-
- Chapter contents
- Background and objectives
-
Science summary
-
Operations
-
Lithostratigraphy
-
Biostratigraphy
-
Paleomagnetism
-
Geochemistry
-
Physical properties
- Stratigraphic correlation and composite section
-
Downhole measurements
- References
-
Figures
- F1. Bathymetry, Site U1333.
- F2. Seismic reflection profile PEAT-3C Line 3.
- F3. Site U1333 summary.
- F4. Lithologic summary, Site U1333.
- F5. Smear slides, Site U1333.
- F6. Oligocene–Miocene transition.
- F7. Eocene–Oligocene transition.
- F8. Porcellanite layers.
- F9. Integrated calcareous and siliceous microfossil biozonation, Site U1333.
- F10. Linear sedimentation rates and chronostratigraphic markers, Site U1333.
- F11. Stratigraphic distribution.
- F12. Magnetic susceptibility and paleomagnetic results, Hole U1333A.
- F13. Magnetic susceptibility and paleomagnetic results, Hole U1333B.
- F14. Magnetic susceptibility and paleomagnetic results, Hole U1333C.
- F15. Natural remanent magnetization intensity.
- F16. Alternating-field demagnetization results.
- F17. Latitude of the virtual geomagnetic pole.
- F18. Interstitial water geochemical data, Hole U1333A.
- F19. CaCO3, TC, IC, and TOC, Hole U1333A.
- F20. WRMSL and NGR data, Site U1333.
- F21. Moisture and density measurements, Hole U1333A.
- F22. Moisture and density analysis, Hole U1333A.
- F23. Compressional wave velocity and discrete velocity measurements, Hole U1333A.
- F24. Porosity and thermal conductivity measurements, Hole U1333A.
- F25. Thermal conductivity vs. porosity.
- F26. RSC data, Site U1333.
- F27. Magnetic susceptibility data, Site U1333.
- F28. Magnetic susceptibility records, Sites 1218 and U1333.
- F29. CSF depth vs. CCSF-A depth for tops of cores, Site U1333.
- F30. Heat flow calculation, Site U1333.
-
Tables
- T1. Coring summary, Site U1333.
- T2. Lithologic unit boundaries, Site U1333.
- T3. Calcareous nannofossil datums, Site U1333.
- T4. Radiolarian datums, Site U1333.
- T5. Preservation and relative abundance of radiolarians, Hole U1333A.
- T6. Preservation and relative abundance of radiolarians, Hole U1333B.
- T7. Preservation and relative abundance of radiolarians, Hole U1333C.
- T8. Planktonic foraminifer datums, Site U1333.
- T9. Distribution of planktonic foraminifers, Site U1333.
- T10. Distribution of benthic foraminifers, Site U1333.
- T11. Coring-disturbed intervals and gaps, Site U1333.
- T12. Paleomagnetic data, Hole U1333A, at 0 mT AF demagnetization.
- T13. Paleomagnetic data, Hole U1333A, at 20 mT AF demagnetization.
- T14. Paleomagnetic data, Hole U1333B, at 0 mT AF demagnetization.
- T15. Paleomagnetic data, Hole U1333B, at 10 mT AF demagnetization.
- T16. Paleomagnetic data, Hole U1333B, at 20 mT AF demagnetization.
- T17. Paleomagnetic data, Hole U1333C, at 0 mT AF demagnetization.
- T18. Paleomagnetic data, Hole U1333C, at 10 mT AF demagnetization.
- T19. Paleomagnetic data, Hole U1333C, at 20 mT AF demagnetization.
- T20. Mean paleomagnetic direction for each core, Site U1333.
- T21. Magnetic susceptibility data for discrete samples, Hole U1333A.
- T22. Paleomagnetic results for discrete samples, Hole U1333A.
- T23. PCA results, Holes U1333A and U1333B.
- T24. Magnetostratigraphy, Site U1333.
- T25. Interstitial water data, Hole U1333A.
- T26. Inorganic geochemistry, Hole U1333A.
- T27. Calcium carbonate and organic carbon data, Site U1333.
- T28. Moisture and density measurements, Hole U1333A.
- T29. Split-core P-wave velocity measurements, Hole U1333A.
- T30. Thermal conductivity, Hole U1333A.
- T31. Shipboard core top, composite, and corrected composite depths, Site U1333.
- T32. Splice tie points, Site U1333.
- T33. Magnetostratigraphic and biostratigraphic datums, Site U1333.
- T34. APCT-3 temperature profiles, Hole U1333B.
-
PDF file

|
|
Previous | Next
doi:10.2204/iodp.proc.320321.105.2010
Downhole measurements
Heat flow
Four APCT-3 temperature measurements in Hole U1333B ranged from 2.52°C at 26.7 m to 4.55°C at 83.7 m (Table T34), giving a geothermal gradient of 37.9°C/km (Fig. F30). The bottom water temperature was 1.44°C, based on the average of the minimum temperature in the four APCT-3 temperature profiles. Thermal conductivity under in situ conditions was estimated from laboratory-determined thermal conductivity using the method of Hyndman et al. (1974) (see "Physical properties" in the "Methods" chapter). The calculated in situ values are up to 2.2% below the measured laboratory values. Thermal resistance was then calculated by cumulatively adding the inverse of the in situ thermal conductivity values over depth intervals downhole (Fig. F30). A heat flow of 42.3 mW/m2 was obtained from the linear fit between temperature and thermal resistance (Fig. F30) (Pribnow et al., 2000), which is similar to Site 1220 to the west but roughly 20 mW/m2 less than nearby Sites 1218, 1219, and U1332.
Top of page | Previous | Next
|