IODP

doi:10.2204/iodp.sp.342.2011

References

Alley, R.B., and Clark, P.U., 1999. The deglaciation of the Northern Hemisphere: a global perspective. Annu. Rev. Earth Planet. Sci., 27(1):149–182. doi:10.1146/annurev.earth.27.1.149

Arthur, M.A., Srivastava, S.P., Kaminski, M., Jarrard, R., and Osler, J., 1989. Seismic stratigraphy and history of deep circulation and sediment drift development in Baffin Bay and the Labrador Sea. In Srivastava, S.P., Arthur, M., Clement, B., et al., Proc. ODP, Sci. Results, 105: College Station, TX (Ocean Drilling Program), 957–988. doi:10.2973/odp.proc.sr.105.118.1989

Austin, J.A., Jr., Christie-Blick, N., Malone, M.J., et al., 1998. Proc. ODP, Init. Repts., 174A: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.174a.1998

Backman, J., Moran, K., McInroy, D., and the IODP Expedition 302 Scientists, 2005. IODP Expedition 302, Arctic Coring Expedition (ACEX): a first look at the Cenozoic paleoceanography of the central Arctic Ocean. Sci. Drill., 1:12–17. doi:10.2204/iodp.sd.1.02.2005

Bekins, B.A., and Dreiss, S.J., 1992. A simplified analysis of parameters controlling dewatering in accretionary prisms. Earth Planet. Sci. Lett., 10(3–4)9:275–287. doi:10.1016/0012-821X(92)90092-A

Berggren, W.A., Aubry, M.-P., van Fossen, M., Kent, D.V., Norris, R.D., and Quillévéré, F., 2000. Integrated Paleocene calcareous plankton magnetobiochronology and stable isotope stratigraphy: DSDP Site 384 (NW Atlantic Ocean). Palaeogeogr., Palaeoclimatol., Palaeoecol., 159(1–2):1–51. doi:10.1016/S0031-0182(00)00031-6

Bice, K.L., Barron, E.J., and Peterson, W.H., 1997. Continental runoff and early Cenozoic bottom-water sources. Geology, 25(10):951–954. doi:10.1130/​0091-7613(1997)025<0951:CRAECB>2.3.CO;2

Bice, K.L., and Marotzke, J., 2001. Numerical evidence against reversed thermohaline circulation in the warm Paleocene/Eocene ocean. J. Geophys. Res., [Oceans], 106(C6):11529–11542. doi:10.1029/​2000JC000561

Bice, K.L., and Marotzke, J., 2002. Could changing ocean circulation have destabilized methane hydrate at the Palaeocene/Eocene boundary? Paleoceanography, 17(2):1018–1039. doi:10.1029/​2001PA000678

Bijl, P.K., Houben, A.J.P., Schouten, S., Bohaty, S.M., Sluijs, A., Reichart, G.-J., Sinninghe Damsté, J.S., and Brinkhuis, H., 2010. Transient middle Eocene atmospheric CO2 and temperature variations. Science, 330(6005):819–821. doi:10.1126/science.1193654

Billups, K., Pälike, H., Channell, J.E.T., Zachos, J.C., and Shackleton, N.J., 2004. Astronomic calibration of the late Oligocene through early Miocene geomagnetic polarity time scale. Earth Planet. Sci. Lett., 224(1–2):33–44. doi:10.1016/j.epsl.2004.05.004

Boehm, A., and Moore, J.C., 2002. Fluidized sandstone intrusions as an indicator of paleostress orientation, Santa Cruz, California. Geofluids, 2(2):147–161. doi:10.1046/j.1468-8123.2002.00026.x

Bohaty, S.M., Zachos, J.C., Florindo, F., and Delaney, M.L., 2009. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography, 24(2):PA2207–PA2222. doi:10.1029/​2008PA001676

Bombolakis, E.G., 1981. Analysis of a horizontal catastrophic landslide. In Carter, N.L., Friedman, M., Logan, J.M., and Stearns, D.W. (Eds.), Mechanical Behavior of Crustal Rocks. Geophys. Monogr., 24:251–258. doi:10.1029/GM024p0251

Bond, G.C., and Lotti, R., 1995. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science, 276(5200):1005–1010. doi:10.1126/science.267.5200.1005

Bralower, T.J., Premoli Silva, I., Malone, M.J., et al., 2002. Proc. ODP, Init. Repts., 198: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.198.2002

