IODP Proceedings    Volume contents     Search
iodp logo



Berner, R.A., 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci., 282:451–473.

B÷ttcher, M.E., Brumsack, H.-J., and de Lange, G.J., 1998. Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters from the Eastern Mediterranean. In Robertson, A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), Proc. ODP, Sci. Results, 160: College Station, TX (Ocean Drilling Program), 365–373. doi:10.2973/

Bruechert, V., 2004. Physiological and ecological aspects of sulfur isotope fractionation during bacterial sulfate reduction. In Amend, J.P., Edwards, K.J., and Lyons, T.W. (Eds.), Sulfur Biogeochemistry; Past and Present, Spec. Pap. Geol. Soc. Am., 379:1–16.

Brunner, B., and Bernasconi, S.M., 2005. A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochim. Cosmochim. Acta, 69(20):4759–4771. doi:10.1016/j.gca.2005.04.015

Brunner, B., Berasconi, S., Kleikemper, J., and Schroth, M.H., 2005. A model for oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate reduction process. Geochim. Cosmochim. Acta, 69:4773–4785. doi:10.1016/j.gca.2005.04.017

Chernyavsky, B.M., and Wortmann, U.G., 2007. REMAP: A reaction transport model for isotope ratio calculations in porous media. Geochem. Geophys. Geosys., 8(2):Q02009. doi:10.1029/2006GC001442

Fritz, P., Basharmal, G.M., Drimmie, R.J., Ibsen, J., and Qureshi, R.M., 1989. Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem. Geol., 79:99–105.

Garrels, R.M., and Lerman, A., 1984. Coupling of the sedimentary sulfur and carbon cycles; an improved model. Am. J. Sci., 284(9):989–1007.

J°rgensen, B.B., 1982. Mineralization of organic matter in the seabed—the role of sulphate reduction. Nature (London, U. K.), 296:643–645. doi:10.1038/296643a0

Mizutani, Y., and Rafter, T.A., 1973. Isotopic behaviour of sulphate oxygen in the bacterial reduction of sulphate. Geochem. J., 6:183–191.

Rees, C.E., 1973. A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochim. Cosmochim. Acta, 37(5):1141–1162. doi:10.1016/0016-7037(73)90052-5

Schidlowski, M., Hayes, J.M., and Kaplan, I.R., 1983. Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen. In Schopf, J.W. (Ed.), Earth's Earliest Biosphere: Its Origin and Evolution: Princeton (Princeton Univ. Press), 149–186.

Wortmann, U.G., 2006. A 300 m long depth profile of metabolic activity of sulfate-reducing bacteria in the continental margin sediments of South Australia (ODP Site 1130) derived from inverse reaction-transport modeling. Geochem. Geophys. Geosys., 7(5):Q05012. doi:10.1029/2005GC001143

Wortmann, U.G., and Chernyavsky, B.M., 2007. Effect of evaporite deposition on Early Cretaceous carbon and sulphur cycling. Nature, 446(7136):654–656. doi:10.1038/nature05693

Wortmann, U.G., Chernyavsky, B., Bernasconi, S.M., Brunner, B., B÷ttcher, M.E., and Swart, P.K., 2007. Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochim. Cosmochim. Acta, 71(17):4221–4232. doi:10.1016/j.gca.2007.06.033