and stable isotope record from the northwest Atlantic Ocean (Integrated Ocean Drilling Program Site U1410). Paleoceanography and Paleoclimatology, 34(12):1913–1930. https://doi.org/10.1029/2019PA003686 Channell, J.E.T., and Hodell, D.A., 2014. North Atlantic paleoceanography from Integrated Ocean Drilling Program Expeditions (2003–2013). In Stein, R., Blackman, D.K., Inagaki, F., and Larsen, H.-C. (Eds.), Developments in Marine Geology (Volume 7): Earth and Life Processes Discovered from Subseafloor Environments: A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein (Series Ed.). New York (Elsevier), 359–393. https://doi.org/10.1016/B978-0-444-62617-2.00014-1 Chilton, K.D., 2016. Terrigenous grain-size record of the Newfoundland Ridge contourite drift, IODP Site U1411: the first physical proxy record of North Atlantic abyssal current intensity during the Eocene-Oligocene Transition [MS thesis]. Virginia Polytechnic Institute and State University, Blacksburg, VA. https://vtechworks.lib.vt.edu/handle/10919/83539 Clark, W.B., 2018. A quantitative analysis of calcareous nannofossils across a late Oligocene paleolatitude transect of the North Atlantic Ocean [MS thesis]. University of Nebraska, Lincoln, NE. http://digitalcommons.unl.edu/geoscidiss/108 Clark, W.B., and Watkins, D.K., 2020. A quantitative analysis of calcareous nannofossils across a late oligocene paleolatitudinal transect of the North Atlantic Ocean. Marine Micropaleontology, 158:101892. https://doi.org/10.1016/j.marmicro.2020.101892 Coxall, H.K., Huck, C.E., Huber, M., Lear, C.H., Legarda-Lisarri, A., O'Regan, M., Sliwinska, K.K., van de Flierdt, T., de Boer, A.M., Zachos, J.C., and Backman, J., 2018. Export of nutrient rich northern component water preceded early Oligocene Antarctic glaciation. Nature Geoscience, 11(3):190–196. https://doi.org/10.1038/s41561-018-0069-9 Crumpton-Banks, J.G.M., Tanner, T., Hernández Almeida, I., Rae, J.W.B., and Stoll, H., 2022. Technical note: no impact of alkenone extraction on foraminiferal stable isotope, trace element and boron isotope geochemistry. Biogeosciences, 19(24):5633–5644. https://doi.org/10.5194/bg-19-5633-2022 De Vleeschouwer, D., Penman, D.E., D’haenens, S., Wu, F., Westerhold, T., Vahlenkamp, M., Cappelli, C., Agnini, C., Kordesch, W.E.C., King, D.J., van der Ploeg, R., Pälike, H., Turner, S.K., Wilson, P., Norris, R.D., Zachos, J.C., Bohaty, S.M., and Hull, P.M., 2023. North Atlantic drift sediments constrain Eocene tidal dissipation and the evolution of the Earth-moon system. Paleoceanography and Paleoclimatology. https://doi.org/10.1029/2022PA004555 Dennis, K., 2015. Using the sulfur cycle to constrain changes in seawater chemistry during the paleogene [MS thesis]. Syracuse University, Ann Arbor. https://www.proquest.com/docview/1682247618# Dutkiewicz, A., and Müller, R.D., 2022. The History of Cenozoic carbonate flux in the Atlantic Ocean constrained by multiple regional carbonate compensation depth reconstructions. Geochemistry, Geophysics, Geosystems, 23(11):e2022GC010667. https://doi.org/10.1029/2022GC010667 Egger, L.M., Bahr, A., Friedrich, O., Wilson, P.A., Norris, R.D., van Peer, T.E., Lippert, P.C., Liebrand, D., and Pross, J., 2018. Sea-level and surface-water change in the western North Atlantic across the Oligocene–Miocene Transition: a palynological perspective from IODP Site U1406 (Newfoundland margin). Marine Micropaleontology, 139:57–71. https://doi.org/10.1016/j.marmicro.2017.11.003 Egger, L.M., Sliwinska, K.K., van Peer, T.E., Liebrand, D., Lippert, P.C., Friedrich, O., Wilson, P.A., Norris, R.D., and Pross, J., 2016. Magnetostratigraphically-calibrated dinoflagellate cyst bioevents for the uppermost Eocene to lowermost Miocene of the western North Atlantic (IODP Expedition 342, Paleogene Newfoundland sediment drifts). Review of Palaeobotany and Palynology, 234:159–185. https://doi.org/10.1016/j.revpalbo.2016.08.002 Fabbrini, A., 2019. Biostratigraphy, paleoecology and astrochronology of early Miocene planktonic foraminifera from the Mediterranean and the North Atlantic Ocean: new perspectives on the Burdigalian GSSP [PhD dissertation]. Università di