IODP Proceedings    Volume contents     Search

doi:10.2204/iodp.proc.322.205.2013

References

ASTM International, 2005. Standard test methods for liquid limit, plastic limit, and plasticity index of soils (Standard D4318-05). In Annual Book of ASTM Standards (Vol. 04.08): West Conshohocken, PA. (Am. Soc. Testing Mater.). http://​www.astm.org/​DATABASE.CART/​HISTORICAL/​D4318-05.htm

ASTM International, 2006. Standard test method for one-dimensional consolidation properties of saturated cohesive soils using controlled-strain loading (Standard D4186-06). In Annual Book of ASTM Standards (Vol. 04.08): Soil and Rock (I): West Conshohocken, PA (Am. Soc. Testing Mater.) http://​www.astm.org/​DATABASE.CART/​HISTORICAL/​D4186-06.htm

ASTM International, 2007. Standard test method for particle-size analysis of soils (Standard D422-63[2007]). In Annual Book of ASTM Standards (Vol. 04.08): Soil and Rock (I): West Conshohocken, PA (Am. So. Testing Mater.). doi:10.1520/D0422-63R07

Hillier, S., 2000. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Miner., 35(1):291. doi:10.1180/000985500546666

Hyndman, R.D., Yamano, M., and Oleskevich, D.A., 1997. The seismogenic zone of subduction thrust faults. Isl. Arc, 6(3):244–260. doi:10.1111/​j.1440-1738.1997.tb00175.x

Kobayashi, K., Kasuga, S., and Okino, K., 1995. Shikoku Basin and its margins. In Taylor, B. (Ed.), Backarc Basins: Tectonics and Magmatism: New York (Plenum), 381–405.

Loucks, R.G., Reed, R.M., Ruppel, S.C., and Jarvie, D.M., 2009. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res., 79(12):848–861. doi:10.2110/jsr.2009.092

Miyazaki, S., and Heki, K., 2001. Crustal velocity field of southwest Japan: subduction and arc-arc collision. J. Geophys. Res., [Solid Earth], 106(B3):4305–4326. doi:10.1029/2000JB900312

Moore, D.M., and Reynolds, R.C., Jr., 1997. X-ray Diffraction and the Identification and Analysis of Clay Minerals (2nd ed.): Oxford (Oxford Univ. Press).

Moore, J.C., and Saffer, D., 2001. Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: an effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology, 29(2):183–186. doi:10.1130/​0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2

Okino, K., Shimakawa, Y., and Nagaoka, S., 1994. Evolution of the Shikoku Basin. J. Geomagn. Geoelectr., 46(6):463–479. doi:10.5636/​jgg.46.463

Saito, S., Underwood, M.B., and Kubo, Y., 2009. NanTroSEIZE Stage 2: subduction inputs. IODP Sci. Prosp., 322. doi:10.2204/​iodp.sp.322.2009

Santagata, M., and Kang, Y.I., 2007. Effects of geologic time on the initial stiffness of clays. Eng. Geol. (Amsterdam, Neth.), 89(1–2):98–111. doi:10.1016/j.enggeo.2006.09.018

Sawyer, D.E., Jacoby, R., Flemings, P., and Germaine, J.T., 2008. Data report: particle size analysis of sediments in the Ursa Basin, IODP Expedition 308 Sites U1324 and U1322, northern Gulf of Mexico. In Flemings, P.B., Behrmann, J.H., John, C.M., and the Expedition 308 Scientists, Proc. IODP, 308: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/​iodp.proc.308.205.2008

Schneider, J., 2011. Compression and permeability behavior of natural mudstones [Ph.D. thesis]. Univ. Texas, Austin. http://​hdl.handle.net/​2152/​ETD-UT-2011-12-4730

Seno, T., Stein, S., and Gripp, A.E., 1993. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data. J. Geophys. Res., [Solid Earth], 98(B10):17941–17948. doi:10.1029/93JB00782

Sheahan, T.C., 1991. An experimental study of the time-dependent undrained shear behavior of resedimented clay using automated stress path triaxial equipment [Ph.D. thesis]. MIT, Cambridge, MA. http://​dspace.mit.edu/​handle/​1721.1/​13486

Tobin, H., Kinoshita, M., Ashi, J., Lallemant, S., Kimura, G., Screaton, E.J., Moe, K.T., Masago, H., Curewitz, D., and the Expedition 314/315/316 Scientists, 2009. NanTroSEIZE Stage 1 expeditions: introduction and synthesis of key results. In Kinoshita, M., Tobin, H., Ashi, J., Kimura, G., Lallemant, S., Screaton, E.J., Curewitz, D., Masago, H., Moe, K.T., and the Expedition 314/315/316 Scientists, Proc. IODP, 314/315/316: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/​iodp.proc.314315316.101.2009

Tobin, H.J., and Kinoshita, M., 2006. NanTroSEIZE: the IODP Nankai Trough Seismogenic Zone Experiment. Sci. Drill., 2:23–27. doi:10.2204/iodp.sd.2.06.2006

Underwood, M.B., and Guo, J., in press. Data report: clay mineral assemblages in the Shikoku Basin, NanTroSEIZE Subduction. In Saito, S., Underwood, M.B., Kubo, Y., and the Expedition 322 Scientists, Proc. IODP, 322: Tokyo (Integrated Ocean Drilling Program Management International, Inc.).

Underwood, M.B., Saito, S., Kubo, Y., and the Expedition 322 Scientists, 2009. NanTroSEIZE Stage 2: subduction inputs. IODP Prel. Rept., 322. doi:10.2204/iodp.pr.322.2009

Underwood, M.B., Saito, S., Kubo, Y., and the IODP Expedition 322 Scientists, 2010. IODP Expedition 322 drills two sites to document inputs to the Nankai Trough Subduction Zone. Sci. Drill., 10:14–25. doi:10.2204/iodp.sd.10.02.2010

Vrolijk, P., 1990. On the mechanical role of smectite in subduction zones. Geology, 18(8):703–707. doi:10.1130/​0091-7613(1990)018<0703:OTMROS>2.3.CO;2