IODP

doi:10.2204/iodp.sp.322.2009

References

Ando, M., 1975. Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, Japan. Tectonophysics, 27(2):119–140. doi:10.1016/0040-1951(75)90102-X

Araki, E., Byrne, T., McNiell, L., Saffer, D., Eguchi, N., Takahashi, K., and Toczko, S., 2009. NanTroSEIZE Stage 2: NanTroSEIZE riser/riserless observatory. IODP Sci. Prosp., 319. doi:10.2204/iodp.sp.319.2009

Ashi, J., Kuramoto, S., Morita, S., Tsunogai, U., Goto, S., Kojima, S., Okamoto, T., Ishimura, T., Ijiri, A., Toki, T., Kudo, S., Asai, S., and Utsumi, M., 2002. Structure and cold seep of the Nankai accretionary prism off Kumano—outline of the off Kumano survey during YK01-04 Leg 2 cruise. JAMSTEC J. Deep Sea Res., 20:1–8. (in Japanese, with abstract in English)

Ashi, J., Lallemant, S., Masago, H., and the Expedition 315 Scientists, 2008. NanTroSEIZE Stage 1A: NanTroSEIZE megasplay riser pilot. IODP Prel. Rept., 315. doi:10.2204/iodp.pr.315.2008

Ashi, J., Tokuyama, H., Ujiie, Y., and Taira, A., 1999. Heat flow estimation from gas hydrate BSRs in the Nankai Trough: implications for thermal structures of the Shikoku Basin. Eos, Trans. Am. Geophys. Union, 80(46)(Suppl.): T12A-02. (Abstract)

Bredehoeft, J.D., Djevanshir, R.D., and Belitz, K.R., 1988. Lateral fluid flow in a compacting sand-shale sequence: South Caspian Basin. AAPG Bull., 72:416-424.

Brown, K.M., Kopf, A., Underwood, M.B., and Weinberger, J.L., 2003. Compositional and fluid pressure controls on the state of stress on the Nankai subduction thrust: a weak plate boundary. Earth Planet. Sci. Lett., 214(3–4):589–603. doi:10.1016/S0012-821X(03)00388-1

Burland, J.B., 1990. On the compressibility and shear strength of natural clays. Geotechnique, 40:329–378.

Byrne, D.E., Davis, D.M., and Sykes, L.R., 1988. Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics, 7(4):833–857. doi:10.1029/TC007i004p00833

Cloos, M., 1992. Thrust-type subduction-zone earthquakes and seamount asperities: a physical model for seismic rupture. Geology, 20(7):601–604. doi:10.1130/0091-7613(1992)020<0601:TTSZEA>2.3.CO;2

Cloos, M., and Shreve, R.L., 1996. Shear-zone thickness and the seismicity of Chilean- and Marianas-type subduction zones. Geology, 24(2):107–110. doi:10.1130/0091-7613(1996)024<0107:SZTATS>2.3.CO;2

Davis, D., Suppe, J., and Dahlen, F.A., 1983. Mechanics of fold-and-thrust belts and accretionary wedge. J. Geophys. Res., [Solid Earth], 88(B2):1153–1172. doi:10.1029/JB088iB02p01153

Deng, X., and Underwood, M.B., 2001. Abundance of smectite and the location of a plate boundary fault, Barbados accretionary prism. Geol. Soc. Am. Bull., 113: 495-507.

Dugan, B., and Flemings, P.B., 2000. Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps. Science, 289(5477):288–291. doi:10.1126/science.289.5477.288

Expedition 308 Scientists, 2005. Overpressure and fluid flow processes in the deepwater Gulf of Mexico: slope stability, seeps, and shallow-water flow. IODP Prel. Rept., 308. doi:10.2204/iodp.pr.308.2005

Fisher, A.T., 1998. Permeability within basaltic oceanic crust. Rev. Geophys., 36(2):143–182. doi:10.1029/97RG02916

Ge, S., and Screaton, E., 2005. Modeling seismically induced deformation and fluid flow in the Nankai subduction zone. Geophys. Res. Lett., 32(17):L17301. doi:10.1029/2005GL023473

Giambalvo, E.R., Fisher, A.T., Martin, J.T., Darty, L., and Lowell, R.P., 2000. Origin of elevated sediment permeability in a hydrothermal seepage zone, eastern flank of the Juan de Fuca Ridge, and implications for transport of fluid and heat. J. Geophys. Res., [Solid Earth], 105(B1):913–928. doi:10.1029/1999JB900360

Hickman, S., Zoback, M., and Ellsworth, W., 2004. Introduction to special section: preparing for the San Andreas Fault Observatory at depth. Geophys. Res. Lett., 31(12):L12S01. doi:10.1029/2004GL020688

Hirono, T., Lin, W., Yeh, E.-C., Soh, W., Hashimoto, Y., Sone, H., Matsubayashi., O., Aoike, K., Ito, H., Kinoshita, M., Murayama, M., Song, S.-R., Ma, K.-F., Hung, J.-H., Wang, C.-Y., and Tsai, Y.-B., 2006. High magnetic susceptibility of fault gouge within Taiwan Chelungpu fault: nondestructive continuous measurements of physical and chemical properties in fault rocks recovered from Hole B, TCDP. Geophys. Res. Lett., 33(15):L15303. doi:10.1029/2006GL026133

Hubbert, W.W., and Rubey, M.K., 1959. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol. Soc. Am. Bull., 70:115–166.