Brass, G.W., Southam, J.R., and Peterson, W.H., 1982. Warm saline bottom water in the ancient ocean. Nature (London, U. K.), 296(5858):620–623. doi:10.1038/296620a0

Brinkhuis, H., Schouten, S., Collinson, M.E., Sluijs, A., Sinninghe Damsté, J.S., Dickens, G.R., Huber, M., Cronin, T.M., Onodera, J., Takahashi, K., Bujak, J.P., Stein, R., van der Burgh, J., Eldrett, J.S., Harding, I.C., Lotter, A.F., Sangiorgi, F., van Konijnenburg-van Cittert, H., de Leeuw, J.W., Matthiessen, J., Backman, J., Moran, K., and the Expedition 302 Scientists, 2006. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature (London, U. K.), 441(7093):606–609. doi:10.1038/​nature04692

Channell, J.E.T., Sato, T., Kanamatsu, T., Stein, R., and Alvarez Zarikian, C., 2010. Expediiton 303/306 synthesis: North Atlantic climate. In Channell, J.E.T., Kanamatsu, T., Sato, T., Stein, R., Alvarez Zarikian, C.A., Malone, M.J., and the Expedition 303/306 Scientists, Proc. IODP, 303/306: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.303306.214.2010

Coxall, H.K., and Wilson, P.A., 2011. Early Oligocene glaciation and productivity in the eastern equatorial Pacific: insights into global carbon cycling. Paleoceanography, 26(2):PA2221–PA2238. doi:10.1029/​2010PA002021

Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H., and Backman, J., 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature (London, U. K.), 433(7021):53–57. doi:10.1038/nature03135

Curry, W.B., Shackleton, N.J., Richter, C., et al., 1995. Proc. ODP, Init. Repts., 154: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.154.1995

Dahlen, F.A., Suppe, J., and Davis, D., 1984. Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb theory. J. Geophys. Res., [Solid Earth], 89(B12):10087–10101. doi:10.1029/JB089iB12p10087

Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., and Bond, G., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature (London, U. K.), 364(6434):218–220. doi:10.1038/364218a0

Davies, R., Cartwright, J., Pike, J., and Line, C., 2001. Early Oligocene initiation of North Atlantic Deep Water formation. Nature (London, U. K.), 410(6831):917–920. doi:10.1038/35073551

Davis, D., Suppe, J., and Dahlen, F.A., 1983. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res., [Solid Earth], 88(B2):1153–1172. doi:10.1029/JB088iB02p01153

DeConto, R.M., and Pollard, D., 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature (London, U. K.), 421(6920):245–249. doi:10.1038/nature01290

DeConto, R.M., Pollard, D., Wilson, P.A., Palike, H., Lear, C.H., and Pagani, M., 2008. Thresholds for Cenozoic bipolar glaciation. Nature (London, U. K.), 455(7213):652–656. doi:10.1038/nature07337

Dickens, G.R., Castillo, M.M., and Walker, J.C.G., 1997. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25(3):259–262. doi:10.1130/​0091-7613(1997)025<0259:ABOGIT>2.3.CO;2

Dillon, W.P., Nealon, J.W., Taylor, M.H., Lee, M.W., Drury, R.M., and Anton, C.H., 2000. Seafloor collapse and methane venting associated with gas hydrate on the Blake Ridge: causes and implications to seafloor stability and methane release. In Paull, C.K., and Dillon, W.P. (Eds.), Natural Gas Hydrates: Occurrence, Distribution, and Detection. Geophys. Monogr., 124:211–233. doi:10.1029/GM124p0211

Dugan, B., and Flemings, P.B., 2000. Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps. Science, 289(5477):288–291. doi:10.1126/​science.289.5477.288

Dugan, B., and Flemings, P.B., 2002. Fluid flow and stability of the US continental slope offshore New Jersey from the Pleistocene to the present. Geofluids, 2(2):137–146. doi:10.1046/​j.1468-8123.2002.00032.x

Dunkley Jones, T., Bown, P.R., Pearson, P.N., Wade, B.S., Coxall, H.K., and Lear, C.H., 2008. Major shifts in calcareous phytoplankton assemblages through the Eocene–Oligocene transition of Tanzania and their implications for low-latitude primary production. Paleoceanography, 23(4):PA4204–PA4217. doi:10.1029/2008PA001640

