IODP

doi:10.2204/iodp.pr.337.2012

References

Amo, M., Suzuki, N., Shinoda, T., Ratnayake, N.P., and Takahashi, K., 2007. Diagenesis and distribution of sterenes in late Miocene to Pliocene marine siliceous rocks from Horonobe (Hokkaido, Japan). Org. Geochem., 38(7):1132–1145. doi:10.1016/j.orggeochem.2007.02.010

Aoike, K. (Ed.), 2007. CDEX Laboratory Operation Report: CK06-06 D/V Chikyu shakedown cruise offshore Shimokita: Yokohama (CDEX-JAMSTEC). http://​sio7.jamstec.go.jp/​JAMSTEC-exp-report/​902/​CK06-06_CR.pdf

Aoike, K., Nishi, H., Sakamoto, T., Iijima, K., Tsuchiya, M., Taira, A., Kuramoto, S., Masago, H., and the Shimokita Core Research Group, 2010. Paleoceanographic history of offshore Shimokita Peninsula for the past 800,000 years based on primary analyses on cores recovered by D/V Chikyu during the shakedown cruises. Fossils, 87:65–81. (in Japanese, with English abstract and figures)

Arndt, S., Brumsack, H.-J., and Wirtz, K.W., 2006. Cretaceous black shales as active bioreactors: a biogeochemical model for the deep biosphere encountered during ODP Leg 207 (Demerara Rise). Geochim. Cosmochim. Acta, 70(2):408–425. doi:10.1016/j.gca.2005.09.010

Biddle, J.F., Lipp, J.S., Lever, M.A., Lloyd, K.G., Sørensen, K.B., Anderson, R., Fredricks, H.F., Elvert, M., Kelly, T.J., Schrag, D.P., Sogin, M.L., Brenchley, J.E., Teske, A., House, C.H., and Hinrichs, K.-U., 2006. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl. Acad. Sci. U. S. A., 103(10):3846–3851. doi:10.1073/​pnas.0600035103

Brown, C.J., Coates, J.D., and Schoonen, M.A.A., 1999. Localized sulfate-reducing zones in a coastal plain aquifer. Ground Water, 37(4):505–516. doi:10.1111/​j.1745-6584.1999.tb01136.x

Cowen, J.P., Giovannoni, S.J., Kenig, F., Johnson, H.P., Butterfield, D., Rappé, M.S., Hutnak, M., and Lam, P., 2003. Fluids from aging ocean crust that support microbial life. Science, 299(5603):120–123. doi:10.1126/​science.1075653

Detmers, J., Schulte, U., Strauss, H., and Kuever, J., 2001. Sulfate reduction at a lignite seam: microbial abundance and activity. Microb. Ecol., 42(3):238–247. doi:10.1007/s00248-001-1014-8

D’Hondt, S., Jørgensen, B.B., Miller, D.J., Batzke, A., Blake, R., Cragg, B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., Hinrichs, K.-U., Holm, N.G., Mitterer, R., Spivack, A., Wang, G., Bekins, B., Engelen, B., Ford, K., Gettemy, G., Rutherford, S.D., Sass, H., Skilbeck, C.G., Aiello, I.W., Guerin, G., House, C.H., Inagaki, F., Meister, P., Naehr, T., Niitsuma, S., Parkes, R.J., Schippers, A., Smith, D.C., Teske, A., Wiegel, J., Naranjo Padillo, C., and Solis Acosta, J.L., 2004. Distributions of microbial activities in deep subseafloor sediments. Science, 306(5705):2216–2221. doi:10.1126/science.1101155

D’Hondt, S., Rutherford, S., and Spivack., A.J., 2002. Metabolic activity of the subsurface life in deep-sea sediments. Science, 295(5562):2067–2070. doi:10.1126/science.1064878

D’Hondt, S., Spivack, A.J., Pockalny, R., Ferdelman, T.G., Fischer, J.P., Kallmeyer, J., Abrams, L.J., Smith, D.C., Graham, D., Hasiuk, F., Schrum, H., and Stancin, A.M., 2009. Subseafloor sedimentary life in the South Pacific Gyre. Proc. Nat. Acad. Sci., U. S. A., 106(28):11651–11656. doi:10.1073/​pnas.0811793106

