IODP Proceedings Volume contents Search | ||
Expedition reports Research results Supplementary material Drilling maps Expedition bibliography | ||
Expedition-related bibliography*Citation data for IODP publications and journal articles in RIS format IODP publicationsScientific ProspectusPälike, H., Lyle, M.W., Ahagon, N., Raffi, I., Gamage, K., and Zarikian, C.A., 2008. Pacific equatorial age transect. IODP Sci. Prosp., 320/321. doi:10.2204/ Pälike, H., Lyle, M.W., Ahagon, N., Raffi, I., Gamage, K., and Zarikian, C.A., 2008. Pacific equatorial age transect addendum. IODP Sci. Prosp., 320/321 addendum. doi:10.2204/ Preliminary ReportsPälike, H., Nishi, H., Lyle, M., Raffi, I., Klaus, A., Gamage, K., and the Expedition 320/321 Scientists, 2009. Pacific Equatorial Transect. IODP Prel. Rept., 320. doi:10.2204/ Lyle, M., Raffi, I., Pälike, H., Nishi, H., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, 2009. Pacific Equatorial Transect. IODP Prel. Rept., 321. doi:10.2204/ Scientific Drilling journalLyle, M., Pälike, H., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the IODP Expeditions 320/321 Science Party, 2010. The Pacific Equatorial Age Transect, IODP Expeditions 320 and 321: building a 50-million-year-long environmental record of the equatorial Pacific Ocean. Sci. Drill., 9:4–15. doi:10.2204/ Proceedings volumePälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, 2010. Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition reportsPälike, H., Nishi, H., Lyle, M., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, 2010. Expedition 320/321 summary. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 320/321 Scientists, 2010. Methods. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 320/321 Scientists, 2010. Site U1331. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 320/321 Scientists, 2010. Site U1332. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 320/321 Scientists, 2010. Site U1333. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 320/321 Scientists, 2010. Site U1334. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 320/321 Scientists, 2010. Site U1335. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 320/321 Scientists, 2010. Site U1336. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 320/321 Scientists, 2010. Site U1337. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition 320/321 Scientists, 2010. Site U1338. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Expedition research resultsBackman, J., Baldauf, J.G., Ciummelli, M., and Raffi, I., 2016. Data report: a revised biomagnetostratigraphic age model for Site U1338, IODP Expedition 320/321. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). http://dx.doi.org/ Baldauf, J.G., 2013. Data report: diatoms from Sites U1334 and U1338, Expedition 320/321. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Drury, A.J., Lee, G.P., Pennock, G.M., and John, C.M., 2014. Data report: late Miocene to early Pliocene coccolithophore and foraminiferal preservation at Site U1338 from scanning electron microscopy. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Ford, H.L., Ravelo, A.C., Ramirez, B., Akers, T., and Krzeminski, O., 2018. Data report: Mg/Ca values of Globorotalia tumida from early Pliocene to present, Site U1338. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proceedings of the Integrated Ocean Drilling Program, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). https://doi.org/ Kallmeyer, J., 2013. Data report: microbial abundance in subseafloor sediments of the equatorial Pacific Ocean, Expedition 320/321. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Kamikuri, S., Moore, T.C., Ogane, K., Suzuki, N., Pälike, H., and Nishi, H., 2012. Data report: early to middle Eocene radiolarian biostratigraphy, IODP Expedition 320 Site U1331, eastern equatorial Pacific. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Kordesch, W.E.C., and Delaney, M.L., 2013. Data report: pore water nitrate and silicate concentrations for Expedition 320/321 Pacific Equatorial Age Transect. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Kuroda, J., and Westerhold, T., 2013. Data report: volcanic glass shards from the Eocene–Oligocene transition interval at Site U1333. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Leon-Rodriguez, L., and Dickens, G.R., 2013. Data report: stable isotope composition of Eocene bulk carbonate at Sites U1331, U1332, and U1333. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Lyle, M., and Backman, J., 2013. Data report: calibration of XRF-estimated CaCO3 along the Site U1338 splice. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Lyle, M., Olivarez Lyle, A., Gorgas, T., Holbourn, A., Westerhold, T., Hathorne, E., Kimoto, K., and Yamamoto, S., 2012. Data report: raw and normalized elemental data along the Site U1338 splice from X-ray fluorescence scanning. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Malinverno, A., 2013. Data report: Monte Carlo correlation of sediment records from core and downhole log measurements at Sites U1337 and U1338 (IODP Expedition 321). In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Moore, T.C., and Kamikuri, S., 2012. Data report: radiolarian stratigraphy across the Eocene/ Nomura, R., Takata, H., and Tsujimoto, A., 2013. Data report: early to middle Eocene benthic foraminifers at Sites U1331 and U1333, equatorial central Pacific Ocean, Expedition 320/321. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Romero, O.E., 2013. Data report: biogenic silica deposition in the eastern equatorial Pacific. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Screaton, E., Gamage, K., and James, S., 2014. Data report: permeabilities of Expedition 320 and 321 sediments from the Pacific Equatorial Transect. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Shackford, J.K., Lyle, M., Wilkens, R., and Tian, J., 2014. Data report: raw and normalized elemental data along the Site U1335, U1336, and U1337 splices from X-ray fluorescence scanning. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Wilkens, R.H., Dickens, G.R., Tian, J., Backman, J., and the Expedition 320/321 Scientists, 2013. Data report: revised composite depth scales for Sites U1336, U1337, and U1338. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Yamamoto, Y., 2013. Data report: temporal variation in natural remanent magnetization observed for Pacific plate basement rocks: compilation from legacy data and new paleomagnetism and rock magnetism data from seafloor basalts cored during Expedition 320/321. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Suzuki, T., Hayashi, H., and Idemitsu, K., 2020. Data report: middle Miocene planktonic foraminifers from the eastern equatorial Pacific, IODP Expedition 321 Site U1338. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proceedings of the Integrated Ocean Drilling Program, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). https://doi.org/10.2204/iodp.proc.320321.221.2020 SynthesesPälike, H., Lyle, M., Nishi, H., and Raffi, I., 2014. The Pacific Equatorial Age Transect: Cenozoic ocean and climate history (Integrated Ocean Drilling Program Expeditions 320 & 321). In Stein, R., Blackman, D., Inagaki, F., and Larsen, H.-C., Developments in Marine Geology (Volume 7): Earth and Life Processes Discovered from Subseafloor Environments: A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). R. Stein (Series Ed.): Amsterdam (Elsevier B.V.), 329–357. http://dx.doi.org/ Westerhold, T., Röhl, U., Wilkens, R., Pälike, H., Lyle, M., Jones, T.D., Bown, P., Moore, T., Kamikuri, S., Acton, G., Ohneiser, C., Yamamoto, Y., Richter, C., Fitch, P., Scher, H., Liebrand, D., and the Expedition 320/321 Scientists, 2012. Revised composite depth scales and integration of IODP Sites U1331–U1334 and ODP Sites 1218–1220. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/ Journals/BooksAndrews, E., Pogge von Strandmann, P.A.E., and Fantle, M.S., 2020. Exploring the importance of authigenic clay formation in the global Li cycle. Geochimica et Cosmochimica Acta, 289:47–68. https://doi.org/10.1016/j.gca.2020.08.018 Andrews, E.M., 2018. Lithium isotopes in carbonate-rich marine sections: implications for diagenesis, authigenic clay formation, and the global lithium cycle [MS thesis]. PennState, Centre County, PA. https://etda.libraries.psu.edu/catalog/15240ema5148 Backman, J., Raffi, I., Ciummelli, M., and Baldauf, J., 2013. Species-specific responses of late Miocene Discoaster spp. to enhanced biosilica productivity conditions in the equatorial Pacific and the Mediterranean. Geo-Marine Letters, 33(4):285–298. https://doi.org/10.1007/s00367-013-0328-0 Beddow, H.M., Liebrand, D., Sluijs, A., Wade, B.S., and Lourens, L.J., 2016. Global change across the Oligocene–Miocene transition: high-resolution stable isotope records from IODP Site U1334 (equatorial Pacific Ocean). Paleoceanography and Paleoclimatology, 31(1):81–97. https://doi.org/10.1002/2015PA002820 Beddow, H.M., Liebrand, D., Wilson, D.S., Hilgen, F.J., Sluijs, A., Wade, B.S., and Lourens, L.J., 2018. Astronomical tunings of the Oligocene–Miocene transition from Pacific Ocean Site U1334 and implications for the carbon cycle. Climate of the Past, 14(3):255–270. https://doi.org/10.5194/cp-14-255-2018 Bell, B.B., 2022. Eastern equatorial Pacific export production and micronutrient delivery during the middle Miocene Climate Optimum [MS thesis]. The Ohio Stat University, http://rave.ohiolink.edu/etdc/view?acc_num=osu1650546504070897 Beltran, C., Rousselle, G., Backman, J., Wade, B.S., and Sicre, M.A., 2014. Paleoenvironmental conditions for the development of calcareous nannofossil acme during the late Miocene in the eastern equatorial Pacific. Paleoceanography and Paleoclimatology, 29(3):210–222. https://doi.org/10.1002/2013PA002506 Beltran, C., Rousselle, G., de Rafélis, M., Sicre, M.