IODP

doi:10.2204/iodp.sp.329.2010

References

Alt, J.C., France-Lanord, C., Floyd, P.A., Castillo, P., and Galy, A., 1992. Low-temperature hydrothermal alteration of Jurassic ocean crust, Site 801. In Larson, R.L., Lancelot, Y., et al., Proc. ODP, Sci. Results, 129: College Station, TX (Ocean Drilling Program), 415–427. doi:10.2973/odp.proc.sr.129.132.1992

Anderson, R.N., and Skilbeck, J.N., 1981. Oceanic heat flow. In Emiliani, C. (Ed.), The Sea (Vol. 7): The Oceanic Lithosphere: New York (Wiley), 489–524.

Archer, D., Martin, P., Buffett, B., Brovkin, V., Rahmstorf, S., and Ganopolski, A., 2004. The importance of ocean temperature to global biogeochemistry. Earth Planet. Sci. Lett., 222(2):333–348. doi:10.1016/j.epsl.2004.03.011

Bach, W., and Edwards, K.J., 2003. Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim. Cosmochim. Acta, 67(20):3871–3887. doi:10.1016/S0016-7037(03)00304-1

Barr, S.R., Révillon, S., Brewer, T.S., Harvey, P.K., and Tarney, J., 2002. Determining the inputs to the Mariana Subduction Factory: using core-log integration to reconstruct basement lithology at ODP Hole 801C. Geochem., Geophys., Geosyst., 3(11):8901. doi:10.1029/2001GC000255

Behrenfeld, M.J., and Falkowski, P.G., 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42(1):1–20.

Blair, C.C., D'Hondt, S., Spivack, A.J., and Kingsley, R.H., 2007. Radiolytic hydrogen and microbial respiration in subsurface sediments. Astrobiology, 7(6):951–970. doi:10.1089/ast.2007.0150

Boyd, T.D., and Scott, S.D., 2001. Microbial and hydrothermal aspects of ferric oxyhydroxides and ferrosic hydroxides: the example of Franklin Seamount, Western Woodlark Basin, Papua New Guinea. Geochem. Trans., 2:45. doi:10.1186/1467-4866-2-45

Broecker, W.S., 1982. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta, 46(10):1689–1705. doi:10.1016/0016-7037(82)90110-7

Cowen, J.P., Giovannoni, S.J., Kenig, F., Johnson, H.P., Butterfield, D., Rappé, M.S., Hutnak, M., and Lam, P., 2003. Fluids from aging ocean crust that support microbial life. Science, 299(5603):120–123. doi:10.1126/science.1075653

Debierne, A., 1909. Radioactivitié: sur la decomposition de l'eau par les sel de radium. Comptes Rend., 148:703–705.

Dekas, A.E., Poretsky, R.S., and Orphan, V.J., 2009. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science, 326(5951):422–426. doi:10.1126/science.1178223

D'Hondt, S., Jørgensen, B.B., Miller, D.J., Batzke, A., Blake, R., Cragg, B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., Hinrichs, K.-U., Holm, N.G., Mitterer, R., Spivack, A., Wang, G., Bekins, B., Engelen, B., Ford, K., Gettemy, G., Rutherford, S.D., Sass, H., Skilbeck, C.G., Aiello, I.W., Guerin, G., House, C.H., Inagaki, F., Meister, P., Naehr, T., Niitsuma, S., Parkes, R.J., Schippers, A., Smith, D.C., Teske, A., Wiegel, J., Naranjo Padillo, C., and Solis Acosta, J.L., 2004. Distributions of microbial activities in deep subseafloor sediments. Science, 306(5705):2216–2221. doi:10.1126/science.1101155

D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., 2003. Proc. ODP, Init. Repts., 201: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.201.2003

D'Hondt, S., Rutherford, S., and Spivack., A.J., 2002. Metabolic activity of the subsurface life in deep-sea sediments. Science, 295(5562):2067–2070. doi:10.1126/science.1064878

D'Hondt, S., Spivack, A.J., Pockalny, R., Ferdelman, T.G., Fischer, J.P., Kallmeyer, J., Abrams, L.J., Smith, D.C., Graham, D., Hasiuke, F., Schrum, H., and Stancine, A.M., 2009. Subseafloor sedimentary life in the South Pacific Gyre. Proc. Natl. Acad. Sci., 106(28):11651–11656 doi:10.1073/pnas.0811793106

Edwards, K.J., Rogers, D.R., Wirsen, C.O., and McCollom, T.M., 2003. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoauto-trophic alpha- and gamma-Proteobacteria from the Deep Sea. Appl. Environ. Microbiol. 69(5):2906–2913. doi:10.1128/AEM.69.5.2906-2913.2003

