IODP Proceedings    Volume contents     Search
iodp logo

doi:10.2204/iodp.proc.301.202.2008

Data report: trace element, Sr isotope, and Ge/Si composition of fluids and sediments in ridge-flank low-temperature hydrothermal environments1

Samuel M. Hulme,2 C. Geoffrey Wheat,3, 4 Rosalind M. Coggon,5, 6 and James McManus7

Abstract

The data presented in this report demonstrate significant improvements in the ability to constrain trace element and Sr isotopic concentrations in sediments overlying ridge-flank hydrothermal systems. Improved sampling methods orchestrated by the Integrated Ocean Drilling Program (i.e., advanced piston coring and anoxic sample processing) enabled the collection of reactive pore water species with minimal alteration and sampling artifacts. Improved methods of high-resolution inductively coupled plasma–mass spectrometry trace element analysis, including the use of the 8-hydroxyquinoline functional group to extract and preconcentrate rare earth elements and other trace metals, were used to compile a data set of 28 trace element concentrations and 87Sr/86Sr ratios. From this extensive data set, we were able to increase the current understanding of how redox-reactive species respond to diagenic processes. Near-basement trends were used in combination with the known composition of hydrothermal fluids that exit Baby Bare Springs to asses our ability to predict basement fluid compositions using sediment pore water profiles collected by deep-sea drilling. The results show that prediction of basement fluid composition is possible for many trace elements, provided the near-basement concentration gradients are minimal. In order to place the Ge/Si systematics in a broader context, pore water and borehole fluid Ge and Si data are presented from additional sites across the Juan de Fuca Ridge flank and from two additional ridge-flank settings. These data show that Ge concentrations and Ge/Si ratios are much higher in the basement fluids than in the basal sediments because of increased mobilization of Ge relative to Si within the basement hydrothermal reservoir. Solid-phase sediment data are presented, highlighted by the occurrence of Mn- and carbonate-rich layers.

1Hulme, S.M., Wheat, C.G., Coggon, R.M., and McManus, J., 2008. Data report: trace element, Sr isotope, and Ge/Si composition of fluids and sediments in ridge-flank low-temperature hydrothermal environments. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, Proc. IODP, 301: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.202.2008

2Hawaii Institute of Geophysics and Planetology, 1680 East-West Road, POST 504, Honolulu HI 96822, USA. hulme@hawaii.edu

3Global Undersea Research Unit, PO Box 757220, University of Alaska Fairbanks, Fairbanks AK 99775, USA.

4Mailing address: PO Box 475, Moss Landing CA 95039, USA.

5School of Ocean and Earth Science, National Oceanography Centre, Southampton, University of Southampton, European Way, Southampton SO14 3ZH, United Kingdom.

6Present address: Department of Geological Sciences, University of Michigan, 2543 CC Little Building, 1100 North University, Ann Arbor MI 48109-1005, USA.

7College of Oceanic and Atmospheric Sciences, 104 Ocean Administration Building, Oregon State University, Corvallis OR 97331, USA.

Initial receipt: 7 April 2007
Acceptance: 17 October 2007
Publication: 15 February 2008
MS 301-202