Ichinose, G.A., Thio, H.K., Somerville, P.G., Sato, T., and Ishii, T., 2003. Rupture process of the 1944 Tonankai earthquake (Ms 8.1) from the inversion of teleseismic and regional seismograms. J. Geophys. Res., 108(B10):2497. doi:10.1029/2003JB002393

Ike, T., Moore, G.F., Kuramoto, S., Park, J.-O., Kaneda, Y., and Taira, A., 2008. Variations in sediment thickness and type along the northern Philippine Sea plate at the Nankai Trough. Isl. Arc, 17(3):342–357. doi:10.1111/j.1440-1738.2008.00624.x

Ito, Y., and Obara, K., 2006. Dynamic deformation of the accretionary prism excites very low frequency earthquakes. Geophys. Res. Lett., 33(2):LO2311. doi:10.1029/2005GL025270

Kikuchi, M., Nakamura, M., and Yoshikawa, K., 2003. Source rupture processes of the 1944 Tonankai earthquake and the 1945 Mikawa earthquake derived from low-gain seismograms. Earth, Planets Space, 55(4):159–172.

Kimura, G., and Ludden, J., 1995. Peeling oceanic crust in subduction zones. Geology, 23(3):217–220. doi:10.1130/0091-7613(1995)023
<0217:POCISZ>2.3.CO;2

Kimura, G., Screaton, E.J., Curewitz, D., and the Expedition 316 Scientists, 2008. NanTroSEIZE Stage 1A: NanTroSEIZE shallow megasplay and frontal thrusts. IODP Prel. Rept., 316. doi:10.2204/iodp.pr.316.2008

Kinoshita, M., Tobin, H., Moe, K.T., and the Expedition 314 Scientists, 2008. NanTroSEIZE Stage 1A: NanTroSEIZE LWD transect. IODP Prel. Rept., 314. doi:10.2204/iodp.pr.314.2008

Kopf, A., and Brown, K.M., 2003. Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts. Mar. Geol., 202(3–4):193–210. doi:10.1016/S0025-3227(03)00286-X

Lay, T., Kanamori, H., Ammon, C.J., Nettles, M., Ward, S.N., Aster, R.C., Beck, S.L., Bilek, S.L., Brudzinski, M.R., Butler, R., DeShon, H.R., Ekström, G., Satake, K., and Sipkin, S., 2005. The great Sumatra-Andaman earthquake of 26 December 2004. Science, 308(5725):1127–1133. doi:10.1126/science.1112250

Le Pichon, X., Iiyama, T., Chamley, H., Charvet, J., Faure, M., Fujimoto, H., Furuta, T., Ida, Y., Kagami, H., Lallemant, S., Leggett, J., Murata, A., Okada, H., Rangin, C., Renard, V., Taira, A., and Tokuyama, H., 1987. Nankai Trough and the fossil Shikoku Ridge: results of Box 6 Kaiko survey. Earth Planet. Sci. Lett., 83(1–4):186–198. doi:10.1016/0012821X(87)900653

Long, H., Flemings, P.B., Dugan, B., Germaine, J.T., and Ferrell, D., 2008. Data report: penetrometer measurements of in situ temperature and pressure, IODP Expedition 308. In Flemings, P.B., Behrman, J.H., John, C.M., and the Expedition 308 Scientists, Proc. IODP, 308: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.308.203.2008

Ma, K.-F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J., Song, Y.-F., Yeh, E.-C., Soh, W., Sone, H., Kuo, L.-W., and Wu, H.-Y., 2006. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-Fault Drilling Project. Nature (London, U. K.), 444(7118):473–476. doi:10.1038/nature05253

Marone, C., 1998. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci., 26(1):643–696. doi:10.1146/annurev.earth.26.1.643

Mazzotti, S., Lallemant, S.J., Henry, P., Le Pichon, X., Tokuyama, H., and Takahashi, N., 2002. Intraplate shortening and underthrusting of a large basement ridge in the eastern Nankai subduction zone. Mar. Geol., 187(1–2):63–88. doi:10.1016/S0025-3227(02)00245-1

