IODP Proceedings    Volume contents     Search
iodp logo

doi:10.2204/iodp.proc.303306.103.2006

References

Adkins, J.F., and Schrag, D.P., 2003. Reconstructing last glacial maximum bottom water salinities from deep-sea sediment pore fluid profiles. Earth Planet Sci. Lett., 216:109–123. doi:10.1016/​S0012-821X(03)00502-8

Adkins, J.F., McIntyre, K., and Schrag, D.P., 2002. The salinity, temperature and δ18O of the glacial deep ocean. Science, 298:1769–1773. doi:10.1126/​science.1076252

Aksu, A.E., and Hiscott, R.N., 1992. Shingled Quaternary debris flow lenses on the northeast Newfoundland slope. Sedimentology, 39:193–206.

Baker, P.A., Gieskes, J.M., and Elderfield, H., 1982. Diagenesis of carbonates in deep-sea sediments—evidence from Sr2+/Ca2+ ratios and interstitial dissolved Sr2+ data. J. Sediment. Petrol., 52:71–82.

Bilodeau, G., de Vernal, A., and Hillaire-Marcel, C., 1994. Benthic foraminiferal assemblages in Labrador Sea sediments: relations with deep-water mass changes since deglaciation. Can. J. Earth Sci., 31:128–138.

Broecker, W.S., Bond, G.C., Mieczyslawa, K., Clark, E.A., and McManus, J., 1992. Origin of the northern Atlantic’s Heinrich events. In Kelts, K.R. (Ed.), Past and Present Climate Dynamics: Reconstruction of Rates of Change. Clim. Dyn. 6(3–4):265–273. doi:10.1007/​BF00193540

Channell, J.E.T., Hodell, D.A., and Lehman, B., 1997. Relative geomagnetic paleointensity and δ18O at ODP Site 983 (Gardar Drift, North Atlantic) since 350 ka. Earth Planet. Sci. Lett., 153:103–118. doi:10.1016/​S0012-821X(97)00164-7

Chian, D., Reid, I.D., and Jackson, H.R., 2001. Crustal structure beneath Orphan basin and implications for nonvolcanic continental rifting. J. Geophys. Res, 106:10923–10940. doi:10.1029/​2000JB900422

Chough, S., Hesse, R., and Müller, J., 1987. The northwest Atlantic mid-ocean channel of the Labrador Sea, IV. Petrography and provenance of the sediments. Can. J. Earth Sci., 24:731–740.

de Vernal, A., and Mudie, P.J., 1992. Pliocene and Quaternary dinoflagellate cyst stratigraphy in Labrador Sea: paleocological implications. In Head, M.J., and Wrenn, J.H. (Eds.), Neogene and Quaternary Dinoflagellate Cysts and Acritarchs: Salt Lake City (Publisher’s Press), 329–346.

Emerson, S., and Hedges, J.I., 1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography, 3:621–634.

Goll, R.M., and Bjørklund, K.R., 1989. A new radiolarian biostratigraphy for the Neogene of the Norwegian Sea: ODP Leg 104. In Eldholm, O., Thiede, J., Taylor, E., et al., Proc. ODP, Sci. Results, 104: College Station, TX (Ocean Drilling Program), 697–737. [PDF]

Heinrich, H., 1988. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res., 29:142–152. doi:10.1016/​0033-5894(88)90057-9

Hesse, R., Khodabakhsh, S., Klaucke, I., and Ryan, W.B.F., 1997. Asymmetrical turbid surface plume deposition near ice-outlets of the Pleistocene Laurentide Ice Sheet in the Labrador Sea. Geo-Mar. Lett. 17:179–187.

Hillaire-Marcel, C., and Bilodeau, G., 2000. Instabilities in the Labrador Sea water mass structure during the last climatic cycle. Can. J. Earth Sci., 37:795–809.

Hillaire-Marcel, C., de Vernal, A., Bilodeau, G., and Weaver, A.J., 2001a. Absence of deep-water formation in the Labrador Sea during the last interglacial period. Nature (London, U. K.), 410:1073–1077. doi:10.1038/​35074059

Hillaire-Marcel, C., de Vernal, A., Bilodeau, G., and Wu, G., 1994. Isotope stratigraphy, sedimentation rates, deep circulation, and carbonate events in the Labrador Sea during the last ~200 ka. Can. J. Earth Sci., 31:63–89.

Hillaire-Marcel, C., de Vernal, A., Candon, L., and Bilodeau, G., 2001b. Changes of potential density gradients in the northwestern North Atlantic during the last climatic cycle based on a multiproxy approach. In The Oceans and Rapid Climage Change: Past, Present and Future. Geophys. Monogr., 126:83–100.