Domitsu, H., Nishi, H., Uchida, J., Oda, M., Ogane, K., Taira, A., Aoike, K., and the Shimokita Microfossil Research Group, 2010. Age model of core sediments taken by D/V Chikyu during the shakedown cruises off Shimokita Peninsula. Fossils, 87:47–64. (in Japanese, with English abstract and figures)

Dooley, J.J., Dahowski, R.T., Davidson, C.L., Wise, M.A., Gupta, N., Kim, S.H., and Malone, E.L., 2006. Carbon Dioxide Capture and Geological Storage: a Core Element of a Global Energy Technology Strategy to Address Climate Change. Technol. Rep.–Global Energy Technol. Strategy Program. http://www.epa.gov/air/caaac/coaltech/2007_02_battelle.pdf

Dowdle, W.L., and Cobb, W.M., 1975. Static formation temperature from well logs—an empirical method. JPT, J. Pet. Technol., 27(11):1326–1330. doi:10.2118/​5036-PA

Engelen, B., Ziegelmüller, K., Wolf, L., Köpke, B., Gittel, A., Cypionka, H., Treude, T., Nakagawa, S., Inagaki, F., Lever, M.A., and Steinsbu, B.O., 2008. Fluids from the ocean crust support microbial activities within the deep biosphere. Geomicrobiol. J., 25(1):56–66. doi:10.1080/​01490450701829006

Expedition 311 Scientists, 2006. Expedition 311 summary. In Riedel, M., Collett, T.S., Malone, M.J., and the Expedition 311 Scientists, Proc. IODP, 311: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.311.101.2006

Expedition 319 Scientists, 2010. Site C0009. In Saffer, D., McNeill, L., Byrne, T., Araki, E., Toczko, S., Eguchi, N., Takahashi, K., and the Expedition 319 Scientists, Proc. IODP, 319: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.319.103.2010

Fry, J., Horsfield, B., Sykes, R., Cragg, B.A., Heywood, C., Kim, G.T., Mangelsdorf, K., Mildenhall, D.C., Rinna, J., Vieth, A., Zink, K.-G., Sass, H., Weightman, A.J., and Parkes, R.J., 2009. Prokaryotic populations and activities in an interbedded coal deposit, including a previously deeply buried section (1.6–2.3 km) above ~150 Ma basement rock. Geomicrobiol. J., 26(3):163–178. doi:10.1080/01490450902724832

Glombitza, C., Mangelsdorf, K., and Horsfield, B., 2009. A novel procedure to detect low molecular weight compounds released by alkaline ester cleavage from low maturity coals to assess its feedstock potential for deep microbial life. Org. Geochem., 40(2):175–183. doi:10.1016/​j.orggeochem.2008.11.003

Hinrichs, K.-U., Hayes, J.M., Bach, W., Spivack, A.J., Hmelo, L.R., Holm, N.G., Johnson, C.G., and Sylva, S.P., 2006. Biological formation of ethane and propane in the deep marine subsurface. Proc. Nat. Acad. Sci., U. S. A., 103(40):14684–14689. doi:10.1073/pnas.0606535103

Hinrichs, K.-U., and Inagaki, F., 2012. Downsizing the deep biosphere. Science, 338(6104):204–205. doi:10.1126/​science.1229296

House, C.H., Cragg, B.A., Teske, A., and the Leg 201 Scientific Party, 2003. Drilling contamination tests during ODP Leg 201 using chemical and particulate tracers. In D’Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., Proc. ODP, Init. Repts., 201: College Station, TX (Ocean Drilling Program), 1–19. doi:10.2973/​odp.proc.ir.201.102.2003

House, K.Z., Schrag, D.P., Harvery, C.F., and Lackner, K.S., 2006. Permanent carbon dioxide storage in deep-sea sediments. Proc. Natl. Acad. Sci. U. S. A., 103(33):12291–12295. doi:10.1073/​pnas.0605318103

Huang, W.-Y., and Meinschein, W.G., 1979. Sterols as ecological indicators. Geochim. Cosmochim. Acta, 43(5):739–745. doi:10.1016/​0016-7037(79)90257-6