Dunkley Jones, T., Ridgwell, A., Lunt, D.J., Maslin, M.A., Schmidt, D.N., and Valdes, P.J., 2010. A Palaeogene perspective on climate sensitivity and methane hydrate instability. Philos. Trans. R. Soc., A, 368(1919):2395–2415. doi:10.1098/rsta.2010.0053

Edgar, K.M., Wilson, P.A., Sexton, P.F., Gibbs, S.J., Roberts, A.P., and Norris, R.D., 2010. New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes. Palaeogeogr., Palaeoclimatol., Palaeoecol., 297(3–4):670–682. doi:10.1016/j.palaeo.2010.09.016

Edgar, K.M., Wilson, P.A., Sexton, P.F., and Suganuma, Y., 2007. No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature (London, U. K.), 448(7156):908–911. doi:10.1038/​nature06053

Eldrett, J.S., Greenwood, D.R., Harding, I.C., and Huber, M., 2009. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature (London, U. K.), 459(7249):969–973. doi:10.1038/nature08069

Eldrett, J.S., Harding, I.C., Wilson, P.A., Butler, E., and Roberts, A.P., 2007. Continental ice in Greenland during the Eocene and Oligocene. Nature (London, U. K.), 446(7132):176–179. doi:10.1038/​nature05591

Erbacher, J., Mosher, D.C., Malone, M.J., et al., 2004. Proc. ODP, Init. Repts., 207: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.207.2004

Fagel, N., Robert, C., and Hillaire-Marcel, C., 1996. Clay mineral signature of the NW Atlantic boundary undercurrent. Mar. Geol., 130(1–2):19–28. doi:10.1016/0025-3227(95)00134-4

Fagel, N., Robert, C., Preda, M., and Thorez, J., 2001. Smectite composition as a tracer of deep circulation: the case of the northern North Atlantic. Mar. Geol., 172(3–4):309–330. doi:10.1016/​S0025-3227(00)00123-7

Fisher, A.T., Wheat, C.G., Becker, K., Davis, E.E., Jannasch, H., Schroeder, D., Dixon, R., Pettigrew, T.L., Meldrum, R., McDonald, R., Nielsen, M., Fisk, M., Cowen, J., Bach, W., and Edwards, K., 2005. Scientific and technical design and deployment of long-term subseafloor observatories for hydrogeologic and related experiments, IODP Expedition 301, eastern flank of Juan de Fuca Ridge. In Fisher, A.T., Urabe, T., Klaus, A., and the Expedition 301 Scientists, Proc. IODP, 301: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.301.103.2005

Flemings, P.B., Long, H., Dugan, B., Germaine, J., John, C.M., Behrmann, J.H., Sawyer, D., and IODP Expedition 308 Scientists, 2008. Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico. Earth Planet. Sci. Lett., 269(3–4):309–325. doi:10.1016/j.epsl.2007.12.005

Flemings, P.B., Stump, B.B., Finkbeiner, T., and Zoback, M., 2002. Flow focusing in overpressured sandstones: theory, observations, and applications. Am. J. Sci., 302:827–855. doi:10.2475/ajs.302.10.827

Friedrich, O., Erbacher, J., Moriya, K., Wilson, P.A., and Kuhnert, H., 2008. Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean. Nat. Geosci., 1(7):453–457. doi:10.1038/ngeo217

Galeotti, S., Krishnan, S., Pagani, M., Lanci, L., Gaudio, A., Zachos, J.C., Monechi, S., Morelli, G., and Lourens, L., 2010. Orbital chronology of early Eocene hyperthermals from the Contessa Road section, central Italy. Earth Planet. Sci. Lett., 290(1–2):192–200. doi:10.1016/​j.epsl.2009.12.021

Gersonde, R., Hodell, D.A., Blum, P., et al., 1999. Proc. ODP, Init. Repts., 177: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.177.1999

Gibbs, S.J., Bown, P.R., Sessa, J.A., Bralower, T.J., and Wilson, P.A., 2006. Nannoplankton extinction and origination across the Paleocene–Eocene Thermal Maximum. Science, 314(5806):1770–1773. doi:10.1126/science.1133902

Goodwin, P., Williams, R.G., Ridgwell, A., and Follows, M.J., 2009. Climate sensitivity to the carbon cycle modulated by past and future changes in ocean chemistry. Nat. Geosci., 2(2):145–150. doi:10.1038/​ngeo416

Greenwood, D.R., Basinger, J.F., and Smith, R.Y., 2010. How wet was the Arctic Eocene rain forest? Estimates of precipitation from Paleogene Arctic macrofloras. Geology, 38(1):15–18. doi:10.1130/​G30218.1

Hampson, J.C., Jr., and Robb, J.M., 1984. A geologic map of the continental slope off New Jersey: Lindenkohl Canyon to Toms Canyon. U.S. Geol. Surv. Misc. Invest. Ser., Map I–1608.