-A., Labourdette, N., and Schouten, S., 2019. Evolution of the zonal gradients across the equatorial Pacific during the Miocene-Pleistocene. Journal of Sedimentary Research, 89(3):242–252. https://doi.org/10.2110/jsr.2019.15 Berggren, W.A., Wade, B.S., and Pearson, P.N., 2018. Oligocene chronostratigraphy and planktonic foraminiferal biostratigraphy: historical review and current state-of-the-art. In Wade, B.S., Olsson, R.K., Huber, B.T., and Berggren, W.A. (Eds.), Atlas of Oligocene Planktonic Foraminifera. Special Publication - Cushman Foundation for Foraminiferal Research, 46: 29–54. https://www.ucl.ac.uk/earth-sciences/sites/earth-sciences/files/Chapter_2.pdf Bolton, C.T., and Stoll, H.M., 2013. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature, 500(7464):558–562. https://doi.org/10.1038/nature12448 Boscolo-Galazzo, F., Crichton, K.A., Ridgwell, A., Mawbey, E.M., Wade, B.S., and Pearson, P.N., 2021. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science, 371(6534):1148–1152. https://doi.org/10.1126/science.abb6643 Boscolo-Galazzo, F., Jones, A., Dunkley Jones, T., Crichton, K.A., Wade, B.S., and Pearson, P.N., 2022. Late Neogene evolution of modern deep-dwelling plankton. Biogeosciences, 19(3):743–762. https://doi.org/10.5194/bg-19-743-2022 Bown, P.R., and Dunkley Jones, T., 2012. Calcareous nannofossils from the Paleogene equatorial Pacific (IODP Expedition 320 Sites U1331–1334). Journal of Nannoplankton Research, 32:3–51. Brown, R.M., Chalk, T.B., Crocker, A.J., Wilson, P.A., and Foster, G.L., 2022. Late Miocene cooling coupled to carbon dioxide with Pleistocene-like climate sensitivity. Nature Geoscience, 15:664–670. https://doi.org/10.1038/s41561-022-00982-7 Campbell, S.M., Moucha, R., Derry, L.A., and Raymo, M.E., 2018. Effects of dynamic topography on the Cenozoic carbonate compensation depth. Geochemistry, Geophysics, Geosystems, 19(4):1025–1034. https://doi.org/10.1002/2017GC007386 Carter, S.C., 2015. Equatorial Pacific export production and carbonate accumulation over the middle Miocene climate transition [MS thesis]. University of Texas, Arlington, TX. http://hdl.handle.net/10106/25114 Carter, S.C., Griffith, E.M., and Penman, D.E., 2016. Peak intervals of Equatorial Pacific export production during the middle Miocene climate transition. Geology, 44(11):923. https://doi.org/10.1130/G38290.1 Channell, J.E.T., and Lanci, L., 2014. Oligocene-Miocene relative (geomagnetic) paleointensity correlated from the Equatorial Pacific (IODP Site U1334 and ODP Site 1218) to the South Atlantic (ODP Site 1090). Earth and Planetary Science Letters, 387:77. https://doi.org/10.1016/j.epsl.2013.11.028 Channell, J.E.T., Ohneiser, C., Yamamoto, Y., and Kesler, M.S., 2013. Oligocene-Miocene magnetic stratigraphy carried by biogenic magnetite at sites U1334 and U1335 (Equatorial Pacific Ocean). Geochemistry, Geophysics, Geosystems, 14(2):265. https://doi.org/10.1029/2012GC004429 Chiyonobu, S., 2009. Changes in calcareous nannofossils and its paleoceanographic significance in the North Atlantic, equatorial Pacific, and Indian Ocean during the last 550,000 years [PhD dissertation]. Tohoku University, Japan. http://hdl.handle.net/10097/39512 Ciummelli, M., and Raffi, I., 2013. New data on the stratigraphic distribution of the nannofossil genus Catinaster and on evolutionary relationships among its species. Journal of Micropalaeontology, 32(2):197. https://doi.org/10.1144/jmpaleo2013-002 Ciummelli, M., Raffi, I., and Backman, J., 2016. Biostratigraphy and evolution of Miocene Discoaster spp. from IODP Site U1338 in the Equatorial Pacific Ocean. Journal of Micropalaeontology, 36(2):137. https://doi.org/10.1144/jmpaleo2015-034 Coxall, H.K., and Spezzaferri, S., 2018. Taxonomy, biostratigraphy, and phylogeny of Oligocene Catapsydrax, Globorotaloides, and Protentelloides. In Wade, B.S., Olsson, R.K., Huber, B.T., and Berggren, W.A. (Eds.), Atlas of Oligocene Planktonic Foraminifera. Special Publication - Cushman Foundation for Foraminiferal Research, 46: 79–124. https://www.ucl.ac.uk/earth-sciences/sites/earth-sciences/files/Chapter_4.pdf de Vleeschouwer, D., Drury, A.J., Vahlenkamp, M., Rochholz, F., Liebrand, D., and Pälike, H., 2020. High-latitude biomes and rock weathering mediate climate–carbon cycle feedbacks on eccentricity timescales. Nature Communications, 11(1):5013. https://doi.org/10.1038/s41467-020-18733-w de Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., and Pälike, H., 2017. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y. Geology, 45(4):375–378. https://doi.org/10.1130/G38663.1 Drury, A.J., 2014. Late Miocene and early Pliocene palaeoceanography at the eastern equatorial Pacific IODP Site U1338: implications for climate evolution and stability [PhD dissertation]. Imperial College London, England. https://doi.org/10.25560/29946 Drury, A.J., and John, C.M., 2016. Exploring the potential of clumped isotope thermometry on coccolith-rich sediments as a sea surface temperature proxy. Geochemistry, Geophysics, Geosystems, 17(10):4092–4104. https://doi.org/10.1002/2016GC006459 Drury, A.J., John, C.M., and Shevenell, A.E., 2016. Evaluating climatic response to external radiative forcing during the late Miocene to early Pliocene: new perspectives from eastern equatorial Pacific (IODP U1338) and North Atlantic (ODP 982) locations. Paleoceanography and Paleoclimatology, 31(1):167–184. https://doi.org/10.1002/2015PA002881 Drury, A.J., Lee, G.P., Gray, W.R., Lyle, M., Westerhold, T., Shevenell, A.E., and John, C.M., 2018. Deciphering the state of the late Miocene to early Pliocene equatorial Pacific. Paleoceanography and Paleoclimatology, 33(3):246–263. https://doi.org/10.1002/2017PA003245 Drury, A.J., Westerhold, T., Frederichs, T., Tian, J., Wilkens, R., Channell, J.E.T., Evans, H., John, C.M., Lyle, M., and Röhl, U., 2017. Late Miocene climate and time scale reconciliation; accurate orbital calibration from a deep-sea perspective. Earth and Planetary Science Letters, 475:254–266. https://doi.org/10.1016/j.epsl.2017.07.038 Du, J., Tian, J., and Ma, W., 2022. The Late Miocene Carbon Isotope Shift driven by synergetic terrestrial processes: a box-model study. Earth and Planetary Science Letters, 584:117457. https://doi.org/10.1016/j.epsl.2022.117457 Dubois, N., and Mitchell, N.C., 2012. Large-scale sediment redistribution on the equatorial Pacific seafloor. Deep-Sea Research, Part I: Oceanographic Research Papers, 69:51–61. https://doi.org/10.1016/j.dsr.2012.07.006 Edgar, K.M., Pälike, H., and Wilson, P.A., 2013. Testing the impact of diagenesis on the δ18O and δ13C of benthic foraminiferal calcite from a sediment burial depth transect in the equatorial Pacific. Paleoceanography and Paleoclimatology, 28(3):468–480. https://doi.org/10.1002/palo.20045 Erhardt, A.M., 2013. Application of elemental and isotopic proxies to reconstruct Pacific Ocean circulation and productivity during periods of climate change [PhD dissertation]. Stanford University, CA. https://www.proquest.com/docview/2464616745 Erhardt, A.M., Pälike, H., and Paytan, A., 2013. High-resolution record of export production in the eastern equatorial Pacific across the Eocene-Oligocene transition and relationships to global climatic records. Paleoceanography and Paleoclimatology, 28(1):130–142. https://doi.org/10.1029/2012PA002347 Fox, L.R., and Wade, B.S., 2013. Systematic taxonomy of early-middle Miocene planktonic Foraminifera from the equatorial Pacific Ocean: Integrated Ocean Drilling Program, Site U1338. Journal of Foraminiferal Research, 43(4):374–405. https://doi.org/10.2113/gsjfr.43.4.374 Fox, L.R., Wade, B.S., Holbourn, A., Leng, M.J., and Bhatia, R., 2021. Temperature gradients across the Pacific Ocean during the middle Miocene. Paleoceanography and Paleoclimatology, 36(6):e2020PA003924. https://doi.org/10.1029/2020PA003924 Goto, K.T., Tejada, M.L.G., Tajika, E., and Suzuki, K., 2023. Enhanced magmatism played a dominant role in triggering the Miocene Climatic Optimum. Communications Earth & Environment, 4(1):21. https://doi.org/10.1038/s43247-023-00684-x Greenop, R., Sosdian, S.M., Henehan, M.J., Wilson, P.A., Lear, C.H., and Foster, G.L., 2019. Orbital forcing, ice volume, and CO2 across the Oligocene-Miocene transition. Paleoceanography and Paleoclimatology, 34(3):316. https://doi.org/10.1029/2018PA003420 Guidry, E.P., Richter, C., Acton, G.D., Channell, J.E.T., Evans, H.F., Ohneiser, C., Yamamoto, Y., and Yamazaki, T., 2012. Oligocene–Miocene magnetostratigraphy of deep-sea sediments from the equatorial Pacific (IODP Site U1333). In Jovane, L., Herrero-Bervera, E., Hinnov, L.A., and Housen, B. (Eds.), Magnetic Methods and the Timing of Geological Processes. Geological Society Special Publication, 373: 13–27. https://doi.org/10.1144/SP373.7 Hättig, K., Prokopiou, P., Schouten, S., and van der Meer, M.T.J., 2024. Large variability and 2H-depletion of Middle Miocene to Pleistocene alkenone hydrogen isotopes in the equatorial Pacific reflect subsurface, low light haptophyte growth. Organic Geochemistry:104840. https://doi.org/10.1016/j.orggeochem.2024.104840 Hayashi, H., Idemitsu, K., Wade, B.S., Idehara, Y., Kimoto, K., Nishi, H., and Matsui, H., 2013. Middle Miocene to Pleistocene planktonic foraminiferal biostratigraphy in the eastern Equatorial Pacific Ocean. Paleontological Research, 17(1):91–109. https://doi.org/10.2517/1342-8144-17.1.91 Hayashi, T., and Ohno, M., 2023. Diatoms in upper Pliocene–lower Pleistocene sediments, subpolar North Atlantic: 5. Thalassiosira lindstroemii. Diatom, 39:1–11. https://doi.org/10.11464/diatom.39.1 Herrmann, S., Weller, A.F., Henderiks, J., and Thierstein, H.R., 2012. Global coccolith size variability in Holocene deep-sea sediments. Marine Micropaleontology, 82:1–12. https://doi.org/10.1016/j.marmicro.2011.09.006 Hodel, F., Grespan, R., de Rafélis, M., Dera, G., Lezin, C., Nardin, E., Rouby, D., Aretz, M., Steinnman, M., Buatier, M., Lacan, F., Jeandel, C., and Chavagnac, V., 2021. Drake Passage gateway opening and Antarctic Circumpolar Current onset 31 Ma ago: the message of foraminifera and reconsideration of the Neodymium isotope record. Chemical Geology, 570:120171. https://doi.org/10.1016/j.chemgeo.2021.120171 Holbourn, A., Kuhnt, W., Kochhann, K.G.D., Andersen, N., and Sebastian Meier, K.J., 2015. Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum. Geology, 43(2):123–126. https://doi.org/10.1130/G36317.1 Holbourn, A., Kuhnt, W., Kochhann, K.G.D., Matsuzaki, K.M., and Andersen, N., 2022. Middle Miocene climate–carbon cycle dynamics: keys for understanding future trends on a warmer Earth? In Aiello, I.W., Barron, J.A., and Ravelo, A.C. (Eds.), Understanding the Monterey Formation and Similar Biosiliceous Units across Space and Time. Special Paper - Geological Society of America, 556. https://doi.org/10.1130/2022.2556(05) Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., and Andersen, N., 2014. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology, 42(1):19–22. https://doi.org/10.1130/G34890.1 Holbourn, A.E., Kuhnt, W., Clemens, S.C., Kochhann, K.G.D., Jöhnck, J., Lübbers, J., and Andersen, N., 2018. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nature Communications, 9(1):1584. https://doi.org/10.1038/s41467-018-03950-1 Hyeong, K., Kuroda, J., Seo, I., and Wilson, P.A., 2016. Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition. Scientific Reports, 6(1):30647. https://doi.org/10.1038/srep30647 Hyeong, K., Lee, J., Seo, I., Lee, M.J., Yoo, C.M., and Khim, B.-K., 2014. Southward shift of the intertropical convergence zone due to Northern Hemisphere cooling at the Oligocene–Miocene boundary. Geology, 42(8):667–670. https://doi.org/10.1130/G35664.1 Jian, Z., Dang, H., Yu, J., Wu, Q., Gong, X., Stepanek, C., Colin, C., Hu, L., Lohmann, G., Zhou, X., and Wan, S., 2023. Changes in deep Pacific circulation and carbon storage during the Pliocene-Pleistocene transition. Earth and Planetary Science Letters, 605:118020. https://doi.org/10.1016/j.epsl.2023.118020 Kaboth-Bahr, S., and Mudelsee, M., 2022. The multifaceted history of the Walker Circulation during the Plio-Pleistocene. Quaternary Science Reviews, 286:107529. https://doi.org/10.1016/j.quascirev.2022.107529 Kamikuri, S., 2012. Evolutionary changes in the biometry of the fossil radiolarian Stichocorys peregrina lineage in the eastern equatorial and eastern North Pacific. Marine Micropaleontology, 90–91:13–28. https://doi.org/10.1016/j.marmicro.2012.04.003 Kamikuri, S., 2019. Radiolarian assemblages from the lower to middle Miocene at IODP Site U1335 in the eastern equatorial Pacific. Bulletin of the Geological Survey of Japan, 70(1–2):137–161. https://doi.org/10.9795/bullgsj.70.137 Kamikuri, S., and Moore, T.C., 2017. Reconstruction of oceanic circulation patterns in the tropical Pacific across the early/middle Miocene boundary as inferred from radiolarian assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 487:136–148. https://doi.org/10.1016/j.palaeo.2017.08.028 Kamikuri, S., Moore, T.C., Lyle, M., Ogane, K., and Suzuki, N., 2013. Early and middle Eocene radiolarian assemblages in the eastern equatorial Pacific Ocean (IODP Leg 320 Site U1331): faunal changes and implications for paleoceanography. Marine Micropaleontology, 98:1–13. https://doi.org/10.1016/j.marmicro.2012.09.004 Kamikuri, S., Moore, T.C., Matsui, H., and Nishi, H., 2019. Radiolarian biostratigraphy and faunal turnover across the early/middle Miocene boundary in the equatorial Pacific. Paleontological Research, 23(4):245–260. https://doi.org/10.2517/2018PR024 Kamikuri, S., Moore, T.C., Ogane, K., Suzuki, N., Pälike, H., and Nishi, H., 2012. Early Eocene to early Miocene radiolarian biostratigraphy for the low-latitude Pacific Ocean. Stratigraphy, 9(1):77–108. https://www.micropress.org/microaccess/stratigraphy/issue-292/article-1785 Karatsolis, B.T., Lougheed, B.C., De Vleeschouwer, D., and Henderiks, J., 2022. Abrupt conclusion of the late Miocene-early Pliocene biogenic bloom at 4.6-4.4 Ma. Nature Communications, 13(1):353. https://doi.org/10.1038/s41467-021-27784-6 Kawabata, H., Yokoyama, Y.-N., Kuroda, J., Iryu, Y., and Kano, A., 2018. Carbonate topics on IODP voyages. Geological Magazine, 124(1):35–45. https://doi.org/10.5575/geosoc.2017.0081 Kimble, K.M., Herbert, T.D., and Jones, C.A., 2024. Pliocene weakening of gradients in temperature but not in productivity in the eastern equatorial Pacific. Paleoceanography and Paleoclimatology, 39(3):e2023PA004711. https://doi.org/10.1029/2023PA004711 King, D.J., Wade, B.S., and Miller, C.G., 2023. Biostratigraphic utility of coiling direction in Miocene planktonic foraminiferal genus Paragloborotalia. Newsletters on Stratigraphy. https://doi.org/10.1127/nos/2023/0681 King, D.J., and Wade, B.S., 2017. The extinction of Chiloguembelina cubensis in the Pacific Ocean: implications for defining the base of the Chattian (upper Oligocene). Advances in Paleogene research, 50(3):311–339. https://doi.org/10.1127/nos/2016/0308 Kochhann, K.G.D., Holbourn, A., Kuhnt, W., Channell, J.E.T., Lyle, M., Shackford, J.K., Wilkens, R.H., and Andersen, N., 2016. Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum. Paleoceanography, 31(9):1176–1192. https://doi.org/10.1002/2016PA002988 Kochhann, K.G.D., Holbourn, A., Kuhnt, W., and Jian, X., 2017. Eastern equatorial Pacific benthic foraminiferal distribution and deep water temperature changes during the early to middle Miocene. Marine Micropaleontology, 133:28–39. https://doi.org/10.1016/j.marmicro.2017.05.002 Kocken, I.J., Cramwinckel, M.J., Zeebe, R.E., Middelburg, J.J., and Sluijs, A., 2019. The 405 kyr and 2.4 Myr eccentricity components in Cenozoic carbon isotope records. Climate of the Past, 15:91–104. https://doi.org/10.5194/cp-15-91-2019 Krause, A.J., Sluijs, A., van der Ploeg, R., Lenton, T.M., and Pogge von Strandmann, P.A.E., 2023. Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum. Nature Geoscience, 16(8):730–738. https://doi.org/10.1038/s41561-023-01234-y Leckie, R.M., Wade, B.S., Pearson, P.N., Fraass, A.J., King, D.J., Olsson, R.K., Premoli Silva, I., Spezzaferri, S., and Berggren, W.A., 2018. Taxonomy, biostratigraphy, and phylogeny of Oligocene and early Miocene Paragloborotalia and Parasubbotina. In Wade, B.S., Olsson, R.K., Huber, B.T., and Berggren, W.A. (Eds.), Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation Special Publication, 46: 125–178. https://www.ucl.ac.uk/earth-sciences/sites/earth-sciences/files/Chapter_5.pdf Lee, I.T., Ko, T.W., Lee, K.E., Bae, S.W., Hwang, G.C., and Kim, R.A., 2022. Calibration of the XRF-Estimated CaCO3 Content in the Western Tropical Pacific Deep-Sea Sediments. Ocean Science Journal, 57(2):357–364. https://doi.org/10.1007/s12601-022-00061-3 Leutert, T.J., Modestou, S., Bernasconi, S.M., and Meckler, A.N., 2021. Southern Ocean bottom-water cooling and ice sheet expansion during the Middle Miocene climate transition. Climate of the Past, 17(5):2255–2271. https://doi.org/10.5194/cp-17-2255-2021 Li, J., 2019. Germanium-silicon ratios as a record of mid Miocene silica fluxes to the oceans [MS thesis]. Cornell University, Ithaca, NY. https://www.proquest.com/docview/2300629399?pq-origsite=gscholar Liebrand, D., Wade, B.S., Beddow, H.M., King, D.J., Harrison, A.D., Johnstone, H.J.H., Drury, A.J., Pälike, H., Sluijs, A., and Lourens, L.J., 2024. Oceanography of the eastern equatorial Pacific Ocean across the Oligocene-Miocene trransition. Paleoceanography and Paleoclimatology, 39(7):e2024PA004892. https://doi.org/10.1029/2024PA004892 Littler, K., Westerhold, T., Drury, A.J., Liebrand, D., Lisiecki, L., and Pälike, H., 2019. Astronomical time keeping of Earth history: an invaluable contribution of scientific ocean drilling. Oceanography, 32(1):72–76. https://doi.org/10.5670/oceanog.2019.122 Liu, J., Tian, J., Liu, Z., Herbert, T.D., Fedorov, A.V., and Lyle, M., 2019. Eastern equatorial Pacific cold tongue evolution since the late Miocene linked to extratropical climate. Science Advances, 5(4):eaau6060. https://doi.org/10.1126/sciadv.aau6060 Lu, Y., Wang, D., Jiang, X., Lin, Z., Yang, Y., and Liu, Q., 2021. Paleoenvironmental significance of magnetofossils in pelagic sediments in the equatorial Pacific Ocean before and after the Eocene/Oligocene boundary. Journal of Geophysical Research: Solid Earth, 126(9):e2021JB022221. https://doi.org/10.1029/2021JB022221 Lyle, M., and Baldauf, J., 2015. Biogenic sediment regimes in the Neogene equatorial Pacific, IODP Site U1338: burial, production, and diatom community. Palaeogeography, Palaeoclimatology, Palaeoecology, 433:106–128. https://doi.org/10.1016/j.palaeo.2015.04.001 Lyle, M., Drury, A.J., Tian, J., Wilkens, R., and Westerhold, T., 2019. Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity. Climate of the Past, 15(5):1715–1739. https://doi.org/10.5194/cp-15-1715-2019 Ma, X., Ma, W., Tian, J., Yu, J., and Huang, E., 2022. Ice sheet and terrestrial input impacts on the 100-kyr ocean carbon cycle during the middle Miocene. Global and Planetary Change, 208:103723. https://doi.org/10.1016/j.gloplacha.2021.103723 Matsui, H., Nishi, H., Kuroyanagi, A., Hayashi, H., Ikehara, M., and Takashima, R., 2017. Vertical thermal gradient history in the eastern equatorial Pacific during the early to middle Miocene: implications for the equatorial thermocline development. Paleoceanography and Paleoclimatology, 32(7):729–743. https://doi.org/10.1002/2016PA003058 Matsui, H., Nishi, H., Takashima, R., Kuroyanagi, A., Ikehara, M., Takayanagi, H., and Iryu, Y., 2016. Changes in the depth habitat of the Oligocene planktic foraminifera (Dentoglobigerina venezuelana) induced by thermocline deepening in the eastern equatorial Pacific. Paleoceanography and Paleoclimatology, 31(6):715–731. https://doi.org/10.1002/2016PA002950 Mejía, L.M., Bernasconi, S.M., Zhang, H., Guitián, J., Fernandez, A., Hernández-Almeida, I., Jaggi, M., Haghipour, N., and Stoll, H., 2023. Clumped isotopes in globally distributed Holocene coccoliths reveal their habitat depth. Earth and Planetary Science Letters, 619:118313. https://doi.org/10.1016/j.epsl.2023.118313 Miller, D.N., 2014. Geochemical analysis of Eolian fluxes during the transition from greenhouse to icehouse conditions in equatorial Pacific [MS thesis]. University of South Carolina, Columbia, SC. https://scholarcommons.sc.edu/etd/2852 Miller, K.G., Browning, J.V., Schmelz, W.J., Kopp, R.E., Mountain, G.S., and Wright, J.D., 2020. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Science Advances, 6(20):eaaz1346. https://doi.org/10.1126/sciadv.aaz1346 Miller, K.G., Schmelz, W.J., Browning, J.V., Kopp, R.E., Mountain, G.S., and Wright, J.D., 2020. Ancient sea level as key to the future. Oceanography, 33(2):32–41. https://doi.org/10.5670/oceanog.2020.224 Minton, P., 2022. Middle to Late Miocene palaeoceanography of the equatorial Pacific Ocean [PhD dissertation]. University College London, England. https://discovery.ucl.ac.uk/id/eprint/10160134/ Mitchell, N.C., and Dubois, N., 2014. Evaluating Cenozoic equatorial sediment deposition anomalies for potential paleoceanographic and Pacific plate motion applications. Marine Geophysical Research, 35(1):1–20. https://doi.org/10.1007/s11001-013-9196-2 Mitchell, N.C., and Huthnance, J.M., 2013. Geomorphological and geochemical evidence (230Th anomalies) for cross-equatorial currents in the central Pacific. Deep Sea Research, Part I: Oceanographic Research Papers, 78:24–41. https://doi.org/10.1016/j.dsr.2013.04.003 Moore, G.F., and Strasser, M., 2016. Large mass transport deposits in Kumano Basin, Nankai Trough, Japan. In Lamarche, G., Mountjoy, J., Bull, S., Hubble, T., Krastel, S., Lane, E., Micallef, A., Moscardelli, L., Mueller, C., Pecher, I., and Woelz, S. (Eds.), Advances in Natural and Technological Hazards Research (Volume 41): Submarine Mass Movements and Their Consequences. 371–379. https://doi.org/10.1007/978-3-319-20979-1_37 Moore, T.C., Jr., 2013. Erosion and reworking of Pacific sediments near the Eocene-Oligocene boundary. Paleoceanography and Paleoclimatology, 28(2):263–273. https://doi.org/10.1002/palo.20027 Moore, T.C., Jr., Kamikuri, S., Erhardt, A.M., Baldauf, J., Coxall, H.K., and Westerhold, T., 2015. Radiolarian stratigraphy near the Eocene–Oligocene boundary. Marine Micropaleontology, 116:50–62. https://doi.org/10.1016/j.marmicro.2015.02.002 Moore, T.C., Jr., Mayer, L.A., and Lyle, M., 2012. Sediment mixing in the tropical Pacific and radiolarian stratigraphy. Geochemistry, Geophysics, Geosystems, 13(8):Q08006. https://doi.org/10.1029/2012GC004198 Moore, T.C., Jr., Wade, B.S., Westerhold, T., Erhardt, A.M., Coxall, H.K., Baldauf, J., and Wagner, M., 2014. Equatorial Pacific productivity changes near the Eocene-Oligocene boundary. Paleoceanography, 29(9):825–844. https://doi.org/10.1002/2014PA002656 Murphy, B.H., 2011. Insights into the pace and paleoceanography of early Eocene events of global warning [PhD dissertation]. University of California, Santa Cruz, CA. https://www.proquest.com/docview/887717332 Notaro, A., Raffi, I., and Reghellin, D., 2023. The distribution range of calcareous nannofossil species Reticulofenestra pseudoumbilicus in the Miocene: an example of ecological influence on evolutionary development. Rivista Italiana di Paleontologia e Stratigrafia, 129(1):91–110. https://doi.org/10.54103/2039-4942/17769 Ohneiser, C., Acton, G., Channell, J.E.T., Wilson, G.S., Yamamoto, Y., and Yamazaki, T., 2013. A middle Miocene relative paleointensity record from the equatorial Pacific. Earth and Planetary Science Letters, 374:227–238. https://doi.org/10.1016/j.epsl.2013.04.038 Ortiz, E., 2018. Deciphering equatorial Pacific deep-sea sediment transport regimes by core-log-seismic integration [MS thesis]. Texas A&M University, College Station, TX. http://hdl.handle.net/1969.1/173832 Pabich, S., Vollmer, C., and Gussone, N., 2020. Investigating crystal orientation patterns of foraminiferal tests by electron backscatter diffraction analysis. European Journal of Mineralogy, 32(6):613–622. https://doi.org/10.5194/ejm-32-613-2020 Pälike, H., Lyle, M.W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton, G., Anderson, L., Backman, J., Baldauf, J., Beltran, C., Bohaty, S.M., Bown, P., Busch, W., Channell, J.E.T., Chun, C.O.J., Delaney, M., Dewangan, P., Dunkley Jones, T., Edgar, K.M., Evans, H., Fitch, P., Foster, G.L., Gussone, N., Hasegawa, H., Hathorne, E.C., Hayashi, H., Herrle, J.O., Holbourn, A., Hovan, S., Hyeong, K., Iijima, K., Ito, T., Kamikuri, S.-i., Kimoto, K., Kuroda, J., Leon-Rodriguez, L., Malinverno, A., Moore Jr, T.C., Murphy, B.H., Murphy, D.P., Nakamura, H., Ogane, K., Ohneiser, C., Richter, C., Robinson, R., Rohling, E.J., Romero, O., Sawada, K., Scher, H., Schneider, L., Sluijs, A., Takata, H., Tian, J., Tsujimoto, A., Wade, B.S., Westerhold, T., Wilkens, R., Williams, T., Wilson, P.A., Yamamoto, Y., Yamamoto, S., Yamazaki, T., and Zeebe, R.E., 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, 488(7413):609–614. https://doi.org/10.1038/nature11360 Passchier, S., 2011. Ancient Antarctic fjords. Nature, 474(7349):46–47. https://doi.org/10.1038/474046a Piela, C., Lyle, M., Marcantonio, F., Baldauf, J., and Olivarez Lyle, A., 2012. Biogenic sedimentation in the equatorial Pacific: carbon cycling and paleoproduction, 12-24 Ma. Paleoceanography and Paleoclimatology, 27(2):PA2204. https://doi.org/10.1029/2011PA002236 Piela, C.M., 2012. Equatorial Pacific sediment deposition during the early to middle Miocene: carbon cycling and proxies for productivity [MS thesis]. Texas A&M University, College Station, TX. https://hdl.handle.net/1969.1/ETD-TAMU-2010-12-8194 Prentice, K., Jones, T.D., Lees, J., Young, J., Bown, P., Langer, G., and Fearn, S., 2014. Trace metal (Mg/Ca and Sr/Ca) analyses of single coccoliths by secondary ion mass spectrometry. Geochimica et Cosmochimica Acta, 146:90–106. https://doi.org/10.1016/j.gca.2014.09.041 Prentice, K.C., 2015. New approaches to coccolith geochemistry and its application to Cenozoic paleoceanography [PhD dissertation]. Imperial College London, United Kingdom. https://doi.org/10.25560/53385 Reghellin, D., 2019. Eastern equatorial Pacific bulk sediment properties and paleoceanography since the late Neogene [PhD dissertation]. Stockholm University, Sweden. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1306587&dswid=237 Reghellin, D., Coxall, H.K., Dickens, G.R., and Backman, J., 2015. Carbon and oxygen isotopes of bulk carbonate in sediment deposited beneath the eastern Equatorial Pacific over the last 8 million years. Paleoceanography and Paleoclimatology, 30(10):1261–1286. https://doi.org/10.1002/2015PA002825 Reghellin, D., Coxall, H.K., Dickens, G.R., Galeotti, S., and Backman, J., 2022. The Late Miocene-Early Pliocene biogenic bloom in the eastern equatorial Pacific: new insights from Integrated Ocean Drilling Program Site U1335. Paleoceanography and Paleoclimatology, 37(3):e2021PA004313. https://doi.org/10.1029/2021PA004313 Reghellin, D., Dickens, G.R., and Backman, J., 2013. The relationship between wet bulk density and carbonate content in sediments from the eastern equatorial Pacific. Marine Geology, 344:41–52. https://doi.org/10.1016/j.margeo.2013.07.007 Regnier, A.M., 2023. Impact of the Miocene carbonate crash (13–8 Ma) on bulk carbonate δ44/40Ca in the eastern equatorial Pacific [MS thesis]. Ohio State University, Columbus, OH. http://rave.ohiolink.edu/etdc/view?acc_num=osu168329735635357 Robinson, R.S., Moore, T.C., Erhardt, A.M., and Scher, H.D., 2015. Evidence for changes in subsurface circulation in the late Eocene equatorial Pacific from radiolarian-bound nitrogen isotope values. Paleoceanography and Paleoclimatology, 30(7):912–922. https://doi.org/10.1002/2015PA002777 Rousselle, G., Beltran, C., Sicre, M.-A., Raffi, I., and De Rafelis, M., 2013. Changes in sea-surface conditions in the equatorial Pacific during the middle Miocene–Pliocene as inferred from coccolith geochemistry. Earth and Planetary Science Letters, 361:412–421. https://doi.org/10.1016/j.epsl.2012.11.003 Sahy, D., Condon, D.J., Hilgen, F.J., and Kuiper, K.F., 2017. Reducing disparity in radio-isotopic and astrochronology-based time scales of the late Eocene and Oligocene. Paleoceanography and Paleoclimatology, 32(10):1018–1035. https://doi.org/10.1002/2017PA003197 Sahy, D., Hiess, J., Fischer, A.U., Condon, D.J., Terry, D.O., Jr., Abels, H.A., Husing, S.K., and Kuiper, K.F., 2019. Accuracy and precision of the late Eocene–early Oligocene geomagnetic polarity time scale. Geological Society of America Bulletin, 132(1):373–388. https://doi.org/10.1130/B35184.1 Sauermilch, I., Mateo, Z.R.P., and Boaga, J., 2019. A comparative analysis of time–depth relationships derived from scientific ocean drilling expeditions. Marine Geophysical Research, 40(4):635–641. https://doi.org/10.1007/s11001-019-09393-7 Schneider, L.J., Bralower, T.J., and Kump, L.R., 2011. Response of nannoplankton to early Eocene ocean destratification. Palaeogeography, Palaeoclimatology, Palaeoecology, 310(3):152–162. https://doi.org/10.1016/j.palaeo.2011.06.018 Si, W., Berggren, W.A., and Aubry, M.-P., 2018. Mosaic evolution in the middle Miocene planktonic foraminifera Fohsella lineage. Paleobiology, 44(2):263–272. https://doi.org/10.1017/pab.2017.23 Si, W., and Rosenthal, Y., 2019. Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2. Nature Geoscience, 12(10):833–838. https://doi.org/10.1038/s41561-019-0450-3 Stepanova, A., and Lyle, M., 2014. Deep-sea Ostracoda from the eastern Equatorial Pacific (ODP Site 1238) over the last 460 ka. Marine Micropaleontology, 111:100–117. https://doi.org/10.1016/j.marmicro.2014.06.003 Stoll, H., 2012. Ancient burial at sea. Nature, 488(7413):596–597. https://doi.org/10.1038/488596a Takata, H., Lee, J.-m., Sakai, S., Nomura, R., Tsujimoto, A., Nishi, H., Lim, H.S., and Khim, B.-K., 2015. Impact of early Oligocene deep water circulation to the benthic foraminifera in the eastern equatorial Pacific. Micropaleontology, 61(3):177–184. https://www.jstor.org/stable/44512447 Takata, H., Nomura, R., Tsujimoto, A., and Khim, B.-K., 2012. Late early Oligocene deep-sea benthic Foraminifera and their faunal response to paleoceanographic changes in the eastern equatorial Pacific. Marine Micropaleontology, 96–97:123–132. https://doi.org/10.1016/j.marmicro.2012.09.002 Takata, H., Nomura, R., Tsujimoto, A., Khim, B.-K., and Chung, I.K., 2013. Abyssal benthic foraminifera in the eastern Equatorial Pacific (IODP Exp 320) during the middle Eocene. Journal of Paleontology, 87(6):1160–1185. https://doi.org/10.1666/12-107 Tao, Z., 2024. Late Miocene orbital forcing and palaeoceanography in the eastern equatorial Pacific [PhD dissertation]. University College London, UK. https://discovery.ucl.ac.uk/id/eprint/10187955 Taylor, V.E., Westerhold, T., Bohaty, S.M., Backman, J., Dunkley Jones, T., Edgar, K.M., Egan, K.E., Lyle, M., Pälike, H., Röhl, U., Zachos, J., and Wilson, P.A., 2023. Transient shoaling, over-deepening and settling of the calcite compensation depth at the Eocene-Oligocene Transition. Paleoceanography and Paleoclimatology, 38(6):e2022PA004493. https://doi.org/10.1029/2022PA004493 Taylor, V.E., Wilson, P.A., Bohaty, S.M., and Meckler, A.N., 2023. Transient deep ocean cooling in the eastern equatorial Pacific Ocean at the Eocene-Oligocene Transition. Paleoceanography and Paleoclimatology, 38(8):e2023PA004650. https://doi.org/10.1029/2023PA004650 Tian, J., Ma, W., Lyle, M.W., and Shackford, J.K., 2014. Synchronous mid-Miocene upper and deep oceanic δ13C changes in the East Equatorial Pacific linked to ocean cooling and ice sheet expansion. Earth and Planetary Science Letters, 406:72. https://doi.org/10.1016/j.epsl.2014.09.013 Tian, J., Ma, X., Zhou, J., Jiang, X., Lyle, M., Shackford, J., and Wilkens, R., 2018. Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific–Atlantic comparison: High resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337. Earth and Planetary Science Letters, 499:185–196. https://doi.org/10.1016/j.epsl.2018.07.025 Tian, J., Yang, M., Lyle, M.W., Wilkens, R., and Shackford, J.K., 2013. Obliquity and long eccentricity pacing of the middle Miocene climate transition. Geochemistry, Geophysics, Geosystems, 14(6):1740–1755. https://doi.org/10.1002/ggge.20108 Toffanin, F., 2012. Biochronologic and evolutionary study of calcareous nannofossil assemblages during the Middle Eocene Climatic Optimum [PhD dissertation]. University of Padua, Italy. https://hdl.handle.net/11577/3422518 Toffanin, F., Agnini, C., Rio, D., Acton, G., and Westerhold, T., 2013. Middle Eocene to early Oligocene calcareous nannofossil biostratigraphy at IODP Site U1333 (equatorial Pacific). Micropaleontology, 59(1):69–82. https://www.jstor.org/stable/24413317 Tominaga, M., Lyle, M., and Mitchell, N.C., 2011. Seismic interpretation of pelagic sedimentation regimes in the 18–53 Ma eastern equatorial Pacific: basin-scale sedimentation and infilling of abyssal valleys. Geochemistry, Geophysics, Geosystems, 12(3):Q03004. https://doi.org/10.1029/2010GC003347 Toyama, K., Paytan, A., Sawada, K., and Hasegawa, T., 2020. Sulfur isotope ratios in co-occurring barite and carbonate from Eocene sediments: a comparison study. Chemical Geology, 535:119454. https://doi.org/10.1016/j.chemgeo.2019.119454 Trubovitz, S., 2021. An investigation of radiolarian macroevolutionary dynamics in the tropical and polar Neogene oceans [PhD dissertation]. University of Nevada, Reno, NV. http://hdl.handle.net/11714/8037 Trubovitz, S., Lazarus, D., Renaudie, J., and Noble, P.J., 2020. Marine plankton show threshold extinction response to Neogene climate change. Nature Communications, 11(1):5069. https://doi.org/10.1038/s41467-020-18879-7 Trubovitz, S., Renaudie, J., Lazarus, D., and Noble, P., 2022. Late Neogene Lophophaenidae (Nassellaria, Radiolaria) from the eastern equatorial Pacific. Zootaxa, 5160(1):001–158. https://www.mapress.com/zt/article/view/zootaxa.5160.1.1/47856 Tsujimoto, A., Nomura, R., Takata, H., and Kimoto, K., 2013. A deep-sea benthic foraminiferal record of surface productivity changes during the constriction and closure of the Central American Seaway: IODP Hole U1338B, eastern equatorial Pacific. Journal of Foraminiferal Research, 43(4):361–373. https://doi.org/10.2113/gsjfr.43.4.361 Turco, E., Hilgen, F., Raffi, I., Di Stefano, A., Foresi, L.M., Holbourn, A., Iaccarino, S.M., and Lirer, F., 2024. The Global Stratotype Section and Point (GSSP) of the Langhian Stage and of the Middle Miocene subseries. Episodes. https://doi.org/10.18814/epiiugs/2023/023024 van der Ploeg, R., Selby, D., Cramwinckel, M.J., Li, Y., Bohaty, S.M., Middelburg, J.J., and Sluijs, A., 2018. Middle Eocene greenhouse warming facilitated by diminished weathering feedback. Nature Communications, 9(1):2877. https://doi.org/10.1038/s41467-018-05104-9 van Dijk, I.E.Y., 2012. Reconstructing Miocene seawater Mg/Ca using hyaline and porcelaneous foraminifera [MS thesis]. Utrecht University, Netherlands. https://dspace.library.uu.nl/handle/1874/253922 Vasiliev, M.A., Blum, P., Chubarian, G., Olsen, R., Bennight, C., Cobine, T., Fackler, D., Hastedt, M., Houpt, D., Mateo, Z., and Vasilieva, Y.B., 2011. A new natural gamma radiation measurement system for marine sediment and rock analysis. Journal of Applied Geophysics, 75(3):455–463. https://doi.org/10.1016/j.jappgeo.2011.08.008 Veenstra, T.J.T., Sangiorgi, F., and Sluijs, A., 2012. 544 Cenozoic organic-walled dinoflagellate cysts from the central Pacific Ocean (IODP Expeditions 320–321; Pacific Equatorial Age Transect; Sites U1331-U1338). Japanese Journal of Palynology, 58(Special):246. https://doi.org/10.24524/jjpal.58.Special_246_1 Voigt, J., 2015. Preservation of geochemical proxies in foraminifera during carbonate diagenesis in sediments of the eastern equatorial Pacific [PhD dissertation]. Christian-Albrechts-Universität, Kiel, Germany. https://oceanrep.geomar.de/id/eprint/30996/ Voigt, J., Hathorne, E.C., Frank, M., and Holbourn, A., 2016. Minimal influence of recrystallization on middle Miocene benthic foraminiferal stable isotope stratigraphy in the eastern equatorial Pacific. Paleoceanography and Paleoclimatology, 31(1):98–114. https://doi.org/10.1002/2015PA002822 Voigt, J., Hathorne, E.C., Frank, M., Vollstaedt, H., and Eisenhauer, A., 2015. Variability of carbonate diagenesis in equatorial Pacific sediments deduced from radiogenic and stable Sr isotopes. Geochimica et Cosmochimica Acta, 148:360–377. https://doi.org/10.1016/j.gca.2014.10.001 Wade, B.S., Olsson, R.K., Pearson, P.N., Edgar, K.M., and Premoli Silva, I., 2018. Taxonomy, biostratigraphy, and phylogeny of Oligocene Subbotina. In Wade, B.S., Olsson, R.K., Pearson, P.N., Huber, B.T., and Berggren, W.A. (Eds.), Atlas of Oligocene Planktonic Foraminifera. Cushman Foundation Special Publication, 46: 307–330. https://www.ucl.ac.uk/earth-sciences/sites/earth-sciences/files/Chapter_10.pdf Wade, B.S., Pearson, P.N., Olsson, R.K., Fraass, A.J., Leckie, R.M., and Hemleben, C., 2018. Taxonomy, biostratigraphy, and phylogeny of Oligocene and lower Miocene Dentoglobigerina and Globoquadrina. In Wade, B.S., Olsson, R.K., Pearson, P.N., Huber, B.T., and Berggren, W.A. (Eds.), Atlas of Oligocene planktonic Foraminifera. Cushman Foundation Special Publication, 46: 331–384. https://www.ucl.ac.uk/earth-sciences/sites/earth-sciences/files/Chapter_11.pdf Wade, B.S., Poole, C.R., and Boyd, J.L., 2016. Giantism in Oligocene planktonic foraminifera Paragloborotalia opima; morphometric constraints from the equatorial Pacific Ocean. Newsletters on Stratigraphy, 49(3):421–444. https://doi.org/10.1127/nos/2016/0270 Wang, D., Chen, Y., Liu, Y., Roberts, A.P., Rohling, E.J., Zhao, X., Zhang, X., Li, J., Yao, W., Qu, X., Tan, X., and Liu, Q., 2024. Bacterial magnetofossil evidence for enhanced Pacific Ocean respired carbon storage during buildup of Antarctic glaciation. Geology. https://doi.org/10.1130/G52016.1 Wang, D., Roberts, A.P., Rohling, E.J., Yao, W., Zhong, Y., Yao, Z., Lu, Y., and Liu, Q., 2023. Equatorial Pacific dust fertilization and source weathering influences on Eocene to Miocene global CO2 decline. Communications Earth & Environment, 4(1):37. https://doi.org/10.1038/s43247-023-00702-y Westerhold, T., Marwan, N., Drury, A.J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J.S.K., Bohaty, S.M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D.A., Holbourn, A.E., Kroon, D., Lauretano, V., Littler, K., Lourens, L.J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R.H., Wilson, P.A., and Zachos, J.C., 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369(6509):1383–1387. https://doi.org/10.1126/science.aba6853 Westerhold, T., Röhl, U., and Laskar, J., 2012. Time scale controversy: accurate orbital calibration of the early Paleogene. Geochemistry, Geophysics, Geosystems, 13(6):Q06015. https://doi.org/10.1029/2012GC004096 Wilson, J.K., 2014. Early Miocene carbonate dissolution in the eastern equatorial Pacific [PhD dissertation]. Texas A&M University, College Station, TX. https://hdl.handle.net/1969.1/153962 Wittke, A., Gussone, N., Derigs, D., and Teichert, B.M.A., 2022. Evolution of fluid flow and carbonate recrystallization rates in deep-sea sediments of the equatorial Pacific. Geo-Marine Letters, 42(1):3. https://doi.org/10.1007/s00367-021-00720-9 Wittke, A., Gussone, N., März, C., and Teichert, B.M.A., 2020. The effect of extraction techniques on calcium concentrations and isotope ratios of marine pore water. Isotopes in Environmental and Health Studies, 56(1):51–68. https://doi.org/10.1080/10256016.2019.1702038 Woodhouse, A., Jackson, S.L., Jamieson, R.A., Newton, R.J., Sexton, P.F., and Aze, T., 2021. Adaptive ecological niche migration does not negate extinction susceptibility. Scientific Reports, 11(1):15411. https://doi.org/10.1038/s41598-021-94140-5 Woodhouse, A., Procter, F.A., Jackson, S.L., Jamieson, R.A., Newton, R.J., Sexton, P.F., and Aze, T., 2023. Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion. Biogeosciences, 20(1):121–139. https://doi.org/10.5194/bg-20-121-2023 Yamamoto, S., Sawada, K., Nakamura, H., Kobayashi, M., and Kawamura, K., 2014. Stable carbon isotopic variation of long chain n-alkanoic acids in the equatorial Pacific sediments over the last 40 Ma: implications for expansion of C4 grassland in South America. Organic Geochemistry, 76:62–71. https://doi.org/10.1016/j.orggeochem.2014.07.004 Yamamoto, Y., Yamazaki, T., Acton, G.D., Richter, C., Guidry, E.P., and Ohneiser, C., 2014. Palaeomagnetic study of IODP Sites U1331 and U1332 in the equatorial Pacific: extending relative geomagnetic palaeointensity observations through the Oligocene and into the Eocene. Geophysical Journal International, 196(2):694–711. https://doi.org/10.1093/gji/ggt412 Yamazaki, T., 2011. Paleoposition of the intertropical convergence zone in the eastern Pacific inferred from glacial-interglacial changes in terrigenous and biogenic magnetic mineral fractions. Geology, 40(2):151–154. https://doi.org/10.1130/G32646.1 Yamazaki, T., and Yamamoto, Y., 2018. Relative paleointensity and inclination anomaly over the last 8 myr obtained from the Integrated Ocean Drilling Program Site U1335 sediments in the eastern equatorial Pacific. Journal of Geophysical Research: Solid Earth, 123(9):7305–7320. https://doi.org/10.1029/2018JB016209 Yamazaki, T., Yamamoto, Y., Acton, G., Guidry, E.P., and Richter, C., 2013. Rock-magnetic artifacts on long-term relative paleointensity variations in sediments. Geochemistry, Geophysics, Geosystems, 14(1):29–43. https://doi.org/10.1002/ggge.20064 Yao, W., Markovic, S., Paytan, A., Erhardt, A.M., and Wortmann, U.G., 2021. Quantifying pyrite oxidation on continental shelves during the onset of Antarctic glaciation in the Eocene-Oligocene transition. Earth and Planetary Science Letters, 568:117015. https://doi.org/10.1016/j.epsl.2021.117015 Yao, W., Paytan, A., Griffith, E.M., Martínez-Ruiz, F., Markovic, S., and Wortmann, U.G., 2020. A revised seawater sulfate S-isotope curve for the Eocene. Chemical Geology, 532:119382. https://doi.org/10.1016/j.chemgeo.2019.119382 Zhang, Y.G., Pagani, M., and Zhonghui, L., 2014. A 12-million-year temperature history of the tropical Pacific Ocean. Science, 344(6179):84–87. https://doi.org/10.1126/science.1246172 Zhou, X., Rosenthal, Y., Haynes, L., Si, W., Evans, D., Huang, K.-F., Hönisch, B., and Erez, J., 2021. Planktic foraminiferal Na/Ca: a potential proxy for seawater calcium concentration. Geochimica et Cosmochimica Acta, 305:306–322. https://doi.org/10.1016/j.gca.2021.04.012 ConferencesAmerican Geophysical Union (AGU) Fall Meeting 2009Acton, G., Ohneiser, C., Yamamoto, Y., Channell, J.E., Evans, H.F., Richter, C., and Yamazaki, T., 2009. Magnetostratigraphic and cyclostratigraphic records from Eocene–Miocene sediments cored in the paleoequatorial Pacific: initial results from IODP Expedition 320. Eos, Transactions of the American Geophysical Union, 90(52)(Suppl.):GP22A-04. (Abstract) http://abstractsearch.agu.org/ Fitch, P., Davies, S.J., Lovell, M., Anderson, L.M., Assous, S., and Hopper, C., 2009. Heterogeneity and cyclicity in the physical property measurements of Cenozoic sediments (IODP Expedition 320/321). Eos, Transactions of the American Geophysical Union, 90(52)(Suppl.):GP23B-0790. (Abstract) http://abstractsearch.agu.org/ Pälike, H., Nishi, H., Lyle, M.W., Raffi, I., Klaus, A., and Gamage, K., 2009. The Pacific Equatorial Age Transect (‘PEAT’): new insights into the Cenozoic link between climate and calcium carbonate compensation. Eos, Transactions of the American Geophysical Union, 90(52)(Suppl.):PP43C-06 (Abstract) http://abstractsearch.agu.org/ Tominaga, M., Lyle, M.W., and Mitchell, N., 2009. Seismic interpretation and quantification of abyssal-hill-scale pelagic sedimentation regimes in the 0–53 Ma eastern equatorial Pacific. Eos, Transactions of the American Geophysical Union, 90(52):OS21A-1144. (Abstract) http://abstractsearch.agu.org/ AGU Fall Meeting 2010Beltran, C., Rousselle, G., Raffi, I., Backman, J., Sicre, M., de Rafélis, M., and the IODP Expedition 320/321 Shipboard Scientific Party, 2010. Miocene–Pliocene alkenone and coccolithophorid stable isotopic data for sea surface condition reconstructions in the eastern equatorial Pacific (IODP Site U1338) [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract PP22B-03) http://abstractsearch.agu.org/ Bown, P.R., Dunkley Jones, T., and the Expedition 320/321 Shipboard Party, 2010. Calcareous phytoplankton perturbations through the Eocene/Oligocene transition [presented at the American Geophysical Union Fall 2010 Meeting, San Francisco, CA, 13–17 December 2010] (Abstract PP22B-07) http://abstractsearch.agu.org/ Edgar, K.M., Pälike, H., Wilson, P.A., and the IODP Expedition 320/321 Scientists, 2010. Reconstructing ocean carbonate compensation depth variability in the Oligocene and early Miocene [presented at the American Geophysical Union Fall 2010 Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract PP23A-1715) http://abstractsearch.agu.org/ Lyle, M.W., Olivarez Lyle, A., Baldauf, J., Backman, J., and the Expedition 320/321 Shipboard Scientific Party, 2010. Biogenic sedimentation in the eastern equatorial Pacific, 0-18 Ma: XRF scanning on Site U1338, IODP Expedition 320/321 [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract PP22B-05) http://abstractsearch.agu.org/ Mitchell, N.C., Tominaga, M., Dubois, N., and Lyle, M.W., 2010. The equatorial Pacific pelagic sedimentary system [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract PP23A-1714) http://abstractsearch.agu.org/ Pälike, H., Lyle, M.W., Ridgwell, A.J., Edgar, K.M., and the IODP Expeditions 320/321 Science Party, 2010. Carbonate fluxes to the eastern equatorial Pacific during the Eocene: using the GENIE Earth System Model to investigate carbonate accumulation event mechanisms and dynamics revealed by the Pacific Equatorial Age Transect (PEAT) [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract PP23A-1714) http://abstractsearch.agu.org/ Palmer, E.C., Richter, C., Acton, G., Channell, J.E., Evans, H.F., Ohneiser, C., Yamamoto, Y., and Yamazaki, T., 2010. Paleomagnetic and environmental magnetic properties of sediments from IODP Site U1333 (equatorial Pacific) [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract GP13A-0761) http://abstractsearch.agu.org/ Raffi, I., Ciummelli, M., Backman, J., and the IODP Expedition 320/321 Shipboard Scientific Party, 2010. Preliminary data from IODP Site U1338 of the Pacific Equatorial Age Transect (PEAT IODP Expedition 320/321): a study on the interaction between paleoenvironment and evolution of selected calcareous nannofossil taxa [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract PP22B-06) http://abstractsearch.agu.org/ Rousselle, G., Beltran, C., Sicre, M., de Rafélis, M., Raffi, I., Backman, J., and the IODP Expeditions 320/321 Shipboard Scientific party, 2010. Equatorial Pacific climatic variations during the Miocene–Pliocene at IODP Site U1338 [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract PP23A-1729) http://abstractsearch.agu.org/ Takata, H., Khim, B., Nomura, R., Tsujimoto, A., and the IODP Expedition 320/321 Scientists, 2010. Faunal change of benthic foraminifera in CAE-3 (middle Eocene) in the eastern equatorial Pacific (IODP Exp 320) [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract PP23A-1729) http://abstractsearch.agu.org/ Westerhold, T., Bown, P.R., Dunkley Jones, T., Lyle, M.W., Moore, T.C., Pälike, H., Roehl, U., Wilkens, R.H., and Expedition 320/321 Scientists, 2010. Toward the Cenozoic Megasplice—high-resolution XRF core scanning data and improved composite records from IODP Expedition 320: implications for fine scale paleoceanography [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract PP22B-04) http://abstractsearch.agu.org/ Wilson, P.A., Pälike, H., Edgar, K.M., Westerhold, T., Murphy, B.H., Zachos, J.C., Dunkley Jones, T., and the PEAT Shipboard Scientific Party, IODP Expedition 320/321, 2010. New records of the Eocene/Oligocene transition from the IODP Pacific Equatorial Age Transect (PEAT) [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract PP23A-1724) http://abstractsearch.agu.org/ Yamamoto, Y., and the IODP Expedition 320/321 Scientific Party, 2010. Paleomagnetic and rock magnetic studies of basement basalts recovered during IODP Expeditions 320/321 [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17 December 2010]. (Abstract GP11A-0736) http://abstractsearch.agu.org/ AGU Fall Meeting 2011Edgar, K.M., Pälike, H., and Wilson, P.A., 2011. Assessing the preservation of stable isotope values in benthic foraminiferal calcite [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract PP13A-1796) http://abstractsearch.agu.org/ Evans, H.F., Channell, J.E., Acton, G., and Richter, C., 2011. Magnetic stratigraphy from IODP Site U1338 between 8.5–10.8 Ma [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract GP11A-1005) http://abstractsearch.agu.org/ Kordesch, W.E., Gussone, N.C., Hathorne, E.C., Kimoto, K., and Delaney, M.L., 2011. Redox conditions and related color change in eastern equatorial Pacific sediments: IODP Site