Imachi, H., Aoi, K., Tasumi, E., Saito, Y., Yamanaka, Y., Saito, Y., Yamaguchi, T., Tomaru, H., Takeuchi, R., Morono, Y., Inagaki, F., and Takai, K., 2011. Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME J., 5(12):1751–1925. doi:10.1038/​ismej.2011.64

Inagaki, F., Hinrichs, K.-U., Kubo, Y., and the Expedition 337 Project Team, 2010. Deep coalbed biosphere off Shimokita: microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean. IODP Sci. Prosp., 337. doi:10.2204/iodp.sp.337.2010

Inagaki, F., and Nakagawa, S., 2008. Spatial distribution of the subseafloor life: diversity and biogeography. In Dilek, Y., Furnes, H., and Muehlenbachs, K. (Eds.), Links Between Geological Processes, Microbial Activities and Evolution of Life Microbes and Geology. Mod. Approaches Solid Earth Sci., 4:135–158. doi:10.1007/​978-1-4020-8306-8_4

Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A., Suzuki, M., Takai, K., Delwiche, M., Colwell, F.S., Nealson, K.H., Horikoshi, K., D’Hondt, S., and Jørgensen, B.B., 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. Proc. Natl. Acad. Sci. U. S. A., 103(8):2815–2820. doi:10.1073/​pnas.0511033103

Inagaki, F., Suzuki, M., Takai, K., Oida, H., Sakamoto, T., Aoki, K., Nealson, K.H., and Horikoshi, K., 2003. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl. Environ. Microbiol., 69(12):7224–7235. doi:10.1128/​AEM.69.12.7224-7235.2003

Japan Natural Gas Association and Japan Offshore Petroleum Development Association (Eds.), 1992. Oil and Gas Resources in Japan (revised edition): Tokyo (Jpn. Nat. Gas Assoc./Jpn. Offshore Pet. Dev. Assoc.).

Jones, E.J.P., Voytek, M.A., Warwick, P.D., Corum, M.D., Cohn, A., Bunnell, J.E., Clark, A.C., and Orem, W.H., 2008. Bioassay for estimating the biogenic methane-generating potential of coal samples. Int. J. Coal Geol., 76(1–2):138–150. doi:10.1016/j.coal.2008.05.011

Jørgensen, B.B., 2012. Shrinking majority of the deep biosphere. Proc. Natl. Acad. Sci. U. S. A, 109(40):15976–15977. doi:10.1073/​pnas.1213639109

Kallmeyer, J., Pockalny, R., Adhikari, R.R., Smith, D.C., and D’Hondt, S., 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl. Acad. Sci. U. S. A., 109(40):16213–16216. doi:10.1073/​pnas.1203849109

Kobayashi, T., Koide, O., Mori, K., Shimamura, S., Matsuura, T., Miura, T., Takaki, Y., Morono, Y., Nunoura, T., Imachi, H., Inagaki, F., Takai, K., and Horikoshi, K., 2008. Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula. Extremophiles, 12(4):519–527. doi:10.1007/​s00792-008-0157-7

Krüger, M., Beckmann, S., Engelen, B., Thielemann, T., Cramer, B., Schippers, A., and Cypionka, H., 2008. Microbial methane formation from hard coal and timber in an abandoned coal mine. Geomicrobiol. J., 25(6):315–321. doi:10.1080/01490450802258402

Krüger, M., Jones, D., Frerichs, J., Oppermann, B.I., West, J., Coombs, P., Green, K., Barlow, T., Lister, R., Shaw, R., Strutt, M., and Möller, I., 2011. Effects of elevated CO2 concentrations on the vegetation and microbial populations at a terrestrial CO2 vent at Laacher See, Germany. Int. J. Greenhouse Gas Control, 5(4):1093–1098. doi:10.1016/j.ijggc.2011.05.002

Krumholz, L.R., McKinley, J.P., Ulrich, G.A., and Suflita, J.M., 1997. Confined subsurface microbial communities in Cretaceous rock. Nature (London, U. K.), 386(6620):64–66. doi:10.1038/386064a0

Lever, M.A., Alperin, M., Engelen, B., Inagaki, F., Nakagawa, S., Steinsbu, B.O., Teske, A., and IODP Expedition Scientists, 2006. Trends in basalt and sediment core contamination during IODP Expedition 301. Geomicrobiol. J., 23(7):517–530. doi:10.1080/01490450600897245

