IODP Proceedings Volume contents Search | |||
Expedition reports Research results Supplementary material Drilling maps Expedition bibliography | |||
|
doi:10.2204/iodp.proc.314315316.223.2014 ReferencesBerner, R.A., 1984. Sedimentary pyrite formation: an update. Geochim. Cosmochim. Acta, 48(4):605–615. doi:10.1016/0016-7037(84)90089-9 Borowski, W.S., Rodriguez, M.N., Paull, C.K., and Ussler, W., III, 2013. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? Mar. Pet. Geol., 43:381–395. doi:10.1016/j.marpetgeo.2012.12.009 Böttcher, M.E., Thamdrup, B., Gehre, M., and Theune, A., 2005. 34S/32S and 18O/16O fractionation during sulfur disproportionation by Desulfobulbus propionicus. Geomicrobiol. J., 22(5):219–226. doi:10.1080/01490450590947751 Bottrell, S.H., Mortimer, R.J.G., Davies, I.M., Martyn Harvey, S., and Krom, M.D., 2009. Sulphur cycling in organic-rich marine sediments from a Scottish fjord. Sedimentology, 56(4):1159–1173. doi:10.1111/j.1365-3091.2008.01024.x Canfield, D.E., and Teske, A., 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature (London, U. K.), 328:127–132. doi:10.1038/382127a0 Canfield, D.E., and Thamdrup, B., 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 266(5193):1973–1975. doi:10.1126/science.11540246 Cline, J.D., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr., 14(3):454–458. doi:10.4319/lo.1969.14.3.0454 Cornwell, J.C., and Morse, J.W., 1987. The characterization of iron sulfide minerals in anoxic marine sediments. Mar. Chem., 22(2–4):193–206. doi:10.1016/0304-4203(87)90008-9 Expedition 316 Scientists, 2009a. Expedition 316 methods. In Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, Proc. IODP, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.132.2009 Expedition 316 Scientists, 2009b. Expedition 316 Site C0004. In Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, Proc. IODP, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.133.2009 Expedition 316 Scientists, 2009c. Expedition 316 Site C0006. In Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, Proc. IODP, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.134.2009 Expedition 316 Scientists, 2009d. Expedition 316 Site C0007. In Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, Proc. IODP, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.135.2009 Expedition 316 Scientists, 2009e. Expedition 316 Site C0008. In Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, Proc. IODP, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.136.2009 Fossing, H., and Jørgensen, B.B., 1989. Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry, 8(3):205–222. doi:10.1007/BF00002889 Goldhaber, M.B., Aller, R.C., Cochran, J.K., Rosenfeld, J.K., Martens, C.S., and Berner, R.A., 1977. Sulfate reduction, diffusion and bioturbation in Long Island Sound sediments: report of the FOAM group. Am. J. Sci., 277(3):193–237. doi:10.2475/ajs.277.3.193 Goldhaber, M.B., and Kaplan, I.R., 1974. The sulfur cycle. In Goldberg, E.D. (Ed.), The Sea (Vol. 5): Marine Chemistry: The Sedimentary Cycle: New York (Wiley-Interscience), 569–655. Goldhaber, M.B., and Kaplan, I.R., 1975. Controls and consequences of sulfate reduction rates in recent marine sediments. Soil Sci., 119(1):42–55. doi:10.1097/00010694-197501000-00008 Goldhaber, M.B., and Kaplan, I.R., 1980. Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California. Mar. Chem., 9(2):95–143. doi:10.1016/0304-4203(80)90063-8 Harrison, A.G., and Thode, H.G., 1958. Mechanism of the bacterial reduction of sulphate from isotope fractionation studies. Trans. Faraday Soc., 54:84–92. doi:10.1039/tf9585400084 Howarth R.W., 1979. Pyrite: its rapid formation in a salt marsh and its importance to ecosystem metabolism. Science, 203(4375):49–51. doi:10.1126/science. 203.4375.49 Howarth, R.W., and Jørgensen, B.B., 1984. Formation of 35S-labeled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term 35SO42– reduction measurements. Geochim. Cosmochim. Acta, 48(9):1807–1818. doi:10.1016/0016-7037(84)90034-6 Jones, G.E., and Starkey, R.L., 1957. Fractionation of stable isotopes of sulfur by microorganisms and their role in deposition of native sulfur. Appl. Microbio., 5(2):111–118. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1057268/ Jørgensen, B.B., 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr., 22(5):814–832.doi:10.4319/lo.1977.22.5.0814 Jørgensen, B.B., 1979. A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochim. Cosmochim. Acta, 43(3):363–374. doi:10.1016/0016-7037(79)90201-1 Jørgensen, B.B., 1982. Mineralization of organic matter in the seabed—the role of sulphate reduction. Nature (London, U. K.), 296(5858):643–645. doi:10.1038/296643a0 Kaplan, I.R., and Rittenberg, S.C., 1964. Microbiological fractionation of sulfur isotopes. Microbiology, 34(2):195–212. doi:10.1099/00221287-34-2-195 Kimura, G., Screaton, E.J., Curewitz, D., and the Expedition 316 Scientists, 2008. NanTroSEIZE Stage 1A: NanTroSEIZE shallow megasplay and frontal thrusts. IODP Prel. Rept., 316. doi:10.2204/iodp.pr.316.2008 Mills, H.J., Reese, B.K., Shepard, A.K., Riedinger, N., Dowd, S.E., Morono, Y., and Inagaki, F., 2012. Characterization of metabolically active bacterial populations in subseafloor Nankai Trough sediments above, within, and below the sulfate–methane transition zone. Front. Microbiol., 3:113. doi:10.3389/fmicb.2012.00113 Rickard, D., and Luther, G.W., III, 2007. Chemistry of iron sulfides. Chem. Rev., 107(2):514–562. doi:10.1021/cr0503658 Riedinger, N., Brunner, B., Formolo, M.J., Solomon, E., Kasten, S., Strasser, M., and Ferdelman, T.G., 2010. Oxidative sulfur cycling in the deep biosphere of the Nankai Trough, Japan. Geology, 38(9):851–854. doi:10.1130/G31085.1 Screaton, E.J., Kimura, G., Curewitz, D., and the Expedition 316 Scientists, 2009. Expedition 316 summary. In Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, Proc. IODP, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.314315316.131.2009 Sim, M.S., Bosak, T., and Ono, S., 2011. Large sulfur isotope fractionation does not require disproportionation. Science, 333(6038):74–77. doi:10.1126/science. 1205103 Strasser, M., Moore, G.F., Kimura, G., Kitamura, Y., Kopf, A.J., Lallemant, S., Park, J.-O., Screaton, E.J., Su, X., Underwood, M.B., and Zhao, X., 2009. Origin and evolution of a splay fault in the Nankai accretionary wedge. Nat. Geosci., 2(9):648–652. doi:10.1038/ngeo609 Thode, H.G., Monster, J., and Dunford, H.B., 1961. Sulphur isotope geochemistry. Geochim. Cosmochim. Acta, 25(3):158–174. doi:10.1016/0016-7037(61)90074-6 Tobin, H.J., and Kinoshita, M., 2006. NanTroSEIZE: the IODP Nankai Trough Seismogenic Zone Experiment. Sci. Drill., 2:23–27. doi:10.2204/iodp.sd.2.06.2006 |