Haneberg, W.C., 1995. Groundwater flow and the stability of heterogeneous infinite slopes underlain by impervious substrata. In Haneberg, W.C., and Anderson, S.A. (Eds.), Clay and Shale Slope Instability. Rev. Eng. Geol., 10:63–78.

Haywood, A.M., Ridgwell, A., Lunt, D.J., Hill, D.J., Pound, M.J., Dowsett, H.J., Dolan, A.M., Francis, J.E., and Williams, M., 2011. Are there pre-Quaternary geological analogues for a future greenhouse warming? Philos. Trans. R. Soc., A, 369(1938):933–956. doi:10.1098/rsta.2010.0317

Hemming, S.R., Broecker, W.S., Sharp, W.D., Bond, G.C., Gwiazda, R.H., McManus, J.F., Klas, M., and Hajdas, I., 1998. Provenance of Heinrich layers in core V28-82, northeastern Atlantic: 40Ar/39Ar ages of ice-rafted hornblende, Pb isotopes in feldspar grains, and Nd-Sr-Pb isotopes in the fine sediment fraction. Earth Planet. Sci. Lett., 164(1–2):317–333. doi:10.1016/S0012-821X(98)00224-6

Higgins, J.A., and Schrag, D.P., 2006. Beyond methane: towards a theory for the Paleocene–Eocene Thermal Maximum. Earth Planet. Sci. Lett., 245(3–4):523–537. doi:10.1016/j.epsl.2006.03.009

Hutchinson, D.R., Poag, C.W., and Popenoe, P., 1995. Geophysical database of the east coast of the United States: southern Atlantic margin—stratigraphy and velocity from multichannel seismic profiles. Open-File Rep.—U.S. Geol. Surv., 95-27.

Hyndman, R.D., and Davis, E.E., 1992. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J. Geophys. Res., [Solid Earth], 97(B5):7025–7041. doi:10.1029/91JB03061

IODP International Working Group, 2001. Earth, Ocean, and Life: Scientific Investigation of the Earth System Using Multiple Drilling Platforms and New Technologies—Integrated Ocean Drilling Program Initial Science Plan, 2003–2013: Washington, DC (International Working Group Support Office). http://www.iodp.org/isp/

Innocent, C., Fagel, N., and Hillaire-Marcel, C., 2000. Sm–Nd isotope systematics in deep-sea sediments: clay-size versus coarser fractions. Mar. Geol., 168(1–4):79–87. doi:10.1016/​S0025-3227(00)00052-9

Johnson, D.W., 1939. The Origin of Submarine Canyons: A Critical Review of Hypotheses: New York (Hafner).

Katz, M.E., Pak, D.K., Dickens, G.R., and Miller, K.G., 1999. The source and fate of massive carbon input during the latest Paleocene thermal maximum. Science, 286(5444):1531–1533. doi:10.1126/​science.286.5444.1531

Keeling, R.F., and Stephens, B.B., 2001. Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography, 16(1):112–131. doi:10.1029/2000PA000529

Kent, D.V., Cramer, B.S., Lanci, L., Wang, D., Wright, J.D., and Van der Voo, R., 2003. A case for a comet impact trigger for the Paleocene/Eocene Thermal Maximum and carbon isotope excursion. Earth Planet. Sci. Lett., 211(1–2):13–26. doi:10.1016/S0012-821X(03)00188-2

Kvenvolden, K.A., 1993. Gas hydrates—geological perspective and global change. Rev. Geophys., 31(2):173–187. doi:10.1029/​93RG00268

Lear, C.H., Bailey, T.R., Pearson, P.N., Coxall, H.K., and Rosenthal, Y., 2008. Cooling and ice growth across the Eocene–Oligocene transition. Geology, 36(3):251–254. doi:10.1130/G24584A.1

Lear, C.H., Elderfield, H., and Wilson, P.A., 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287(5451):269–272. doi:10.1126/​science.287.5451.269

Lear, C.H., Rosenthal, Y., Coxall, H.K., and Wilson, P.A., 2004. Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle. Paleoceanography, 19(4):PA4015–PA4025. doi:10.1029/​2004PA001039

