IODP Proceedings    Volume contents     Search

doi:10.2204/iodp.proc.337.204.2018

References

Aoike, K. (Ed.), 2007. CDEX Laboratory Operation Report: CK06-06 D/V Chikyu shakedown cruise offshore Shimokita: Yokohama (CDEX-JAMSTEC).

Aung, K.K., Rahardjo, H., Leong, E.C., and Toll, D.G., 2001. Relationship between porosimetry measurement and soil–water characteristic curve for an unsaturated residual soil. Geotechnical & Geological Engineering, 19(3–4):401–416.
https://doi.org/​10.1023/​A:1013125600962

Beckett, C.T.S., and Augarde, C.E., 2013. Prediction of soil water retention properties using pore-size distribution and porosity. Canadian Geotechnical Journal, 50(4):435–450. https://doi.org/​10.1139/​cgj-2012-0320

Bell, L.N., and Hageman, M.J., 1994. Differentiating between the effects of water activity and glass transition dependent mobility on a solid state chemical reaction: aspartame degradation. Journal of Agricultural and Food Chemistry, 42(11):2398–2401.
https://doi.org/​10.1021/​jf00047a007

Bethke, C.M., 2008. Geochemical and Biogeochemical Reaction Modeling: New York (Cambridge University Press).

Brown, K.M., Poeppe, D., Josh, M., Sample, J., Even, E., Saffer, D., Tobin, H., Hirose, T., Kulongoski, J.T., Toczko, S., Maeda, L., and the IODP Expedition 348 Shipboard Party, 2017. The action of water films at Å-scales in the Earth: implications for the Nankai subduction system. Earth and Planetary Science Letters, 463:266–276.
https://doi.org/​10.1016/​j.epsl.2016.12.042

Chirife, J., and Resnik, S.L., 1984. Unsaturated solutions of sodium chloride as reference sources of water activity at various temperatures. Journal of Food Science, 49(6):1486–1488.
https://doi.org/​10.1111/​j.1365-2621.1984.tb12827.x

Expedition 337 Scientists, 2013a. Methods. In Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, Proceedings of the Integrated Ocean Drilling Program, 337: Tokyo (Integrated Ocean Drilling Program Management International, Inc.).
http://dx.doi.org/​10.2204/​iodp.proc.337.102.2013

Expedition 337 Scientists, 2013b. Site C0020. In Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Scientists, Proceedings of the Integrated Ocean Drilling Program, 337: Tokyo (Integrated Ocean Drilling Program Management International, Inc.).
http://doi.org/​10.2204/​iodp.proc.337.103.2013

Fontán, C.F., and Chirife, J., 1981. Technical note: a refinement of Ross’s equation for predicting the water activity of non-electrolyte mixtures. International Journal of Food Science & Technology, 16(2):219–221. https://doi.org/​10.1111/​j.1365-2621.1981.tb01011.x

Fontana, A.J., Jr., and Campbell, G.S., 2007. Applications of water activity in nonfood systems. In Barbosa-Cánovas, G.V., Fontana, A.J., Jr., Schmidt, S.J., and Labuza, T.P. (Eds.), Water Activity in Foods: Fundamentals and Applications: Hoboken, NJ (Blackwell Publishing Ltd.), 359–372.
https://doi.org/​10.1002/​9780470376454.ch14

Fredlund, D.G., and Xing, A., 1994. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4):521–532. https://doi.org/​10.1139/​t94-061

Grant, W.D., 2004. Life at low water activity. Philosophical Transactions of the Royal Society, B: Biological Sciences, 359(1448):1249–1267.
https://doi.org/​10.1098/​rstb.2004.1502

Helgeson, H.C., 1969. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American Journal of Science, 267(7):729–804.
https://doi.org/​10.2475/​ajs.267.7.729

Hinrichs, K.-U., and Inagaki, F., 2012. Downsizing the deep biosphere. Science, 338(6104):204–205.
https://doi.org/​10.1126/​science.1229296

Inagaki, F., Hinrichs, K.-U., Kubo, Y., Bowles, M.W., Heuer, V.B., Long, W.-L., Hoshino, T., Ijiri, A., Imachi, H., Ito, M., Kaneko, M., Lever, M.A., Lin, Y.-S., Methé, B.A., Morita, S., Morono, Y., Tanikawa, W., Bihan, M., Bowden, S.A., Elvert, M., Glombitza, C., Gross, D., Harrington, G.J., Hori, T., Li, K., Limmer, D., Liu, C.-H., Murayama, M., Ohkouchi, N., Ono, S., Park, Y.-S., Phillips, S.C., Prieto-Mollar, X., Purkey, M., Riedinger, N., Sanada, Y., Sauvage, J., Snyder, G., Susilawati, R., Takano, Y., Tasumi, E., Terada, T., Tomaru, H., Trembath-Reichert, E., Wang, D.T., and Yamada, Y., 2015. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science, 349(6246):420–424.
https://doi.org/​10.1126/​science.aaa6882