Fischer, J.P., Ferdelman, T.G., D'Hondt, S., Røy, H., and Wenzhöfer, F., 2009. Oxygen penetration deep into the sediment of the South Pacific gyre, Biogeosciences 6:1467–1478. http://www.biogeosciences.net/6/1467/2009/bg-6-1467-2009.pdf

Fisher, A.T., and Becker, K., 2000. Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data. Nature (London, U. K.), 403(6765):71–74. doi:10.1038/47463

Fisher, A.T., and Von Herzen, R.P., 2005. Models of hydrothermal circulation within 106 Ma seafloor: constraints on the vigor of fluid circulation and crustal properties, below the Madeira Abyssal Plain. Geochem., Geophys., Geosyst., 6(11):Q11001. doi:10.1029/2005GC001013

Fisk, M.R., Giovannoni, S.J., and Thorseth, I.H., 1998. Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science, 281(5379):978–980. doi:10.1126/science.281.5379.978

Fukui, M., Suwa, Y., and Urushigawa, Y., 1996. High survival efficiency and ribosomal RNA decaying pattern of Desulfobacter latus, a highly specific acetate-utilizing organism, during starvation. FEMS Microbiol. Ecol., 19(1):17–25. doi:10.1111/j.1574-6941.1996.tb00194.x

Furnes, H., and Staudigel, H., 1999. Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet. Sci. Lett., 166(3–4):97–103. doi:10.1016/S0012-821X(99)00005-9 

Gallahan, W.E., and Duncan, R.A., 1994. Spatial and temporal variability in crystallization of celadonites with the Troodos ophiolite, Cyprus: implications for low-temperature alteration of the oceanic crust. J. Geophys. Res., [Solid Earth], 99(B2):3147–3161. doi:10.1029/93JB02221

Gieskes, J.M., and Boulègue, J., 1986. Interstitial water studies, Leg 92. In Leinen, M., Rea, D.K., et al., Init. Repts. DSDP, 92: Washington, DC (U.S. Govt. Printing Office), 423–429. doi:10.2973/dsdp.proc.92.124.1986

Hauff, F., Hoernle, K., and Schmidt, A., 2003. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochem., Geophys., Geosyst., 4(8):8913. doi:10.1029/2002GC000421

Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S., 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim. Cosmochim. Acta, 62(10):1745–1756. doi:10.1016/S0016-7037(98)00106-9

House, C.H., Cragg, B.A., Teske, A., and the Leg 201 Scientific Party, 2003. Drilling contamination tests during ODP Leg 201 using chemical and particulate tracers. In D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., Proc. ODP, Init. Repts., 201: College Station, TX (Ocean Drilling Program), 1–19. doi:10.2973/odp.proc.ir.201.102.2003

Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A., Suzuki, M., Takai, K., Delwiche, M., Colwell, F.S., Nealson, K.H., Horikoshi, K., D'Hondt, S., and Jørgensen, B.B., 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. Proc. Natl. Acad. Sci. U. S. A., 103(8):2815–2820. doi:10.1073/pnas.0511033103

Jacobson, R.S., 1992. Impact of crustal evolution on changes of the seismic properties of the uppermost ocean crust. Rev. Geophys., 30(1):23–42. doi:10.1029/91RG02811

Jahnke, R.A., 1996. The global ocean flux of particulate organic carbon: areal distribution and magnitude. Global Biogeochem. Cycles, 10(1):71–88. doi:10.1029/95GB03525

Jarrard, R.D., Abrams, L.J., Pockalny, R., Larson, R.L., and Hirono, T., 2003. Physical properties of upper oceanic crust: Ocean Drilling Program Hole 801C and the waning of hydrothermal circulation. J. Geophys. Res., [Solid Earth], 108(B4):2188. doi:10.1029/2001JB001727

Jørgensen, B.B., 2000. Bacteria and marine biogeochemistry. In Schulz, H.D., and Zabel, M. (Eds.), Marine Geochemistry: Berlin (Springer-Verlag), 173–207.

Kallmeyer, J., Pockalny, R.A., D'Hondt, S.L., and Adhikari, R.R., 2009. A new estimate of total microbial subseafloor biomass. Eos, Trans. Am. Geophys. Union, 90(52)(Suppl.):B23C-0381. (Abstract) http://www.agu.org/meetings/fm09/waisfm09.html

Kallmeyer, J., Smith, D.C., Spivack, A.J., and D'Hondt, S., 2008. New cell extraction procedure applied to deep subsurface sediments. Limnol. Oceanogr.: Methods, 6:236–245.