Leon-Rodriguez, L., and Dickens, G.R., 2010. Constraints on ocean acidification associated with rapid and massive carbon injections: the early Paleogene record at Ocean Drilling Program Site 1215, equatorial Pacific Ocean. Palaeogeogr., Palaeoclimatol., Palaeoecol., 298(3–4):409–420. doi:10.1016/j.palaeo.2010.10.029

Liu, X., and Flemings, P., 2009. Dynamic response of oceanic hydrates to sea level drop. Geophys. Res. Lett., 36(17):L17308–L173012. doi:10.1029/2009GL039821

Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S.R., Leckie, R.M., and Pearson, A., 2009. Global cooling during the Eocene-Oligocene climate transition. Science, 323(5918):1187–1190. doi:10.1126/science.1166368

Lourens, L.J., Sluijs, A., Kroon, D., Zachos, J.C., Thomas, E., Röhl, U., Bowles, J., and Raffi, I., 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature (London, U. K.), 435(7045):1083–1087. doi:10.1038/nature03814

Lyle, M., Olivarez Lyle, A., Backman, J., and Tripati, A., 2005. Biogenic sedimentation in the Eocene equatorial Pacific—the stuttering greenhouse and Eocene carbonate compensation depth. In Lyle, M., Wilson, P.A., Janecek, T.R., et al., Proc. ODP, Init. Repts., 199: College Station, TX (Ocean Drilling Program), 1–35. doi:10.2973/​odp.proc.sr.199.219.2005

Lyle, M., Wilson, P.A., Janecek, T.R., et al., 2002. Proc. ODP, Init. Repts., 199: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.199.2002

Marotzke, J., and Willebrand, J., 1991. Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr., 21(9):1372–1385. doi:10.1175/​1520-0485(1991)021<1372:MEOTGT>2.0.CO;2

Meinen, C.S., and Watts, D.R., 2000. Vertical structure and transport on a transect across the North Atlantic Current near 42N: time series and mean. J. Geophys. Res., [Oceans], 105(C9):21869–21891. doi:10.1029/2000JC900097

Merico, A., Tyrrell, T., and Wilson, P.A., 2008. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall. Nature (London, U. K.), 452(7190):979–982. doi:10.1038/nature06853

Miller, K.G., and Fairbanks, R.G., 1985. Oligocene to Miocene carbon isotope cycles and abyssal circulation changes. In Sundquist, E.J., and Broecker, W.S. (Eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Geophys. Monogr., 32:469–486.

Miller, K.G., Fairbanks, R.G., and Mountain, G.S., 1987. Tertiary oxygen isotope synthesis, sea-level history, and continental margin erosion. Paleoceanography, 2(1):1–19. doi:10.1029/PA002i001p00001

Mountain, G.S., and Miller, K.G., 1992. Seismic and geologic evidence for early Paleogene deepwater circulation in the western North Atlantic. Paleoceanography, 7(4):423–439. doi:10.1029/92PA01268

Moran, K., Backman, J., Brinkhuis, H., Clemens, S.C., Cronin, T., Dickens, G.R., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R.W., Kaminski, M., King, J., Koc, N., Krylov, A., Martinez, N., Matthiessen, J., McInroy, D., Moore, T.C., Onodera, J., O’Regan, M., Pälike, H., Rea, B., Rio, D., Sakamoto, T., Smith, D.C., Stein, R., St. John, K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M., Yamamoto, M., Farrell, J., Frank, M., Kubik, P., Jokat, W., and Kristoffersen, Y., 2006. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature (London, U. K.), 441(7093):601–605. doi:10.1038/nature04800

National Research Council, 2011. Understanding Earth’s Deep Past: Lessons for Our Climate Future: Washington DC (National Academies Press).