Jenkins, M.B., Bowman, D.D., Fogarty, E.A., and Ghiorse, W.C., 2002. Cryptosporidium parvum oocyst inactivation in three soil types at various temperatures and water potentials. Soil Biology and Biochemistry, 34(8):1101–1109.
https://doi.org/​10.1016/​S0038-0717(02)00046-9

Kallmeyer, J., Pockalny, R., Adhikari, R.R., Smith, D.C., and D’Hondt, S., 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. Proceedings of the National Academy of Sciences of the United States of America, 109(40):16213–16216.
https://doi.org/​10.1073/​pnas.1203849109

Lilley, T.H., and Sutton, R.L., 1991. The prediction of water activities in multicomponent systems. In Levine, H., and Slade, L. (Eds.), Advances in Experimental Medicine and Biology (Volume 302): Water Relationships in Foods: Boston (Springer), 291–304.
https://doi.org/​10.1007/​978-1-4899-0664-9_16

Lipp, J.S., Morono, Y., Inagaki, F., and Hinrichs, K.-U., 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454(7207):991–994.
http://dx.doi.org/​10.1038/​nature07174

Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C., Weightman, A.J., and Harvey, S.M., 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371(6496):410–413.
http://dx.doi.org/​10.1038/​371410a0

Parkhurst, D.L., and Appelo, C.A.J., 1999. User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. USGS Water-Resources Investigations Report, 99–4259.

Stark, J.M., and Firestone, M.K., 1995. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and Environmental Microbiology, 61(1):218–221. http://aem.asm.org/​content/​61/​1/​218.abstract

Starzak, M., and Mathlouthi, M., 2006. Temperature dependence of water activity in aqueous solutions of sucrose. Food Chemistry, 96(3):346–370.
https://doi.org/​10.1016/​j.foodchem.2005.02.052

Stevenson, A., Cray, J.A., Williams, J.P., Santos, R., Sahay, R., Neuenkirchen, N., McClure, C.D., Grant, I.R., Houghton, J.D.R., Quinn, J.P., Timson, D.J., Patil, S.V., Singhal, R.S., Antón, J., Dijksterhuis, J., Hocking, A.D., Lievens, B., Rangel, D.E.N., Voytek, M.A., Gunde-Cimerman, N., Oren, A., Timmis, K.N., McGenity, T.J., and Hallsworth, J.E., 2015. Is there a common water-activity limit for the three domains of life? The ISME Journal, 9(6):1333–1351.
https://doi.org/​10.1038/​ismej.2014.219

Sutherland, J.P., Bayliss, A.J., and Roberts, T.A., 1994. Predictive modelling of growth of Staphylococcus aureus: the effects of temperature, pH and sodium chloride. International Journal of Food Microbiology, 21(3):217–236. https://doi.org/​10.1016/​0168-1605(94)90029-9

Tanikawa, W., Tadai, O., Morita, S., Lin, W., Yamada, Y., Sanada, Y., Moe, K., Kubo, Y., and Inagaki, F., 2016. Thermal properties and thermal structure in the deep-water coalbed basin off the Shimokita Peninsula, Japan. Marine and Petroleum Geology, 73:445–461.
https://doi.org/​10.1016/​j.marpetgeo.2016.03.006

Taoukis, P.S., and Richardson, M., 2007. Principles of intermediate-moisture foods and related technology. In Barbosa-Cánovas, G.V., Fontana, A.J., Jr., Schmidt, S.J., and Labuza, T.P. (Eds.), Water Activity in Foods: Fundamentals and Applications: Hoboken, NJ (Blackwell Publishing Ltd.), 273–312.
https://doi.org/​10.1002/​9780470376454.ch11

Tosca, N.J., Knoll, A.H., and McLennan, S.M., 2008. Water activity and the challenge for life on early Mars. Science, 320(5880):1204–1207.
https://doi.org/​10.1126/​science.1155432

Vittadini, E., and Chinachoti, P., 2003. Effect of physico-chemical and molecular mobility parameters on Staphylococcus aureus growth. International Journal of Food Science and Technology, 38(8):841–847.
https://doi.org/​10.1046/​j.1365-2621.2003.00738.x

Welti-Chanes, J., Pérez, E., Guerrero-Beltrán, J.A., Alzamora, S.M., and Vergara-Balderas, F., 2007. Applications of water activity management in the food industry. In Barbosa-Cánovas, G.V., Fontana, A.J., Jr., Schmidt, S.J., and Labuza, T.P. (Eds.), Water Activity in Foods: Fundamentals and Applications: Hoboken, NJ (Blackwell Publishing Ltd.), 341–357.
https://doi.org/​10.1002/​9780470376454.ch13

Williams, J.P., and Hallsworth, J.E., 2009. Limits of life in hostile environments: no barriers to biosphere function? Environmental Microbiology, 11(12):3292–3308. https://doi.org/​10.1111/​j.1462-2920.2009.02079.x