Siena, Italy. https://usiena-air.unisi.it/handle/11365/1074571 Fabbrini, A., Baldassini, N., Caricchi, C., Di Stefano, A., Dinarès-Turell, J., Foresi, L.M., Lirer, F., Patricolo, S., Sagnotti, L., and Winkler, A., 2019. Integrated quantitative calcareous plankton bio-magnetostratigraphy of the early Miocene from IODP Leg 342, Hole U1406A, Newfoundland Ridge, NW Atlantic Ocean. Stratigraphy and Geological Correlation, 27(2):259–276. https://doi.org/10.1134/S0869593819020023 Fabbrini, A., Foresi, L., Lirer, F., and Pelosi, N., 2020. Preliminary cyclostratigraphic results on planktonic foraminifera from IODP-Hole U1406A. Fossilia - Reports in Paleontology, 2020:15–17. https://doi.org/10.32774/FosRepPal.2020.0605 Fabbrini, A., and Foresi, L.M., 2020. Paleoecological insights on latest Oligocene-early Miocene planktonic foraminifera from the J-Anomaly Ridge (IODP Hole U1406A). Turkish Journal of Earth Sciences, 29:418–433. https://doi.org/10.3906/yer-1908-3 Fraass, A.J., Leckie, R.M., Lowery, C.M., and DeConto, R., 2019. Precision in biostratigraphy: evidence for a temporary flow reversal in the Central American Seaway during or after the Oligocene–Miocene transition. Journal of Foraminiferal Research, 49(4):357–366. https://doi.org/10.2113/gsjfr.49.4.357 Fraass, A.J., and Lowery, C.M., 2017. Defining uncertainty and error in planktic foraminiferal oxygen isotope measurements. Paleoceanography, 32(2):104–122. https://doi.org/10.1002/2016PA003035 Friedrich, O., Norris, R.D., Wilson, P.A., and Opdyke, B.N., 2015. Newfoundland Neogene sediment drifts: transition from the Paleogene greenhouse to the modern icehouse. Scientific Drilling, 19:39–42. https://doi.org/10.5194/sd-19-39-2015 Gibbs, S.J., Bown, P.R., Ward, B.A., Alvarez, S.A., Kim, H., Archontrikis, O.A., Sauterey, B., Poulton, A.J., Wilson, J., and Ridgewell, A., 2020. Algal plankton turn to hunting to survive and recover from end-Cretaceous impact darkness. Science Advances, 6(44):eabc9123. https://doi.org/10.1126/sciadv.abc9123 Greene, S.E., Ridgwell, A., Kirtland Turner, S., Schmidt, D.N., Pälike, H., Thomas, E., Greene, L.K., and Hoogakker, B.A.A., 2019. Early Cenozoic decoupling of climate and carbonate compensation depth trends. Paleoceanography and Paleoclimatology, 34(6):930–945. https://doi.org/10.1029/2019PA003601 Guitián, J., Fuertes, M.Á., Flores, J.A., Hernández-Almeida, I., and Stoll, H., 2022. Variation in calcification of Reticulofenestra coccoliths over the Oligocene–Early Miocene. Biogeosciences, 19(20):5007–5019. https://doi.org/10.5194/bg-19-5007-2022 Guitián, J., Phelps, S., Polissar, P.J., Ausín, B., Eglinton, T.I., and Stoll, H.M., 2019. Midlatitude temperature variations in the Oligocene to early Miocene. Paleoceanography and Paleoclimatology, 34(8):1328–1343. https://doi.org/10.1029/2019PA003638 Hall, C.M.S., 2019. Biotic response to paleoenvironmental change in the Ediacaran and early Cenozoic [PhD dissertation]. University of California, Riverside, CA. https://escholarship.org/uc/item/29402215 Holmstrom, M.J., 2021. A high-resolution investigation of the Eocene-Oligocene climate transition [PhD dissertation]. University of Southampton, Southampton, England. https://eprints.soton.ac.uk/451560/ Hull, P.M., Bornemann, A., Penman, D.E., Henehan, M.J., Norris, R.D., Wilson, P.A., Blum, P., Alegret, L., Batenburg, S.J., Bown, P.R., Bralower, T.J., Cournede, C., Deutsch, A., Donner, B., Friedrich, O., Jehle, S., Kim, H., Kroon, D., Lippert, P.C., Loroch, D., Moebius, I., Moriya, K., Peppe, D.J., Ravizza, G.E., Röhl, U., Schueth, J.D., Sepúlveda, J., Sexton, P.F., Sibert, E.C., Śliwińska, K.K., Summons, R.E., Thomas, E., Westerhold, T., Whiteside, J.H., Yamaguchi, T., and Zachos, J.C., 2020. On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 367(6475):266–272. https://doi.org/10.1126/science.aay5055 Jian, Z., Dang, H., Yu, J., Wu, Q., Gong, X., Stepanek, C., Colin, C., Hu, L., Lohmann, G., Zhou, X., and Wan, S., 2023. Changes in deep Pacific circulation and carbon storage during the Pliocene-Pleistocene transition. Earth and Planetary Science Letters, 605:118020. https://doi.org/10.1016/j.epsl.2023.118020 Kast, E.R., 2020. Development and application of biogenic mineral-bound nitrogen isotope measurements to the million-year timescale [PhD dissertation]. Princeton University, Princeton, NJ. https://www.proquest.com/docview/2478602580 Kast, E.R., Stolper, D.A., Auderset, A., Higgins, J.A., Ren, H., Wang, X.T., Martínez-García, A., Haug, G.H., and Sigman, D.M., 2019. Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic. Science, 364(6438):386–389. https://doi.org/10.1126/science.aau5784 Kearns, L.E., Bohaty, S.M., Edgar, K.M., and Ezard, T.H.G., 2022. Small but mighty: how overlooked small species maintain community structure through Middle Eocene climate change. Paleobiology:1–22. https://doi.org/10.1017/pab.2022.24 Kearns, L.E., Bohaty, S.M., Edgar, K.M., Nogué, S., and Ezard, T.H.G., 2021. Searching for function: reconstructing adaptive niche changes using geochemical and morphological data in planktonic foraminifera. Frontiers in Ecology and Evolution, 9:679722. https://doi.org/10.3389/fevo.2021.679722 Kim, H., 2020. The Paleocene radiation of calcareous nannoplankton [PhD dissertation]. University College London, England. https://discovery.ucl.ac.uk/id/eprint/10093559/ Kirtland Turner, S., Ridgwell, A., Keller, A.L., Vahlenkamp, M., Aleksinski, A.K., Sexton, P.F., Penman, D.E., Hull, P.M., and Norris, R.D., 2024. Sensitivity of ocean circulation to warming during the Early Eocene greenhouse. Proceedings of the National Academy of Sciences of the United States of America, 121(24):e2311980121. https://doi.org/10.1073/pnas.2311980121 Kocken, I.J., Nooteboom, P.D., van der Veen, K., Coxall, H.K., Müller, I.A., Meckler, A.N., and Ziegler, M., 2024. North Atlantic temperature change across the Eocene-Oligocene transition from clumped isotopes. Paleoceanography and Paleoclimatology, 39(3):e2023PA004809. https://doi.org/10.1029/2023PA004809 Lee, H., Jo, K., and Hyun, S., 2020. Opposite response modes of NADW dynamics to obliquity forcing during the late Paleogene. Scientific Reports, 10(1):13194. https://doi.org/10.1038/s41598-020-70020-2 Leutert, T.J., Sexton, P.F., Tripati, A., Piasecki, A., Ho, S.L., and Meckler, A.N., 2019. Sensitivity of clumped isotope temperatures in fossil benthic and planktic foraminifera to diagenetic alteration. Geochimica et Cosmochimica Acta, 257:354–372. https://doi.org/10.1016/j.gca.2019.05.005 Liu, Z., He, Y., Jiang, Y., Wang, H., Liu, W., Bohaty, S.M., and Wilson, P.A., 2018. Transient temperature asymmetry between hemispheres in the Palaeogene Atlantic Ocean. Nature Geoscience, 11(9):656–660. https://doi.org/10.1038/s41561-018-0182-9 Lobba, V., 2018. Analysis of associations with calcareous nannofossils of lower and middle Eocene age from Site U1410 (Newfoundland Ridge, NW Atlantic): an integrated approach [MS thesis]. University of Padua, Italy. https://thesis.unipd.it/handle/20.500.12608/23793 Londoño, V., and Collins, L.S., 2022. Controls on sedimentary accumulation of organic matter during Cretaceous oceanic anoxic event 2, IODP Site U1407, Southeast Newfoundland Ridge. Marine Geology, 443:106699. https://doi.org/10.1016/j.margeo.2021.106699 Londoño, V., and Collins, L.S., 2024. Effect of size fractions of foraminifera on reconstructing the paleoceanography of Cretaceous Oceanic Anoxic Event 2. Journal of Foraminiferal Research, 54(1):54–64. https://doi.org/10.2113/gsjfr.54.1.54 Loroch, D., Deutsch, A., Berndt, J., and Bornemann, A., 2016. The Cretaceous/Paleogene (K-Pg) boundary at the J Anomaly Ridge, Newfoundland (IODP Expedition 342, Hole U1403B). Meteoritics & Planetary Science, 51(7):1370–1385. https://doi.org/10.1111/maps.12667 Ma, C., Meyers, S.R., Hinnov, L.A., Eldrett, J.S., Bergman, S.C., and Minisini, D., 2020. A method to decipher the time distribution in astronomically forced sedimentary couplets. Marine and Petroleum Geology, 118:104399. https://doi.org/10.1016/j.marpetgeo.2020.104399 Newsam, C., 2017. Calcareous nannoplankton evolution and the Paleogene greenhouse to icehouse climate-mode transition [PhD dissertation]. University College London, England. http://discovery.ucl.ac.uk/1541282/ Papadomanolaki, N.M., Sluijs, A., and Slomp, C.P., 