Mikada, H., Becker, K., Moore, J.C., Klaus, A., et al., 2002. Proc. ODP, Init. Repts., 196: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.196.2002

Miyazaki, S., and Heki, K., 2001. Crustal velocity field of southwest Japan: subduction and arc-arc collision. J. Geophys. Res., 106(B3):4305–4326. doi:10.1029/2000JB900312

Moore, G.F., Bangs, N.L., Taira, A., Kuramoto, S., Pangborn, E., and Tobin, H.J., 2007. Three-dimensional splay fault geometry and implications for tsunami generation. Science, 318(5853):1128–1131. doi:10.1126/science.1147195

Moore, G.F., Taira, A., Klaus, A., et al., 2001. Proc. ODP, Init. Repts., 190: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.190.2001

Moore, J.C., and Byrne, T., 1987. Thickening of fault zones: a mechanism of melange formation in accreting sediments. Geology, 15(11):1040–1043. doi:10.1130/0091-7613(1987)15
<1040:TOFZAM>2.0.CO;2

Moore, J.C., and Saffer, D., 2001. Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: an effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology, 29(2):183–186. doi:10.1130/0091-7613(2001)029
<0183:ULOTSZ>2.0.CO;2

Moore, J.C., and Tobin, H., 1997. Estimated fluid pressures of the Barbados accretionary prism and adjacent sediments. In Shipley, T.H., Ogawa, Y., Blum, P., and Bahr, J.M. (Eds.), Proc. ODP, Sci. Results, 156: College Station, TX (Ocean Drilling Program), 229–238. doi:10.2973/odp.proc.sr.156.030.1997

Moore, J.C., and Vrolijk, P., 1992. Fluids in accretionary prisms. Rev. Geophys., 30(2):113–135. doi:10.1029/92RG00201

Nakanishi, A., Takahashi, N., Park, J.-O., Miura, S., Kodaira, S., Kaneda, Y., Hirata, N., Iwasaki, T., and Nakamura, M., 2002. Crustal structure across the coseismic rupture zone of the 1944 Tonankai earthquake, the central Nankai Trough seismogenic zone. J. Geophys. Res., 107(B1):2007. doi:10.1029/2001JB000424

Obana, K., Kodaira, S., and Kaneda, Y., 2004. Microseismicity around rupture area of the 1944 Tonankai earthquake from ocean bottom seismograph observations. Earth Planet. Sci. Lett., 222(2):561–572. doi:10.1016/j.epsl.2004.02.032

Obana, K., Kodaira, S., Mochizuki, K., and Shinohara, M., 2001. Micro-seismicity around the seaward updip limit of the 1946 Nankai earthquake dislocation area. Geophys. Res. Lett., 28(12):2333–2336. doi:10.1029/2000GL012794

Obara, K., and Ito, Y., 2005. Very low frequency earthquakes excited by the 2004 off the Kii Peninsula earthquakes: a dynamic deformation process in the large accretionary prism. Earth, Planets Space, 57(4):321–326.

Okino, K., Shimakawa, Y., and Nagaoka, S., 1994. Evolution of the Shikoku Basin. J. Geomagn. Geoelectr., 46:463–479.

Park, J.-O., Tsuru, T., Kodaira, S., Cummins, P.R., and Kaneda, Y., 2002. Splay fault branching along the Nankai subduction zone. Science, 297(5584):1157–1160. doi:10.1126/science.1074111

Park, J.-O., Tsuru, T., No, T., Takizawa, K., Sato, S., and Kaneda, Y., 2008. High-resolution 3D seismic reflection survey and prestack depth imaging in the Nankai Trough off southeast Kii Peninsula. Butsuri Tansa, 61:231–241. (in Japanese with English abstract)

Rice, J.R., 1992. Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault. In Evans, B., and Wong, T.-F. (Eds.), Fault Mechanics and Transport Properties of Rocks: A Festschrift in Honor of W. F. Brace: San Diego (Academic Press), 475–503.

Ruff, L., and Kanamori, H., 1983. Seismic coupling and uncoupling at subduction zones. Tectonophysics, 99(2–4):99–117. doi:10.1016/0040-1951(83)90097-5

Saffer, D.M., 2003. Pore pressure development and progressive dewatering in underthrust sediments at the Costa Rican subduction margin: comparison with northern Barbados and Nankai. J. Geophys. Res., 108(B5):2261–2276. doi:10.1029/2002JB001787

Saffer, D.M., and Bekins, B.A., 1998. Episodic fluid flow in the Nankai accretionary complex: timescale, geochemistry, flow rates, and fluid budget. J. Geophys. Res., [Solid Earth], 103(B12):30351–30371. doi:10.1029/98JB01983