Norris, R.D., Klaus, A., and Kroon, D., 2001a. Mid-Eocene deep water, the Late Palaeocene Thermal Maximum and continental slope mass wasting during the Cretaceous–Palaeogene impact. In Kroon, D., Norris, R.D., and Klaus, A. (Eds.), Western North Atlantic Paleogene and Cretaceous Paleoceanography. Geol. Soc. Spec. Publ., 183(1):23–48. doi:10.1144/GSL.SP.2001.183.01.02

Norris, R.D., Kroon, D., Huber, B.T., and Erbacher, J., 2001b. Cretaceous–Palaeogene ocean and climate change in the subtropical North Atlantic. In Kroon, D., Norris, R.D., and Klaus, A. (Eds.), Western North Atlantic Paleogene and Cretaceous Paleoceanography, Geol. Soc. Spec. Publ., 183(1):1–22. doi:10.1144/​http://​dx.doi.org/​10.1038/​nature04800GSL.SP.2001.183.01.01

Norris, R.D., Kroon, D., Klaus, A., et al., 1998. Proc. ODP, Init. Repts., 171B: College Station, TX (Ocean Drilling Program). doi:10.2973/​odp.proc.ir.171B.1998

Norris, R.D., and Röhl, U., 1999. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature (London, U. K.), 401(6755):775–778. doi:10.1038/44545

Nuñes, F., and Norris, R.D., 2006. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period. Nature (London, U. K.), 439(7072):60–63. doi:10.1038/nature04386

Oppo, D.W., and Lehman, S.J., 1993. Mid-depth circulation of the subpolar North Atlantic during the last glacial maximum. Science, 259(5098):1148–1152. doi:10.1126/science.259.5098.1148

Oppo, D.W., Raymo, M.E., Lohmann, G.P., Mix, A.C., Wright, J.D., and Prell, W.L., 1995. A δ13C record of upper North Atlantic deep water during the past 2.6 million years. Paleoceanography, 10(3):373–394. doi:10.1029/95PA00332

Pagani, M., Caldeira, K., Archer, D., and Zachos, J.C., 2006a. ATMOSPHERE: an ancient carbon mystery. Science, 314(5805):1556–1557. doi:10.1126/science.1136110

Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinninghe Damsté, J.S., Dickens, G.R., and Expedition 302 Scientists, 2006b. Arctic hydrology during global warming at the Palaeocene/Eocene Thermal Maximum. Nature (London, U. K.), 443(7103):671–675. doi:10.1038/nature05043

Pagani, M., Zachos, J.C., Freeman, K.H., Tipple, B., and Bohaty, S., 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309(5734):600–603. doi:10.1126/science.1110063

Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, 2010. Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.320321.2010

Pälike, H., Norris, R.D., Herrle, J.O., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackleton, N.J., Tripati, A.K., and Wade, B.S., 2006. The heartbeat of the Oligocene climate system. Science, 314(5807):1894–1898. doi:10.1126/science.1133822

Pälike, H., Laskar, J., and Shackleton, N.J., 2004. Geologic constraints of the chaotic diffusion of the solar system. Geology, 32(11)929–932. doi:10.1130/G20750.1

Pälike, H., and Shackleton, N.J., 2000. Constraints on astronomical parameters from the geological record for the last 25 Myr. Earth Planet. Sci. Lett., 182(1):1–14. doi:10.1016/S0012-821X(00)00229-6

Pälike, H., Shackelton, N.J., and Röhl, U., 2001. Astronomical forcing in late Eocene marine sediments. Earth Planet. Sci. Lett., 193(3–4):589–602. doi:10.1016/S0012-821X(01)00501-5

Panchuk, K., Ridgwell, A., and Kump, L.R., 2008. Sedimentary response to Paleocene–Eocene Thermal Maximum carbon release: a model-data comparison. Geology, 36(4):315–318. doi:10.1130/G24474A.1

Pearson, P.N., Foster, G.L., and Wade, B.S., 2009. Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature (London, U. K.), 461(7267):1110–1113. doi:10.1038/nature08447

Peterson, L.C., Murray, D.W., Ehrmann, W.U., and Hempel, P., 1992. Cenozoic carbonate accumulation and compensation depth changes in the Indian Ocean. In Duncan, R.A., Rea, D.K., Kidd, R.B., von Rad, U., and Weissel, J.K. (Eds.), Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophys. Monogr., 70:311–333.