Lipp, J.S., Morono, Y., Inagaki, F., and Hinrichs K.-U., 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature (London, U. K.), 454(7207):991–994. doi:10.1038/​nature07174

Lomstein, B.A., Langerhuus, A.T., D’Hondt, S., Jørgensen, B.B., and Spivack, A., 2012. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature (London, U. K.), 484(7392):101–104. doi:10.1038/​nature10905

Masui, N., Morono, Y., and Inagaki, F., 2008. Microbiological assessment of circulation mud fluids during the first operation of riser drilling by the deep-earth research vessel Chikyu. Geomicrobiol. J., 25(6):274–282. doi:10.1080/​01490450802258154

Miyazaki, M., Koide, O., Kobayashi, T., Mori, K., Shimamura, S., Nunoura, T., Imachi, H., Inagaki, F., Nagahama, T., Deguchi, S., and Takai, K., 2012. Geofilum rubicundum gen. nov., sp. nov., isolated from deep subseafloor sediment. Int. J. Syst. Evol. Microbiol., 62(5):1075–1080. doi:10.1099/​ijs.0.032326-0

Morono, Y., Terada, T., Masui, N., and Inagaki, F., 2009. Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J., 3(5):503–511. doi:10.1038/ismej.2009.1

Morono, Y., Terada, T., Nishizawa, M., Ito, M., Hillion, F., Takahata, N., Sano, Y., and Inagaki, F., 2011. Carbon and nitrogen assimilation in deep subseafloor microbial cells. Proc. Natl. Acad. Sci. U. S. A., 108(45):18295–18300. doi:10.1073/pnas.1107763108

Morozova, D., Wandrey, M., Alawi, M., Zimmer, M., Vieth, A., Zettlitzer, M., Würdemann, H., and the CO2SINK Group, 2010. Monitoring of the microbial community composition in saline aquifers during CO2 storage by fluorescence in situ hybridisation. Int. J. Greenhouse Gas Control, 4(6):981–989. doi:10.1016/​j.ijggc.2009.11.014

Nakagawa, S., Inagaki, F., Suzuki, Y., Steinsbu, B.O., Lever, M.A., Takai, K., Engelen, B., Sako, Y., Wheat, C.G., Horikoshi, K., and Integrated Ocean Drilling Program Expedition 301 Scientists, 2006. Microbial community in black rust exposed to hot ridge-flank crustal fluids. Appl. Environ. Microbiol., 72(10):6789–6799. doi:10.1128/AEM.01238-06

Onstott, T.C., 2005. Impact of CO2 injections on deep subsurface microbial ecosystems and potential ramifications for the surface biosphere. In Thomas, D.C., and Benson, S.M. (Eds.), Carbon Dioxide Capture for Storage in Deep Geological Formations: the CO2 Capture Project, Vol. 2: London (Elsevier Ltd.), 1207–1239.

Orem, W.H., Voytek, M.A., Jones, E.J., Lerch, H.E., Bates, A.L., Corum, M.D., Warwick, P.D., and Clark, A.C., 2010. Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions. Org. Geochem., 41(9):997–1000. doi:10.1016/j.orggeochem.2010.03.005

Osawa, M., Nakanishi, S., Tanahashi, M., Oda, H., and Sasaki, A., 2002. Structure, tectonic evolution and gas exploration potential of offshore Sanriku and Hidaka provinces, Pacific Ocean, off northern Honshu and Hokkaido, Japan. J. Jpn. Assoc. Pet. Technol., 67(1):38–51. (in Japanese, with English abstract and figures)

Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C., Weightman, A.J., and Harvey, S.M., 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature (London, U. K.), 371(6496):410–413. doi:10.1038/​371410a0

Parkes, R.J., Cragg, B.A., and Wellsbury, P., 2000. Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol. J., 8(1):11–28. doi:10.1007/PL00010971

Parkes, R.J., Webster, G., Cragg, B.A., Weightman, A.J., Newberry, C.J., Ferdelman, T.G., Kallmeyer, J., Jørgensen, B.B., Aiello, I.W., and Fry, J.C., 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature (London, U. K.), 436(7049):390–394. doi:10.1038/​nature03796