Saffer, D.M., and Bekins, B.A., 2002. Hydrologic controls on the morphology and mechanics of accretionary wedges. Geology, 30(3):271–274. doi:10.1130/0091-7613(2002)030
<0271:HCOTMA>2.0.CO;2

Saffer, D.M., and Bekins, B.A., 2006. An evaluation of factors influencing pore pressure in accretionary complexes: implications for taper angle and wedge mechanics. J. Geophys. Res., [Solid Earth], 111(B4):B04101. doi:10.1029/2005JB003990

Saffer, D.M., and Marone, C., 2003. Comparison of smectite- and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts. Earth Planet. Sci. Lett., 215(1–2):219–235. doi:10.1016/S0012-821X(03)00424-2

Saffer, D.M., Underwood, M.B., and McKiernan, A.W., 2008. Evaluation of factors controlling smectite transformation and fluid production in subduction zones: application to the Nankai Trough. Isl. Arc, 17(2):208–230. doi:10.1111/j.1440-1738.2008.00614.x

Segal, P., and Rice, J.R., 2006. Does shear heating of pore fluid contribute to earthquake nucleation? J. Geophys. Res., [Solid Earth], 111(B9):B09316. doi:10.1029/2005JB004129

Seno, T., Stein, S., and Gripp, A.E., 1993. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data. J. Geophys. Res., 98(B10):17941–17948. doi:10.1029/93JB00782

Spinelli, G.A., Mozley, P.S., Tobin, H.J., Underwood, M.B., Hoffman, N.W., and Bellew, G.M., 2007. Diagenesis, sediment strength, and pore collapse in sediment approaching the Nankai Trough subduction zone. Geol. Soc. Am. Bull., 119(3–4):377–390.

Tanioka, Y., and Satake, K., 2001. Detailed coseismic slip distribution of the 1944 Tonankai earthquake estimated from tsunami waveforms. Geophys. Res. Lett., 28(6):1075–1078. doi:10.1029/2000GL012284

Tobin, H.J., and Kinoshita, M., 2006a. Investigations of seismogenesis at the Nankai Trough, Japan. IODP Sci. Prosp., NanTroSEIZE Stage 1. doi:10.2204/iodp.sp.nantroseize1.2006

Tobin, H.J., and Kinoshita, M., 2006b. NanTroSEIZE: the IODP Nankai Trough Seismogenic Zone Experiment. Sci. Drill., 2:23–27. doi:10.2204/iodp.sd.2.06.2006

Underwood, M.B., 2007. Sediment inputs to subduction zones: why lithostratigraphy and clay mineralogy matter. In Dixon, T., and Moore, J.C. (Eds.), The Seismogenic Zone of Subduction Thrust Faults: New York (Columbia Univ. Press), 42–85.

Underwood, M.B., and Fergusson, C.L., 2005. Late Cenozoic evolution of the Nankai trench-slope system: evidence from sand petrography and clay mineralogy. In Hodgson, D., and Flint, S. (Eds.), Submarine Slope Systems: Processes, Products and Prediction. Geol. Soc. Spec. Publ., 244(1):113–129. doi:10.1144/GSL.SP.2005.244.01.07

Underwood, M.B., and Steurer, J.F., 2003. Composition and sources of clay from the trench slope and shallow accretionary prism of Nankai Trough. In Mikada, H., Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.), Proc. ODP, Sci. Results, 190/196: College Station, TX (Ocean Drilling Program), 1–28. doi:10.2973/odp.proc.sr.190196.206.2003

Vrolijk, P., 1990. On the mechanical role of smectite in subduction zones. Geology, 18(8):703–707. doi:10.1130/0091-7613(1990)018
<0703:OTMROS>2.3.CO;2

Wang, K., and Hu, Y., 2006. Accretionary prisms in subduction earthquake cycles: the theory of dynamic Coulomb wedge. J. Geophys. Res., 111(B6):B06410. doi:10.1029/2005JB004094

Wang, K., Hyndman, R.D., and Yamano, M., 1995. Thermal regime of the southwest Japan subduction zone: effects of age history of the subducting plate. Tectonophysics, 248(1–2):53–69. doi:10.1016/0040-1951(95)00028-L

Wheat, C.G., Jannasch, H.W., Kastner, M., Plant, J.N., and DeCarlo, E.H., 2003. Seawater transport and reaction in upper oceanic basaltic basement: chemical data from continuous monitoring of sealed boreholes in a ridge flank environment. Earth Planet. Sci. Lett., 216(4):549–564. doi:10.1016/S0012-821X(03)00549-1

Yamano, M., Kinoshita, M., Goto, S., and Matsubayashi, O., 2003. Extremely high heat flow anomaly in the middle part of the Nankai Trough. Phys. Chem. Earth, 28(9–11):487–497. doi:10.1016/S1474-7065(03)00068-8