2022. Eutrophication and deoxygenation forcing of marginal marine organic carbon burial during the PETM. Paleoceanography and Paleoclimatology, 37(3):e2021PA004232. https://doi.org/10.1029/2021PA004232 Parent, A.M., Chilton, K.D., van Peer, T.E., Bohaty, S.M., Spray, J.F., Scher, H.D., Wilson, P.A., and Romans, B.W., 2024. Eocene-Oligocene intensification of the Deep Western Boundary Current in the North Atlantic Ocean. Paleoceanography and Paleoclimatology, 39(4):e2023PA004731. https://doi.org/10.1029/2023PA004731 Penman, D.E., 2016. Silicate weathering and North Atlantic silica burial during the Paleocene-Eocene Thermal Maximum. Geology, 44(9):731–734. https://doi.org/10.1130/G37704.1 Penman, D.E., Turner, S.K., Sexton, P.F., Norris, R.D., Dickson, A.J., Boulila, S., Ridgwell, A., Zeebe, R.E., Zachos, J.C., Cameron, A., Westerhold, T., and Röhl, U., 2016. An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene–Eocene Thermal Maximum. Nature Geoscience, 9(8):575–580. https://doi.org/10.1038/ngeo2757 Penman, D.E., and Zachos, J.C., 2018. New constraints on massive carbon release and recovery processes during the Paleocene-Eocene Thermal Maximum. Environmental Research Letters, 13(10):105008. https://doi.org/10.1088/1748-9326/aae285 Routledge, C.M., 2021. Plankton evolution and the Paleogene/Neogene transition [PhD dissertation]. University College, London. https://discovery.ucl.ac.uk/id/eprint/10137445/ Santiago Ramos, D.P., Morgan, L.E., Lloyd, N.S., and Higgins, J.A., 2018. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids. Geochimica et Cosmochimica Acta, 236:99–120. https://doi.org/10.1016/j.gca.2018.02.035 Sibert, E.C., and Norris, R.D., 2015. New age of fishes initiated by the Cretaceous−Paleogene mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 112(28):8537–8542. https://doi.org/10.1073/pnas.1504985112 Sibert, E.C., Zill, M.E., Frigyik, E.T., and Norris, R.D., 2020. No state change in pelagic fish production and biodiversity during the Eocene–Oligocene transition. Nature Geoscience, 13(3):238–242. https://doi.org/10.1038/s41561-020-0540-2 Śliwińska, K.K., Coxall, H.K., Hutchinson, D.K., Liebrand, D., Schouten, S., and de Boer, A.M., 2023. Sea surface temperature evolution of the North Atlantic Ocean across the Eocene–Oligocene transition. Climate of the Past, 19(1):123–140. https://doi.org/10.5194/cp-19-123-2023 Śliwińska, K.K., and Head, M.J., 2020. New species of the dinoflagellate cyst genus Svalbardella Manum, 1960, emend. from the Paleogene and Neogene of the northern high to middle latitudes. Journal of Micropalaeontology, 39:139–154. https://doi.org/10.5194/jm-39-139-2020 Śliwińska, K.K., Thomsen, E., Schouten, S., Schoon, P.L., and Heilmann-Clausen, C., 2019. Climate- and gateway-driven cooling of late Eocene to earliest Oligocene sea surface temperatures in the North Sea Basin. Scientific Reports, 9(1):4458. https://doi.org/10.1038/s41598-019-41013-7 Smith, R.E., 2017. The Oligocene-Miocene Transition: new insights from the Newfoundland margin [PhD dissertation]. University of Southampton, England. https://eprints.soton.ac.uk/421152/ Spray, J.F., 2017. Sedimentological and oceanographic change in the Northwest Atlantic Ocean across the Eocene Oligocene Transition [PhD dissertation]. University of Southampton, England. https://eprints.soton.ac.uk/421108/ Spray, J.F., Bohaty, S.M., Davies, A., Bailey, I., Romans, B.W., Cooper, M.J., Milton, J.A., and Wilson, P.A., 2019. North Atlantic evidence for a unipolar icehouse climate state at the Eocene-Oligocene transition. Paleoceanography and Paleoclimatology, 34(7):1124–1138. https://doi.org/10.1029/2019PA003563 Stoll, H.M., Pena, L.D., Hernandez-Almeida, I., Guitián, J., Tanner, T., and Pälike, H., 2024. Nonlinear increase in seawater 87Sr/86Sr in the Oligocene to Early Miocene and implications for climate-sensitive weathering. Climate of the Past, 20(1):25–36. https://doi.org/10.5194/cp-20-25-2024 Thomas-Sparkes, A.V., 2019. The North Atlantic Ocean: a force for change at Earth’s greenhouse-icehouse transition [PhD dissertation]. University of Cardiff, England. https://orca.cardiff.ac.uk/id/eprint/131206/ Turner, S.K., Hull, P.M., Kump, L.R., and Ridgwell, A., 2017. A probabilistic assessment of the rapidity of PETM onset. Nature Communications, 8(1):353. https://doi.org/10.1038/s41467-017-00292-2 Vahlenkamp, M., 2017. Middle Eocene paleoceanography and astrochronology in the western North Atlantic [PhD dissertation]. Universität Bremen, Germany. https://core.ac.uk/reader/132609290 Vahlenkamp, M., Niezgodzki, I., De Vleeschouwer, D., Bickert, T., Harper, D., Kirtland Turner, S., Lohmann, G., Sexton, P., Zachos, J., and Pälike, H., 2018. Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene. Earth and Planetary Science Letters, 484:329–340. https://doi.org/10.1016/j.epsl.2017.12.016 van Bael, R., Deprez, A., Stassen, P., Bornemann, A., and Speijer, R.P., 2016. Taphonomic impact of ultrasonic treatment on Foraminifera from a deep-sea carbonate ooze. Journal of Micropalaeontology, 35(2):229–231. https://doi.org/10.1144/jmpaleo2015-046 van der Ploeg, R., Cramwinckel, M.J., Kocken, I.J., Leutert, T.J., Bohaty, S.M., Fokkema, C.D., Hull, P.M., Meckler, A.N., Middelburg, J.J., Müller, I.A., Penman, D.E., Peterse, F., Reichart, G.-J., Sexton, P.F., Vahlenkamp, M., De Vleeschouwer, D., Wilson, P.A., Ziegler, M., and Sluijs, A., 2023. North Atlantic surface ocean warming and salinization in response to middle Eocene greenhouse warming. Science Advances, 9(4):eabq0110. https://doi.org/10.1126/sciadv.abq0110 Van Peer, T., 2017. Palaeomagnetic, astrochronological, and environmental magnetic perspective on Oligocene-Miocene climate, using drift sediments from the northwest Atlantic Ocean [PhD dissertation]. University of Southampton, England. https://eprints.soton.ac.uk/416832/ van Peer, T.E., Xuan, C., Lippert, P.C., Liebrand, D., Agnini, C., and Wilson, P.A., 2017. Extracting a detailed magnetostratigraphy from weakly magnetized, Oligocene to early Miocene sediment drifts recovered at IODP Site U1406 (Newfoundland margin, Northwest Atlantic Ocean). Geochemistry, Geophysics, Geosystems, 18(11):3910–3928. https://doi.org/10.1002/2017GC007185 Viganò, A., 2022. Are calcareous phytoplankton affected by the onset of the Antarctica ice-sheet at the Eocene-Oligocene transition? [PhD dissertation]. University of Padua, Italy. https://hdl.handle.net/11577/3460005 Viganò, A., Westerhold, T., Bown, P.R., Jones, T.D., and Agnini, C., 2023. Calcareous nannofossils across the Eocene-Oligocene transition: preservation signals and biostratigraphic remarks from ODP Site 1209 (NW Pacific, Shatsky Rise) and IODP Hole U1411B (NW Atlantic Ocean, Newfoundland Ridge). Palaeogeography, Palaeoclimatology, Palaeoecology. https://doi.org/10.1016/j.palaeo.2023.111778 Wang, C., 2021. Terrestrial and oceanic responses in the northern hemisphere during the Eocene-Oligocene transition [PhD dissertation]. The University of Hong Kong, http://hdl.handle.net/10722/318430 Wang, H., Liu, W., Lu, H., Zhang, Y., Liang, Y., He, Y., Bohaty, S.M., Wilson, P.A., and Liu, Z., 2023. Oxygenated deep waters fed early Atlantic overturning circulation upon Antarctic glaciation. Nature Geoscience. https://doi.org/10.1038/s41561-023-01292-2 Wiese, F., Schlüter, N., Zirkel, J., Herrle, J.O., and Friedrich, O., 2023. A 104-Ma record of deep-sea Atelostomata (Holasterioda, Spatangoida, irregular echinoids) – a story of persistence, food availability and a big bang. PLOS ONE. https://doi.org/10.1371/journal.pone.0288046 Xue, P., Chang, L., and Thomas, E., 2023. Abrupt Northwest Atlantic deep-sea oxygenation decline preceded the Palaeocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 618:118304. https://doi.org/10.1016/j.epsl.2023.118304 Yamaguchi, T., 2019. Valve calcification in the evolutionary history of marine ostracodes (Ostracoda). Journal of Crustacean Biology, 39(3):253–260. https://doi.org/10.1093/jcbiol/ruy086 Yamaguchi, T., Bornemann, A., Matsui, H., and Nishi, H., 2017. Latest Cretaceous/Paleocene deep-sea ostracode fauna at IODP Site U1407 (western North Atlantic) with special reference to the Cretaceous/Paleogene boundary and the Latest Danian Event. Marine Micropaleontology, 135:32–44. https://doi.org/10.1016/j.marmicro.2017.07.003 