Pickart, R.S., McKee, T.K., Torres, D.J., and Harrington, S.A., 1999. Mean structure and interannual variability of the slopewater system south of Newfoundland. J. Phys. Oceanogr., 29(10):2541–2558. doi:10.1175/​1520-0485(1999)029<2541:MSAIVO>2.0.CO;2

Prins, M.A., Bouwer, L.M., Beets, C.J., Troelstra, S.R., Weltje, G.J., Kruk, R.W., Kuijpers, A., and Vroon, P.Z., 2002. Ocean circulation and iceberg discharge in the glacial North Atlantic: inferences from unmixing of sediment size distributions. Geology, 30(6):555–558. doi:10.1130/​0091-7613(2002)030<0555:OCAIDI>2.0.CO;2

Quillévéré, F., Norris, R.D., Kroon, D., and Wilson, P.A., 2008. Transient ocean warming and shifts in carbon reservoirs during the early Danian. Earth Planet. Sci. Lett., 265(3–4):600–615. doi:10.1016/j.epsl.2007.10.040

Rahmstorf, S., 1995. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature (London, U. K.), 378(6553):145–149. doi:10.1038/378145a0

Rona, P.A., 1969. Middle Atlantic continental slope of the United States: deposition and erosion. AAPG Bull., 53(7):1453–1465. doi:10.1306/​5D25C85F-16C1-11D7-8645000102C1865D

Ruppel, C., 1997. Anomalously cold temperatures observed at the base of the gas hydrate stability zone on the U.S. Atlantic passive margin. Geology, 25(8):699–702. doi:10.1130/​0091-7613(1997)025<0699:ACTOAT>2.3.CO;2

Saffer, D., McNeill, L., Byrne, T., Araki, E., Toczko, S., Eguchi, N., Takahashi, K., and the Expedition 319 Scientists, 2010. Proc. IODP, 319: Tokyo (Integrated Ocean Drilling Program management International, Inc.). doi:10.2204/iodp.proc.319.2010

Saffer, D.M., and Bekins, B.A., 2002. Hydrologic controls on the morphology and mechanics of accretionary wedges. Geology, 30(3):271–274. doi:10.1130/​0091-7613(2002)030<0271:HCOTMA>2.0.CO;2

Scher, H.D., Bohaty, S.M., Zachos, J.C., and Delaney, M.L., 2011. Two-stepping into the icehouse: East Antarctic weathering during progressive ice-sheet expansion at the Eocene–Oligocene transition. Geology, 39(4):383–386. doi:10.1130/​G31726.1

Screaton, E., Saffer, D., Henry, P., and Hunze, S., 2002. Porosity loss within the underthrust sediments of the Nankai accretionary complex: implications for overpressures. Geology, 30(1):19–22. doi:10.1130/​0091-7613(2002)030<0019:PLWTUS>2.0.CO;2

Sexton, P.F., Norris, R.D., Wilson, P.A., Pälike, H., Westerhold, T., Röhl, U., Bolton, C.T., and Gibbs, S., 2011. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature (London, U. K.), 471(7338):349–352. doi:10.1038/​nature09826

Sigurdsson, H., Leckie, R.M., Acton, G.D., et al., 1997. Proc. ODP, Init. Repts., 165: College Station, TX (Ocean Drilling Program). doi:10.2973/​odp.proc.ir.165.1997

Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J.S., Dickens, G.R., Huber, M., Reichart, G.-J., Stein, R., Matthiessen, J., Lourens, L.J., Pedentchouk, N., Backman, J., Moran, K., and the Expedition 302 Scientists, 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene Thermal Maximum. Nature (London, U. K.), 441(7093):610–613. doi:10.1038/nature04668

Stickley, C.E., St. John, K., Koç, N., Jordan, R.W., Passchier, S., Pearce, R.B., and Kearns, L.E., 2009. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris. Nature (London, U. K.), 460(7253):376–379. doi:10.1038/nature08163

Stommel, H., and Arons, A.B., 1960. On the abyssal circulation of the world ocean—I. Stationary planetary flow patterns on a sphere. Deep Sea Res., 6:140–154. doi:10.1016/0146-6313(59)90065-6

Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T.R., and Rey, S.S., 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature (London, U. K.), 429(6991):542–545. doi:10.1038/nature02566

Terzaghi, K., 1950. Mechanism of landslides. In Paige, S. (Ed.), Application of Geology to Engineering Practice: Berkeley Volume: Baltimore (Geol. Soc. Am.), 83–123.