U1334 [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract PP13A-1811) http://abstractsearch.agu.org/ Malinverno, A., 2011. Monte Carlo correlation of sediment records: application to core and downhole log measurements from equatorial Pacific Sites U1337 and U1338 (IODP Expedition 321) [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract PP13A-1795) http://abstractsearch.agu.org/ Reese, B.K., Shepard, A., St. Peter, C., and Mills, H.J., 2011. Biogeography of metabolically active microbial populations within the subseafloor biosphere [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract B51K-0561) http://abstractsearch.agu.org/ Scher, H.D., 2011. Pacific water mass circulation during the Paleogene: initial results from Pacific Equatorial Age Transect (PEAT) sediment cores [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract PP13A-1797) http://abstractsearch.agu.org/ Shackford, J.K., and Lyle, M.W., 2011. Mid-Miocene carbonate dissolution in the equatorial Pacific: a study using IODP PEAT cores [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract PP13A-1807) http://abstractsearch.agu.org/ Shepard, A., Reese, B.K., Mills, H.J., and the IODP Expedition 320 Shipboard Science Party, 2011. Active marine subsurface bacterial population composition in low organic carbon environments from IODP Expedition 320 [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract B51K-0557) http://abstractsearch.agu.org/ Yamamoto, Y., Acton, G., Channell, J.E., Palmer, E.C., Richter, C., and Yamazaki, T., 2011. Paleomagnetic and rock magnetic study of the IODP Site U1332 sediments—relative paleointensity during the Eocene and Oligocene [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract GP11A-1006) http://abstractsearch.agu.org/ Yamazaki, T., 2011. Paleoposition of intertropical convergence zone in the Eastern Pacific inferred from glacial-interglacial changes in terrigenous and biogenic magnetic mineral fractions [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract PP41B-1766) http://abstractsearch.agu.org/ Yamazaki, T., Acton, G., Channell, J.E., Palmer, E.C., Richter, C., and Yamamoto, Y., 2011. Long-term changes of relative paleointensity from sediments: geomagnetic field behavior or rock magnetic artifact? [presented at the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract GP43A-07) http://abstractsearch.agu.org/ AGU Fall Meeting 2012de Nooijer, L.J., van Dijk, I., Toyofuku, T., Sluijs, A., and Reichart, G., 2012. Seawater Mg/Ca variability during the Middle Miocene Climate Optimum [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract PP33A-2090) http://abstractsearch.agu.org/ Drury, A., John, C.M., Lee, G., and Shevenell, A., 2012. Exploring late Miocene climate stability: constraining background variability using high-resolution benthic δ18O and δ13C records from Site U1338 [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract PP23A-2037) http://abstractsearch.agu.org/ Erhardt, A.M., Pälike, H., and Paytan, A., 2012. High-resolution record of export production in the eastern equatorial Pacific across the Eocene–Oligocene transition and relationships to larger climatic records [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract PP31B-2030) http://abstractsearch.agu.org/ Gary, N.R., Richter, C., Guidry, E., Acton, G., Channell, J.E., Yamamoto, Y., Yamazaki, T., Ohneiser, C., and Evans, H.F., 2012. Magnetostratigraphy, environmental magnetism, and cyclicity of Oligocene–Miocene sediments from the equatorial Pacific (IODP Site U1333) [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract GP13B-1127) http://abstractsearch.agu.org/ Kordesch, W. E., Pälike, H., Edgar, K.M., Wilson, P.A. and Bohaty, S.M., 2012. New insights into middle Eocene greenhouse climate stability from IODP Site U1333, equatorial Pacific Ocean [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract PP23C-2064) http://abstractsearch.agu.org/ Lee, J., Hyeong, K., and Khim, B., 2012. Provenance of eolian dust from Oligocene–Miocene transition in the eastern equatorial Pacific (IODP Exp. 320 Site U1333) [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract PP13A-2064) http://abstractsearch.agu.org/ Nakamura, H., Sawada, K., Yamamoto, S., and Kobayashi, M., 2012. Variations in terrigenous matter transport evaluated by plant terpenoid analysis in the Neogene eastern equatorial Pacific sediment [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract PP51B-2123) http://abstractsearch.agu.org/ Pälike, H., 2012. Using the GENIE Earth System Model to investigate steady-state behavior of the CCD in the greenhouse and icehouse equatorial Pacific [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract PP23C-2068) http://abstractsearch.agu.org/ Sawada, K., Nakamura, H., Yamamoto, S., and Kobayashi, M., 2012. Variations in sea surface temperature reconstructed by algal biomarker thermometry in the Neogene equatorial Pacific sediments [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract PP43B-2040) http://abstractsearch.agu.org/ Sghibartz, C., Wilson, P.A., Foster, G.L., Pälike, H., and Edgar, K.M., 2012. Global warmth, ice volume and ocean acidity change across the late Eocene–early Oligocene transition [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract PP23C-2062) http://abstractsearch.agu.org/ Takata, H., Lee, J., Tsujimoto, A., Normura, R., and Khim, B., 2012. Early Oligocene benthic foraminifera and its response to paleoceanographic changes in the eastern Equatorial Pacific (IODP Exp 320 Site U1334) [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract PP31B-2032) http://abstractsearch.agu.org/ Westerhold, T., Roehl, U., Lyle, M.W., Pälike, H., and Wilkens, R.H., 2012. Middle to late Eocene carbonate accumulation events in the equatorial Pacific—new high resolution geochemical records from IODP Exp 320/321 and ODP Leg 199 [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract PP31B-2026) http://abstractsearch.agu.org/ Williams, T., and Winckler, G., 2012. Characterization of natural gamma radioactivity and
230Th in the top of the sediment column in the eastern equatorial Pacific [presented at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract PP22A-03) http://abstractsearch.agu.org/ AGU Fall Meeting 2013Channell, J.E., and Lanci, L., 2013. Relative paleointensity from Oligocene–Miocene equatorial Pacific and South Atlantic sediments [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract GP43A-1188) http://abstractsearch.agu.org/ Drury, A., and John, C.M., 2013. Late Miocene to early Pliocene sea surface temperatures from the eastern equatorial Pacific (IODP Site U1338): clumped isotope thermometry on coccolithophore-rich sediments [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract PP43A-2056) http://abstractsearch.agu.org/ Fox, L.R., Wade, B., Holbourn, A.E., and Leng, M.J., 2013. Across the Pacific: climate evolution in the middle Miocene [presented at the 2013 American Geophysical Union Fall Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract PP43A-2062) http://abstractsearch.agu.org/ Kallmeyer, J., 2013. Putting age into the equation: a new look at microbial distribution in subseafloor sediments [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract B13C-0489) http://abstractsearch.agu.org/ Kordesch, W., Paelike, H., Edgar, K.M., Bohaty, S.M., and Wilson, P.A., 2013. Middle Eocene climate instability in the equatorial oceans [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract PP23B-1966) http://abstractsearch.agu.org/ Lyle, M.W., Shackford, J.K., Holbourn, A.E., Tian, J., Raffi, I., Pälike, H., and Nishi, H., 2013. The Neogene equatorial Pacific: a view from 2009 IODP drilling on Expedition 320/321 [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract PP34A-02) http://abstractsearch.agu.org/ Okada, H., and Hayashi, H., 2013. Temporal size changes of Miocene planktonic foraminifera Paragloborotalia siakensis in the eastern equatorial Pacific associated with Mi-events [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract PP43A-2058) http://abstractsearch.agu.org/ Shackford, J.K., and Lyle, M.W., 2013. CaCO3 dissolution in the eastern equatorial Pacific during the mid-Miocene: a study using IODP PEAT cores [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract PP43A-2069) http://abstractsearch.agu.org/ Voigt, J., Hathorne, E.C., Holbourn, A.E., and Frank, M., 2013. A middle Miocene benthic foraminiferal stable isotope record from extensively recrystallised carbonate sediments of IODP Site U1336 in the equatorial Pacific [presented at the American Geophysical Union Fall 2013 Meeting, San Francisco, CA, 9–13 December 2013]. (Abstract PP43A-2061) http://abstractsearch.agu.org/ AGU Fall Meeting 2014Beddow, H., Harrison, A., Sluijs, A., Wade, B., Liebrand, D., and Lourens, L.J., 2014. Orbital forcing and climate response at the Oligocene-Miocene boundary: stable isotope records from IODP site U1334 [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP41C-1400) http://abstractsearch.agu.org/ Carter, S.C., and Griffith, E.M., 2014. Equatorial Pacific export production over the middle Miocene climate transition [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP53B-1224) http://abstractsearch.agu.org/ Holbourn, A.E., Kuhnt, W., Kochhann, K.G.D., and Andersen, N., 2014. Global perturbation of the carbon cycle at the onset of the Miocene climatic optimum [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP11D-05) http://abstractsearch.agu.org/ Pabich, S., Gussone, N.C., Vollmer, C., Pälike, H., Rabe, K., and Teichert, B.M., 2014. Modeling changes of the Paleogene Ca budget using benthic foraminifera [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP51B-1127) http://abstractsearch.agu.org/ Takata, H., Nomura, R., Tsujimoto, A., and Khim, B.K., 2014. Faunal transition of benthic foraminifera