Yamaguchi, T., Honda, R., Matsui, H., and Nishi, H., 2017. Sexual shape dimorphism and selection pressure on males in fossil ostracodes. Paleobiology, 43(3):407. https://doi.org/10.1017/pab.2016.57 Yamaguchi, T., Matsui, H., and Nishi, H., 2017. Taxonomy of Maastrichtian-Thanetian deep-sea ostracodes from U1407, IODP Exp 342, off Newfoundland, northwestern Atlantic, Part 2. Families Eucytheridae, Krithidae, Thaerocytheridae, Trachyleberididae, and Xestoleberididae. Paleontological Research, 21(2):97–121. https://doi.org/10.2517/2016PR011 Yamaguchi, T., Matsui, H., and Nishi, H., 2017. Taxonomy of Maastrichtian-Thanetian deep-sea ostracodes from U1407, IODP Exp 342, off Newfoundland, northwestern Atlantic, Part 1. Families Cytherellidae, Bairdiidae, Pontocyprididae, Bythocytheridae, and Cytheruridae. Paleontological Research, 21(1):54–75. https://doi.org/10.2517/2016PR010 Zeebe, R.E., and Lourens, L.J., 2022. A deep-time dating tool for paleo-applications utilizing obliquity and precession cycles: the role of dynamical ellipticity and tidal dissipation. Paleoceanography and Paleoclimatology, 37(2):e2021PA004349. https://doi.org/10.1029/2021PA004349 Zhou, X., Jenkyns, H.C., Owens, J.D., Junium, C.K., Zheng, X.-Y., Sageman, B.B., Hardisty, D.S., Lyons, T.W., Ridgwell, A., and Lu, Z., 2015. Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian-Turonian OAE 2. Paleoceanography, 30(5):510–526. https://doi.org/10.1002/2014PA002741 Zhou, Y., and McManus, J.F., 2024. Heinrich event ice discharge and the fate of the Atlantic Meridional Overturning Circulation. Science, 384(6699):983–986. https://doi.org/10.1126/science.adh8369 Zill, M., 2022. Deep sea sediment alteration across the Paleocene-Eocene Thermal Maximum [PhD dissertation]. University of California Riverside, Riverside, CA. https://escholarship.org/uc/item/3s441179 ConferencesAmerican Geophysical Union (AGU) Fall Meeting 2013Boyle, P.R., and Romans, B., 2013. Cenozoic variations in the Deep Western Boundary Current as recorded in the seismic stratigraphy of contourite drifts: IODP Expedition 342, Newfoundland Ridge, offshore Canada [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract PP43A-2066) http://abstractsearch.agu.org/ Junium, C.K., Bornemann, A., Bown, P.R., Friedrich, O., Moriya, K., Kirtland, S.E., and Whiteside, J.H., 2013. A new oceanic anoxic Event 2 record from the central North Atlantic at south east Newfoundland Ridge, IODP Expedition 342, Newfoundland Drifts [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract PP54B-07) http://abstractsearch.agu.org/ Penman, D.E., Kirtland Turner, S., Sexton, P., Cameron, A., Boulila, S., Norris, R.D., Zachos, J.C., Roehl, U., and Westerhold, T., 2013. Direct evidence for CCD over-compensation in the aftermath of the PETM [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract PP22A-05) http://abstractsearch.agu.org/ Scher, H.D., Romans, B., Moffett, Z.J., Buckley, W.P., and Gibson, K.A., 2013. Changes in sediment provenance to the southeast Newfoundland Ridge from the late Eocene to the early Oligocene: Northern Hemisphere glaciation or deep water circulation? [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract PP41A-2046) http://abstractsearch.agu.org/ Willard, D.A., 2013. Palynological response to the middle Eocene climate variability in the North Atlantic Ocean: IODP Expedition 342, Newfoundland Ridge, offshore Canada [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract PP31A-1853) http://abstractsearch.agu.org/ AGU Fall Meeting 2014Bailey, I., Wilson, P.A., Norris, R.D., and Blum, P., 2014. New climate archives from the high latitude North Atlantic Ocean: preliminary results from IODP Exp 342, Newfoundland sediment drifts [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP23D-01) http://abstractsearch.agu.org/ Batenburg, S.J., Voigt, S., Friedrich, O., and Frank, M., 2014. Atlantic Ocean circulation during the Latest Cretaceous and early Paleogene: progressive deep water exchange [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP13A-1382) http://abstractsearch.agu.org/ Boyle, P.R., Romans, B., Norris, R.D., Tucholke, B.E., Swift, S.A., and Sexton, P.F., 