Thomas, D.J., Bralower, T.J., and Jones, C.E., 2003. Neodymium isotopic reconstruction of late Paleocene–early Eocene thermohaline circulation. Earth Planet. Sci. Lett., 209(3–4):309–322. doi:10.1016/S0012-821X(03)00096-7

Toggweiler, J.R., and Samuels, B., 1995. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res., Part I, 42(4):477–500. doi:10.1016/​0967-0637(95)00012-U

Tripati, A., Backman, J., Elderfield, H., and Ferretti, P., 2005. Eocene bipolar glaciation associated with global carbon cycle changes. Nature (London, U. K.), 436(7049):341–346. doi:10.1038/nature03874

Tripati, A.K., Eagle, R.A., Morton, A., Dowdeswell, J.A., Atkinson, K.L., Bahé, Y., Dawber, C.F., Khadun, E., Shaw, R.M.H., Shorttle, O., and Thanabalasundaram, L., 2007. Evidence for glaciation in the Northern Hemisphere back to 44 Ma from ice-rafted debris in the Greenland Sea. Earth Planet. Sci. Lett., 265(1–2):112–122. doi:10.1016/​j.epsl.2007.09.045

Tripati, A., and Elderfield, H., 2005. Deep-sea temperature and circulation changes at the Paleocene-Eocene Thermal Maximum. Science, 308(5730):1894–1898. doi:10.1126/science.1109202

Tucholke, B.E., 1979. Relationships between acoustic stratigraphy and lithostratigraphy in the western North Atlantic Basin. In Tucholke, B.E., Vogt, P.R., et al., Init. Repts. DSDP, 43: Washington, DC (U.S. Govt. Printing Office), 827–846. doi:10.2973/dsdp.proc.43.141.1979

Tucholke, B.E., and Ludwig, W.J., 1982. Structure and origin of the J Anomaly Ridge, western North Atlantic Ocean. J. Geophys. Res., [Solid Earth], 87(B11):9389–9407. doi:10.1029/JB087iB11p09389

Tucholke, B.E., and Mountain, G.S., 1986. Tertiary paleoceanography of the western North Atlantic Ocean. In Vogt, P.R., and Tucholke, B.E. (Eds.), The Geology of North America: The Western North Atlantic Region (Vol. M): Boulder (Geol. Soc. Am.), 631–650.

Tucholke, B.E., and Vogt, P.R., 1979. Western North Atlantic: sedimentary evolution and aspects of tectonic history. In Tucholke, B.E., Vogt, P.R., et al., Init. Repts. DSDP, 43: Washington, DC (U.S. Govt. Printing Office), 791–825. doi:10.2973/dsdp.proc.43.140.1979

Tucholke, B.E., Vogt, P.R., et al., 1979. Init. Repts. DSDP, 43: Washington, DC (U.S. Govt. Printing Office). doi:10.2973/dsdp.proc.43.1979

Via, R.K., and Thomas, D.J., 2006. Evolution of Atlantic thermohaline circulation: early Oligocene onset of deep-water production in the North Atlantic. Geology, 34(6):441–444. doi:10.1130/G22545.1

Wade, B.S., and Pälike, H., 2004. Oligocene climate dynamics. Paleoceanography, 19(4)PA4019–PA4034. doi:10.1029/2004PA001042

Weltje, G.J., 1997. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Math. Geol., 29(4):503–549. doi:10.1007/BF02775085

Weltje, G.J., and Prins, M.A., 2003. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sediment. Geol., 162(1–2):39–62. doi:10.1016/​S0037-0738(03)00235-5

Westerhold, T., and Röhl, U., 2009. High resolution cyclostratigraphy of the early Eocene—new insights into the origin of the Cenozoic cooling trend. Clim. Past, 5(3):309–327. doi:10.5194/cp-5-309-2009

Wright, J.D., and Miller, K.G., 1993. Southern Ocean influences on late Eocene to Miocene deepwater circulation. In Kennett, J.P., and Warnke, D.A. (Eds.), The Antarctic Paleoenvironment: A Perspective on Global Change. Antarct. Res. Ser., 60:1–25.

Wright, J.D., Miller, K.G., and Fairbanks, R.G., 1992. Early and middle Miocene stable isotopes: implications for deepwater circulation and climate. Paleoceanography, 7(3):357–389. doi:10.1029/92PA00760

Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517):686–693. doi:10.1126/science.1059412

Zachos, J.C., Kroon, D., Blum, P., et al., 2004. Proc. ODP, Init. Repts., 208: College Station, TX (Ocean Drilling Program. doi:10.2973/odp.proc.ir.208.2004

Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L.J., McCarren, H., and Kroon, D., 2005. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science, 308(5728):1611–1615. doi:10.1126/science.1109004

Zeebe, R.E., and Zachos, J.C., 2007. Reversed deep-sea carbonate ion basin gradient during Paleocene-Eocene Thermal Maximum. Paleoceanography, 22(3):PA3201–PA3217. doi:10.1029/2006PA001395