Kelley, K.A., Plank, T., Ludden, J., and Staudigel, H., 2003. Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem., Geophys., Geosyst., 4(6)8910. doi:10.1029/2002GC000435

Koppers, A.A.P., Staudigel, H., and Duncan, R.A., 2003. High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin. Geochem., Geophys., Geosyst., 4(11):8914. doi:10.1029/2003GC000574

Larson, R.L., and Olson, P., 1991. Mantle plumes control magnetic reversal frequency. Earth Planet. Sci. Lett., 107(3–4):437–447. doi:10.1016/0012-821X(91)90091-U

Lee, N., Nielsen, P.H., Andreasen, K.H., Juretschko, S., Nielsen, J.L., Schleifer, K.-H., and Wagner, M, 1999. Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol., 65(3):1289–1297. http://aem.asm.org/cgi/content/short/65/3/1289

Leinen, M., Rea, D.K., et al., 1986. Init. Repts. DSDP, 92: Washington, DC (U.S. Govt. Printing Office). doi:10.2973/dsdp.proc.92.1986

Lever, M.A., Alperin, M., Engelen, B., Inagaki, F., Nakagawa, S., Steinsbu, B.O., Teske, A., and IODP Expedition Scientists, 2006. Trends in basalt and sediment core contamination during IODP Expedition 301. Geomicrobiol. J., 23(7):517–530. doi:10.1080/01490450600897245

Lin, L.-H., Hall, J., Lippmann-Pipke, J., Ward, J.A., Sherwood Lollar, B., DeFlaun, M., Rothmel, R., Moser, D., Gihring, T.M., Mislowack, B., and Onstott, T.C., 2005a. Radiolytic H2 in continental crust: nuclear power for deep subsurface microbial communities. Geochem., Geophys., Geosyst., 6(7):Q07003. doi:10.1029/2004GC000907

Lin, L.-H., Slater, G.F., Sherwood Lollar, B., Lacrampe-Couloume, G., and Onstott, T.C., 2005b. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim. Cosmochim. Acta, 69(4):893–903. doi:10.1016/j.gca.2004.07.032

Loper, D.E., and McCartney, K., 1986. Mantle plumes and the periodicity of magnetic field reversals. Geophys. Res. Lett., 13(13):1525–1528. doi:10.1029/GL013i013p01525

Mauclaire, L., Zepp, K., Meister, P., and McKenzie, J., 2005. Direct in situ detection of cells in deep-sea sediment cores from the Peru Margin (ODP Leg 201, Site 1229). Geobiology, 2(4):217–223. doi:10.1111/j.1472-4677.2004.00035.x

Menard, H.W., Natland, J.H., Jordan, T.H., Orcutt, J.A., et al., 1987. Init. Repts. DSDP, 91: Washington, DC (U.S. Govt. Printing Office). doi:10.2973/dsdp.proc.91.1987

Morel, A., Gentili, B., Claustre, H., Babin, M., Bricaud, A., Ras, J., and Tiéche, F., 2007. Optical properties of the "clearest" natural waters. Limnol. Oceanogr., 52(1):217–229.

Morono, Y., Terada, T., Masui, N., and Inagaki, F., 2009. Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J., 3(5):503–511. doi:10.1038/ismej.2009.1

National Imagery and Mapping Agency, 1998. Atlas of Pilot Charts, South Pacific Ocean (PUB 107), (2nd ed.): Washington, DC (National Imagery and Mapping Agency).Ocean Studies Board, 2003. Exploration of the Seas: Voyage into the Unknown: Washington, DC (National Academies Press). http://www.nap.edu/openbook.php?isbn=0309089271

Ouverney, C.C., and Fuhrman, J.A., 1999. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell type in situ. Appl. Enivron. Microbiol., 65(4):1746–1752. http://aem.asm.org/cgi/content/short/65/4/1746

Parkes, R.J., Cragg, B.A., and Wellsbury, P., 2000. Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol. J., 8(1):11–28. doi:10.1007/PL00010971

Parsons, B., and Sclater, J.G., 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., [Solid Earth], 82:803–827. doi:10.1029/JB082i005p00803

Pedersen, K., 1996. Microbial life in granite rock [presented at the 1996 International Symposium on Subsurface Microbiology (ISSN-96), Davos, Switzerland, 15–21 September 1996].

Pick, T., and Tauxe, L., 1993. Geomagnetic paleointensities during the Cretaceous normal superchron measured using submarine basaltic glass. Nature (London, U. K.), 366(6452):238–242. doi:10.1038/366238a0

Plank, T., and Langmuir, C.H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., 145(3–4):325–394. doi:10.1016/S0009-2541(97)00150-2

Pockalny, R.A, and Larson, R.L., 2003. Implications for crustal accretion at fast spreading ridges from observations in Jurassic oceanic crust in the western Pacific. Geochem., Geophys., Geosyst., 4(1):8903. doi:10.1029/2001GC000274

Poulsen, L.K., Ballard, G., and Stahl, D.A., 1993. Use of ribosomal-RNA fluorescence in-situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol., 59:1354–1360.