2014. Cenozoic circulation history of the North Atlantic Ocean from seismic stratigraphy of the Newfoundland Ridge drift complex [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP51E-1175) http://abstractsearch.agu.org/ Cameron, A., Sexton, P.F., Anand, P., Huck, C.E., Fehr, M., Dickson, A., Scher, H.D., van de Flierdt, T., Westerhold, T., and Roehl, U., 2014. Characterising Atlantic deep waters during the extreme warmth of the early Eocene “greenhouse” [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP51B-1116) http://abstractsearch.agu.org/ Dennis, K.E., and Junium, C.K., 2014. Interrogating the Paleogene sulfur cycle, carbonate-associated sulfate and pore water sulfate δ34S from Demerara Rise and Newfoundland drifts [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP5B-1126) http://abstractsearch.agu.org/ D’haenens, S., Bornemann, A., Speijer, R.P., and Hull, P.M., 2014. Constructing an Eocene marine ecosystem sensitivity scale [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP13C-07) http://abstractsearch.agu.org/ Flemings, P.B., Polito, P.J., Brooks, D., Itturino, G., Pettigrew, T., and Germaine, J.T., 2014. The Motion Decoupled Delivery System: a new deployment system for downhole tools [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract OS52B-07) http://abstractsearch.agu.org/ Liu, Z., He, Y., Wilson, P.A., and Pagani, M., 2014. Orbitally-resolved SST changes during the EOT: results from IODP 342 Expedition [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP23D-02) http://abstractsearch.agu.org/ Wu, F., Lawler, N., Penman, D.E., Zachos, J.C., Kirtland Turner, S., Norris, R.D., Wilson, P.A., and Hull, P.M., 2014. An early middle Eocene orbital scale benthic isotope record from IODP Site 1408, Newfoundland Rise [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP21A-1290) http://abstractsearch.agu.org/ AGU Fall Meeting 2015Buckley, W.P., Jr., and Koch, M.C., 2015. A chilling perspective on Greenland’s early Cenozoic climate from coupled Hf-Nd isotopes [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract PP43C-2293) http://abstractsearch.agu.org/ Duggan, B., and Buckley, W.P., Jr., 2015. Bulk sediment Hf-Nd isotopic composition across the EOT, Northern Hemisphere glaciation? [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract PP41A-2226) http://abstractsearch.agu.org/ Jehle, S., and Bornemann, A., 2015. Planktic foraminiferal response to the latest Danian event (62.15 Ma) on an almost global scale results from Shatsky Rise, Walvis Ridge and Newfoundland [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract PP53C-2379) http://abstractsearch.agu.org/ Kordesch, W., and Bohaty, S.M., 2015. Dynamic, large-magnitude CCD changes in the Atlantic during the middle Eocene climatic optimum [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract PP33C-2329) http://abstractsearch.agu.org/ Vahlenkamp, M., and De Vleeschouwer, D., 2015. Towards closing the Eocene astronomical time scale gap: cyclostratigraphic implications from IODP Expedition 342 [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract PP53A-2320) http://abstractsearch.agu.org/ Xuan, C., and Oda, H., 2015. Paleomagnetic and rock magnetic study of IODP Site U1408 in the Northwest Atlantic—toward the high-resolution relative paleointensity estimate during the middle Eocene [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract GP51A-1314) http://abstractsearch.agu.org/ AGU Fall Meeting 2016Chilton, K., Romans, B., Spray, J., Wilson, P.A., Bohaty, S.M., and Sanchez, T., 2016. Terrigenous grain-size record of the Newfoundland Ridge contourite drift, IODP Site U1411: the first physical proxy record of North Atlantic abyssal current intensity during the Eocene-Oligocene transition [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract PP53A-2373) http://abstractsearch.agu.org/ Lippert, P.C., Taylor, V.E., Bohaty, S.M., Wagner, C., Xuan, C., and Wilson, P.A., 2016. The demise of a diverse magnetofossil assemblage across the Eocene-Oligocene transition in a northwest Atlantic sediment drift [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract GP43D-02) http://abstractsearch.agu.org/ Penman, D.E., Kirtland Turner, S., Sexton, P.F., Dickson, A., Keller, A.L., Ridgwell, A., Zeebe, R.E., Hull, P.M., D’haenens, S., Zachos, J.C., and Norris, R.D., 2016. New sedimentary records of enhanced weathering during the PETM [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract U41A-06) http://abstractsearch.agu.org/ Santiago Ramos, D.P., Dunlea, A.G., and Higgins, J.A., 2016. Paired measurements of K and Mg isotopes and clay authigenesis in marine sediments [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract PP13D-06) http://abstractsearch.agu.org/ Smith, R., Liebrand, D., van Peer, T.E., Bohaty, S.M., Friedrich, O., Bornemann, A., Blum, P., and Wilson, P.A., 2016. Oligocene-Miocene transition in the North Atlantic interrupted by warming: new records from the Newfoundland margin, IODP Expedition 342 [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract PP33C-04) http://abstractsearch.agu.org/ Vahlemkamp, M., De Vleeschouwer, D., Feldtmann, M., Wu, F., Zachos, J.C., and Palike, H., 2016. Orbitally paced climatic variations of the North Atlantic during the mid Eocene: implications from a ~2 Myr benthic isotope record in the North Atlantic (IODP Exp. 342) [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract PP41B-2242) http://abstractsearch.agu.org/ van Peer, T., Xuan, C., Liebrand, D., Lippert, P.C., and Wilson, P.A., 2016. Astrochronology of a late Oligocene to early Miocene magnetostratigraphy from the northwest Atlantic [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract GP43B-1244) http://abstractsearch.agu.org/ AGU Fall Meeting 2017Kast, E., Stolper, D.A., Higgins, J.A., Ren, H.A., Wang, X.T., and Sigman, D.M., 2017. Ocean nitrogen isotopic change in the early Eocene [presented at the 2017 American Geophysical Union Fall Meeting, New Orleans, LA, 11–15 December 2017]. (Abstract PP43E-06) http://abstractsearch.agu.org/ Santiago Ramos, D.P., and Higgins, J.A., 2017. Assessing the role of clay authigenesis in the seawater potassium cycle: a paired K and Mg isotope study of deep-sea pore fluids [presented at the 2017 American Geophysical Union Fall Meeting, New Orleans, LA, 11–15 December 2017]. (Abstract U13B-11) http://abstractsearch.agu.org/ European Geosciences Union (EGU) General Assembly 2015Batenburg, S.J., Voigt, S., Friedrich, O., Osborne, A., and Frank, M., 2015. Atlantic Ocean circulation during the latest Cretaceous and Early Paleogene: progressive deep water exchange. Geophysical Research Abstracts, 17:EGU2015-8677. http://meetingorganizer.copernicus.org/ van Peer, T., Xuan, C., Wilson P., Liebrand, D., and Lippert, P., 2015. Revised Late Oligocene to Early Miocene magnetic stratigraphy recorded by drift sediments at Sites U1405 and U1406, IODP Expedition 342 (Newfoundland, NW Atlantic). Geophysical Research Abstracts, 17:EGU2015-7441. http://meetingorganizer.copernicus.org/ EGU General Assembly 2018Egger, L.M., Bahr, A., Friedrich, O., Wilson, P.A., Norris, R.D., van Peer, T.E., Lippert, P.C., Liebrand, D., and Pross, L., 2018. Sea-level and surface-water change in the western North Atlantic across the Oligocene–Miocene Transition: a palynological perspective from IODP Site U1406 (Newfoundland margin). Geophysical Research Abstracts, 20:EGU2018-17948. https://meetingorganizer.copernicus.org/ Geological Society of America (GSA) Annual Meeting 2017Keller, A.L., Turner, S.K., Penman, D., Sexton, P.F., Norris, R.D., and Paytan, A., 2017. Marine biotic response of the northern Atlantic Ocean during gradual and abrupt warming events from the late Paleocene to the early-middle Eocene. Geological Society of America Abstracts with Programs, 49(6):128-8. https://doi.org/ Japan Geoscience Union (JpGU) Meeting 2019Yamamoto, Y., Fukami, H., Taniguchi, W., and Lippert, P.C., 2019. Preliminary report on the paleointensity variation during 38–50 Ma deduced from the marine sediments recovered from the northwest Atlantic. Presented at the Japan Geoscience Union Meeting 2019, Chiba, Japan, 26–30 May 2019. https://confit.atlas.jp/ *The Expedition-related bibliography is continually updated online. Please send updates to PubCrd@iodp.tamu.edu. |