Hiscott, R.N., Aksu, A.E., Mudie, P.J., and Parsons, D.F., 2001. A 340,000 year record of ice rafting, paleoclimatic fluctuations, and shelf-crossing glacial advances in the southwestern Labrador Sea. Global Planet. Change, 28:227–240. doi:10.1016/​S0921-8181(00)00075-8

Hiscott, R.N., and Aksu, A.E., 1996. Quaternary sedimentary processes and budgets in the Orphan Basin, southwestern Labrador Sea. Quat. Res., 45:160–175. doi:10.1006/​qres.1996.0017

Keen, C.E., and Beaumont, C., 1990. Geodynamics of rifted continental margins. In Keen, M.J., and Williams, G.L. (Eds.), The Geology of North America: Geology of the Continental Margin of Eastern Canada. Geol. Soc. Am., 2:391–472.

Kemp, A.E.S., Baldauf, J.G., and Pearce, R.B., 1995. Origins and paleoceanographic significance of laminated diatom ooze from the eastern equatorial Pacific Ocean. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 641–645.

Koç, N., Hodell, D.A., Kleiven, H., and Labeyrie, L., 1999. High-resolution Pleistocene diatom biostratigraphy of Site 983 and correlations with isotope stratigraphy. In Raymo, M.E., Jansen, E., Blum, P., and Herbert, T.D. (Eds.), 1999. Proc. ODP, Sci. Results, 162: College Station, TX (Ocean Drilling Program), 51–62. [HTML]

McDuff, R.E., 1985. The chemistry of interstitial waters, Deep Sea Drilling Project Leg 86. In Heath, G.R., Burckle, L.H., et al., Init. Repts. DSDP, 86: Washington (U.S. Govt. Printing Office), 675–687.

Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem., 27:213–250. doi:10.1016/​S0146-6380(97)00049-1

Sato, T., Kameo, K., and Mita, I., 1999. Validity of the latest Cenozoic calcareous nannofossil datums and its application to the tephrochronology. Earth Sci., 53:265–274.

Smith, W.H.F., and Sandwell, D.T., 1994. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry. J. Geophys. Res., 99:21803–21824. doi:10.1029/​94JB00988

Stoner, J.S., Channell, J.E.T., and Hillaire-Marcel, C., 1995. Late Pleistocene relative geomagnetic paleointensity from the deep Labrador Sea: regional and global correlations. Earth Planet. Sci. Lett., 134:237–252. doi:10.1016/​0012-821X(95)00134-X

Stoner, J.S., Channell, J.E.T., and Hillaire-Marcel, C., 1996. The magnetic signature of rapidly deposited detrital layers from the deep Labrador Sea: relationship to North Atlantic Heinrich layers. Paleoceanography, 11:309–325. doi:10.1029/​96PA00583

Stoner, J.S., Channell, J.E.T., and Hillaire-Marcel, C., 1998. A 200 ka geomagnetic chronostratigraphy for the Labrador Sea: indirect correlation of the sediment record to SPECMAP. Earth Planet. Sci. Lett., 159:165–181. doi:10.1016/​S0012-821X(98)00069-7

Stoner, J.S., Channell, J.E.T., Hillaire-Marcel, C., and Kissel, C., 2000. Geomagnetic paleointensity and environmental record from Labrador Sea Core MD95-2024: global marine sediment and ice core chronostratigraphy for the last 110 kyr. Earth Planet. Sci. Lett., 183:161–177. doi:10.1016/​S0012-821X(00)00272-7

Toews, M.W., and Piper, D.J.W., 2002. Recurrence intervals of seismically triggered mass-transport deposits at Orphan Knoll continental margin off Newfoundland and Labrador. Curr. Res.—Geol. Surv. Can., E17:1–8.

Turon, J.-L., Hillaire-Marcel, C., and Shipboard Participants, 1999. IMAGES V mission of the Marion Dufresne, Leg 2, 30 June to 24 July 1999. Geol. Surv. Canada, Open File 3782.

Weaver, P.P.E., and Clement, B.M., 1987. Magnetobiostratigraphy of planktonic foraminiferal datums, DSDP Leg 94, North Atlantic. In Ruddiman, W.F., Kidd, R.B., Thomas, E., et al., Init. Repts. DSDP, 94: Washington (U.S. Govt. Printing Office), 815–829.

Wei, W., 1993. Calibration of upper Pliocene–lower Pleistocene nannofossil events with oxygen isotope stratigraphy. Paleoceanography, 8:85–99.