Révillon, S., Barr, S.R., Brewer, T.S., Harvey, P.K., and Tarney, J., 2002. An alternative approach using integrated gamma-ray and geochemical data to estimate the inputs to subduction zones from ODP Leg 185, Site 801. Geochem., Geophys., Geosyst., 3(12):8902. doi:10.1029/2002GC000344

Rouxel, O., Dobbek, N., Ludden, J., and Fouquet, Y., 2003. Iron isotope fractionation during oceanic crust alteration. Chem. Geol., 202(1–2):155–182. doi:10.1016/j.chemgeo.2003.08.011

Schippers, A., Neretin, L.N., Kallmeyer, J., Ferdelman, T.G., Cragg, B.A., Parkes R.J., and Jørgensen, B.B., 2005. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature (London, U. K.), 433(7028):861–864. doi:10.1038/nature03302

Shipboard Scientific Party, 2000. Site 1149. In Plank, T., Ludden, J.N., Escutia, C., et al., Proc. ODP, Init. Repts., 185: College Station, TX (Ocean Drilling Program), 1–190. doi:10.2973/odp.proc.ir.185.104.2000

Shipboard Scientific Party, 2003a. Explanatory notes. In D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., Proc. ODP, Init. Repts., 201: College Station, TX (Ocean Drilling Program), 1–103. doi:10.2973/odp.proc.ir.201.105.2003

Shipboard Scientific Party, 2003b. Site 1231. In D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., Proc. ODP, Init. Repts., 201: College Station, TX (Ocean Drilling Program), 1–64. doi:10.2973/odp.proc.ir.201.112.2003

Smith, D.C., Spivack, A.J., Fisk, M.R., Haveman, S.A., Staudigel, H., and the Leg 185 Shipboard Scientific Party, 2000a. Methods for quantifying potential microbial contamination during deep ocean coring. ODP Tech. Note, 28. doi:10.2973/odp.tn.28.2000

Smith, D.C., Spivack, A.J., Fisk, M.R., Haveman, S.A., and Staudigel, H., 2000b. Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol. J., 17(3):207–219. doi:10.1080/01490450050121170

Smith, W.H.F., and Sandwell, D.T., 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334):1956–1962. doi:10.1126/science.277.5334.1956

Soffientino, B., Spivack, A.J., Smith, D.C., Roggenstein, E.B., and D'Hondt, S., 2006. A versatile and sensitive tritium-based radioassay for measuring hydrogenase activity in aquatic sediments. J. Microbiol. Methods, 66(1):136–146. doi:10.1016/j.mimet.2005.11.004

Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.M., and Herndl, G.J., 2006. Microbial diversity in the deep sea and the underexplored "rare biosphere." Proc. Natl. Acad. Sci. U. S. A., 103(32):12115–12120. doi:10.1073/pnas.0605127103

Sørensen, K.B., Lauer, A., and Teske, A., 2004. Archaeal phylotypes in a metal-rich and low-activity deep subsurface sediment of the Peru Basin, ODP Leg 201, Site 1231. Geobiology, 2(3):151–161. doi:10.1111/j.1472-4677.2004.00028.x

Staudigel, H., Yayanos, A., Chastain, R., Davies, G., Verdurmen, E.A.T., Schiffman, P., Bourcier, R., and De Baar, H., 1998. Biologically mediated dissolution of volcanic glass in seawater. Earth Planet. Sci. Lett., 164(1–2):233–244. doi:10.1016/S0012-821X(98)00207-6

Stein, C.A., and Stein, S., 1994. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res., [Solid Earth], 99(B2):3081–3095. doi:10.1029/93JB02222

Taylor, B., 2006. The single largest oceanic plateau: Ontong Java–Manihiki–Hikurangi. Earth Planet. Sci. Lett., 241(3–4):372–380. doi:10.1016/j.epsl.2005.11.049

Tarduno, J.A., Cottrell, R.D., and Smirnov, A.V., 2001. High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals. Science, 291(5509):1779–1783. doi:10.1126/science.1057519

Von Herzen, R.P., 2004. Geothermal evidence for continuing hydrothermal circulation in older (>60 Ma) ocean crust. In Davis, E.E., and Elderfield, H. (Eds.) Hydrogeology of the Oceanic Lithosphere: Cambridge (Cambridge Univ. Press), 414–450.

Wang, G., Spivack, A.J., D'Hondt, S., Rutherford, S., and Manor, U. 2004. Metabolic activity in deep-sea sediment columns. Int. J. Astrobiol., 2004(Suppl.):70.

Whitman, W.B., Coleman, D.C., and Wiebe, W.J., 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. U. S. A., 95(12):6578–6583. doi:10.1073/pnas.95.12.6578

Wirsen, C.O., Jannasch, H.W., and Molyneaux, S.J., 1993. Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites. J. Geophys. Res., [Solid Earth], 98(B6):9693–9703. doi:10.1029/92JB01556