at the middle Eocene carbonate accumulation events in the eastern equatorial Pacific Ocean (ODP Site 1218 and IODP Site U1333) [presented at the 2014 American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2014]. (Abstract PP11A-1328) http://abstractsearch.agu.org/ AGU Fall Meeting 2015Campbell, S.M., and Vetter, L., 2015. Dynamic topography and the Cenozoic carbonate compensation depth [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract EP21E-04) http://abstractsearch.agu.org/ Drury, A.J., and Westerhold, T., 2015. Towards an accurate orbital calibration of late Miocene climate events: insights from a high-resolution chemo- and magnetostratigraphy (8–6 Ma) from equatorial Pacific IODP Sites U1337 and U1338 [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract PP21B-2237) http://abstractsearch.agu.org/ Lyle, M.W., and Moore, T.C., Jr., 2015. Paradoxical high productivity in the eastern equatorial Pacific Ocean during the Miocene El Padre, ODP Site 849, and IODP Sites U1337 and U1338 [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract PP24A-02) http://abstractsearch.agu.org/ Matsui, H., and Nishi, H., 2015. Changes of Oligocene planktic foraminiferal depth habitat in the eastern equatorial Pacific (IODP Site U1334 and U1333) [presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18 December 2015]. (Abstract PP21C-2265) http://abstractsearch.agu.org/ AGU Fall Meeting 2016Acton, G., Richter, C., Yamamoto, Y., Ohneiser, C., Yamazaki, T., Channell, J.E.T., Evans, H.F., Petronotis, K.E., and Guidry, E.P., 2016. Paleolatitudinal constraints from Eocene to recent sediments cored in the equatorial Pacific on IODP Expeditions 320 and 321 [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract GP43C-1257) http://abstractsearch.agu.org/ Liu, J., Tian, J., and Liu, Z., 2016. The cold tongue development of the eastern equatorial Pacific [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract PP43C-2342) http://abstractsearch.agu.org/ Reece, J.S., and Shackleton, T., 2016. The role of microfossils in the compression of marine sediments: implications for submarine slope failure [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract T51B-2912) http://abstractsearch.agu.org/ AGU Fall Meeting 2017Ortiz, E., Tominaga, M., and Marcantonio, F., 2017. Deciphering equatorial Pacific deep sea sediment transport regimes by core-log-seismic integration [presented at the 2017 American Geophysical Union Fall Meeting, New Orleans, LA, 11–15 December 2017]. (Abstract EP13B-1616) http://abstractsearch.agu.org/ Arduino LectureRaffi, I., and IODP Expedition 320/321 Shipboard Science Party, 2009. “Pacific Equatorial Age Transect” IODP Expeditions 320 and 321: un archivo di sedimenti biogenici della storia climatica del Cenozoico [Invited Arduino Lecture, Dipartimento di Geoscienze dell’Universita degli Studi di Padova, Italy, 17 November 2009]. Australian Earth Sciences Convention (AESC) 2010Ohneiser, C., Acton, G., Channell, J.E.T., Evans, H., Richter, C., Yamamoto, Y., Yamazaki, T., and the Expedition 320/321 Scientists, 2009. Magnetostratigraphic records from Eocene–Miocene sediments cored in the equatorial Pacific: initial results from the Pacific Equatorial Age Transect (PEAT) IODP Exp 320/321 [Australian Earth Sciences Convention (AESC) 2010, 4–8 July 2010, Canberra, Australia]. European Geosciences Union (EGU) General Assembly 2010Raffi, I., Lyle, M., Paelike, H., Nishi, H., Backman, J., Malinverno, A., Moore, T., and IODP Expedition 320/321 Shipboard Scientific Party, 2010. Preliminary data from the Pacific Equatorial Age Transect (PEAT IODP Expedition 320/321): a contribution to the knowledge of Cenozoic ocean and climate history. Geophys. Res. Abstr., 12:EGU2010-8021. (Abstract) EGU General Assembly 2011Ciumelli, M., Raffi, I., and Backman, J., 2011. Correlation of distribution and frequency of selected nannofossil taxa with paleoenvironment variability in late Miocene sediments of the equatorial Pacific. Geophys. Res. Abstr., 13:EGU2011-10004. (Abstract) EGU General Assembly 2012Westerhold, T., Lyle, M., Pälike, H., Röhl, U., and Wilkens, R., 2012. Middle to late Eocene carbonate accumulation events in the equatorial Pacific—new geochemical records from IODP Exp 320/321 and ODP Leg 199. Geophys. Res. Abstr., 14:EGU2012-11635. http://meetingorganizer.copernicus.org/ EGU General Assembly 2013Rousselle, G., Beltran, C., Sicre, M.-A., Raffi, I., and De Rafélis, M., 2013. Changes in sea-surface conditions in the equatorial Pacific during the middle Miocene–Pliocene (IODP Site 1338). Geophys. Res. Abstr., 15:EGU2013-9173. http://meetingorganizer.copernicus.org/ EGU General Assembly 2015Kochhann, K.G.D., Holbourn, A., Kuhnt, W., Lyle, M., Raffi, I., Channell, J.E., and Andersen, N., 2015. Early to middle Miocene climate evolution: new insights from IODP Sites U1335, U1337 and U1338 (eastern equatorial Pacific Ocean). Geophysical Research Abstracts, 17:EGU2015-3685-2. http://meetingorganizer.copernicus.org/ FORAMS 2010—International Symposium on ForaminiferaWade, B.S., Holbourn, A., Hayashi, H., and the Expedition 320/321 Shipboard Scientific Party, 2010. Neogene foraminiferal assemblages from the Pacific equatorial age transect: IODP Sites U1337 and U1338 [FORAMS 2010—International Symposium on Foraminifera, Bonn, Germany, 5–10 September 2010]. Geoitalia 2009—VII Forum Italiano di Scienze della TerraRaffi, I., and the IODP Expedition 320/321 Shipboard Science Party, 2009. “Pacific Equatorial Age Transect” IODP Expedition 320 and 321 sediments: a unique sedimentary biogenic sediment archive for Cenozoic climatic history [keynote lecture at the VII Forum Italiano di Scienze della Terra—Geoitalia 2009, Rimini, Italy, 9–11 September 2009]. Geological Society of America (GSA) Annual Meeting 2012Shackford, J.K., and Lyle, M., 2012. Eastern equatorial Pacific CaCO3 dissolution during the mid-Miocene: a study using IODP PEAT cores. Geol. Soc. Am. Abstr. Progr., 44(7):122. https://gsa.confex.com/ GSA Annual Meeting 2017Evans, D., Cotton, L., Pearson, P., Rosenthal, Y., Rae, J., Müller, W., Erez, J., and Affek, H.P., 2017. Sustained imbalance in the calcium cycle and climate-ocean chemistry interactions over the Eocene-Oligocene transition from the geochemistry of large benthic foraminifera. Geological Society of America Abstracts with Programs, 49(6):302-5. https://doi.org/ GSA Northeastern Section/North-Central Section Joint Meeting 2011Saftner, D.M., 2011. Eolian deposition patterns in the eastern equatorial Pacific Ocean and the paleoclimate of the late Cenozoic. Geol. Soc. Am. Abstr. Progr., 43(1):108. https://gsa.confex.com/ International Conference on Paleoceanography 2013Voigt, J., Hathorne, E., and Frank, M., 2013. Reliable geochemical proxy data from recrystallised foraminifera [presented at the 11th International Conference on Paleoceanography (ICP11) 2013, Barcelona, Spain, 1–6 September 2013]. Japan Geoscience Union (JpGU) Meeting 2019Suzuki, T., and Hayashi, H., 2019. Long-term size changes of the middle Miocene planktonic foraminifera in the eastern equatorial Pacific. Presented at the Japan Geoscience Union Meeting 2019, Chiba, Japan, 26–30 May 2019. https://confit.atlas.jp/ Yamamoto, Y., and Yamazaki, T., 2019. Paleomagnetic study of the IODP Site U1335 sediments in the eastern equatorial Pacific - relative paleointensity and inclination anomaly over the last 8 Myr. Presented at the Japan Geoscience Union Meeting 2019, Chiba, Japan, 26–30 May 2019. https://confit.atlas.jp/ Yamazaki, T., Yamamoto, Y., Kanamatsu, T., Kumagai, Y., and Nakamura, N., 2019. Recent progress and perspective on paleomagnetism by means of deep-sea drilling. Presented at the Japan Geoscience Union Meeting 2019, Chiba, Japan, 26–30 May 2019. https://confit.atlas.jp/ Joint Geological and Geophysical Societies Conference—Geosciences 09Ohneiser, C., Acton, G., Channell, J.E.T., Evans, H., Richter, C., Yamamoto, Y., Yamazaki, T., and the Expedition 320/321 Scientists, 2009. Magnetostratigraphic records from Eocene–Miocene sediments cored in the equatorial Pacific: initial results from the Pacific Equatorial Age Transect (PEAT) IODP Exp 320/321. Geol. Soc. N. Z. Misc. Publ., 128A:161. The Micropaleontological Society Conference 2013Voigt, J., Hathorne, E., and Frank, M., 2013. Preservation and reliability of geochemical proxy data from foraminifera [presented at the The Micropalaeontological Society Conference 2013: Micropalaeontology and the IODP: Past, Present and Future Applications, London, UK, 18–19 November 2013]. The Micropaleontological Society Foraminifera and Nannofossil Groups Joint Meeting 2012Fox, L., Wade, B.S., Holbourn, A., and Leng, M., 2012. Middle Miocene planktonic foraminifera of the equatorial Pacific [The Micropalaeontological Society Foraminifera and Nannofossil Groups Joint Meeting 2012, Edinburgh, Scotland, 21 and 22 June 2012]. Lakin, J., and Wade, B.S., 2012. The rise and fall of Paragloborotalia opima (planktonic foraminifera) [The Micropalaeontological Society Foraminifera and Nannofossil Groups Joint Meeting 2012, Edinburgh, Scotland, 21 and 22 June 2012]. The Micropaleontological Society Conference 2013Voigt, J., Hathorne, E., and Frank, M., 2013. Preservation and reliability of geochemical proxy data from foraminifera [presented at The Micropalaeontological Society Conference 2013: Micropalaeontology and the IODP: Past, Present and Future Applications, London, UK, 18–19 November 2013]. V. M. Goldschmidt Conference 2012Voigt, J., Hathorne, E., and Martin, F., 2012. Carbonate diagenesis in the Pacific Equatorial Age Transect (PEAT) sites and the preservation of geochemical signals in foraminifera. Mineral. Mag., 76(6):2498. http://goldschmidtabstracts.info/ *The Expedition-related bibliography is continually updated online. Please send updates to PubCrd@iodp.tamu.edu. |