Roussel, E.G., Bonavita, M.-A.C., Querellou, J., Cragg, B.A., Webster, G., Prieur, D., and Parkes, R.J., 2008. Extending the subseafloor biosphere. Science, 320(5879):1046. doi:10.1126/science.1154545

Schrag, D.P., 2009. Storage of carbon dioxide in offshore sediments. Science, 325(5948):1658–1659. doi:10.1126/​science.1175750

Seno, T., Sakurai, T., and Stein, S., 1996. Can the Okhotsk plate be discriminated from the North American plate? J. Geophys. Res., [Solid Earth], 101(B5):11305–11315. doi:10.1029/96JB00532

Shimizu, S., Akiyama, M., Naganuma, T., Fujioka, M., Nako, M., and Ishijima, Y., 2007. Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan. Geobiology, 5(4):423–433. doi:10.1111/​j.1472-4669.2007.00123.x

Shipboard Scientific Party, 2003. Site 1230. In D’Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., Proc. ODP, Init. Repts., 201: College Station, TX (Ocean Drilling Program), 1–107. doi:10.2973/​odp.proc.ir.201.111.2003

Smith, D.C., Spivack, A.J., Fisk, M.R., Haveman, S.A., and Staudigel, H., 2000a. Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol. J., 17(3):207–219. doi:10.1080/​01490450050121170

Smith, D.C., Spivack, A.J., Fisk, M.R., Haveman, S.A., Staudigel, H., and the Leg 185 Shipboard Scientific Party, 2000b. Methods for quantifying potential microbial contamination during deep ocean coring. ODP Tech. Note, 28. doi:10.2973/odp.tn.28.2000

Sørensen, K.B., and Teske, A., 2006. Stratified communities of active archaea in deep marinesubsurface sediments. Appl. Environ. Microbiol., 72(7):4596–4603. doi:10.1128/AEM.00562-06

Strapoc, D., Picardal, F.W., Turich, C., Schaperdoth, I., Macalady, J.L., Lipp, J.S., Lin, Y.-S., Ertefai, T.F., Schubotz, F., Hinrichs, K.-U., Mastalerz, M., and Schimmelmann, A., 2008. Methane-producing microbial community in a coal bed of the Illinois basin. Appl. Environ. Microbiol., 74(8):2424–2432. doi:10.1128/​AEM.02341-07

Taira, A., and Curewitz, D. (Eds.), 2005. CDEX Technical Report (Vol. 2): Shimokita Area Site Survey: Northern Japan Trench Seismic Survey, Northern Honshu, Japan: Yokohama (CDEX-JAMSTEC)

Takai, K., Abe, M., Miyazaki, M., Koide, O., Nunoura, T., Imachi, H., Inagaki, F., Kobayashi, T., in press. Sunxiuqinia faeciviva sp. nov., a novel facultatively anaerobic, organoheterotrophic bacterium within the Bacterioidetes isolated form deep subseafloor sediment offshore Shimokita, Japan. Int. J. Syst. Evol. Microbiol.

Tissot, B.P., and Welte, D.H., 1984. Petroleum Formation and Occurrence (2nd ed.): Heidelberg (Springer-Verlag).

Tomaru, H., Fehn, U., Lu, Z., Takeuchi, R., Inagaki, F., Imachi, H., Kotani, R., Matsumoto, R., and Aoike, K., 2009. Dating of dissolved iodine in pore waters from the gas hydrate occurrence offshore Shimokita Peninsula, Japan: 129I results from D/V Chikyu shakedown cruise. Resour. Geol., 59(4):359–373. doi:10.1111/​j.1751-3928.2009.00103.x

Ünal, B., Perry, V.R., Sheth, M., Gomez-Alvarez, V., Chin, K.-J., and Nüsslein, K., 2012. Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water. Front. Extreme Microbiol. 3:175. doi:10.3389/fmicb.2012.00175

Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol., 161(1–3):291–314. doi:10.1016/​S0009-2541(99)00092-3

Whitman, W.B., Coleman, D.C., and Wiebe, W.J., 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. U. S. A., 95(12):6578–6583. doi:10.1073/​pnas.95.12.6578